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8057 Zürich, Switzerland

Abstract

We compute next-to-next-to-leading order corrections to the semileptonic decay
rate of B mesons for arbitrary values of the final-state quark mass. For the contri-
bution with one massive quark in the final state, we extend the literature result and
obtain analytic expressions in terms of iterated integrals. For the complete contribu-
tion, which also includes contributions with three massive quarks in the final state,
we present a semi-analytic method, which leads to a precise approximation formula
for the decay rate. Our results agree with the expansions available for b → cℓν̄ℓ and
b → uℓν̄ℓ in the literature. The main emphasize of this paper is on the technical
aspects of the calculation which are useful for a wider range of applications.
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1 Introduction

The inclusive semileptonic B → Xℓν̄ℓ decays, mediated by the charged-current transition
b → qℓν̄ℓ with q = u, c, are standard probes of the CKM matrix elements Vcb and Vub. The
comparison between the experimental values of the branching ratios and their theoretical
predictions obtained within the framework of the Heavy Quark Expansion has allowed
the extraction of |Vcb| with a 1.2% accuracy [1, 2] while for |Vub| it has reached about
5% [3].

The calculation of the decay rate in the free quark approximation, i.e. Γ(b → qℓν̄ℓ),
constitutes one of the main theoretical ingredients for the extraction of the CKM elements.
The decay rate is known in an exact form for arbitrary mass of the final state quark q
only up to order αs. At higher orders, results have been obtained only as asymptotic
expansions either in the massless limit, with the expansion parameter ρ = mc/mb ≪ 1,
or the equal mass limit, with the expansion parameter δ = 1 − ρ = 1 −mc/mb ≪ 1.

At next-to-next-to-leading order (NNLO), expansions around ρ → 0, which covers both
b → uℓν̄ℓ and b → cℓν̄ℓ, have been computed in Refs. [4, 5]. The asymptotic expansion
in this limit is quite involved and it has not yet been extended to next-to-next-to-next-
to-leading order (N3LO). At NNLO also the other limit δ → 0 was studied in Ref. [6]
showing a much simpler asymptotic expansion (compared to the limit ρ → 0) and a fast
convergence of the series in δ even at the physical value of mc. At N3LO an expansion
around mc ≃ mb has been performed in Ref. [7, 8] (see also Ref. [9] where a subset of
diagrams have been cross-checked). Currently, the predictions for b → u at N3LO are
based on expansions for mc → mb and a subsequent extrapolation to mc = 0. This yields
a sizable uncertainty of about 10%.

Recently, a semi-analytic method for the calculation of multi-loop Feynman integrals
depending on one dimensionless parameter (and the dimension d) has been developed in
Ref. [10]. It was applied successfully in QCD to the calculation of the fermionic part of the
MS-pole mass relation at four loops and the massive form factors at three loops [11–13].
The “expand and match” method provides results well suited for fast numerical evaluation
and sufficiently precise for phenomenological applications.

In this paper we reconsider the corrections of O(α2
s) to the b → qℓν̄ℓ total rate, and revisit

its calculation utilizing the method developed in [10]. The purpose is twofold. On the one
hand, the application of the “expand and match” method to semileptonic decays serves
as preparation for similar other calculations in B physics, such as the computation of
non-leptonic decay rates at NNLO. It also provides cross checks of the known expansions
around ρ = 0 and ρ = 1. On the other hand, we discuss for the first time the role of the
rare decay b → cc̄cℓν̄ℓ, which contains an additional c̄c pair in the final state. This decay
channel was so far neglected in the expansions around the limit mc ≃ mb, both at NNLO
and N3LO.

Let us further elaborate on the last point. At leading order and NLO, the possible
real emission processes which contribute to the total semileptonic rate (b → cℓν̄ℓ and
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b → cgℓν̄ℓ) contain only one charm quark in the final state. Starting from NNLO, there
is also a decay channel where three charm quarks appear in the final state (see, e.g.,
Figs. 1(a) and (e)).

