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Abstract: The renormalization-scale dependence of the non-factorizable virtual correc-

tions to Higgs boson production in weak boson fusion at next-to-next-to-leading order in

perturbative QCD is unusually strong, due to the peculiar nature of these corrections.

To address this problem, we compute the three-loop non-factorizable contribution to this

process which accounts for the running of the strong coupling constant, and show that it

stabilizes the theoretical prediction.
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1 Introduction

The non-factorizable corrections to Higgs boson production in weak boson fusion (WBF)

are color-suppressed and, for this reason, are expected to be smaller than the factoriz-

able ones. 1 However, virtual non-factorizable corrections, which start contributing to the

WBF cross section at next-to-next-to-leading order (NNLO) in perturbative QCD, exhibit

a peculiar enhancement by two powers of π. This enhancement was first observed when

the two-loop amplitude was computed in the leading eikonal approximation in Ref. [11].

Recently, the calculation reported in Ref. [11] was extended in two important ways. First,

in Ref. [12] the calculation of real-virtual and double-real non-factorizable corrections to

Higgs boson production in weak boson fusion was performed. It was shown that these con-

tributions are negligible in comparison with O(π2)-enhanced eikonal virtual corrections.

Second, in Ref. [13] it was found that the leading power correction to the eikonal contri-

bution reduces the prediction based on the eikonal approximation by about 20 percent.

An important observation that emerged from the studies described above is that the

dependence of these predictions on the renormalization scale is significant and can easily

reach 20 − 30 percent.2 This feature is the direct consequence of the fact that the non-

factorizable corrections appear for the very first time at NNLO in the perturbative QCD

expansion. For this reason the mechanism responsible for compensating the dependences of

physical quantities on the renormalization scale is not yet present in the results of Refs. [11–

13], in spite of the fact that they are part of the NNLO QCD corrections to Higgs boson

production in WBF.

To address this problem, one should calculate the N3LO QCD non-factorizable correc-

tions. This calculation is currently unfeasible. A much simpler possibility is to compute

the corrections associated with the running of the QCD coupling constant, starting from

1Theoretical predictions for Higgs boson production in WBF are very advanced, see Refs. [1–9], for

the discussion of factorizable QCD and electroweak corrections, as well as effects of multi-jet merger and

interplay of parton showers and fixed-order predictions [10].
2To avoid confusion, we emphasize that we refer to the non-factorizable contribution only.
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the fermion bubble insertions into the gluon propagators, and then re-writing such contri-

butions through the full QCD β-function in the spirit of the BLM approach [14]. Since, as

follows from Ref. [11], the leading contribution to the non-factorizable corrections to WBF

is related to the potential scattering, it appears quite natural to include an improved de-

scription of the interaction potential between two quarks in QCD as the first step towards

a more reliable theoretical prediction. This is what we do in this paper.

The rest of the paper is organized as follows. In Section 2 we explain how to accom-

modate the running coupling constant into the computation of non-factorizable corrections

and derive a convenient one-dimensional representation for the three-loop O(β0α
3
s) correc-

tions. In Section 3 we discuss the analytic computation of these contributions. In Section 4

we show that the computed corrections strongly reduce the renormalization scale depen-

dence of the theoretical predictions for the non-factorizable contributions to Higgs boson

production in WBF, making them more precise and reliable. We conclude in Section 5.

Analytic formulas for O(β0α
3
s) corrections to Higgs boson production in WBF can be found

in an ancillary file provided with this submission.

2 Fermion-bubble corrections

According to the analyses of Refs. [11, 13] the leading O(α2
s) QCD non-factorizable con-

tributions to Higgs boson production in weak boson fusion can be written in the following

way

dσnf =
N2

c − 1

4N2
c

α2
s dσ

LO Cnf . (2.1)

The function Cnf , which describes the effect of the non-factorizable corrections, reads

Cnf = C2
1 − C2, (2.2)

where

C1 = −2

∫
dd−2k1

(2π)d−3

∆3∆4

∆1∆3,1∆4,1
,

C2 = 4

∫
dd−2k1

(2π)d−3

dd−2k2

(2π)d−3

∆3∆4

∆1∆2∆3,12∆4,12
.

