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Abstract

We compute three-loop vertex corrections to b → sγ induced by current-current
operators. The results are presented as expansions in mc/mb with numerical co-
efficients which allow to cover all relevant values for the heavy quark masses in
different renormalization schemes. Moreover we provide for the first time analytic
results for the next-to-leading order contribution. Our results present an important
building block to the next-to-next-to-leading order interference contributions of the
current-current operators Q1 and Q2 with the electric dipole operator Q7.
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1 Introduction

The inclusive rare decay B → Xsγ, where Xs is any hadronic state of strangeness S = −1,
is an important probe to look for phenomena beyond the Standard Model. It is thus
of prime importance to both measure it with highest accuracy, and to provide precise
predictions.

The current combination of various experimental measurements [1–6] leads to the CP-
and isospin-averaged branching ratio [7]

B(B → Xsγ)
∣∣∣
Eγ>1.6 GeV

= (3.49 ± 0.19) × 10−4 , (1)

where E0 = 1.6 GeV is a lower cut on the energy of the photon. The current uncertainty
of about 5% is expected to be reduced by a factor two once the full Belle-II data set is
analysed [8].

The most precise theory prediction from Refs. [9, 10] also has an uncertainty of 5% and
is given by

B(B → Xsγ)
∣∣∣
Eγ>1.6 GeV

= (3.40 ± 0.17) × 10−4 , (2)

where the updates from Ref. [11] are taken into account.

The decay B → Xsγ is well approximated by the decay of a free quark b→ Xsγ. Perturba-
tive QCD corrections are calculated within the framework of an effective theory obtained
after decoupling the top quark, the Z, W and Higgs bosons. The weak effective theory
then contains four-quark and dipole-type operators (see e.g. Refs. [12, 13] and Section 2).
The prediction in Eq. (2) includes next-to-next-to-leading order (NNLO) QCD correc-
tions. However, for the contribution arising from the interference between the four-quark
operators (Q1 and Q2) and the electromagnetic dipole operator (Q7) only an interpola-
tion from a large charm quark mass [14, 15] to a massless charm quark [10] is available.
This is responsible for 3% of the uncertainty cited in Eq. (2). The remaining theoretical
uncertainties come from unknown higher-order corrections (3%) and the input and non-
perturbative parameters (2.5%). In this paper we provide important contributions that
are necessary to eliminate the uncertainty due to the charm mass interpolation.

In order to calculate the interference of Q1,2 and Q7, one often applies the method of
reverse unitarity [16] to map the calculation of the interference into the evaluation of cuts
of two-point functions. Such contributions occur for the first time at next-to-leading order
(NLO) where three-loop diagrams, as the one on the left of Fig. 1, have to be considered.
These diagrams have both two- and three-particle cuts as indicated by the dashed lines.
Correspondingly, at next-to-next-to-leading order (NNLO) one has to consider four-loop
diagrams which in general have two-, three- and four-particle cuts.

In this paper we concentrate on the two-particle cut contribution. It can be obtained
by calculating QCD corrections to the b → sγ vertex and subsequently performing the
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Figure 1: Three- and four-loop sample diagrams for the interference of Q1,2 and Q7. The
dashed black lines represent possible cuts through the diagrams.

integration over the two-particle phase space. Of course, in the physical decay rate all
cuts going through the photon line have to be considered. In fact, individual contribu-
tions contain divergences which cancel only when all cuts are taken together and after
including the counterterm from renormalization of the ultraviolet divergences. The latter
is conveniently done for the complete contributions and available from Ref. [17] which is
why we only provide results for the bare amplitude.

There are a number of NNLO results available for the interference of Q1,2 and Q7. Analytic
results for the light-fermion two-particle cut contributions are available from Ref. [18] in
an expansion for mc/mb → 0. The corresponding four-particle cut terms are available
from Ref. [19]. The contributions with closed charm and bottom quark loops have been
computed in Refs. [11, 20]. A numerical approach has been used to solve the differential
equations for the master integrals with boundary conditions computed for large values
of mc. The same approach has been used in Ref. [17] to extend the NLO results by one
order in ϵ and to obtain all counterterm contributions. The non-fermionic contribution
has been computed in the large-mc limit in Refs. [14, 15] and for massless charm quarks
in Ref. [10]. These results are used in Refs. [9, 10] to construct an interpolation which
induces the 3% uncertainty mentioned above.

Recently, Ref. [21] has considered the subclass of diagrams for the b→ sγ vertex where no
bottom quark propagator is present in the loop. Here we provide an independent check
of these results and also compute the more involved contributions with internal bottom
quarks.

