
Prepared for submission to JHEP TTP23-031, P3H-23-054

Reconstructing axion-like particles from beam dumps

with simulation-based inference

Alessandro Morandini,1 Torben Ferber2 and Felix Kahlhoefer3

1Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe,

Germany
2Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), D-76131 Karls-

ruhe, Germany
3Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT), D-76131 Karls-

ruhe, Germany

E-mail: alessandro.morandini@kit.edu, torben.ferber@kit.edu,

kahlhoefer@kit.edu

Abstract: Axion-like particles (ALPs) that decay into photon pairs pose a challenge for experiments

that rely on the construction of a decay vertex in order to search for long-lived particles. This

is particularly true for beam-dump experiments, where the distance between the unknown decay

position and the calorimeter can be very large. In this work we use machine learning to explore the

possibility to reconstruct the ALP properties, in particular its mass and lifetime, from such inaccurate

observations. We use a simulation-based inference approach based on conditional invertible neural

networks to reconstruct the posterior probability of the ALP parameters for a given set of events. We

find that for realistic angular and energy resolution, such a neural network significantly outperforms

parameter reconstruction from conventional high-level variables while at the same time providing

reliable uncertainty estimates. Moreover, the neural network can quickly be re-trained for different

detector properties, making it an ideal framework for optimizing experimental design.

Keywords: Beyond the Standard Model: Axions and ALPs, Non collider experiments with beams:

Fixed Target Experiments
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1 Introduction

The goal of any particle physics experiment is to gain insight into the underlying physical theory by

using the recorded events to perform statistical inference. A common situation in high-energy physics

is that one can easily simulate large numbers of events for given theory parameters, but there is no

direct access to the likelihood of a given event. The resulting difficulty to infer theory parameters from

observed events is called the inverse problem.1 Its most common solution is to engineer a small number

of high-level observables, whose probability distribution can be easily extracted from simulations.

For events with a high multiplicity of final state particles, many different high-level observables

can be constructed, and finding the optimal ones is an important and difficult task. But even a small

number of final state particles may pose a challenge, if their properties are difficult to measure. For

example, consider the decay of a long-lived particle with unknown mass and lifetime into a pair of

1For an introduction to the inverse problem and modern ways to address it see Refs. [1, 2].
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photons. Since photons do not leave tracks in the tracking detector, it is difficult to accurately mea-

sure the direction of their momentum in the electromagnetic calorimeter, which prevents an accurate

reconstruction of the decay vertex and of the invariant mass of the parent particle [3]. In such a case

different vertex reconstruction algorithms are needed, which construct complex high-level observables

out of all the available experimental information that go beyond reconstructing four-vectors.

In such a setup, the optimal observable itself may depend on the details of the experiment, such

as the size and position of the detector and its angle and energy resolution. In order to optimise

experimental design, it then becomes necessary to automate the process of constructing high-level

observables. Major progress has been made in this context in recent years by applying Machine

Learning (ML) techniques to the physical sciences [4] and more specifically to high-energy physics

[5]. Of particular importance for us is the application of ML to LHC physics [6, 7] and to searches

for new physics [8]. The theory behind using ML to learn new physics has been studied in detail in

Refs. [9–11].2

ML approaches to the inverse problem have the key advantage that they are able to adapt to

different detector designs easily, as long as the final state under consideration and the underlying

physical process remain the same. For example, if we want to assess the impact of varying the

calorimeter resolution on our ability to constrain the parameters of a specific model, it is typically

enough to just retrain a neural network (NN) developed for a specific experimental setup without

changing the underlying network architecture or training strategy.

An application of particular interest for this problem is the proposed construction of new beam-

dump experiments at CERN to search for feebly-interacting particles at the GeV scale with macro-

scopic decay lengths. Among the most well-motivated such particles is an axion-like particle (ALP),

which arises as a nearly massless particle from the spontaneous breaking of an approximate global

symmetry [13]. If these ALPs couple dominantly to the electroweak gauge bosons of the SM, they

may be copiously produced in rare meson decays (such as B → K + a) and subsequently decay into

pairs of photons. There already exist many constraints on such a scenario, but near-future experiments

such as SHADOWS [14], SHiP [15] or HIKE [16] offer unique opportunities to substantially improve

sensitivity.

In this work we explore a ML approach known as simulation-based inference (SBI) in order to

obtain likelihoods (or posterior probabilities) and reconstruct the ALP parameters from a small number

of observed events. We find that this approach adapts easily to variations in the assumed detector

properties: If the properties of the final-state particles can be accurately measured, the SBI performs

very similar to conventional methods that would reconstruct the vertex position and the invariant

mass. If, on the other hand, only less accurate measurements are available, the network makes use of

additional and correlated information, such as the angular and energy distribution of ALPs produced in

rare meson decays, to significantly outperform conventional methods. Most importantly, this process

is fully automated and can be quickly repeated for different detector designs, making it possible for

example to perform cost-benefit analyses for a large number of experimental concepts.

The remainder of this work is structured as follows. In section 2 we introduce the physics model

that we consider, the typical experimental setup and how to simulate the physical processes to obtain

mock data. In section 3 we discuss possible ML approaches to analyse this data and identify conditional

invertible neural networks as particularly promising. We then consider ALP parameter inference for

different experimental designs in section 4 and discuss our results in section 5.

2For a complete list of works in particle physics making use of ML we recommend the living review [12].

– 2 –



2 ALPs at beamdumps

2.1 Event generation

ALPs can be generated and detected in different ways, depending on the underlying model parameters

and the experimental design [17]. In this work we focus on ALPs that are produced in the decay

B → K + a and subsequently decay into photon pairs. Such a scenario arises for example from ALPs

that couple dominantly to SU(2)L gauge bosons [18]:

L ⊃ −gaW
4
aWµνW̃µν , (2.1)

where Wµν denotes the SU(2)L field strength tensor and W̃µν its dual. Alternatively, such a scenario

can result from ALPs coupled to SM quarks (but not to SM leptons), provided decays into mesons

are kinematically forbidden (which is the case for ma < 3mπ) [19, 20].

In our study, we will focus on a simple experimental setup inspired by NA62 [21] and its proposed

successors HIKE [16], SHiP [15] and SHADOWS [14]. These experiments are proposed to be placed

in the ECN3 experimental hall at CERN after the SPS accelerator stage at the LHC. The extracted

protons have an energy of 400GeV, which is enough to produce bottom and charm mesons when

impinging on a fixed target. The corresponding production cross sections and differential distributions

have been studied in Ref. [22, 23], and we take their PYTHIA8 [24] samples of B mesons as starting

point for our simulations. ALP production through D meson decays is found to be negligible [17], so

we focus on B meson decays instead.

The decay of ALPs into photon pairs is described by the Lagrangian

L ⊃ −1

4
gaγaFµν F̃

µν , (2.2)

where the effective ALP-photon coupling is related to the coupling to SU(2)L gauge bosons via gaγ =

sin2 θW gaW with θW being the weak mixing angle. The ALP lifetime is given in terms of this coupling

and the ALP mass ma by the relation

(cτa)
−1 = Γa→γγ =

g2aγ
64π

m3
a. (2.3)

We will be interested in the case where this coupling is small (of the order of 10−5 GeV−1), which

implies a macroscopic decay length up to hundreds of meters.