(2.3)

In the above equation, we have used

∆i = k2
i , ∆3,i = (ki − p3)

2 +m2
V , ∆4,i = (ki + p4)

2 +m2
V , (2.4)

as well as k12 = k1 + k2 and

∆3 = p2
3 +m2

V , ∆4 = p2
4 +m2

V . (2.5)

Furthermore, mV is the mass of the electroweak gauge boson3 and we employ boldface

fonts to denote two-dimensional Euclidean vectors. For example, p3,4 are the transverse

momenta of the tagging jets in the WBF process pp → 2j +H.

An important feature of non-factorizable corrections is that the function Cnf is infrared

finite although the functions C1,2 are infrared divergent. To see this, it is simplest to use

3Note that in Eq. (2.1) one needs to sum over contributions of Z and W bosons.
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the integral representations for C1,2 and write Cnf as

Cnf = 4

∫
dd−2k1

(2π)d−3

dd−2k2

(2π)d−3

∆3∆4

∆1∆2

(
∆3∆4

∆3,1∆4,1∆3,2∆4,2
− 1

∆3,12∆4,12

)
. (2.6)

Using explicit expressions for the ∆-functions, it is easy to show that

∆3∆4

∆3,1∆4,1∆3,2∆4,2
− 1

∆3,12∆4,12
= ki

1k
j
2 Tij(k1,k2, ..), (2.7)

where the rank-2 tensor Tij is non-singular in the limit of vanishing k1,2. This fact ensures

that Cnf is not infrared divergent and, as a consequence, in Eq. (2.6) we can replace the

space-time dimensionality d with 4, so that d− 2 → 2.

It is now straightforward to introduce the running coupling constant into Eq. (2.6)

since all we need to do is to modify the gluon propagators ∆1 and ∆2 in Eq. (2.6). We

find4

Cnf = 4

∫
d2k1

(2π)

d2k2

(2π)

∆3∆4

∆̃1∆̃2

(
∆3∆4

∆3,1∆4,1∆3,2∆4,2
− 1

∆3,12∆4,12

)
, (2.8)

where

∆̃i = ∆i

(
1 +

β0αs

2π
ln

k2
i

µ2e5/3

)
, (2.9)

β0 = 11/6CA − 2/3NfTR, CA = 3, TR = 1/2, Nf is the number of massless quark flavors

and µ is the renormalization scale of the coupling αs in Eq. (2.1). We note that by using

Eq. (2.9) in Eq. (2.8) we describe the all-order impact of the running coupling constant

on Cnf but, since we are interested in computing O(β0α
3
s) corrections to Higgs boson

production in WBF, we only use this formula for bookkeeping purposes. As we explain

below, eventually, we expand Eq. (2.8) in powers of αs to the required order.

Although one can work with Cnf in Eq. (2.8), it is more convenient to compute C1 and

C2 separately. However, C1,2 are infrared divergent so that extracting them from Eq. (2.8)

and calculating them separately requires an infrared regulator. Since this regulator should

work efficiently for integrands with 1/k2 and 1/k2 lnk2, it seems that the best option is

an analytic regulator where each gluon propagator is raised to the power 1 + ν. Hence, we

define

C1(ν) = −2

∫
d2k1

2π

∆3 ∆4 m
2ν
V

∆1+ν
1 ∆3,1∆4,1

,

C2(ν1, ν2) = 4

∫
d2k1

2π

d2k2

2π

∆3 ∆4 m
2(ν1+ν2)
V

∆1+ν1
1 ∆1+ν2

2 ∆3,12∆4,12

,

(2.10)

and we will use these two auxiliary functions to compute Cnf through O(β0αs).