For technical reasons (see below) the calculation for mc ≃ mb includes only the contri-
butions with one (massive) charm quark in the final state but neglects the contributions
with three charm quarks. The latter is kinematically accessible only if mc < mb/3 and
thus missing in the equal mass limit mc = mb. The contribution of the rare decay is very
small, of the order of 10−7, and so negligible for the physical value of the charm mass
(ρ ≃ 0.25), without impact on the extraction of Vcb. However, in order to properly match
the expansion around ρ = 0 and ρ = 1 it is crucial to correctly take into account the
contribution of b → cc̄cℓν̄ℓ.

The main results presented in this paper are the following:

• We compute analytic results for the NNLO correction in terms of iterated integrals
for all contributions with one charm quark in the final state. We do not include
contributions with three charm quarks since they would involve elliptic integrals
originating, e.g., from four-loop sunrise diagrams with unequal masses.

• We construct a piece-wise defined function where the individual pieces are either
Taylor or power-log expansions with (precise) numerical coefficients. This approx-
imation contains all contributions, also those with three charm quarks in the final
state. It reproduces the correct functional behaviour in the various kinematic limits
at ρ → 0 and ρ → 1 but also at ρ → 1/3.

The outline of this paper is as follows: In the next Section we introduce the notation
and describe our analytic and numeric methods. Afterwards we discuss in Section 3 our
results for the total decay rate of b → cℓν̄ℓ at NNLO. In particular, we present analytic
results for the contributions with one and three charm quarks in the final state. We
also discuss our approximation formulas and in particular their numerical accuracy. In
Section 4 we present the calculation of the charm dependent contribution to the decay
b → uℓν̄ℓ, i.e. the two-loop diagrams with a closed charm loop insertion into the gluon
propagator. Finally we summarize our findings in Section 5.

2 Methods

2.1 Notation

Let us now discuss the details of the calculation. We consider the decay of an on-shell
bottom quark into a charged lepton (e, µ) assumed to be massless, a neutrino and any
hadronic state Xc containing a charm quark:

b → Xcℓν̄ℓ. (1)
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To compute the decay rate we apply the optical theorem and compute the imaginary part
of the bottom quark two-point function. In the following we do not restrict ourselves to
physical masses of mc ≈ mb/3, rather we keep mc generic. As we will see, for technical
reasons the limit mc → mb is of high relevance. With mc → 0 we cover the case b → uℓν̄ℓ.
After specifying the QCD colour factors to QED, our results can also be applied to the
muon and tau decays.

It is convenient to define the following variables:

ρ =
mc

mb

, δ = 1 − mc

mb

.

We write the decay rate in the form

Γ(B → Xcℓν̄) = Γ0

[
X0 + CF

∑
n≥1

(αs

π

)n

Xn

]
+ O

(
Λ2

QCD

m2
b

)
, (2)

where mb and mc are renormalized in the on-shell scheme,

Γ0 =
AewG

2
F |Vcb|2m5

b

192π3
, (3)

CF = 4/3, Aew = 1.014 is the leading electroweak correction [14], and αs ≡ α
(5)
s (µs) with

µs being the renormalization scale. The tree-level contribution is given by

X0 = 1 − 8ρ2 − 12ρ4 log(ρ2) + 8ρ6 − ρ8 . (4)

The one- and two-loop results are available from Refs. [4–6, 15–19] and the three-loop
correction X3 has been computed in Ref. [7] (see also [9] for partial results). In the
following we reconsider X2 which is a function of the mass ratio mc/mb.

At leading order and NLO, the functions X0 and X1 come from Feynman diagrams with
cuts only through one charm quark line. These diagrams develop an imaginary part for
0 ≤ ρ < 1. Starting at NNLO, there are also diagrams where three charm lines can be cut
(see, e.g., Fig. 1(a) and (e)). They develop an additional discontinuity for 0 ≤ ρ < 1/3
which corresponds to the contribution of the rare decay b → cc̄cℓν.

In the following we present our calculation of X2 which is divided in two steps. In a
first step, we compute analytic results valid for arbitrary charm quark masses for the
contribution to X2 which does not contain three charm quarks in the final state. Later
on, we present an approximation function for the complete contribution to X2, which
consists of power-log expansions valid in certain mc ranges.