Both the B meson decay and the subsequent ALP decay are isotropic in the respective rest frames,

such that the distribution of photon angles and energies can be easily obtained through appropriate

rotations and Lorentz boosts. We simulate these decays following the public code ALPINIST [17]. To

determine the position of the ALP decay vertex, we assume that the B meson decays promptly at

r = (0, 0, 0) and sample randomly from the exponential distribution of ALP decay lengths d given by

p(d) = exp

(
− dma

pacτa

)
, (2.4)

where pa denotes the ALP momentum in the laboratory frame. The vertex position is then obtained

as rV ≡ (xV , yV , zV ) = dpa/pa.
3

3We note that, while the vertex distribution is invariant under rotations in the plane transverse to the beam direction,

most detector geometries are not. To maintain generality, we will therefore retain all three spatial coordinates.
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Figure 1. Sketch of the detector design, with a focus on the observable features (xi, yi, Ei, θi, ϕi). The

calorimeter plane has been highlighted in light red.

In principle, the branching ratios for B → K + a can also be calculated in terms of the effective

ALP model parameters. In this work, however, we will treat the B meson branching ratios, and hence

the ALP production cross section, as an independent parameter. This is well-motivated both in the

case of gauge boson interactions, where the effective ALP photon coupling may receive an additional

contribution from an underlying ALP-hypercharge coupling, and in the case of quark interactions,

where the B meson branching ratio has a residual logarithmic dependence on the ultraviolet comple-

tion [19, 25]. The B meson branching ratios then only affect the total number of expected events, i.e.

the normalisation of the various distributions, but not their shape. In the following, we will focus our

attention primarily on the two ALP parameters that affect kinematic distributions in more compli-

cated ways, namely (ma, gaγ) or equivalently (ma, cτa). These are provided as input to our simulator

in order to extract experimental observables.

2.2 Detector geometry and experimental setup

We consider a typical beam-dump experiment, where the ALPs are produced inside an absorber and

propagate into an evacuated decay volume (see Fig. 1). The photons produced in the ALP decays then

propagate through the decay volume and are detected when interacting with the calorimeter at the far

end of the experiment. The decay volume is placed at a distance zmin from the point where the proton

beam impinges onto the dump. The decay volume ends at zmax where the calorimeter observing the

photons is located. The calorimeter is assumed to be a square with side length ℓcal centred at x = xcal
and y = 0. In a more refined treatment, we would need to take into account that between the end

of the decay volume and the calorimeter there are tracking detectors. In our simplified discussion the

tracking chambers are taken to be part of the decay volume and thus the calorimeter is placed directly

at the end of the decay volume.

Candidate ALP events are selected if both photons hit the calorimeter plane. In order to ensure

that the resulting showers can be individually resolved, we require a minimum photon separation of

dmin = 10 cm. Furthermore, we require both photons to have an energy greater than 1GeV, which

is readily satisfied by photons produced in the decay of a boosted ALP. A perfect detector would be

able to reconstruct the photon 4-momenta (i.e. their energy Ei and angular information θi, ϕi) and the

calorimeter hit position (xi and yi). Experimentally, the showers position zi needs to be determined as

well. Since the shower z-coordinate is typically meters away from the decay vertex, we identify zi with

the position zmax of the first calorimeter plane and assume that the impact of the uncertainty is small
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compared to the other uncertainties. We note that these observables contain redundant information:

The requirement that both photons originate from the same decay imposes one constraint on the ten

observables (Ei, θi, ϕi, xi and yi), while two further constraints are obtained in the case of a two-body

decay, even if the mass of the decaying particle is unknown. If the observables are consistent with

these constraints, it is possible to reconstruct the vertex position (xV , yV , zV ).

Typical laterally segmented electromagnetic calorimeters provide relative photon energy resolution

of a few percent for GeV-energies. The shower position can be reconstructed to a fraction of the spatial

segmentation. These six observables (Ei, xi and yi) are generally insufficient to reconstruct the vertex

position or the ALP mass. To do so, we need to extract at least some amount of angular information

from the electromagnetic showers, such as the photon opening angle

αγγ = arccos

(
p1 · p2

p1 p2

)
. (2.5)

The accuracy with which θi and ϕi (and hence αγγ) can be measured will directly affect our ability to

reconstruct the underlying physical process. The measurement uncertainty critically depend on the

detector properties, as for instance the cell granularity and absorber material. To fully characterize the

experimental setup, we therefore need to define the accuracy with which we can measure the different

quantities in addition to specifying the detector geometry.

We will consider two different detector geometries in our study, which we call “on-axis detector”

and “off-axis detector”. The size of the decay volume and the calorimeter is the same in both cases.

We have zmin = 10m, zmax = 35m with a calorimeter size lcal = 2.5m. The two detector geometries

differ in the fact that for the on-axis case xcal = 0 and for the off-axis case xcal = 2.25m. Our off-axis

geometry has been inspired by the current SHADOWS proposal. A detector with fixed geometry will

then be characterized by a set of three uncertainties: the angular resolution (which we approximate to

be the same on the polar angle σ(θ) and on the azimuthal angle σ(ϕ)), the relative energy uncertainty

σ(E)/E and finally the calorimeter hit resolution σ(h).

To conclude this section, we emphasize that, while there is redundant information in the ten ob-

servables measured by the experiment, it is necessary to use all of them to extract as much information

as possible. Traditional approaches to this problem employ vertex reconstruction algorithms based

on the photon angles measurement, such that the reconstruction error of the decay vertex depends

on the accuracy with which we can measure the photon momenta and calorimeter hit positions. The

algorithms that we introduce below, are not explicitly required to extract vertex information, but they

may of course learn such information if possible and necessary.

We emphasize, however, that an accurate vertex reconstruction is not always necessary to address

the inverse problem. If we look at fig. 2, we can see that even something as low-level as the ALP

energy, which can be reconstructed as the sum of the photon energies, contains information about the

ALP mass, because the ALP energy distribution is determined by the underlying ALP production

mechanism through B meson decays. However, the ALP energy distributions differ only slightly for

different masses, so unless enough statistics is provided we will not be able to put a strong constraint

on the ALP mass from this information alone. The opening angle between photons, on the other hand,

is harder to measure precisely, but the distribution of this observable is very informative about the

ALP mass.
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Figure 2. Distribution of generated quantities for varying ALP masses. The energy of the ALP can be recon-

structed as the sum of the single photon energies. The photon angular separation requires the measurement

of the photon momenta.

3 Simulation-based inference

3.1 Motivation

As discussed above, it is straightforward to generate events for a given set of ALP model parameters.

The inverse problem of inferring ALP parameters from one or more observed events is generally much

harder. A promising strategy could be to try and reconstruct the decay vertex and the invariant

mass of the decaying particle, from the observed photons. This is easily possible if the position and

momentum of each photon is known with high accuracy.

In practice, sizeable measurement uncertainties prevent an accurate reconstruction of the vertex

and invariant mass. While it may still be possible to estimate the vertex position and invariant mass

using for example a neural network (NN) regressor, the statistical interpretation of the output is

unclear. Even if the regressor is trained to predict the uncertainty of its estimate, or if the uncertainty

is inferred from simulations, this information would typically only be useful if the deviations follow

approximately a normal distribution.4

For a rigorous statistical inference it is indispensable to know the likelihood function, regardless

of whether one uses frequentist or Bayesian methods [28, 29]. Even if the likelihood is intractable

analytically, it can be reconstructed using an approach called simulation-based inference. As the

name suggests, the main ingredient of this approach are simulations, i.e. samples of events drawn from

the likelihood. While the approach does not in principle require ML, it has greatly benefited from

advancements in ML algorithms, which enabled its application in high-dimensional problems and has

lead to growing popularity in recent years [30–34].