We begin with the calculation of C1(ν). Introducing Feynman parameters and in-

tegrating over the transverse momentum, we obtain the following representation for this

4For simplicity, we still use Cnf instead of introducing a new notation.
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function

C1(ν) = −Γ(2 + ν)∆x∆y

Γ(1 + ν)

1∫
0

dt

1∫
0

dξ ξ−1−ν(1− ξ)ν

(r12(t)− r1(t) ξ)
2+ν

=
Γ(2 + ν)Γ(1− ν) ∆x∆y

ν

1∫
0

dt

(r12(t))
2+ν F21

(
2 + ν,−ν, 1,

r1(t)

r12(t)

)
.

(2.11)

To write Eq. (2.11) we introduced the following functions

∆x = 1 + x, ∆y = 1 + y,

r1 = xt+ y(1− t)− zt(1− t), r2 = 1 + zt(1− t), r12 = r1 + r2,
(2.12)

and the following dimensionless quantities

x =
p2
3

m2
V

, y =
p2
4

m2
V

, z =
p2
H

m2
V

, (2.13)

that we will use throughout the calculation.

With this result at hand, it is straightforward to compute C2(ν1, ν2). Indeed, in this

case we can first integrate over one of the two loop momenta, keeping their sum fixed. We

obtain ∫
d2k1

(2π)

1

(k2
1)

1+ν1((k12 − k1)2)1+ν2

= − ν12
2ν1ν2

Γ(1 + ν12)

Γ(1 + ν1)Γ(1 + ν2)

Γ(1− ν1)Γ(1− ν2)

Γ(1− ν12)

1

(k2
12)

1+ν12
,

(2.14)

where ν12 = ν1 + ν2. Using this expression in Eq. (2.10), we find that the remaining

integration over k12 is identical to the one-loop case provided that we replace ν with ν12.

Hence, we find

C2(ν1, ν2) =
ν12
ν1ν2

Γ(1 + ν12)

Γ(1 + ν1)Γ(1 + ν2)

Γ(1− ν1)Γ(1− ν2)

Γ(1− ν12)
C1(ν12). (2.15)

It is now easy to see that to compute Cnf through O(β0αs) we need to take ν1 = ν2 = ν,

expand the quantity (
µ2e5/3

m2
V

)2 ν (
C1(ν)

2 − C2(ν, ν)
)

(2.16)

through first order in ν and identify ν with αsβ0/(2π). Writing the expansion of C1(ν) in

powers of ν as follows5

C1(ν) =
1

ν
+
∑
i=1

C
(i)
1 νi, (2.17)

5Using Eq. (2.11) and the fact that F21(2+ ν,−ν, 1, x) = 1+O(ν), it is easy to check that the first term

in such an expansion is 1/ν.
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we obtain

Cnf = C
(0)
nf +

αsβ0
π

(
C

(0)
nf ln

(
µ2e5/3

m2
V

)
+ C

(1)
nf

)
+O(α2

sβ
2
0), (2.18)

where

C
(0)
nf =

(
C

(0)
1

)2
− 2C

(1)
1 , C

(1)
nf = C

(0)
1 C

(1)
1 − 3C

(2)
1 + 2ζ3. (2.19)

We can easily derive convenient one-dimensional integral representations for the coef-

ficients C
(i)
1 , i = 0, 1, 2, by expanding Eq. (2.11) in powers of ν [15, 16]. We find

C
(0)
1 =

1∫
0

dt
∆x∆y

r212

[
ln r2 − 2 ln r12 +

r2 − r1
r2

]
,

C
(1)
1 =

1∫
0

dt
∆x∆4

r212

[
1

2
ln2 r12 − ln r12

(
r2 − r1

r2
+ ln

r2
r12

)

+ 2 ln
r2
r12

+
π2

6
− Li2

(
r1
r12

)]
,

C
(2)
1 =

1∫
0

dt
∆x∆4

r212

[
− 1

6
ln3 r12 +

1

2
ln2 r12

(
r2 − r1

r2
+ ln

r2
r12

)

+
π2

6

r2 − r1
r2

+ ln2
(

r2
r12

)
ln

r1
r12

− ln r12

(
π2

6
+ 2 ln

r2
r12

− Li2

(
r1
r12

))
− r2 − r1

r2
Li2

(
r1
r12

)
− ln

r2
r12

(
π2

6
− Li2

(
r1
r12

))
+ 2Li3

(
r2
r12

)
− 2ζ3

]
.