The paper is organized as follows. In Section 2 we introduce the notation and present
the setup of our calculation. We then discuss in Section 3 the calculation of the master
integrals at two and three loops. Results are presented in Section 4 and we conclude in
Section 5. In Appendix A we provide further details on the analytic calculation of the
two-loop master integrals and in Appendix B analytic expressions for the individual NLO
contributions are given.
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2 Technicalities

The relevant weak interaction Lagrangian for the calculation of radiative B meson decays
is given by a linear combination of four-quark and dipole-type operators and can be
written as

Lweak =
4GF√

2
V ⋆
tsVtb

∑
i

Ci(µ)Qi , (3)

where the three operators considered in this paper are given by

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL) ,

Q2 = (s̄LγµcL)(c̄Lγ
µbL) ,

Q7 =
emb

16π2
(s̄Lσ

µνbR)Fµν . (4)

Here, s, c and b are the fields of the strange, charm and bottom quarks, respectively. The
subscripts L and R denote the projection to left- and right-handed states and T a = λa/2,
where λa are the Gell-Mann matrices. F µν is the field strength tensor of the photon field,
e is the electric charge, mb the bottom quark mass, and σµν = i[γµ, γν ]/2.

We can write the amplitude for b→ sγ as

A =
4GFm

2
b√

2
V ⋆
tsVtbM

µεµ , (5)

where εµ is the polarization vector of the photon. We parameterize Mµ as

Mµ = ūs(ps)PR

(
t1
qµγ
mb

+ t2
qµb
mb

+ t3γ
µ

)
ub(pb) , (6)

where all momenta are incoming and on-shell. We construct projectors to extract the
three scalar coefficients t1, t2 and t3, which depend on the ratio mc/mb. The function t1
does not contribute to b → sγ since the corresponding tensor structure vanishes once we
contract Mµ with the photon momentum. Furthermore, from the Ward identity we have

t3 = −1

2
t2 , (7)

which we use as a cross-check for our results. Note that this relation holds for renormal-
ized quantities, i.e., in particular for the two-loop amplitudes. Therefore all counterterm
contributions obtained from multiplicative renormalization fulfil the Ward identity. How-
ever, the relation (7) does not hold for the NNLO contributions from the bottom quark
mass counterterm since they are not obtained from a global renormalization factor. As a
consequence, we do not expect that the bare three-loop amplitude fulfils Eq. (7) per se,
but only in combination with the bottom mass counterterm contributions.
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Since the scalar coefficients t1, t2 and t3 depend only on the ratio mc/mb and not on the
external momenta, we can straightforwardly obtain the two-particle cut contribution to
the decay rate:

Γ(b→ Xp
sγ)
∣∣∣
Eγ>E0

=
G2

Fm
5
bαem

32π4
|V ∗

tsVtb|
2

8∑
i,j=1

Ci(µb)Cj(µb) Ĝij , (8)

where the sum includes the operators in Eq. (4), the penguin operators and the chromo-
magnetic dipole operators. We write the perturbative expansion of the interference terms
as

Ĝij = Ĝ
(0)
ij +

αs

4π
Ĝ

(1)
ij +

(αs

4π

)2
Ĝ

(2)
ij + . . . . (9)

In this paper we compute the two-particle cut contributions to Ĝ17 and Ĝ27 taking into
account only tree-level contributions on the Q7 side. The only other non-zero contribution
with two-loop corrections on the Q1,2 and one-loop corrections on the Q7 side can be
obtained from lower-order results. Sample diagrams for the three-loop corrections on the
Q1,2 side are given in Fig. 2. Ĝ17 and Ĝ27 are obtained by taking the interference between
the b→ sγ amplitude in Eq. (6) and the tree-level one mediated by the operator Q7. The
subsequent integration over the d-dimensional two-particle phase space leads to (i=1,2)

Ĝ
2P,Qtree

7
i7 = −Re

[
tQi
2

2
+ (3 − 2ϵ) tQi

3

]
eγEϵ

8

Γ(1 − ϵ)

Γ(2 − 2ϵ)
, (10)

where γE is the Euler’s constant. The superscripts on the left-hand side indicate that
this formula provides the two-particle cut contributions where no loop corrections are
considered for Q7. The last factor comes from the d-dimensional two-particle phase space.
Note that in case we use the relation t3 = −t2/2, the first factor becomes proportional to
(1 − ϵ) and we recover Eq. (3.5) of Ref. [17].

For the computation of the b → sγ vertex at two and three loops we use qgraf [22] to
generate all 30 and 591 diagrams, respectively; see Fig. 2 for sample Feynman diagrams.
We process them with tapir [23] and use exp [24, 25] to prepare FORM [26–28] code for their
evaluation. We then apply the projectors and perform the Dirac and colour algebra [29]
to express the form factors as linear combination of Feynman integrals belonging to 10
and 181 integral families and two and three loops, respectively. The scalar integrals are
reduced to master integrals by employing integration-by-parts [30, 31] as well as Lorentz-
invariance relations [32] and the Laporta algorithm [33] as implemented in Kira [34, 35].
We use Fermat [36] as back-end to process the coefficients. Before the actual reduction
we reduce sets of simpler sample integrals for each integral family and feed them to an
improved version of ImproveMasters.m [37] to find a good basis of master integrals in
which the denominators of the coefficients factorize in the kinematic and the space-time
variable [37, 38]. The integrals in the amplitude are then reduced to the good basis. As
last step we exploit symmetry relations between the integral families with Kira to reduce
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Figure 2: Two- and three-loop sample diagrams contributing to the decay vertex b→ sγ.
No QCD corrections to external lines are considered.