A key advantage of simulation-based inference is that it uses and combines all information available

in the observed events. For example, since we assume a specific ALP production process, the energy

of the ALP which can be inferred from the energies of the two photons even if the decay vertex

4The possibility of suitably modifying the loss function of a NN regressor to not only provide an estimator, but

also an uncertainty on the estimator has been considered in the literature [26, 27]. This latest approach could be an

alternative in the case approximating the posterior is not feasible, but when it is possible our approach leads to better

control due to its well-defined statistical foundation.
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cannot be reconstructed is correlated with the ALP mass (see fig. 2). If additional information on the

invariant mass or the decay vertex are available, it will be automatically combined with other kinematic

variables. Since there is no need to construct explicit high-level observables, no information is lost and

the most accurate estimates are obtained. The remaining uncertainties can be directly extracted from

the shape of the likelihood (or posterior). This makes it comparably easy to separate the irreducible

physical uncertainty due to inaccurate measurements from the reducible network uncertainty.

Common ML algorithms for simulation-based inference include classifiers [35, 36], which learn

probability ratios, and normalising flows (NFs) [37, 38], which perform a density estimation task

by minimizing deviations between the predicted probability distribution and a given sample. In the

following we will focus on the latter approach and consider a specific modification called conditional

invertible neural networks (cINN) [39, 40], described in detail below. We note that simulation-based

inference can be applied both in the frequentist approach (in order to obtain likelihoods or likelihood

ratios) and in the Bayesian approach (where one focuses on posteriors or likelihood-to-evidence ratios).

While the ML algorithm discussed below can be adapted to either case, we will focus on the Bayesian

approach, as it is more intuitive given the low dimensionality of our parameter space and the high

variability of the observations. For a frequentist approach, the network would need to be adapted

suitably [39].

3.2 Normalizing flows and conditional invertible neural networks

Normalizing flows tackle the issue of density estimation by transforming a known probability density

function (PDF) through a suitable change of variables. To make this more formal, let us consider

a random variable z distributed under a known PDF f(z). If a new random variable x is defined

through a bijective transformation z = g(x), its PDF is given by

p(x) = f(g(x))|det J |, with Jij =
dz

dx
=
∂zi
∂xj

. (3.1)

In order to estimate the PDF of a given sample x, we choose a convenient form for f(z), for example

a Gaussian distribution and give a NN the task of finding a suitable transformation g(x). Such a NN

will be defined by its architecture and a set of weights ψ, so that we can write gψ(x) to denote the

family of transformations g which can be expressed by the NN for varying weights ψ. The optimal

transformation will be the one that maximizes the probability of the sample, or equivalently minimizes

the Kullback-Leibler divergence (KL) between the true distribution p and the proposal distribution

pψ:

DKL(p||pψ) = − 1

N

N∑
i

log pψ(xi) with pψ(x) ≡ f(gψ(x))|det Jψ| . (3.2)

We denote the function pψ that minimizes DKL(p||pψ) by p̃. To make the NN more expressive, we

actually stack several transformations gl. The result is a series (flow) of transformations which maps

our target distribution p(x) to a normal distribution f(z), hence the name normalizing flow.

In the case at hand, we have a high dimensional vector x distributed according to a likelihood

L that depends on model parameters θ. Lacking knowledge of the true values of θ, we can consider

different random choices θi following an assumed prior probability π(θ). For each such choice, we can

generate a random event xi from L(θi). Given pairs of θi and xi, NFs will learn the joint distribution

p(x,θ) = L(x|θ)π(θ) = p(θ|x)p(x). (3.3)
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Figure 3. Schematic view of our network architecture, with focus on the summary network component and

the cINN.

From this distribution both the posterior and the likelihood can be derived dividing by the evidence

and the prior respectively. The NN structure can be adapted to guarantee that the function gψ is

invertible and the determinant of the Jacobian Jψ fast to compute [37, 41].

In the example above, the NFs treat in the same way the low-dimensional model parameters and

the high-dimensional observables, which can lead to difficulties when learning the joint distribution.

This problem is addressed by cINNs, which are able to directly learn conditional probabilities, i.e.

likelihoods or posteriors. In previous works, cINNs have been employed in high-energy physics for

event generation [42–45], unfolding [46, 47] and anomaly detection [48, 49], and for inference in other

physical scenarios like the measurement of QCD splittings [50] and the study of cosmic rays [51]. Like

NFs, cINNs work with density transformations, but now the model parameters and the observations

enter the network differently. For example, we can transform the distribution of θ into a normal

distribution, while x is not transformed and is used to determine the transformation of θ. Proceeding

in this way we would determine the probability of θ conditioned on x, which is the posterior probability.

Analogously, we can transform x and use θ to determine the transformation, in which case we would

derive the probability of data conditioned on the model parameters, i.e. the likelihood.

While conditional invertible neural network treat observables and model parameters differently,

the issue that the dimensionality of the observables is considerably larger than the dimensionality of

the model parameters remains. The way this issue can be addressed is by using a summary network

h(x), which is trained in tandem with the cINN itself. This summary network takes as input the high-

dimensional low-level observables and provides as output to the cINN a vector of lower dimension (see

fig. 3). We then have a set of weights ζ defining the summary network and a set of weights ψ defining

the cINN transformation, but both of them are determined by the same training loop. In other words,

we aim to minimize DKL(p||pψζ), where

pψζ(θ|x) ≡ f(gψ(θ;hζ(x)))|det Jψζ | . (3.4)

By training the summary network at the same time as the cINN, we effectively ask the network to

learn the high-level observables that are best suited to constrain the mass and the lifetime. Clearly,

these high-level observables may not be the same for different detector setups.

3.3 Application to ALPs

Let us now discuss how the general discussion above applies to our training samples and variables.

First of all, we need to specify the probability distributions for the model parameters, which are used
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to generate the training samples. In our Bayesian approach, these are also the prior probabilities.

Since we are interested in ALPs produced in rare B meson decays, we focus on the mass range where

ALPs would be too heavy to be produced in K → π + a thus evading strong constraints from Kaon

experiments like NA62 but light enough to be produced in B → K + a. We therefore sample the

masses with a log-prior on [0.1GeV, 4.5GeV].5 The detector under consideration has zmin = 10m,

zmax = 35m, and only particles with boosted lifetime comparable to these dimensions can be efficiently

detected. We therefore consider proper lifetimes in [0.1m, 100m] with a log-prior. We then construct

the input parameter vector given by (log10(ma[GeV]), log10(cτa/ma[m/GeV])). We note that the

unboosted lifetime cτa/ma is what enters eq. (2.4). Considering this combination (rather than the

lifetime cτa) reduces degeneracies and hence decorrelates the two model parameters, at least if the

calorimeter has sufficient resolution to reconstruct the vertex position.

When the cINN is trained, it is only implicitly aware of the priors, as they affect the distribution

of model parameters given to the network for training. This is different to the case of a classifier used

to learn the likelihood-to-evidence ratio, where the prior needs to be given explicitly [36]. The fact

that the prior is given implicitly means that the posterior estimated by the cINN does not need to

be identically zero outside of the prior range. When evaluating the posterior for parameter points

close to prior borders, we see a smooth transition to zero, rather than a step. It would be possible

to truncate and normalize the posterior to force it to be zero outside of the prior range, if there is a

physical reason to do so. In our case the prior ranges are set by defining the regions where we expect

the experiment to have sufficient sensitivity, but there is no physical reason why the lower or higher

lifetimes should not be at all possible. This does not apply to the upper value on the mass, as for our

production process B → K + a the ALPs cannot have a mass larger than mB −mK ≈ 4.78GeV, so

the posterior for larger masses should be identically zero if B meson decays are the only relevant ALP

production process. In our case we settle for a less stringent upper bound on the mass of 4.5GeV, so

that we do not encounter this physical upper limit.

Having specified how we sample the model parameters, let us move to the event observables.