(2.20)

We will discuss below how to use these representations to complete the analytic compu-

tation of C
(0),(1),(2)
1 but we emphasize that the integral representations in Eq. (2.20) are

quite convenient for numerical calculations.

Before we discuss the analytic computation in full generality, we study Cnf in some

kinematic limits where compact formulas can be derived. The simplest case to consider is

when all transverse momenta are small |p3| ∼ |p4| ≪ mV . Then, r1 → 0 and r12 → 1. As

the result, the expression for C1(ν) simplifies and we obtain

lim
|p3,4|≪mV

C1(ν) ≈
Γ(2 + ν)Γ(1− ν)

ν
. (2.21)

We then find

Cnf = 1− π2

3
+

αsβ0
π

[(
1− π2

3

)
ln

(
µ2e5/3

m2
V

)
− π2

3
+ 2ζ3

]
+O(α2

sβ
2
0). (2.22)

Following Ref. [14], we define the appropriate renormalization scale µ∗ as the scale for

which corrections proportional to β0 vanish. From the above equation it follows that at
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small transverse momenta, the appropriate renormalization scale for the non-factorizable

corrections in WBF is

µ∗ = mV e
−5/6 e

π2−6ζ3
2(3−π2) ≈ 0.36 mV . (2.23)

Another interesting limit is that of the small Higgs boson momentum |pH | ≪ |p3| ∼
|p4|. Then, |p3| = |p4| and we find

r1 ≈ x, r12 = 1 + x. (2.24)

As the result, the dependence on t in the integrand in Eq. (2.11) disappears and we obtain

C1(ν) ≈
Γ(2 + ν)Γ(1− ν)

ν
∆−ν

x F21

(
2 + ν,−ν, 1,

x

x+ 1

)
. (2.25)

It is then straightforward to compute Cnf also in this case by expanding the hypergeometric

function in powers of ν. We do not provide the result of such a calculation here and do not

discuss the corresponding “optimal” scale choice because Cnf in this case is not positive

definite, which leads to pathological results for µ∗. However, we note that we can investigate

the leading term in the expansion of Cnf in the limit |p3| ≫ mV . In this case, the leading

asymptotic behavior is described by the following formula

Cnf ≈ x2

[
1 +

β0αs

π

(
ln

µ2e5/3

m2
V

− lnx

)
+O

(
α2
sβ

2
0

)]
. (2.26)

It follows that the appropriate renormalization scale in this case is

µ∗ = |p3|e−5/6 ≈ 0.4 |p3|. (2.27)

In practice, the transverse momenta of the outgoing jets relevant for Higgs production

in weak boson fusion are below 200 GeV. For such transverse momenta, the formula

for the renormalization scale in Eq. (2.27) leads to µ∗ ≤ mV ∼ mH . Therefore, since

for the smallest transverse momenta µ∗ ∼ 0.4mV and for the highest relevant transverse

momentum µ∗ ∼ mH , it appears that the traditional choice of the scale variation interval

used in fixed-order computations of Higgs production in WBF, roughly covers the two

extreme choices of the renormalization scale discussed above. In Section 4 we will illustrate

that this is indeed the case by an explicit numerical computation for the fiducial cross

section and many kinematic distributions.

3 Analytic computation of the function C1

In this section, we discuss the analytic computation of the function C1(ν). In principle, such

a computation requires a straightforward application of partial fractioning and integration

by parts. However, one should perform these operations in the right order to minimize

the size of intermediate expressions to the extent possible. Furthermore, it is important to

use symmetries to write the result as compactly as possible. To this end, we note that the
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expression for C1(ν) in Eq. (2.11) is invariant under the interchange of x and y, and we

will use this symmetry when writing the result of the integration.