the number of master integrals at three loops from 3975 to 479. At two loops we have
14 master integrals. We perform our calculation for general QCD gauge parameter ξ and
check that ξ drops out in the final result.
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3 Computation of the master integrals

In this Section we describe the computation of the master integrals which we encounter in
the calculation of the b→ sγ vertex at two- and three-loop order. We use LiteRed [39, 40]
and a subsequent reduction with Kira to establish differential equations in

x =
mc

mb

(11)

for the master integrals [41–44]. At two-loop order we observe poles in the differential
equations at the physical cuts x = 0 and 1/2. At three-loop order we have additional
spurious poles at various values of x.

At two loops we manage to obtain analytic expressions for all master integrals appearing
at NLO, and in the bottom mass counterterm at NNLO. This extends the results of
Ref. [17] where the master integrals for the two- and three-particle cut contributions
have been obtained only by solving the differential equations numerically with boundary
conditions fixed in the large charm mass limit. Furthermore, analytic expansions around
mc → 0 have been presented including terms only up to order (m2

c/m
2
b)

3. Here, instead,
we provide for the master integrals contributing to the two-particle cuts their analytic
expressions with exact dependence on mc/mb, which allows to obtain precise numerical
results for an arbitrary ratio of the heavy quark masses.

For the analytic calculation of the two-loop master integrals we use the algorithm outlined
in Ref. [45]. We do not transform the system of differential equations into a so-called
canonical or ϵ form (see e.g. Refs. [46, 47]), but decouple coupled blocks of the differential
system with the help of OreSys [48] and Sigma [49]. This leads to a higher order differential
equation for a single integral of the block which can be solved via the factorization of the
differential operator as implemented in HarmonicSums [50]. The boundary conditions
of the integrals are provided in the limit mc → ∞ via a large mass expansion. For
the matching of the boundary conditions, it is convenient to first solve the differential
equations in the variable y = mb/mc since expansions for y → 0 are easier to compute.
Afterwards we perform an analytic continuation to the variable x = mc/mb (further details
are given in the Appendix).

To solve the integrals in the variable y we introduce generalized iterated integrals over
the alphabet

1

y
,

1

1 + y
,

1

1 − y
,

1

2 + y
,

1

2 − y
,
√

4 − y2 . (12)

Iterated integrals containing the first three letters yield Harmonic Polylogarithms
(HPLs) [51]. A representation of the iterated integrals in terms of rational letters is ben-
eficial in order to evaluate them to high precision with public programs like ginac [52].
Thus we have to rationalize the occurring square root valued letter with the variable
change

x =

√
w

1 + w
,
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w =
1 −

√
1 − 4x2

1 +
√

1 − 4x2
, (13)

on the integrals which contain the new letters.

For the HPLs with argument x we do not apply the variable change. In case the new
letters come together with the HPL letters, we have to introduce the additional letters√
y/(1 +y) and

√
y/(1−y) for individual iterated integrals after changing from argument

x to w. However, we see that contributions containing them cancel in the final amplitude
and we can express the results purely in terms of HPLs with arguments x and w, which
enables a fast and precise numerical evaluation for an arbitrary mass ratio. Explicit
analytic results for two-loop quantities originating from the interference of the operators
Q1,2 and Q7 can be found in Section 4.1 and are provided in electronic format in the
supplementary material [53].

For the master integrals at three loops we apply the “expand and match” approach
developed in Refs. [54–56] to obtain a semi-analytic expansion which covers all phys-
ically relevant values for x that may arise when using different mass schemes for the
charm and the bottom quark. The numerical values mc ∼ 1 GeV, . . . , 1.7 GeV and
mb ∼ 4.2 GeV, . . . , 5.0 GeV correspond to x ∈ [0.2, 0.4].

The basic idea of this approach is to use the differential equations in order to construct
deep series expansions of all master integrals around several values of x0. We make an
ansatz for the master integrals as Taylor expansion in x− x0 (or a power-log expansion if
x0 is a singular point) and insert the ansatz into the differential equations. With Kira we
solve the resulting system of linear equations for the expansion coefficients and express
them in terms of a minimal set of initial values.

In our case we choose x0 = 1/5 as a first expansion point. The boundary conditions are
fixed by evaluating the master integrals numerically with a precision of 60 digits at this
point with AMFlow [57], which implements the auxiliary-mass-flow method [58–62]. We
use Kira with Fermat as back-end for the reduction. The precise AMFlow results allow to
fix all coefficients of the expansions around x0 = 1/5. We also perform an AMFlow run at
x = 1/10 to cross check the expansion constructed around x0 = 1/5.