As discussed above, each ALP event is characterised by ten experimental observables, namely the

two photon energies, their the 2D-shower positions and the shower directions. Even though our

setup in principle works with just one observed event, we will consider data sets consisting of three

observed events for each pair (ma, cτa/ma) of model parameters. Our observable space therefore has

dimensionalityD = 30. The three events are not ordered in any way, while the two photons are ordered

based on their energy. To improve the training, before passing the observables to the network, we take

the natural logarithm of the photon energies and the photon polar angles to avoid inputs that can

vary over orders of magnitude. Finally, both our model parameters and observables receive standard

preprocessing so that they have zero mean and unit variance. For our analysis we have decided to

consider sets of three observed events, but our discussion applies in much the same way to any number

of observed events. However, it is useful to work with multiple observed events, because we can then

perform consistency checks between them and reduce the risk of background contamination. Our

specific choice is motivated by the common use of three predicted events for the sensitivity projection

in background-free experiments. Let us clarify our naming conventions: we will call a single diphoton

measurement an event, we combine three events into (data) sets and our training/test samples will

consist of multiple sets.

For the specifics of the network architecture and training, our setup is based on Ref. [40], but

5In principle the mass range under consideration is small enough that a uniform prior could also work, but in order

for our approach to be easily generalisable, the log-prior is more appropriate.
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Coupling layers

Number coupling layers 4

Hidden layers [128, 128, 128, 128]

Hidden layers activation ReLU

Output layer activation linear

Summary network

Output layer dimension 2

Hidden layers [64, 64, 64, 64]

Hidden layers activation LeakyReLU (α = 0.01)

Output layer activation linear

Training hyperparameters

Max number epochs 500

Batch size 512

Initial learning rate 5 · 10−3

Decay rate 0.9 every 10 epochs

Early stopping δ < 10−3 for 50 epochs

Table 1. Architecture of the summary network and of the cINN. The output of the summary network is fed

into the coupling layers transformations. Since the summary network and the cINN are trained together, the

training hyperparameters apply to both of them.

adapted for the task at hand. We fix the output of the summary network to be two-dimensional in

order to obtain two high-level observables that are informative of the mass ma and the unboosted

lifetime cτa/ma, respectively. We have checked that increasing the output dimension of the summary

network to three or four does not lead to qualitatively different results. We have optimized the other

hyperparameters by performing a scan over them for a fixed detector setup. More precisely, we have

considered arrays of possible hyperparameter values and combined them to have multiple network

trainings. Among all the possibilities we have looked at the six with the lowest validation losses. We

have then applied these six combinations of hyperparameters to the other detector setups to confirm

that also for them we would get good training performances. In the end we picked the hyperparameter

combination that lead to the lowest validation loss. A summary of the network architecture is given

in table 1.

For all the cases that we will consider below, we find that the architecture and training hyperpa-

rameters given in table 1 yield good convergence of the training and validation loss. Thanks to early

stopping we avoid overfitting due to over-training, typically for our detector setups we see a difference

between the validation and training loss of 5% with respect to the total training loss improvement

from the first epoch to the end of training. We will explicitly show below that the residual overfitting,

while not completely negligible, does not introduce a significant bias in our results.

4 Applications

In this section we apply the cINN introduced above to the production and detection of ALPs in

proton beam dumps, considering a simplified experiment. Before assessing the performance of different

detector setups, we take a closer look at the posterior in order to understand what is easy and hard for
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Figure 4. Joint posterior and marginal posteriors for two different observations. In red we have the true

parameter values, in yellow we have the best fit to the joint posterior. The three contours indicate the 50%,

68% and 95% credible regions.

the network to learn. We also discuss how to deal with background events and the effect of changing

the detector resolution for low-level observables.

4.1 Learning the posterior

In the following, we will measure the performance of a given detector setup by determining the width

of the posterior, which tells us how tightly the underlying parameters can be constrained. It is

therefore instructive to visualize the posterior for some representative scenarios. Let us start with

the detector geometry defined in section 2, in particular for now our detector is on-axis (xcal = 0).

To understand what a typical posterior will look like, we consider a specific detector setup with

σ(E)/E = 0.05, σ(h) = 0.1 cm, σ(θ) = σ(ϕ) = 5mrad. Such resolutions are achievable with the

calorimeters proposed for the next generation of beam dump experiments. We note that realistically

energy and angular resolutions are function of the photon energy itself, with resolutions improving for

increasing photon energies.

First of all, we emphasize that the posterior for events generated by different assumed ALP masses

and lifetimes will not have the same shape, in particular their spread will vary significantly. This is to

say that physically not all lifetimes and masses are equally easy to reconstruct. As a general rule for

our production mode and detector geometry, higher masses and lower (unboosted) lifetimes (within

the sensitivity of the detector) are easier to constrain. We show the reconstructed posterior for two

different observations in fig. 4 corresponding to two different model parameters. On the left, we have

an “easy” to constrain observation, with a small lifetime and sizable mass. This parameter point leads

to pretty distinctive signatures in the detector, like a decay position close to zmin and large opening

angles αγγ . On the right, we have an “hard” to constrain observation, corresponding to a smaller mass

and a longer lifetime. In this case the marginal posterior on the mass is broader and the marginal

posterior on the lifetime is no longer peaked but rather flat.

In both cases we find that, as anticipated, the two parameters are largely uncorrelated, i.e. there

are no non-trivial degeneracies in the posterior. The broad posterior for the unboosted lifetime is not
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due to a deficiency of the cINN, but reflects the fact that constraining the lifetime is fundamentally

harder than constraining the ALP mass. This is easily understood, given that in the case of a perfect

detector we would be able to precisely measure the ALP mass by constructing the diphoton invariant

mass from a single event. Contrary to this, the decay position stems from a (truncated) exponential

distribution, meaning that even if we precisely measured the decay position, we would not be able to

infer the lifetime exactly.

To make these statements more quantitative, we need to quantify the width of the posterior. Since

the posterior can be highly non-Gaussian, simple width estimators like the full width at half maximum

are not descriptive of the posterior and cannot be used to compare different setups. However, the

trained cINN enables us to directly sample from the posterior. It is then straightforward to evaluate

the covariance matrix Σm,cτ/m:

Σm,cτ/m =

(
σ2
m σmcτ/m

σmcτ/m σ2
cτ/m

)
, (4.1)

which corresponds to the inverse of the Fisher information matrix [52]. From this matrix we can

determine the typical area of parameter space enclosed by the posterior as

Am,cτ/m = π
√
det
(
Σm,cτ/m

)
. (4.2)

In these equations and in the following we will write for brevity σm and σcτ/m, but these quantities

refer to log10(m) and log10(cτ/m) as these are our input parameters. The related uncertainties on the

linear quantities can be derived via error propagation.

While the area in eq. (4.2) is a good performance measure in general, in our case it is possible

to make further simplifications. First, the off-diagonal terms in the covariance matrix are by con-

struction small compared to the diagonal ones. Second, constraining the mass is generally easier than

constraining the (unboosted) lifetime. This implies that best way to make the posterior narrow is

by reducing the uncertainty in the mass, rather than in the lifetime. In our study we have found

that while σm can vary by up to two orders of magnitude, σcτ/m shows little variation and is largely

determined by the geometry of the decay volume. The best way to improve the reconstruction of the

lifetime would be to increase the length of the decay volume and place it closer to the interaction

point. We have checked this for a detector geometry with [zmin, zmax] = [2m, 100m] and found that

the posterior on the lifetime becomes more narrow and more peaked. For simplicity, and to allow

for a more intuitive interpretation of our results, we will use σm instead of Am,cτ/m as performance

measure in the following.

It is clear from fig. 4 that different ALP parameter points will generally have different posterior

widths. For the “easy” example (left panel) we obtain σm = 0.024GeV, while the “hard” example

(right panel) gives σm = 0.034GeV.6 The width of the posterior will depend on the model parameters

used to generate the observed sample. It is therefore useful to keep these parameters fixed to some

benchmark cases when comparing the performance of different detector setups. In this way we reduce

the variability intrinsic to different regions of the parameter space. But even in the case we consider a

fixed parameter point, we can have a large variance in the values of σm obtained. In the following we

will consider test data sets of 10000 samples and evaluate the distribution of σm over these data sets.