We find it convenient to integrate by parts in Eq. (2.11) first. We obtain

C1(ν) = I1(ν) + I2(ν), (3.1)

where

I1 = −Γ(2 + ν)Γ(1− ν)∆x∆y

ν(1 + ν)(x− y)

F21

(
2 + ν,−ν, 1, r1(t)

r12(t)

)
[r12(t)]1+ν

∣∣∣∣∣
1

0

,

I2 =
Γ(3 + ν)Γ(1− ν)∆x∆y

(1 + ν)(y − x)

1∫
0

dt

[r12(t)]1+ν
F21

(
3 + ν, 1− ν, 2,

r1(t)

r12(t)

)
d

dt

r1(t)

r12(t)
.

(3.2)

It is straightforward to compute I1. We find

I1 =
Γ(1− ν)Γ(ν + 2)(x+ 1)(y + 1)−2ν

2F1(−ν − 1,−ν; 1;−y)

ν(ν + 1)(x− y)
+ (x ↔ y), (3.3)

where the symmetry under the interchange of x and y is made manifest. Expanding the

above formula in powers of ν, we obtain

I1 =
1

ν
+ I

(0)
1 + I

(1)
1 ν + I

(2)
1 ν2 +O(ν3), (3.4)

where

I
(0)
1 = −x+ 1

x− y
[y + 2 ln(y + 1)] + (x ↔ y),

I
(1)
1 =

x+ 1

x− y

[
y + (y − 1) ln(y + 1) + 2 ln2(y + 1) + Li2(−y) +

π2

6

]
+ (x ↔ y),

I
(2)
1 =

x+ 1

x− y

[
− y + (1− y) ln(y + 1) + (1− y) ln2(y + 1) + ln(y) ln2(y + 1)

− yLi2(−y)− 5

3
ln3(y + 1) + 2Li3

(
1

y + 1

)
− y

π2

6
− 2ζ3

]
+ (x ↔ y).

(3.5)

To compute I2, we expand the integral in Eq. (3.2) in powers of ν and obtain the following

expression

I2 = I
(0)
2 + I

(1)
2 ν + I

(2)
2 ν2 +O(ν3), (3.6)

with

I
(0)
2 = −

1∫
0

dt χ(t)

(
1

r2r212
+

1

r22r12

)
,

I
(1)
2 =

1∫
0

dt χ(t)

(
r1

r22r
2
12

+
ln (r2)

r1r212
+

(
r212 − 2r22

)
ln (r12)

r1r22r
2
12

)
, (3.7)
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I
(2)
2 =

1∫
0

dt χ(t)

(
−
(
6 + π2

)
r1 + 2π2r2

6r22r
2
12

− (r1 − r2) ln (r12)

r22r
2
12

− ln (r2)

r2r212

−
(
r212 − 3r22

)
ln2 (r12)

2r1r22r
2
12

− ln (r2) ln (r12)

r1r212
+

(r1 + 2r2) Li2

(
r1
r12

)
r22r

2
12

)
,

and χ(t) defined as

χ =
(x+ 1)(y + 1)

x− y

(
dr1
dt

r2 − r1
dr2
dt

)
. (3.8)

We note that two quadratic polynomials r1,2 appear in the denominators in the above

integrands. To continue with the t-integration, it is important to factorize them. We find

r1 = z(t− u)(t− v), (3.9)

where u, v are given by the following expression

u, v =
y − x+ z ±

√
(z − x− y)2 − 4xy

2z
. (3.10)

In the physical region (z − x − y)2 − 4xy < 0 so that u and v are complex conjugates of

each other. It is easy to see that under the transformation x ↔ y

u → 1− v, v → 1− u. (3.11)

For r2, we find

r2 = z(t− t1)(t2 − t), (3.12)

where

t± =
1

2

(
1±

√
1 +

4

z

)
. (3.13)

It follows that the two roots t± are outside of the integration region t ∈ [0, 1].