This expansion alone already covers the physically relevant x region mentioned above.
In practical applications it is convenient to work with an expansion around x0 = 0. To
obtain a good precision of the expansion coefficients we introduce new expansions. First
we construct an expansion around x0 = 1/10 that we match to the x0 = 1/5 expansion
at x = 0.15. In a second step we produce a power-log expansion around x0 = 0 that is
matched at x = 1/15 to the previous one.
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4 Two- and three-loop results

In the following we present results for the bare NLO and NNLO contributions. Sample
two- and three-loop Feynman diagrams are shown in Fig. 2.

4.1 NLO

NLO corrections to b → sγ involving current-current operators are known since long in
the literature [63–67]. In Ref. [17] Ĝ

(1)
17 and Ĝ

(1)
27 have been computed up to order ϵ and the

counterterm contributions to Ĝ
(2)
ij have been extracted, see Eqs. (4.1) to (4.4) of Ref [17].

For convenience we repeat the relevant formulae which involve two-particle (2P) cuts:

Ĝ
(1)2P
27 = − 92

81ϵ
+ f0(z) + ϵf1(z) + O(ϵ2) ,

Ĝ
(1)m,2P
27 = − 1

3ϵ2
+

1

ϵ
r−1(z) + r0(z) + ϵr1(z) + O(ϵ2) , (14)

with z = m2
c/m

2
b . The superscript “m” denotes the contribution from bottom quark

renormalization. Furthermore, we have

Ĝ
(1)2P
17 = −1

6
Ĝ

(1)2P
27 ,

Ĝ
(1)m,2P
17 = −1

6
Ĝ

(1)m,2P
27 . (15)

The function f0(z) which enters the NLO prediction is usually written as

f0(z) = −1942

243
+ 2Re [a(z) + b(z)] . (16)

For the funtions a(z) and b(z) there are no closed analytic expressions known so far but
only threefold integral representations [67].

In this work we provide independent cross checks for f0(z), f1(z), r−1(z), r0(z) and r1(z)
and present for the first time their analytic expressions in terms of HPLs.1 Analytic results
for a(z) and b(z) can be found in Appendix B. For illustration we show the expressions
for f0, r−1 and r0:

f0 = CF

[
−971 + 1916w + 1602w2 + 1916w3 + 971w4

162(1 + w)4
+

2wH0(w)3

3(1 + w)2

+
8w(27 + 57w + 26w2 + 7w3 + 5w4)H0(w)

27(1 + w)5
− 16w(2 + 3w + 2w2)H0(x)3

9(1 + w)4

1We note that in the context of b → sℓ+ℓ− analytic results for the the two-loop form factors have
been obtained in Refs. [68, 69]. However, the limit from q2 ̸= 0 to q2 = 0 is highly non-trivial such that
the results cannot be used for b → sγ.
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− 2w( − 1 − 2w + 4w2 + 6w3 + 3w4)H0(w)2

3(1 + w)6
− 8w(1 + w2)H0,0,−1(w)

3(1 + w)4

− 8(5 + 29w + 54w2 + 29w3 + 5w4)H−1(w)

27(1 + w)4
+

16w2(3 + 13w + 15w2 + 6w3)H0,−1(w)

9(1 + w)6

− 16w(1 −
√
w + w)

9(1 + w)6
(3 + 8w + 8w2 + 3w3 + 2

√
w + 3w3/2 + 2w5/2)H1,0(x)

+
16w(1 +

√
w + w)

9(1 + w)6
(3 + 8w + 8w2 + 3w3 − 2

√
w − 3w3/2 − 2w5/2)H−1,0(x)

+
16w(3 + 9w + 13w2 + 9w3 + 3w4)H−1,0(w)

9(1 + w)6
− 8wζ3

(1 + w)2

− 32w(3 + 9w + 13w2 + 9w3 + 3w4)H−1,−1(w)

9(1 + w)6
− 16w(2 + 3w + 2w2)H0,1,0(x)

3(1 + w)4

+
16w(2 + 3w + 2w2)H0,−1,0(x)

3(1 + w)4
− 16w(1 + 3w + w2)H−1,0,0(w)

3(1 + w)4

+ π2

(
− 2w

27(1 + w)6
(15 + 60w + 94w2 + 84w3 + 27w4 − 12

√
w − 36w3/2

− 36w5/2 − 12w7/2) − 2w(3 + 8w + 3w2)H0(w)

3(1 + w)4
+

8w(5 + 12w + 5w2)H−1(w)

9(1 + w)4

)]
,

(17)

r−1 = −CF

[
3

4
+

1

27
π2 +

3

2
z

]
, (18)

r0 = CF

[
315 − 386w + 315w2

108(1 + w)2
− 64wH0(w)

27(1 + w)2
+

(1 + 14w + w2)H0(w)3

27(1 + w)2
+

4wH0(x)4

9(1 + w)2

+
w(96 + 222w − 2w2 − 15w3 − 13w4)H0(w)2

54(1 − w)(1 + w)4
− 8(1 + 38w + w2)H0(x)3

27(1 + w)2

+
128wH−1(w)