2.2 General setup

We generate the amplitude with qgraf [20] and process the output with tapir [21]. Next
we apply exp [22, 23] to map the individual diagrams to integral families. The actual

4



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Sample diagrams contributing to the semileptonic B meson decays at NNLO.
The dashed lines represent the charged lepton neutrino pair. Double lines denote bottom
quarks, thick and thin lines denote charm and massless quarks, respectively. The red
dashed lines shown for diagrams (a) and (e) indicate possible three-charm cuts.

computation is done with FORM [24]. At this step the auxiliary files generated by tapir

are quite useful to express the amplitude for each diagram as a linear combination of
scalar integrals.

They are reduced to master integrals with the use of Kira [25] in combination with
FireFly [26] within each integral family. Furthermore, we apply ImproveMasters [27]
in order to obtain for each integral family a basis such that the ϵ and ρ dependence in
the denominators of each reduction table entry factorizes. Once all master integrals are
identified we use again Kira to identify the symmetries across families and reduce the
master integrals to a minimal set. In total we arrive at 129 four-loop master integrals.
Samples of master integrals are shown in Fig. 2

Note that we do not exploit that it is in principle possible to integrate over the charged-
lepton-neutrino loop in a first step since this cannot be done for the calculation of the
non-leptonic B meson decays.

We perform the calculation for general QCD gauge parameter ξ. For most of the colour
structures ξ drops out at the level of the bare amplitude. The remaining ξ dependence
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Figure 2: Samples of four-loop master integrals. Black and red solid lines represents
massive propagator with mass mb and mc, respectively, while dashed lines are massless
propagators.

cancels after the inclusion of the bottom mass counterterms.

A crucial input for the methods discussed in the next two subsections are the differential
equations for the master integrals. They can easily be established using the reduction
tables.

2.3 Analytic calculation

In this subsection we present our analytic calculation of the master integrals, in case we
consider the contribution of cuts only through one charm quark. For the decay rate, we
need in principle only the imaginary parts of the master integrals. As a consequence we
can restrict ourself only to the masters which have a physical cut, i.e. where the propagator
of neutrino, charged lepton and at least one charm propagator can be cut simultaneously.
In Fig. 2, the master integrals in the first row do not have a physical cut, while those in
the second and third row have an imaginary part.

The requirement of physical cuts reduces the number of master integrals from 129 to 108.
We construct analytic solutions for the imaginary part of the master integrals with the
help of the differential equations. We use boundary conditions from the limit mc → mb

(ρ → 1) where it is quite straightforward to compute the imaginary parts of the master
integrals via an asymptotic expansion.

The crucial observation is that by fixing the boundary conditions at mc = mb one calcu-
lates the contribution where only one charm line is cut. In fact, in this limit there is no
possible discontinuity corresponding to a cut through three charm quarks, which appears
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in Feynman integrals only for 0 ≤ ρ < 1/3 (i.e. δ > 2/3). For example, the master
integrals shown in the second row of Fig. 2 have a cut only through three charm lines
(additionaly to the lepton and neutrino), while those in the third row have a cut through
one charm line. Note that for some of the masters, like the one on the right in the third
row, both one-charm and three-charm cuts appear.

In order to incorporate the three-charm cut contribution, it would be necessary to com-
pute a complicated asymptotic expansion around ρ = 1/3. Alternatively one can compute
boundary conditions for both real and imaginary parts for ρ > 1/3 and solve the differ-
ential equations for the complete set of 129 master integrals. This would require the
computation of four-loop on-shell integrals, which are to date not available in analytic
form. The semi-analytic approach discussed in Section 2.4 covers this case. In the limit
mc → mb only 95 out of the 129 master integrals have a cut through one charm line. Note
that 13 master integrals have cuts only through 3 charm lines while the remaining 21 do
not have an imaginary part.

Let us now discuss our analytic solution for the 95 masters with one charm cut. In a first
step we transform the differential equation matrix in ϵ form [28, 29]. This is done using
both Libra [30] and Canonica [31].