Before doing so, we however need to ensure that the confidence regions derived from the posterior

are reliable. In other words, we need to verify that the posterior width is indicative of the uncertainty

6We note that the achievable mass resolutions is many orders of magnitude larger than the intrinsic width of the

ALP corresponding to the assumed decay length.
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on the parameters, in particular the mass. We do not have access to the true posterior, so we cannot

quantify the goodness of our approximation by direct comparison. However, we can check the coverage

[53–55].

Given a credibility level α and a posterior p(θ|x), this defines a highest-posterior credible region

where p(θ|x) > pα. Here, pα is defined implicitly by requiring

α =

∫
p(θ|x)>pα

p(θ|x) dθ . (4.3)

If we generate random sets xj and evaluate our posterior on them, we would then expect that the

true value θ̄ lies in the credible region defined by credibility level α for a fraction α of events. This is

our expected coverage. In our case we only have access to an approximation of the posterior and the

coverage obtained from this approximation takes the name of empirical coverage.

In the limit where our posterior perfectly approximates the correct one and for large enough

statistics, we would see that the empirical coverage and the expected coverage coincide. The results

for our case are given in fig. 5 for a representative selection of our networks. Our test samples consisting

of 10000 sets have been split into 20 smaller sub-samples to evaluate the statistical uncertainty on

the coverage. Given our cINN and the possibility of sampling directly from the 2D joint posterior, it

is straightforward to evaluate the empirical coverage. We see a percent level underestimation of the

coverage, consistent with the limited overfitting seen in the training of our networks.

The consistency has been evaluated over the whole prior and by considering the two-dimensional

coverage. Not all regions of the parameter space are equally easy to constrain and in particular mass

and (unboosted) lifetime present different challenges. Since in our scenario the performance is mainly

given by the uncertainty on the mass, let us look at the distribution of dm = | log10 m̂− log10ma|/σm
in fig. 6. This is the distance between the true ALP mass value ma and our estimator m̂ in units of

standard deviations. With our (approximate) posterior we are able to derive for each test set both a

mass estimator from the maximum of the posterior and a standard deviation value from the variance

of the posterior samples. Even though our result is not expected to be Gaussian, it is instructive to

show a comparison with the Gaussian result in black in fig. 6. We can see that the distribution given

by the cINN closely resembles the normal distribution, although with slightly stronger tails.

4.2 Dealing with background events

Experimental efforts are devoted to reducing backgrounds as far as possible. However, we cannot guar-

antee in general that a sample of observed events is background-free. As discussed above, our cINN ap-

proach employs a summary network to synthesize the information from three events into two high-level

observables. This procedure assumes that all three events are true signal events generated from the

same underlying process, i.e. the decay of an ALP with fixed parameters θ = (log10ma, log10(cτa/ma)).

To ensure that this approach gives sensible results, one must check whether the three events are com-

patible with each other before combining them.

To achieve this goal, we need a different cINN, which is trained on individual events rather than

sets of three events. The architecture (including the summary network) is the same as for sets of three

events, with the only difference being the dimensionality of the input. We then obtain the estimated

posterior p(θ|xk) for each event xk separately. From these results, the compatibility can be directly

quantified. From each posterior we get an estimator of the model parameters

θ̂
k
≡ argmax

θ
p̃(θ|xk) , (4.4)
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Figure 5. Distribution of the empirical coverage against the expected coverage. In black we can see the result

in the case of correct posterior. We have split the test samples in smaller sub-samples: the continuous colored

line indicates the mean value over the sub-samples and the colored region encapsulates the empirical coverage

values over all the sub-samples.

and we evaluate their compatibility via:

Ckl ≡ 1−
∫
p̃(θ|xl)>p̃(θ̂

k|xl)

p̃(θ|xl) dθ. (4.5)

Ckl is then the measure of compatibility between the posteriors. Explicitly, we consider the posterior

p̃(θ|xl) and evaluate the smallest credible region that contains θ̂
k
. Our compatibility measure is then

one minus the corresponding credibility.

To test this procedure, we generate samples that contain two true signal events (generated using

the same ALP parameters) and one background event (generated using different values for the ALP

mass and lifetime). The individual posterior for one such set of events is visualised in fig. 7. It is

clear that the third event is not compatible with the first two by visual inspection. The compatibility
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Figure 6. Distribution of the distance between estimated and true mass values in standard deviations. In

black we show the comparison with the result from a Gaussian distribution. Even though the posterior is not

required to be Gaussian, we find good qualitative agreement. We note, however, that larger differences may

arise for worse detector resolution.
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Figure 7. Estimated posterior from three events separately. The red cross indicates the parameter points

generating the first two true events, the purple cross indicates the parameter points generating the last event

(which we call background). The golden cross indicates for each of the posteriors the maximum posterior value

θ̂
k
.
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Figure 8. Estimated posterior from the three combined events. The red cross indicates the parameter points

generating the first two true events, the purple cross indicates the parameter points generating the last event

(which we call background). The golden cross indicates the maximum of the posterior.

measure Ckl for the case shown in fig. 7 is found to be

Ckl =

 1 0.59 0

0.97 1 0

0 0 1

 .

Here the vanishing off-diagonal elements in the third column and row clearly indicate the incompati-

bility of the third event with the first two.

If we come to the conclusion that the three events are not compatible, we would not proceed and

combine them as input for our full cINN. It is nevertheless interesting to see what happens if we do,

and this is portrayed in fig. 8. Clearly, we would come to wrong conclusions about the mass. Even

worse, the network confidently claims a narrow posterior, which gives no indication that the events

are incompatible. This is likely because the network has never seen incompatible events during its

training, so it reconstructs the posterior as narrow as usual.7

Using the compatibility measure Ckl, it is straightforward to construct a test statistic (TS) to

perform a hypothesis test of compatibility. Since the compatibility matrix is not symmetric, we

consider the average (C12+C21)/2 as TS for the compatibility of the first two events and (C13+C31)/2

7We have also found cases where the network would ignore one or two of the events and reconstruct the posterior

from the remaining ones. However, it appears difficult to force the network to always focus on the compatible ones only

and we did not study this further.
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Figure 9. Distribution from pseudo-experiments of the compatibility test statistic for the case that the first

two events are generated from the same parameter point and the third event is generated from a different

point (see text for details). For a given signal acceptance (i.e. type I error rate), we can use this distribution

to determine the background rejection (i.e. type II error rate).

as TS for the compatibility of the first and the last event. To determine the distribution of each

TS, we consider a sample containing sets of three events. For each set, event 1 and 2 have been

generated from the model parameters ma = 1GeV, cτa = 1m, while event 3 has been generated from

ma = 0.8GeV, cτa = 1m. We visualize the TS distributions in fig. 9. We observe that the TS behaves

very differently depending on whether the two events are compatible or not, but we also find some

overlap between the two distributions. Clearly, the degree of overlap depends on the parameter values

used for the background event and on the detector setup. The more similar the events, and the poorer

the detector resolution, the harder it will be to distinguish background and signal events.

Using the procedure outlined above, background events can be accurately identified and elimi-

nated. If we come to the conclusion that all events in the set are compatible with each other, we

would proceed to combine them. In principle this could be done by simply multiplying the individual

likelihoods, or by combining the posteriors in an appropriate way. However, since we only have access

to the approximate likelihoods/posteriors predicted by the cINN, doing so might amplify any inaccu-

racies. More accurate results are obtained by using the cINN trained on sets of three events, which is

what we will do in the following.