27(1 + w)2
+

(13 + 124w + 348w2 + 124w3 + 13w4)H−1(w)2

27(1 + w)4

− 2w(96 + 222w − 2w2 − 15w3 − 13w4)H0,−1(w)

27(1 − w)(1 + w)4
− 8(1 + 38w + w2)H0,1,0(x)

9(1 + w)2

− (13 + 124w + 348w2 + 124w3 + 13w4)H−1,0(w)

27(1 + w)4
− 4(1 + 14w + w2)H0,0,−1(w)

9(1 + w)2

− 2(1 −
√
w + w)

27(1 + w)4
(7 + 136w + 136w2 + 7w3 + 151

√
w + 365w3/2 + 151w5/2)H1,0(x)

+
2(1 +

√
w + w)

27(1 + w)4
(7 + 136w + 136w2 + 7w3 − 151

√
w − 365w3/2 − 151w5/2)H−1,0(x)

+
8(1 + 38w + w2)H0,−1,0(x)

9(1 + w)2
+

16wH0,0,1,0(x)

3(1 + w)2
− 16wH0,0,−1,0(x)

3(1 + w)2
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− 2(5 + 34w + 5w2)ζ3
9(1 + w)2

+ π2

(
− 1

1296(1 − w)(1 + w)4
(161 − 573w − 2246w2 + 486w3

− 75w4 − 57w5 + 6912
√
w + 11328w3/2 − 11328w7/2 − 6912w9/2) − 20wH0(w)

9(1 + w)2

+
wH0(w)2

9(1 + w)2
+

2(1 + 74w + w2)H−1(w)

27(1 + w)2
+

4wH−1(w)2

9(1 + w)2
− 4wH0,−1(w)

9(1 + w)2

− 4wH−1,0(w)

9(1 + w)2

)
+

2π4w

45(1 + w)2

]
, (19)

where x and w are defined in Eqs. (11) and (13), respectively. These respresentations can
be used for x ≤ 1/2 since for x > 1/2 the HPLs develop imaginary parts. Note that the
HPLs in f0 and r0 can be expressed in terms of classical polylogarithms. This is not the
case for the O(ϵ) terms f1 and r1.

The comparison with Eq. (16) allows us to extract the function Re(a(z) + b(z)). This
is the first time that analytic results for these functions are presented. Before only a
three-dimensional integral representation [67] and analytic expansions for large [15] and
small [67] charm quark masses were available.

Our analytic results for r0 and r1 are expressed in terms of HPLs up to weight 4 and 5,
respectively, where as argument we have both x and w. We find agreement with the
analytic expansions given in Refs. [17, 64] and can determine the constant C entering r1
in Eq. (5.5) of Ref. [17]. We obtain

C = −488

9
− 179π2

54
− 80π4

27
+

64ζ3
3

+
16π2ζ3

9
+

320ζ5
9

≈ −291.95399... . (20)

It deviates by about 0.1% from the numerical value reported in Ref. [17]: C ≈ −292.228.
In the supplementary material [53] to this paper we provide computer-readable expressions
for f0(z), f1(z), r−1(z), r0(z) and r1(z).

4.2 NNLO

After inserting the three-loop master integrals into the amplitude, we obtain results for
the two-particle cuts at NNLO as series expansions around x0 = 0 and x0 = 1/5, with
numerical coefficients (see Section 3). The expansions include about 40 terms and we
report the x0 → 0 expansion in electronic form in the supplementary material to this
paper [53], where for convenience we keep the colour factors and the electric charges of
the up-type and down-type quarks distinct.

We present in the following the real part of t2 in an expansion up to x2. For the colour and
charge factors we insert their numerical values. Furthermore, we provide for all coefficients
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six significant digits. Our results for the operator insertions Q1 and Q2 read

Re(tQ1

2 ) = nl

{
− 0.643804

ϵ2
− 6.31123

ϵ
− 27.9137 + x2

[
1

ϵ

(
2.107l3x + 3.16049l2x − 27.8263lx

− 11.7523
)
− 7.37449l4x + 3.51166l3x + 25.8566l2x − 201.543lx − 247.57

]}

+ nc

{
− 0.643804

ϵ2
− 6.31123

ϵ
− 27.9137 + x2

[
1

ϵ

(
2.107l3x + 3.16049l2x − 24.6658lx

− 9.61098
)
− 7.37449l4x + 12.9931l3x + 54.3011l2x − 224.155lx − 335.398

]}

+ nb

{
− 0.643804

ϵ2
− 6.25499

ϵ
− 14.2846 + x2

[
1

ϵ

(
2.107l3x + 3.16049l2x − 27.8263lx

− 11.7523
)
− 5.26749l4x + 23.7497l2x − 104.437lx − 132.539

]}

− 2.0192

ϵ3
+

87.3997

ϵ
+ 256.363 +

8.17904

ϵ2
+ x

(
374.314

ϵ
− 1497.26lx + 669.332

)
+ x2

[
1

ϵ2

(
4.21399l3x + 6.32099l2x − 55.6525lx − 23.5046

)
+

1

ϵ

(
− 13.6955l4x

− 36.8724l3x − 209.669l2x + 1407.45lx + 233.132
)