Libra is used to bring the matrix in block-diagonal form and afterwards we use Canonica

to transform the whole system to ϵ form. This is done by first transforming the diagonal
blocks and then the corresponding off-diagonal elements block by block, using the build-in
functions of Canonica. This approach is successful for a subset of 91 master integrals.
The remaining four integrals are at the top-level and can be decomposed into a 3 ×
3 system and an uncoupled integral. We solve these integrals following the algorithm
outlined in Ref. [32]. In practice this means that we decouple the coupled system with
the package OreSys [33], which internally depends on Sigma [34], and solve the resulting
higher order differential equation via factorization of the differential operator with the
help of HarmonicSums [35]. In an independent calculation we have used this approach of
solving the differential equation on the whole system and did not make use of the ϵ form
of the first 91 master integrals. The results of both approaches are in complete agreement.

The ϵ form is conveniently obtained in the variables t which is defined via

ρ =
1 − t2

1 + t2
,

t =

√
1 − ρ√
1 + ρ

. (5)

Then the solution can be expressed in terms of iterated integrals with the alphabet{
1

1 + t
,
1

t
,

1

1 − t
,

t

1 + t2
,

t3

1 + t4

}
. (6)

For the computation of the boundary conditions we follow Refs. [7, 8, 36], where similar
integrals have been considered. In [36, 37] the three-loop relation between the heavy

7



quark masses defined in the pole and kinetic scheme has been computed. The starting
point in Refs. [7, 8] were five-loop integrals. A convenient choice of momentum routing
and integration order led to a factorization, where at most three-loop integrals have to be
solved. In the present calculation we deal with four-loop integrals and observe a similar
factorization.

We apply the so-called “method of regions” [38] which in our case leads to a scaling of
the loop momenta as either hard (h) or ultra-soft (us).1 This leads to at most 24 = 16
different regions for a given integral, however, not all of them contribute. For example,
the region where all loop momenta are hard does not develop an imaginary part and can
be discarded.

For the identification of the regions we use the package asy.m [39], which we apply to each
master integral separately. As input it requires the list of propagators and the scalings
of the masses and the external momenta. asy.m provides as output the scalings of the
propagators for all non-vanishing regions. The comparison to the scalings which we obtain
after identifying a unique routing of the loop momenta allows us to discard regions, which
give no contribution. For the non-vanishing regions we can perform the expansions in the
small parameter δ.

Note that in Refs. [7, 36], the program asy.m was only used as a cross check to make
sure that all contributing regions were found. It was furthermore applied at the level of
the amplitudes and not to master integrals. In the present calculation asy.m is used to
discard regions which are zero before the expansion is done. Since we use it at the level
of the master integrals, it is suitable to apply this procedure to each of the 95 master
integrals separately.

Two of the four loop momenta have to be ultra-soft, namely the loop momentum of the
charged-lepton-neutrino loop and the one which flows into the lepton loop. The remaining
two loop momenta are either ultra-soft or hard.

The calculation of the Feynman integrals appearing from the asymptotic expansion closely
follows Ref. [8] and can be summarized by the following steps. We consider sepa-
rately the regions corresponding to the momentum scaling (h, h, us, us), (h, us, us, us)
and (us, us, us, us). For each region we define new integral families that contain all prop-
agators and numerators which arise after the expansion. We find symmetries across the
new integral families with the program LIMIT [40], which is based on LiteRed [41]. In
case there are linearly dependent propagators, we perform a partial fraction decomposi-
tion with LIMIT and minimize again the number of families. For each family, we perform
a reduction to master integrals with Kira [25]. The master integral in the asymptotic
expansion can be written in terms of Γ functions and, in one case, as a one-fold Mellin-
Barnes integral. In particular, the master integrals with three or four ultra-soft loop
momenta can be solved via recursive one-loop integration. In case we have two hard loop
momenta, we observe a factorization into one- and two-loop integrals.