Repeatedly applying partial fractioning and integration by parts, we recognize that all

integrals that appear in Eq. (3.2) are of the following form

1∫
0

dt

t− ta
{1, ln(t− tb), ln(t− tb)

2, ln(t− tc) ln(t− td)}, (3.14)

where ta,..,d are elements of the following set{
u, v, t±,

y + 1

x− y

}
. (3.15)

Such integrals can be easily written as linear combinations of polylogarithmic functions

through weight 3.

We emphasize one more time that, although the integration over t is straightforward,

writing the result in an optimal way requires some effort. To this end, we will use the
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variables x, y, z where possible and only employ u and v where necessary. We will also

make the x ↔ y symmetry manifest. Finally, it turns out to be convenient to introduce a

new variable w defined as

w = 1− 1

t+
= 1 +

z

2

(
1−

√
1 +

4

z

)
, (3.16)

and to use it when writing the result. We find

C
(0)
1 =

(1− w)(x+ 1)(y + 1)(x+ y − z − 2)

2(w + 1) ((x+ 1)(y + 1)z − (x− y)2)
ln(w)

+
(y + 1)(x(−x+ y + z + 1)− y + z)

(x− y)2 − (x+ 1)(y + 1)z
ln(x+ 1) + (x ↔ y),

(3.17)

which is explicitly symmetric under x ↔ y. For C
(1)
1 , we find

C
(1)
1 =

π2

6
+
{
(A1 + [B1 + (u ↔ v)]) + (x ↔ y, u → 1− v, v → 1− u)

}
, (3.18)

where

A1 =
(x+ 1)(y + 1)

(
w2 + w(y − x)− 1

)
(w + 1)(x− y)(w(y + 1)− (x+ 1))

[
Li2

(
(w − 1)(x+ 1)

w(x+ 1)− (y + 1)

)

− Li2

(
(w − 1)(y + 1)

w(x+ 1)− (y + 1)

)
+ ln

(
x+ 1

y + 1

)
ln

(
x− y

w(x+ 1)− (y + 1))

)]

+
y + 1

y − x
Li2(−x)− (y + 1)(x(−x+ y + z + 1)− y + z)

(x− y)2 − (x+ 1)(y + 1)z
ln2(x+ 1)

+
(x+ 1)(y + 1)(w(−x+ y + z + 2)− 2)

(w + 1)(x− y)((x+ 1)− w(y + 1))
ln(w) ln(x+ 1)

− (x+ 1)
(
(x− y)2 − z(x+ y + 2)

)
(x− y)3 − (x+ 1)(y + 1)z(x− y)

ln(w) ln((1− w)(y + 1)), (3.19)

B1 =
(x+ 1)(y + 1)

(1− (u− 1)uz)(x− y)

[
Li2

(
1

u(1− w) + w

)
− Li2

(
w

u(1− w) + w

)
− Li2

(
x+ 1

u(x− y) + y + 1

)
+

1

2
ln(w) ln

(
u− 1

u

)
− ln(w) ln

(
u

u(1− w) + w

)
+ ln(y + 1) ln

(
u(x− y)

u(x− y) + y + 1

)]
.

It is easy to check that A1 is real and that

B1

∣∣
u↔v

= B∗
1 . (3.20)

Hence, the final result for C
(1)
1 reads

C
(1)
1 =

π2

6
+
{
A1 + 2Re[B1] + (x ↔ y, u → 1− v, v → 1− u)

}
. (3.21)
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The function C
(2)
1 admits a representation similar to C

(1)
1

C
(2)
1 = −2ζ3 + (A2,1 + 2Re[A2,2])

+
{
B2,1 + 2Re[B2,2] + (x ↔ y, u → 1− v, v → 1− u)

}
.

(3.22)

The functions A2,1, A2,2, B2,1, B2,2 are, unfortunately, very lengthy and we do not present

them here. However, they can be found in the ancillary file provided with this submission.