+ 27.8123l5x + 142.222l4x

+ 402.206l3x − 2492.03l2x + 7662.75lx + 8375.85

]
, (21)

Re(tQ2

2 ) = nl

{
3.86283

ϵ2
+

37.8674

ϵ
+ 167.482 + x2

[
1

ϵ

(
70.5139 + 166.958lx − 18.963l2x

− 12.642l3x

)
+ 1485.42 + 1209.26lx − 155.14l2x − 21.07l3x + 44.2469l4x

}

+ nc

{
3.86283

ϵ2
+

37.8674

ϵ
+ 167.482 + x2

[
1

ϵ

(
− 12.642l3x − 18.963l2x + 147.995lx

+ 57.6659
)

+ 44.2469l4x − 77.9588l3x − 325.807l2x + 1344.93lx + 2012.39

]}

+ nb

{
3.86283

ϵ2
+

37.53

ϵ
+ 85.7078 + x2

[
1

ϵ

(
− 12.642l3x − 18.963l2x + 166.958lx

12



+ 70.5139
)

+ 31.6049l4x − 142.498l2x + 626.621lx + 795.235

]}

+
12.1152

ϵ3
− 1.66683

ϵ2
− 148.698

ϵ
+ 119.784 + x

(
−2245.88

ϵ
+ 8983.53lx − 4015.99

)
+ x2

[
1

ϵ2

(
− 25.284l3x − 37.9259l2x + 333.915lx + 141.028

)
+

1

ϵ

(
82.1728l4x

+ 50.5679l3x + 1002.01l2x − 6190.76lx − 446.854
)
− 146.963l5x − 355.556l4x

− 3798.57l3x + 12695.6l2x − 30541.1lx − 32307.3

]
, (22)

where lx = log(x) and nl = 3 denotes the contribution from closed massless fermion loops
while the nc = 1 and nb = 1 contributions arise from closed fermion loops with masses
mc and mb, respectively.

In the following we describe the various checks which we performed on our result. We
perform the calculation for generic QCD gauge parameter ξ which drops out for tQ1

2 and
tQ2

2 at the level of the master integrals. In Ref. [18] analytic expansions for the z → 0
limit of the light-fermion contribution have been computed. We compare the expansion
coefficients of the xn logk(x) terms up to n = 4 and find agreement with an accuracy
of 15 digits or better. We successfully compare the heavy-fermion contributions against
Refs. [11, 20].

The authors of Ref. [21] have computed the subset of diagrams contributing to the b→ sγ
vertex at NNLO where the gluon couples only to the charm and strange quarks, i.e. there
is no internal bottom quark propagator. Furthermore, all diagrams with fermion, gluon
or ghost insertions in the gluon propagator have been excluded. For the comparison we
isolate this subset of diagrams in our calculation and then compare t2 to the corresponding
expression in the ancillary file of Ref. [21]. We specialize our result to Feynman gauge
since this is the choice of Ref. [21] (the set of diagrams considered in Ref. [21] is not gauge
invariant). Using our expansion around x0 = 1/5 we observe agreement of more than 10
digits for the terms proportional to Qs, the charge of the down-type quark, and of about
5 digits for the terms proportional to Qc, the charge of the up-type quark. According to
Ref. [21] the program FIESTA [70] has been used to fix parts of the boundary conditions
for the second part. This may explain the reduced accuracy. Using our expansion around
x0 = 0 we can also directly compare the coefficients in front of xn logk(x). As before, we
observe about 5 digits agreement for the Qc terms and at least 18 digits for the Qs terms.

In Ref. [71] the contributions induced by four-quark operators are computed via the reverse
unitarity method by considering bottom quark two-point functions with an insertion of
Q1 or Q2 and Q7. The three- and four-loop contributions yield the NLO and NNLO
corrections, respectively, where the latter contains two-, three- and four-particle cuts. In
Ref. [71] the two-particle cut contribution is computed. We compare our NNLO result

13



for Ĝ
(2),2P,Qtree

7
17 and Ĝ

(2),2P,Qtree
7

27 and find agreement at the level of 10−15 for x = 1/5. Let
us stress that the calculations performed in Ref. [71] and the one in the current paper are
completely independent and thus the comparison constitutes an important cross check for
both calculations.

The Ward identity in Eq. (7) holds for renormalized quantities. Since it holds at NLO,
all NNLO contributions obtained by multiplying the NLO amplitude by a global renor-
malization factor also fulfil the Ward identity. It does not hold for the mass counterterm
contribution and the bare three-loop amplitude. However, in the combination of the
three-loop corrections to the form factors and the contributions from the bottom mass
counterterm the relation (7) has to be fulfilled. For our calculation we have checked that
this is indeed the case. Using the expansion around x0 = 0 we observe that the numerical
cancellation in the combination t3 + t2/2 is of order 10−12 or smaller for x = 0.2 while it
reaches the level of 10−5 at x = 0.4. At the latter point an accuracy of at least 12 digits
is obtained in case the expansion around x0 = 1/5 is used.