1Following Ref. [38] we use the term ultra-soft instead of soft.
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For convenience we provide the formulas for one-loop integrals used in the recursive inte-
gration (with q2 = 1):

I1(p;n1, n2) =

∫
ddk1

(−k2
1)

n1
(
− (k1 + p)2

)n2

= iπd/2Γ (n1 + n2 − 2 + ϵ) Γ (2 − n2 − ϵ) Γ (2 − n1 − ϵ)

Γ (n1) Γ (n2) Γ (4 − n1 − n2 − 2ϵ)

(
−p2

)2−ϵ+n1+n2 ,

I2(n1, n2) =

∫
ddk1

(−k2
1)

n1 (−k2
1 + 2k1 · q)

n2

= iπd/2Γ (n1 + n2 − 2 + ϵ) Γ (4 − n2 − 2n1 − 2ϵ)

Γ (n2) Γ (4 − n1 − n2 − 2ϵ)
,

I3(δ;n1, n2, n3) =

∫
ddk1

(−k2
1)

n1 (−2q · k1)n2 (−δ − 2q · k1)n3

= iπd/2 (−δ)4−2ϵ−2n1−n2−n3

Γ (4 − 2ϵ− 2n1 − n2) Γ (2 − ϵ− n1) Γ (2n1 + n2 + n3 − 4 + 2ϵ)

Γ (n1) Γ (n3) Γ (4 − 2ϵ− 2n1)
.

In the hard regions, we used also the expression for the two-loop sunrise diagram with
three equal masses:

I4 (1, 1, 1) =

∫
ddk1d

dk2(
1 − (k1 + k2)

2) (1 − (k1)
2) (1 − (k2 + q)2

)
=

(
iπd/2

)2 1

2πi

∫ i∞

−i∞
dz

Γ (−z) Γ2 (1 − ϵ− z) Γ (−1 + 2ϵ + z) Γ (1 − ϵ) Γ (2 − 2ϵ− z)

Γ (2 − 2ϵ− 2z) Γ (3 − 3ϵ− z) (−4)−1+2ϵ+z . (7)

We compute for each master integral the first two expansion coefficients for δ → 0.
Note that not all δ coefficients are needed to fix the integration constants. There are
diagonal blocks in the differential equation where several integrals are coupled. It is
usually sufficient to choose one of the integrals and match it to its boundary condition
including subleading δ terms. This allows us to fix all boundary conditions also for the
remaining integrals in the block. Once all integration constants are fixed, we calculate
from the analytic solution the δ expansion of all integrals. We use the coefficients which
were not used as cross check. Altogether we have computed 192 coefficients in the δ
expansion (two for each of the 95 master integrals) but we have used only 72 of them to
fix the boundary constants.

Once all boundary conditions are fixed it is straightforward to integrate the differential
equations up to the required order in ϵ. After inserting the master integrals into the am-
plitude, we expand in ϵ up to the constant term. The bare NNLO amplitude develops 1/ϵ2

and 1/ϵ poles which cancel against the counterterm contribution. Their transcendental
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weight is one and two, respectively. In the ϵ0 term we observe iterated integrals up to
weight five even after choosing a minimal set of functions. The occurrence of weight-two
expressions in the pole part is expected since this weight also appears in the analytic NLO
result [42]. At first sight the weight-five functions in the finite three-loop term might be
surprising. Note, however, that we start with four-loop integrals. Since the charged-
lepton-neutrino loop is finite one can expect weight-six expressions from the remaining
three-loop calculation. Since we compute the imaginary parts we finally end up with
weight-five iterated integrals.

We refrain from presenting exact analytic results in the paper but refer to the supplemen-
tary material [43] where also the expressions for the imaginary part of the master integrals
(one charm cut) can be found. In Section 3.1 we will present the analytic expansions of
the decay rate in the limits ρ → 0 and ρ → 1.

2.4 Numeric calculation

As an alternative to the analytic approach described in the previous subsection, we discuss
in the following the “expand and match” method introduced in Refs. [10, 12]. The starting
point is the system of differential equations for the 129 master integrals obtained in
Section 2.2. The basic idea of this method is as follows: We choose several points ρ0 ∈
[0, 1], make an ansatz for the expansion of the master integrals around ρ = ρ0, insert the
ansatz in the differential equations and solve the resulting system of linear equations for
the coefficients in the ansatz in terms of a few initial values. The latter are determined
by matching to known results.