To conclude this discussion, let us emphasize that there may be different ways to check compat-

ibility of the events before combining them. In particular, it may be possible to construct a more

powerful TS if the dominant source of background is known. The approach discussed above has the

advantage that we can in principle use information from the full posterior to assess the probability of

type I and type II errors, whereas for example a classifier would typically only yield a single number.

4.3 Uncertainties effect

So far we have focused on a fixed detector setup and discussed how the posterior looks like for different

parameter values. Let us now consider how the same event is seen by different detector setups, meaning

different sets of uncertainties on the input variables. For each detector setup we train a corresponding

cINN. We use the same architecture and the same training hyperparameters for all of them: the

underlying physical process is the same, so the algorithm adapts easily to different smearings of the

input observables.
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Feature uncertainty Values scanned

σ(E)/E [0.01, 0.05, 0.1]

σ(h) [0.1cm]

σ(θ), σ(ϕ) [1mrad, 5mrad, 10mrad]

Table 2. Summary of the detector setups considered. Each uncertainty value is combined with each of the

other uncertainty values for a total of 9 combinations. A complementary case for large angular uncertainties

and varying calorimeter hit resolution can be found in appendix B.

Each detector setup is defined by the set of standard deviations σ used for the Gaussian smear-

ing that models the detector resolution. The same uncertainty is applied to {x1, x2, y1, y2} as the

resolution here is mainly given by the detector granularity. We also assume that θ and ϕ have

the same uncertainty, and that all uncertainties are uncorrelated. As mentioned in section 4.1,

we note that realistically energy and angular resolutions are function of the photon energy itself,

with resolutions improving for increasing photon energies σ(E)/E ≈ 10 − 15%/
√

(E(GeV) and

σ(θ) = σ(ϕ) ≈ 30 − 40mrad/
√

(E(GeV). For easier comparison between different detector set-

ups, we use constant resolutions in our study, but our methods work identically for energy-dependent

resolutions. In a realistic detector with longitudinal segmentation, not all showers will start at the

same z-position which is again conceptually straightforward to include in our cINN inputs.

The set of uncertainties is provided in table 2 for a total of 9 detector setups and corresponding

networks. For sufficiently good angular resolution, the calorimeter hit resolution plays no significant

role and has therefore been fixed to σ(h) = 0.1 cm. The results for the case of poor angular resolution

and varying calorimeter hit resolution are discussed in appendix B.

To each of these detector setups corresponds an estimated posterior p̃(ma, cτa|x) which differ in

the uncertainties assigned to x. To first approximation, as we increase the input features uncertainties,

we expect the posterior to get broader. The inferred posteriors can hence be used to draw conclusions

about the performance of the detector setup. Before comparing the different detector setups in a

quantitative way in the next section, let us briefly visualize how the posterior on the model parameters

broadens as we increase the uncertainty on the low level observables in fig. 10 for a fixed set of events.

As expected, the spread of the posterior increases as the detector resolution on the energy and/or

the angles deteriorates. As discussed above, it is hard to pin down the ALP lifetime even in the best-

case scenario, and the spread of the marginal posterior in the lifetime does not change significantly

from the best to the worst case scenario. The width of the marginal posterior on the mass, on the

other hand, does exhibit significant changes with the detector resolution. But even in the case of poor

energy and angular resolution, we can estimate the ALP mass with relative low uncertainty. Indeed,

in this case the cINN significantly outperforms the diphoton invariant mass, as we will see in the next

section.

5 Results

5.1 Performance evaluation: on-axis

We are now ready to discuss how we evaluate the detector performance for a given setup. In our

scenario, three signal events have been observed by the experiment and we want to use these three

events to infer the model parameters. The best detector for this purpose will be the one that has

the highest model discrimination. Qualitatively speaking, the more non-overlapping posterior surfaces
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Figure 10. Comparison between the joint posteriors on the same set of events, but for different detector

setups. In this figure we keep the calorimeter hit resolution fixed, while we vary the energy resolution and the

angular resolution. The figure does not show the whole prior range, but is zoomed on the region where the

posterior is non-zero.

we can fit into the parameter space, the better we are at discriminating models. In other words, the

posterior should be as narrow as possible, so the area enclosed by it should be small.

To evaluate the performances, we build three test datasets. Each of these datasets contains 10000

samples, and they are all generated for a fixed lifetime of cτa = 1m, and three different ALP masses:

a low ALP mass of 200MeV, a medium ALP mass of 1GeV and a large ALP mass of 4GeV.

In the following, we compare the cINN performance with the standard approach of using the

diphoton invariant mass

m2
γγ ≡ (pµγ1 + pµγ2)

2 = (E1 + E2)
2 − |p1 + p2|2 (5.1)

where pµγi and pi are respectively the photon 4-momenta and 3-momenta. The diphoton invariant

mass can be interpreted as a simple and powerful analytic mass regressor. Since our observation

consist of three events, we will take as mass estimator the average of the three diphoton invariant

masses. Like for any regressor, this procedure will only return an estimate for the ALP mass and not

its uncertainty. In order to estimate the mass uncertainty for a single set of three events, we apply the

smearing several times. In this way we will get a collection of several imperfect events coming from

the same truth values. Once we have this collection of events, we can apply the regressor to obtain
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Figure 11. Mass reconstruction performed by the cINN (left) and by using the diphoton invariant mass

(right). Different colors correspond to different detector setups (as indicated in the legend), while the three

rows correspond to the ALP masses ma = 200 MeV, 1 GeV and 4 GeV. Vertical black lines indicate the true

mass values. Different bin widths have been used for the three benchmark masses.

a distribution of masses. The standard deviation of this distribution then measures the uncertainty

on the inferred mass. The same procedure could be applied when using a NN regressor trained to

reconstruct the mass.

We note that, while the diphoton invariant mass is expected to yield an optimal mass estimator for

detectors with very high energy and angular resolution, for other detector setups it may be possible to

improve the regressor further, for instance by applying vertex fitting to correct the photon directions.

We have found no qualitative differences when using improved analytic regressors or NN regressors

trained on the same datasets used by the cINN. A detailed study of alternative possibilities is outside

the scope of the current work.

Let us now evaluate the cINN and the diphoton invariant mass on our test datasets and look at the

distribution of the mass estimators in fig. 11. First we consider three detector setups of varying angular

resolution, which turns out to be the most important detector property. The three detector setups are

represented by lines of different colour, while the three rows correspond to the three different values

of the ALP mass. These plots are indicative of the performance, but most importantly they are useful

to identify possible biases. We can see that the cINN is generally unbiased for all our benchmarks,
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Figure 12. Mass uncertainty distribution over the 10k samples of the test dataset varying the angular

resolution of the detector for ma = 1 GeV.

while for detectors with poor angular resolution the diphoton invariant mass exhibits a bias towards

larger masses especially for small ALP masses.

In principle, one could use the distribution of estimated masses over the entire test dataset to

extract the variance in the mass estimator. However, to properly evaluate the performance, it is

preferable to evaluate σm = σ(log10 m̂) for each sample separately, because this makes it possible to

also evaluate the variance of σm over the dataset. We also point out that the error on the logarithm of

the ALP mass is related to the relative error on the ALP mass, such that we can directly compare our

results for different assumptions on the true ALP mass. Given the number of different detector setups

that we consider, it is difficult to visualize the distributions of σm for all cases. In the following we

will therefore focus on ma = 1GeV while taking some representative detector setups which highlight

our conclusions. The distributions for the other masses are provided in appendix A.

In fig. 12 we compare the performances for different detector setups, focusing again on the impact

of changing the angular resolution. By showing the distribution of σm, this figure adds new information

with respect to fig. 11, which showed the distribution of m̂. As expected, we see that the ML approach

does not perform better than the diphoton invariant mass in the case of good angular resolution. The

distributions of σm from cINN and diphoton are in this case very similar, indicating that the network

has learnt to reconstruct exactly this high-level observable. The situation changes when the resolution

on the angles is decreased, as in this case the cINN can do significantly better than the naive mγγ .