5 Conclusions

In this paper we compute three-loop corrections to the b → sγ vertex induced by the
current-current operators Q1 and Q2. We apply a semi-analytic method and construct
expansions around x0 = 0, x0 = 1/10 and x0 = 1/5 including about 40 terms, which covers
the physically relevant values of the mass ratio in different mass schemes. Furthermore,
we provide for the first time analytic results for the two-loop contributions.

The current predictions for the B → Xsγ branching ratio at NNLO employ only an
interpolation to estimate the mc dependence in the interference term between Q1, Q2 and
Q7. Such interpolation is responsible for 3% out of the 5% (=

√
(3%)2 + (3%)2 + (2.5%)2)

theoretical uncertainty. Our result for the b→ sγ vertex at NNLO allows to calculate the
two-particle cut contribution to the B → Xsγ branching ratio (stemming from current-
current operators) with negligible uncertainty. Therefore it constitutes an important
building block towards the reduction of the theoretical error in B → Xsγ, once the
missing three- and four-particle cut contributions are available as well.
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A Details of the two-loop master integral calculation

In this appendix we present additional details regarding the calculation of the master
integrals at two loops, in particular about the analytic continuation.

As discussed in Section 3, at two loops we solve the master integrals using the method of
differential equations and fix the boundary conditions in the limit mc → ∞ via a large
mass expansion. To match the boundary conditions it is convenient to first solve the
differential equations in the variable y = mb/mc since the expansions for y → 0 are easier
to compute. It is therefore necessary at some point to perform an analytic continuation
to the variable x = mc/mb. We find it beneficial to use the argument y for the master
integrals and only apply the appropriate variable change once the physical amplitude is
assembled. In the following we explain how the analytic continuation is performed.

We express the master integrals in terms of iterated integrals with letters from the set given
in Eq. (12). In the end we want to evaluate the iterated integrals for values mc/mb < 1, i.e.
y > 1. As we can see in Eq. (12) the iterated integrals therefore require an analytic con-
tinuation since the letters develop poles at y = 1 and y = 2. For iterated integrals which
only contain the first three letters, i.e. harmonic polylogarithms, the analytic continuation
to x = 1/y is well known; we use HarmonicSums to do this step. For the integrals which
contain non-standard letters we do the analytic continuation with the help of the differen-
tial equations. We start by taking the derivative of the iterated integrals with respect to
y, which leads to iterated integrals of lower weight, then do the variable change x = 1/y
and integrate over x. The differential equations with iterated integrals of weight 1 can
then be integrated trivially since they reduce to integrals over algebraic functions which
can be performed by using the definition of iterated integrals and possibly integration-by-
parts identities to reduce higher powers of the letters. For the contributions with higher
weight one can proceed iteratively, since the derivative of an iterated integral of weight
n with respect to its argument only depends on iterated integrals of weight n− 1. After
the change of variables we therefore have to perform a single integral over expressions of
algebraic functions possibly multiplying iterated integrals of lower weight. These integrals
can again be performed using the definition of iterated integrals and integration-by-parts
identities. However, in order to find the analytic continuation of the iterated integrals in
this way we have to fix the integration constants.

It is convenient to fix this integration constants at y = 2 since after the shift y → 2ỹ the
non-standard letters in Eq. (12) transform to 1/(1 + ỹ), 1/(1 − ỹ),

√
1 − ỹ2. The square

root valued letter can further be rationalized which subsequently leads to cyclotomic
harmonic polylogarithms [73] for which the constants at argument ỹ = 1 are known.
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Note that it is crucial to consider the analytic continuation of the whole amplitude and not
only a single iterated integral. The individual integrals depend on various constants for
which we do not have a replacement in terms of known transcendental numbers. However,
in the amplitude these cancel out and we are left with well known constants. We also
observe that the analytic continuation of single master integrals is much more involved
than the one of the physical amplitude.

Finally, we notice that the analytic continuation of the HPLs completely decouples
from the one of the generalized iterated integrals. This can be seen by introducing
y = 1/x + iδ(

′), where δ is used for the harmonic polylogarithms and δ
′

for the gen-
eralized iterated integrals. Both quantities are infinitesimally small. After performing
the analytic continuation we see that the expression is independent of δ while we have to
choose δ

′
as positive in order to identify the correct analytic continuation for the gener-

alized iterated integrals. This effect is not necessarily expected. In other words: From
the observation that the analytic continuation of the HPLs is independent from the one
of the “non-standard” iterated integrals we conclude that they “decouple” and a separate
variable transformation can be applied to the latter. Note that this discussion only affects
the imaginary parts of tQ1

2 and tQ2

2 and is thus not relevant for the results presented in
the main part of this paper.