The choice of expansion points ρ0 should include all singular values of the differential
equations that in our case are ρ = 0, 1/3 and 1, where ρ = 1/3 corresponds to the
three-charm threshold. Furthermore we add regular points to obtain higher precision
approximation formulas. As expansion points we choose

ρ0 ∈ {0, 1/12, 1/6, 1/4, 1/3, 1/2, 1} , (8)

with ρ0 = 1/2 as starting point. Note that the radius of convergence in general extends
only up to the next singular point in the complex plane. As a consequence it is sufficient
to choose only a few points above the threshold at ρ = 1/3. Below threshold more
expansion points are needed in order to reach a good convergence. Furthermore we employ
Möbius transformations (see Ref. [44]) to extend the radius of convergence of the series
expansions into the direction of the farther singularity. Explicit ready-to-use formulas for
our application can be found in Ref. [12].

The expansion around regular points is a simple Taylor expansion and thus we choose the
following ansatz for the master integrals

Ii =
ϵmax∑

j=ϵmin

nmax∑
n=0

ci,j,nϵ
j (ρ− ρ0)

n , (9)
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where ϵmin is determined by the highest pole and ϵmax depends on the spurious poles in the
amplitude in front of the respective master integral. For the expansion depth we typically
choose nmax = 50 which provides about ten or more significant digits in our final result.

For the singular points the ansatz has to be extended to allow for logarithmic terms. At
ρ0 = 0 we have

Ii =
ϵmax∑

j=ϵmin

j+4∑
m=0

nmax∑
n=0

ci,j,m,nϵ
j ρn logm (ρ) . (10)

At ρ0 = 1/3 and ρ0 = 1 our ansatz is

Ii =
ϵmax∑

j=ϵmin

j+4∑
m=0

nmax∑
n=nmin

ci,j,m,nϵ
j (ρ− ρ0)

n logm (ρ− ρ0) . (11)

We choose nmin < 0 to allow for potential negative powers. However, it turns out that
only the coefficients for n ≥ 0 are different from zero. In case our ansatz is insufficient the
system of linear equations can either not be solved or only the trivial solution is possible.

The expansion around the three-particle threshold at ρ = 1/3 does not require the intro-
duction of half-integer powers of ρ− 1/3, at variance with what is observed for two- and
four-particle thresholds (e.g., see [11, 12]). In fact the production close to threshold of n
particles of mass m behaves as [45, 46]

(s− (nm)2)
3n−5

2 , (12)

where s is the squared energy available to the system. One observes that half-integer
powers are arising only when an even number of particles are produced, while for an odd
number the exponent is an integer.

As boundary condition for the “expand and match” procedure we choose ρ0 = 1/2. We use
AMFlow [47] to obtain numerical results for all master integrals (both real and imaginary
part) with a precision of 80 digits and fix undetermined constants for the Taylor expansion
around ρ = 1/2 (see Eq. (9)). Next we evaluate the master integrals at ρ0 = 0.4 which
serves as input for the expansion around ρ0 = 1/3. We could proceed in a similar way
towards ρ = 1. However, here we can use the analytic boundary conditions to produce a
deep expansion in 1 − ρ.

At ρ0 = 1/3 we perform the matching at a value ρ > 1/3. Thus the logarithms in Eq. (11)
are real-valued whereas the coefficients ci,j,m,n have both real and imaginary parts. After
crossing the threshold to values of ρ < 1/3 the logarithms develop additional imaginary
parts according to log(ρ − ρ0) = log(|ρ − ρ0|) − iπ which arise from the three-charm
threshold. For the expansion around ρ0 = 1 it is convenient to use the ansatz in Eq. (11)
with (ρ− ρ0) replaced by (ρ0 − ρ) since we always have ρ < ρ0 and thus we do not have
to deal with spurious imaginary parts. In this way, we determine the coefficients of all
expansions around the singular and regular points given in Eq. (8).
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Figure 3: Relative difference between the semi-analytic approximation formula and the
analytic result for the ϵ0 term of the (imaginary part) of the fourth non-planar master
integral shown in Fig. 4. The blue dots are obtained from the matching of the ρ = 0
expansion to boundary conditions computed at ρ = 0.01.