Our analysis shows that the angular resolution of the detector is a major factor for our ability to

constrain the ALP mass. The effect of also changing the energy resolution is investigated in fig. 13.

For both values of the energy resolution considered, we find that, as long as the angular resolution

is sufficiently good, the distributions of σm for the cINN and for the diphoton invariant mass are

very similar. This finding suggests that also for poorer energy resolution, the diphoton invariant

mass remains the most informative high-level observable. However, the conclusion changes when we

decrease the angular resolution. In this case the cINN performs better for both values of the energy

resolution. Moreover, the cINN distribution shifts considerably when changing the energy resolution,

while the mγγ distribution is basically unaffected. This observation suggests that the cINN uses

additional information contained in the photon energies, and consequently an improvement in the

energy resolution helps the inference process.
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Figure 13. Mass uncertainty distribution over the 10k samples of the test dataset varying energy and angular

resolution for ma = 1 GeV.

5.2 Performance evaluation: off-axis

In our discussion so far we have neglected the role of backgrounds in the sense that we have assumed

that the experimental collaboration is able to provide a background-free sample. If that is not the

case we have designed a test statistic that can be extracted from our network in order to diagnose

the possible presence of background events. In reality, substantial experimental efforts are devoted to

reducing the number of background events as much as possible. One of the possible ways in which this

can be achieved is by placing the decay volume and calorimeter off-axis with respect to the proton

beam line. This possibility is interesting to investigate with our approach, since the different geometry

implies different particle kinematics. Here we will take inspiration from the SHADOWS proposal [14]

and consider a displacement of xcal = 2.25m, such that the edge of the decay volume is at a distance

of 1m.

Displacing the detector affects not only the backgrounds but also the distribution of signal events.

ALPs produced off-axis typically have smaller energies than those produced on-axis. This also leads

to larger separation between the calorimeter hits. In combination these effects imply that an off-

axis detector is sensitive to somewhat different regions of parameter space (i.e. longer ALP lifetimes)

and generally exhibits a better performance in terms of the ALP mass reconstruction. Rather than

comparing the two different detector positions in terms of the reconstruction performance, we will

instead repeat the analysis from above, and explore the performance of an off-axis detector for varying

detector resolutions.

Given the similarity of this geometry with the previous one, we do not need to adapt the network

architecture or the hyperparameters. However, we will need to generate new training samples and

re-train our network. We can then apply our cINN to new test datasets generated for the off-axis

geometry. We consider the same benchmark points as before, but emphasize that the off-axis geometry

inherently has a different sensitivity to them compared to the on-axis geometry.

As we did in figs. 12 and 13 for the case of an on-axis detector, we can visualize the performance at

varying angular and energy resolution for an off-axis detector in fig. 14. We drop the comparison with

the diphoton invariant mass, as the conclusion is the same as before: for the best angular resolution

our cINN reproduces the analytic regressor result, while it outperforms the latter for poor angular

resolution.

In the left panel of fig. 14, we keep high energy resolution and vary the angular resolution, which
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Figure 14. Uncertainty distribution over the 10k samples of the test dataset varying the only angular

resolution (left) or both the angular resolution and energy (right) for the case of an off-axis detector for

ma = 1 GeV.

is found to still play a major role. However, even in the case of σ(θ) = σ(ϕ) = 10mrad we can

reconstruct the ALP mass with low relative uncertainty. When considering variations in both the

angle and energy resolution in the right panel of fig. 14, we observed a similar behaviour as for the

on-axis case, but with an even stronger effect. In the on-axis case we saw that given an angular

resolution of 10mrad decreasing the energy resolution increased the uncertainty on the logarithm of

the mass by 25% (dark green and light green curves in fig. 13). The same variation in the off-axis case

leads to an increase in the logarithmic mass uncertainty by 50%. We conclude that different aspects of

the detector resolution are important for different geometries. It is therefore essential to understand

for each possible geometry individually which variables are most useful to infer the model parameters.

The distributions obtained from the cINN analysis are an important diagnostic tools for this goal.

5.3 Performance comparison

To conclude our discussion, let us summarize the performance comparison for the different detector set-

ups in a compact way. As before, we consider the three benchmark massesma = 0.2GeV, 1GeV, 4GeV,

while for the lifetime we will always keep cτa = 1m. We consider separately the on-axis and off-axis

geometries and compare the 9 detector setups summarized in table 2 with the calorimeter hit resolu-

tion fixed to 0.1 cm. Results for the case of worse angular resolution (σ(θ) = σ(ϕ) = 100mrad) and

worse resolution of the calorimeter hit positions can be found in appendix B.

The comparison of the different detector setups is shown in fig. 15 for the case of an on-axis

detector (upper plot) and of an off-axis detector (lower plot). We observed two general trends: Larger

ALP masses are easier to constrain, and (apart from a few exceptions) detectors that perform better

at constraining larger masses also perform better at constraining lower masses. The exceptions to this

rule seem to indicate that constraining lower masses favors angular resolution over energy resolution.

We furthermore conclude that the angular resolution plays a major role in being able to constrain

the ALP mass, but its relevance also depends on the available energy resolution and the specific

mass under consideration. For instance we can observe that having a good angular resolution is most

relevant when we also have a good energy resolution. While the same trends are present for both on-

axis and the off-axis detectors, there are some quantitative differences in the relation between detector

resolution and reconstruction performance, suggesting that the relative importance of angular and

energy resolution may be different for the two cases.

– 23 –



h:0.1cm,
E/E:0.01,
, :1mrad

h:0.1cm,
E/E:0.05,
, :1mrad

h:0.1cm,
E/E:0.1,
, :1mrad

h:0.1cm,
E/E:0.01,
, :5mrad

h:0.1cm,
E/E:0.05,
, :5mrad

h:0.1cm,
E/E:0.1,
, :5mrad

h:0.1cm,
E/E:0.01,
, :10mrad

h:0.1cm,
E/E:0.05,
, :10mrad

h:0.1cm,
E/E:0.1,

, :10mrad

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(lo
g 1

0
m

a
[G

eV
])

ma = 0.2GeV
ma = 1GeV
ma = 4GeV

h:0.1cm,
E/E:0.01,
, :1mrad

h:0.1cm,
E/E:0.05,
, :1mrad

h:0.1cm,
E/E:0.1,
, :1mrad

h:0.1cm,
E/E:0.01,
, :5mrad

h:0.1cm,
E/E:0.05,
, :5mrad

h:0.1cm,
E/E:0.1,
, :5mrad

h:0.1cm,
E/E:0.01,
, :10mrad

h:0.1cm,
E/E:0.05,
, :10mrad

h:0.1cm,
E/E:0.1,

, :10mrad

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(lo
g 1

0
m

a
[G

eV
])

ma = 0.2GeV
ma = 1GeV
ma = 4GeV

Figure 15. Compact performance comparison for fixed calorimeter hit resolution for on-axis (upper plot) and

off-axis geometry (lower plot). Different colors correspond to different detector setups and different markers

are used for the benchmark masses. The vertical bands indicate the 25 and 75 percentile of the distribution.
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Comparison plots like fig. 15 not only allow to compare different detector setups (where unsurpris-

ingly the detector with best resolution is the best at constraining the ALP mass), but also to quantify

by how much. This means that it is possible to use this type of plot to understand whether it is worth

or not to invest more resources toward improving the resolution for measuring a specific kinematic

variable. Conversely, if we want to measure the ALP mass with a given relative uncertainty, we can

understand which detector setups would achieve that.