4 Numerical results

We now discuss the numerical results of the calculation. We consider proton collisions at

the LHC running at an energy of 13.6 TeV and adopt parameters and selection criteria

from Ref. [12]. The Higgs boson is considered stable with a mass of mH = 125 GeV. The

vector boson masses are set to mW = 80.398 GeV and mZ = 91.1876 GeV with widths

of ΓW = 2.105 GeV and ΓZ = 2.4952 GeV respectively. The Fermi constant value of

GF = 1.16639× 10−5 GeV−2 is used to derive the weak couplings and the CKM matrix is

set equal to the identity matrix.

We use NNPDF31-nnlo-as-118 parton distribution functions [17] and αs(mZ) = 0.118

for all calculations reported below. The evolution of both parton distribution functions

and the strong coupling constant is obtained directly from LHAPDF [18]. We fix the

factorization scale µF = mH throughout this calculation.

We require that a WBF event contains at least two jets with transverse momenta higher

than 25 GeV. The tagging jets are required to have rapidities between −4.5 < y < 4.5

and should be separated by a large rapidity interval |yj1 − yj2 | > 4.5. Their invariant mass

should be larger than 600 GeV. The two jets should be in opposite hemispheres in the

laboratory frame; this is enforced by requiring the product of their rapidities to be negative,

yj1yj2 < 0. In principle, jet identification requires a particular jet algorithm but this is not

relevant with only two quarks in the final state. For the results reported below, we employ

the two-loop amplitude in the leading eikonal approximation as summarized in Eq. (2.8),

and we do not include the next-to-eikonal power correction computed in Ref. [13].

The main conclusion of our analysis is that the O(β0α
3
s) corrections significantly reduce

the scale dependence of the non-factorizable contributions. To illustrate this point, we first

show results for fiducial non-factorizable contributions to the WBF cross section at leading

O(α2
s) order, and then compare them with the results at next-to-leading order where we

only include the O(β0α
3
s) correction. We find

σLO
nf = −2.97−0.69

+0.52 fb, σNLO
nf = −3.20−0.01

+0.14 fb, (4.1)

where we have used the renormalization scale µ = mH to obtain the central values, and

µ = mH/2 and µ = 2mH to obtain values described by superscripts and subscripts in

Eq. (4.1), respectively. It follows from Eq. (4.1) that the scale variation is reduced very

significantly once O(β0α
3
s) contributions are included.

The same statement applies to kinematic distributions. We illustrate this in Figures 1

and 2 where examples of transverse momenta, rapidity and two-jet invariant mass dis-

tributions are shown. In all plots, the upper pane displays the leading order (tree-level)
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Figure 1: Transverse momenta distributions of hardest and next-to-hardest jets in Higgs

boson production in weak boson fusion. The upper panes show the LO (tree-level) dis-

tributions and the lower panes show the ratio of non-factorizable contributions to LO for

corrections of O(α2
s) (blue) and O(β0α

3
s) (red). The factorization scale, µF , is kept fixed

and only the renormalization scale, µ, is varied. See text for further details.

distribution. In the lower pane ratios of non-factorizable corrections to leading order distri-

butions are shown. Bands correspond to the range of theoretical predictions obtained with

the renormalization scales from the interval mH/2 ≤ µ ≤ 2mH at leading O(α2
s) and next-

to-leading O(β0α
3
s) orders, respectively. We observe that accounting for NLO O(β0α

3
s)

corrections stabilizes theoretical predictions by strongly reducing their dependence on the

renormalization scale. We note that the O(β0α
3
s) results are sometimes outside the O(α2

s)

scale-variation bands; this mostly happens at large(r) values of the transverse momenta

and invariant masses.