B Analytic results for a(z) and b(z)

The functions a(z) and b(z) defined in Ref. [67] can be obtained as the contributions
proportional to Qu and Qd with an additional subtraction to fulfill the normalization
a(0) = b(0) = 0. In the conventions of Ref. [67] we find

a(z) =
16w

3(1 + w)2
+

8w(5 + w2)H0(w)

9(1 + w)3
− 4w( − 1 + w + w2)H0(w)2

9(1 + w)4
+

4wH0(w)3

9(1 + w)2

− 32w(2 + 3w + 2w2)H0(x)3

27(1 + w)4
− 8(1 + 4w + w2)H−1(w)

9(1 + w)2
+

16w2(1 + 2w)H0,−1(w)

9(1 + w)4

− 16w(1 −
√
w + w)(1 +

√
w + w)H1,0(x)

9(1 + w)4
+

16w(1 + w + w2)H−1,0(w)

9(1 + w)4

+
16w(1 −

√
w + w)(1 +

√
w + w)H−1,0(x)

9(1 + w)4
− 32w(1 + w + w2)H−1,−1(w)

9(1 + w)4

− 16w(1 + w2)H0,0,−1(w)

9(1 + w)4
− 32w(2 + 3w + 2w2)H0,1,0(x)

9(1 + w)4
− 16wζ3

3(1 + w)2

+
32w(2 + 3w + 2w2)H0,−1,0(x)

9(1 + w)4
− 32w(1 + 3w + w2)H−1,0,0(w)

9(1 + w)4

+ π2

(
−8w(2 + w + 3w2)

27(1 + w)4
− 4w(3 + 8w + 3w2)H0(w)

9(1 + w)4
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+
16w(5 + 12w + 5w2)H−1(w)

27(1 + w)4

)
+ iπ

(
8w(4 − w + w2)

9(1 + w)3
− 8π2w(1 + 3w + w2)

27(1 + w)4

+
8w(1 + w2)H0(w)

9(1 + w)4
+

8w(1 + 3w + w2)H0(w)2

9(1 + w)4
− 32w(1 + 3w + w2)H−1,0(w)

9(1 + w)4

)
,

(23)

b(z) =
32w(7 + 17w + 7w2)

81(1 + w)4
− 4π2w

81(1 + w)6
(3 + 30w + 52w2 + 42w3 + 9w4 − 12

√
w

− 36w3/2 − 36w5/2 − 12w7/2) +
8w(9 + 24w − 2w2 − 4w3 + w4)H0(w)

81(1 + w)5

− 4w2( − 1 + 2w + 3w2 + 2w3)H0(w)2

9(1 + w)6
− 8(1 + 4w + 18w2 + 4w3 + w4)H−1(w)

81(1 + w)4

+
16w2(3 + 14w + 15w2 + 6w3)H0,−1(w)

27(1 + w)6
+

16w(3 + 9w + 14w2 + 9w3 + 3w4)H−1,0(w)

27(1 + w)6

− 16w(1 −
√
w + w)2(3 + 8w + 3w2 + 4

√
w + 4w3/2)H1,0(x)

27(1 + w)6

+
16w(1 +

√
w + w)2(3 + 8w + 3w2 − 4

√
w − 4w3/2)H−1,0(x)

27(1 + w)6

− 32w(3 + 9w + 14w2 + 9w3 + 3w4)H−1,−1(w)

27(1 + w)6

+ iπ

(
8w(9 + 18w − 8w2 − 4w3 + w4)

81(1 + w)5
+

16w2(3 + 4w + 3w2)H0(w)

27(1 + w)6

)
. (24)

The variables x and w are defined in Eqs. (11) and (13), respectivley. Note that the
separation in real and imaginary parts is correct below the two-particle threshold z < 1/4.

From our expressions we can find analytic expressions for the constants in Ref. [67]. They
agree with the results derived in Ref. [10] by a direct integration of the three-fold integral
representation. They are given by

a(1) =
16

3
+

164π2

405
− 8

45
ψ(1)

(
1

6

)
+

π√
3

[
−20

9
− 64

135
π2 +

32

135
ψ(1)

(
1

6

)]
− 16ζ3

9
+

4

9
iπ , (25)

b(1) =
320

81
+

632π2

1215
− 4

3

π√
3
− 8

45
ψ(1)

(
1

6

)
+

4

81
iπ , (26)

Xb = −9

8
− π2

5
+

1

10
ψ(1)

(
1

6

)
− 2ζ3

3
. (27)

The results in this Appendix together with the expressions given in Eq. (3.1) of Ref. [67]
provide analytic results also for all NLO penguin contributions.

In Refs. [68, 69] the two-loop form factors with an off-shell photon have been calculated.
Obtaining the on-shell limit from the representation in terms of Goncharov multiple poly-
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logarithms is, however, a non-trivial task, since many letters become singular in this
limit.
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J. Ablinger, J. Blümlein and C. Schneider, J. Math. Phys. 54 (2013), 082301
[arXiv:1302.0378 [math-ph]]; J. Ablinger, Ph.D. Thesis, J. Kepler University Linz,
2012 [arXiv:1305.0687 [math-ph]]; J. Ablinger, J. Blümlein and C. Schneider, J.
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