At first sight, a naive comparison of the top and bottom panel of fig. 15 suggests that moving the

detector off-axis improves the detector performance. This finding likely reflects the fact that ALPs

produced at an angle relative to the beam direction typically have smaller boost factors, which leads

to larger photon opening angles and facilitates the reconstruction of the underlying process. At the

same time, the distribution of transverse momenta carries information about the ALP mass, which

may be more easily extracted from an off-axis experiment. We emphasize however that moving the

detector off-axis leads to a significantly smaller signal acceptance, such that one should really compare

the performance for a different number of observed events in the two cases. We expect that σm scales

approximately proportional to 1/
√
n with the number n of observed events, such that the different

performances shown in fig. 15 could be easily compensated by increasing n by a factor of 2–4.

Finding the best detector placement and resolution then becomes a difficult optimisation problem,

which also needs to include the expected number of background events and their distribution. In

practice, one would also vary additional parameters, such as the distance and length of the decay

volume and the transverse size of the detector. Since considering all of these possibilities is beyond

the scope of this work, the two panels of fig. 15 cannot be directly compared in a meaningful way.

6 Conclusions

The inverse problem refers to the challenges and limitations of performing parameter inference from

experimental data for physical scenarios of interest. Usually, this problem is considered in the context

of constructing optimal high-level observables for existing experiments. In the present work we have

instead considered the inverse problem in the context of experimental design, i.e. we have compared

different detector setups in terms of their performance with respect to parameter inference. Doing so

requires a fast and adaptable way to perform inference while varying the experimental properties.

Our scenario of interest is the detection of ALPs decaying to photons in proton beam-dump

experiments. This scenario is not only well-motivated from the physical and experimental point of

view, but it also illustrates the key challenges of parameter inference. For beam dumps with very

large decay volumes, photon energy and direction resolution are generally not good enough to directly

infer the decay vertex and the invariant mass of the decaying particle with high precision. To infer the

underlying ALP parameters, one then needs to include additional information from other kinematic

variables. In such a case, the interplay between the different observables will depend on the specific

angular and energy resolution of the detector under consideration.

In this work we have demonstrated that in spite of these difficulties, conditional invertible neural

networks are able to accurately reconstruct the posterior of the ALP model parameters for a given de-

tector setup without the need for complex network architectures or explicit physical intuition [56–58].

For detectors with limited resolution, these networks significantly outperform conventional approaches,

such as reconstructing the ALP mass from the invariant mass of the photon pair, suggesting that the

conditional invertible neural network learns to extract additional information from the ALP distri-

bution. The speed and adaptability of this machine-learning algorithm allow for the comparison of
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different detector setups, thus addressing the inverse problem already at the stage of experimental

design.

To obtain robust results, it is essential that we can trust our neural networks to perform correct

inference and that we can trust the experimental observation to not be contaminated by background

events. We address the first issue by comparing the empirical coverage against the expected coverage

(see fig. 5). This comparison demonstrates that on average the cINN correctly determines the model

parameters and their uncertainties. Moreover, we show that in the case of good angular and energy

resolution the mass estimate and uncertainty obtained from the cINN agree with the ones obtained

from the diphoton invariant mass distribution. To address the second issue, we consider sets of

three signal events, which enables us to check the compatibility between them. We have proposed a

test statistic derived from the same cINN that evaluates the posterior to confirm that there are no

background events in a given set of events.

In order to evaluate the inference power and hence the performance of a given detector, we consider

the width of the posterior on the model parameters, i.e. the ALP mass and lifetime. We have shown

that (at least for experiments with a relatively short decay volume), it is possible to avoid degeneracies

between the two parameters, which makes it possible to integrate over the ALP lifetime and focus on

the marginal posterior for the mass. The width of this posterior, σm = σ(log10 m̂), then serves as

performance measure for the different detector setups.

In our analysis we have considered a total of 18 different detector resolutions (varying inde-

pendently the energy resolution, angular resolution and position resolution) as well as two detector

geometries that differ in their displacement xcal relative to the beam axis. The performances of the

different detector setups are summarized and visualized in fig. 15. This figure illustrates the way in

which our approach can be used to guide experimental design and explore the interplay and trade-offs

between different aspects of detector resolution and geometry. We emphasize, however, that these

plots do not include the effect of changing the detector geometry on the signal acceptance and the

background suppression and therefore should not be directly compared to each other. Moreover, the

detector geometries and experimental uncertainties have been simplified and do not necessarily repre-

sent the performance of realistic experiments. Nevertheless, it is possible to quantify the role of the

detector resolution for different geometries with a single algorithm, highlighting the adaptability of

our approach.

The idea to search for feebly-interacting particles using new beam-dump experiments with state-

of-the-art detectors is rapidly gaining momentum in the community. As different proposals are being

put forward that vary in many aspects from the beam type over the detector geometry to the specific

instrumentation, it becomes essential to understand which avenue promises the greatest gain of knowl-

edge from a successful detection. The goal of the present work is to provide a consistent, fast and

adaptable algorithm to facilitate this discussion and allow for the comparison of experimental propos-

als. The next step will be to apply this framework to realistic proposals and background distributions

in order to optimize detector design and guide the experimental program.
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Code and data

The code used for the event generation, the network architecture and its training can be found at

https://github.com/amorandini/SBI_axion. An example Jupyter notebook which explains how to

derive the plots and results in this paper is also provided. Neural networks are built and trained with

Tensorflow [59], Tensorflow Probability [60] and use Keras [61] as backend. The 2D posterior plots

make use of corner.py [62].

A Further performance plots

In sections 5.1 and 5.2 we have focused on the case of ma = 1GeV. In figs. 16 and 17 we show the

same distributions for the other benchmark masses of 0.2GeV and 4GeV. While the same qualitative

conclusions about the role of angular and energy resolution hold in these cases, their quantitative

effects differ. It is also worth remembering that the cINN does not (and should not) combine the

low-level observables in the same way for different detector setups. This implies that the shape of the

σm distributions can vary considerably when we change the detector resolutions.
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Figure 16. Same as figs. 12 and 13, but for ma = 0.2 GeV (top) and ma = 4 GeV (bottom).
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Figure 17. Same as fig. 14, but for ma = 0.2 GeV (top) and ma = 4 GeV (bottom).

B Performance in the case of large angular uncertainty

In this appendix we show the results for the case σ(θ) = σ(ϕ) = 100mrad and varying calorimeter hit

resolution σ(h) (see table 3) for the on-axis and off-axis geometries in the upper and lower plots of

fig. 18 respectively.

These performance plots are useful to illustrate two things we have mentioned in the main text.

First, the calorimeter hit resolution becomes important only in the case of low angular resolution as

can be seen for both the on-axis and off-axis detectors. The effect is particularly relevant when the

calorimeter hit resolution is low (σ(h) ≳ 10 cm). Second, the energy resolution is more important when

the angular resolution is good (σ(θ) = σ(ϕ) ≲ 10mrad). In the cases portrayed here of low angular

resolution, we see that having good energy resolution does not help in inferring the ALP mass.

Feature uncertainty Values scanned

σ(E)/E [0.01, 0.05, 0.1]

σ(h) [0.1 cm, 1 cm, 10 cm]

σ(θ), σ(ϕ) [100mrad]

Table 3. Summary of the detector setups considered in this appendix. Each uncertainty value is combined

with each of the other uncertainty values for a total of 9 combinations. These combinations focus on the case

of large angular uncertainties.
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Figure 18. Compact performance comparison for fixed and large angular uncertainty for the case of on-axis

(upper plot) and off-axis geometry (upper plot)). Different colors correspond to different detector setups and

different markers are used for the benchmark masses. The vertical bands indicate the 25 and 75 percentile of

the distribution.
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