5 Conclusions

In this paper we computed O(β0α
3
s) corrections to the non-factorizable contribution to

Higgs boson production in weak boson fusion. These corrections reflect the impact of

the running of the QCD coupling constant on the non-factorizable contribution to the

WBF cross section and are responsible for stabilizing the dependence of the theoretical

prediction on the renormalization scale. Indeed, we find that after including these O(β0α
3
s)

corrections, the dependence of the cross section on the renormalization scale reduces from

about O(20) percent to below O(5) percent. Similar reductions of the scale dependence are
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Figure 2: Non-factorizable corrections to Higgs boson rapidity distribution (left panes)

and the invariant mass distribution of the two final state jets (right panes). The upper

panes show the LO (tree-level) distributions and the lower panes show the ratio of non-

factorizable contributions to LO for corrections of O(α2
s) (blue) and O(β0α

3
s) (red). The

factorization scale, µF , is kept fixed and only the renormalization scale, µ, is varied. See

text for further details.

observed in theoretical predictions for major kinematic distributions including transverse

momenta and rapidity distributions of the tagging jets and the Higgs boson.

We provided a simple one-dimensional integral representation of the O(β0α
3
s) non-

factorizable corrections as well as the analytic formulas for these corrections. Although

the analytic results are complex, they can easily be implemented into partonic Monte

Carlo and used to obtain phenomenological predictions. In fact, we have used the one-

dimensional integral representation of these corrections to cross check the results of the

analytic computation. Under realistic running conditions, analytic formulas provide a

significant speed-up whereas a one-dimensional integral representation is a slow but robust

way to compute cross sections and distributions.

Acknowledgments: This research of K.M. and M.M.L is partially supported by the

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762

- TRR 257. The work of C.B.H. presented here is supported by the Carlsberg Foundation,

grant CF21-0486. K.M. would like to thank the Galileo Galilei Institute for Theoreti-

cal Physics in Florence for the hospitality and the INFN for partial support during the

completion of this work.

– 12 –



References

[1] T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson

production via weak boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109].

[2] E.L. Berger and J.M. Campbell, Higgs boson production in weak boson fusion at

next-to-leading order, Phys. Rev. D 70 (2004) 073011 [hep-ph/0403194].

[3] M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs

production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [0710.4749].

[4] J.R. Andersen, T. Binoth, G. Heinrich and J.M. Smillie, Loop induced interference effects in

Higgs Boson plus two jet production at the LHC, JHEP 02 (2008) 057 [0709.3513].

[5] R.V. Harlander, J. Vollinga and M.M. Weber, Gluon-Induced Weak Boson Fusion, Phys.

Rev. D 77 (2008) 053010 [0801.3355].

[6] P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at

NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [1003.4451].

[7] P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Vector boson fusion at NNLO in QCD: SM

Higgs and beyond, Phys. Rev. D 85 (2012) 035002 [1109.3717].

[8] M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential

Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.

115 (2015) 082002 [1506.02660].

[9] F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in

QCD, Phys. Rev. Lett. 117 (2016) 072001 [1606.00840].

[10] T. Chen, T.M. Figy and S. Plätzer, NLO multijet merging for Higgs production beyond the

VBF approximation, Eur. Phys. J. C 82 (2022) 704 [2109.03730].

[11] T. Liu, K. Melnikov and A.A. Penin, Nonfactorizable QCD Effects in Higgs Boson

Production via Vector Boson Fusion, Phys. Rev. Lett. 123 (2019) 122002.

[12] K. Asteriadis, C. Brønnum-Hansen and K. Melnikov, On the non-factorizable corrections to

Higgs boson production in weak boson fusion, 2305.08016.

[13] M.-M. Long, K. Melnikov and J. Quarroz, Non-factorizable virtual corrections to Higgs boson

production in weak boson fusion beyond the eikonal approximation, JHEP 07 (2023) 035

[2305.12937].

[14] S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the Elimination of Scale Ambiguities in

Perturbative Quantum Chromodynamics, Phys. Rev. D 28 (1983) 228.

[15] T. Huber and D. Maitre, HypExp: A Mathematica package for expanding hypergeometric

functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122

[hep-ph/0507094].

[16] T. Huber and D. Maitre, HypExp 2, Expanding Hypergeometric Functions about Half-Integer

Parameters, Comput. Phys. Commun. 178 (2008) 755 [0708.2443].

[17] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.

C 77 (2017) 663.

[18] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht et al., LHAPDF6:
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