Figure 4: Master integrals with nine propagators which appear in the top sector of the
differential equations. The dashed line denote massless propagators, black and red lines
have mass mb and mc, respectively. Squared propagators are marked with a dot. The
external lines are on-shell.

To check the precision of our results obtained with the “expand and match” approach,
we compare them with the analytic expressions from Section 3.1 at ρ > 1/3. For the
numerical evaluation of the iterated integrals we use ginac [48, 49]. As an example, we
show in Fig. 3 the relative difference between the analytic and numerical result for the
ϵ0 coefficient of the fourth master integral with nine propagators in Fig. 4. The red dots
in Fig. 3 show an agreement of more than 17 digits in the range 0.1 < ρ < 1, with
increasing precision when ρ approaches the value 1/2 where the expansion was matched
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to the numerical evaluation with AMFlow. Also the expansion around ρ = 1 manifests
a good convergence when approaching ρ = 1 because this series expansion was matched
to the analytic boundary condition calculated in the previous section. The lower-order ϵ
terms and the master integrals in lower sectors show in general an even better agreement.

We observe a loss of precision (only 8 digits) when we approach the massless limit at ρ = 0
where several master integrals develop mass singularities. In principle the precision can
be improved by including more (regular) expansion points between ρ = 0 and ρ = 1/3.
Alternatively, we can recalculate the boundary condition with AMFlow at some point close
to ρ = 0. For instance, the blue points shown in Fig. 4 correspond to the expansion
around ρ = 0 matched to a numerical evaluation at ρ = 1/100. In this case, the precision
is of more than 44 digits and thus shows that also in the massless case we can reach a
good accuracy in the evaluation of the master integrals.

In principle it is possible to use AMFlow for the physical value of the charm quark mass.
However, in that case we would lose the flexibility to vary the charm quark mass and to
consider different mass schemes for the quarks. Furthermore, AMFlow cannot reproduce
the power-log behaviour around the singular points. In fact, the evaluation with AMFlow at
the threshold ρ = 1/3 or for ρ = 0, 1 yields only the hard parts in the asymptotic expansion
around these two points. In our approach we obtain the same power-log expansions around
the singular points as from an analytic calculation, where the expansion coefficients have
a numerical accuracy of 10 and more.

3 Decay rates

We obtain the NNLO prediction to the decay rate after renormalizing the wave function of
the external bottom quark in the on-shell scheme, the strong coupling constant αs in the
MS scheme with five active flavour, and mc and mb in the on-shell scheme. The on-shell
masses can be converted to other short-distance mass schemes. We divide the coefficient
X2 appearing in the decay rate at order α2

s in two parts:

X2(ρ) = X1c
2 (ρ) + X3c

2 (ρ), (13)

which correspond to the contributions with one and three charm quarks in the final state.

3.1 Analytic result of contribution without cut through three
charm lines

We use the results for the master integrals obtained in Section 2.3 to compute the decay
rate at NNLO omitting the contributions involving three massive charm quarks in the
final state, X1c

2 . For the physical values of the charm and bottom quark masses these
contributions are negligible. However, they become sizable in case we approach the limit
mc → 0 (see next subsection).
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The exact expression for X1c
2 is too long to be printed here but can be downloaded

from [43]. It contains in total 313 different iterated integrals constructed from the alphabet
in Eq. (6) up to weight five. It can be numerically evaluated using ginac [48, 49].

With the help of HarmonicSums [35] we obtain analytic expansions around ρ = 0 and
ρ = 1. For illustration we provide the first three expansion terms in both limits. Deeper
expansion can be obtained from [43]. For the renormalization scale we choose µ = mb

and obtain

X1c
2 |ρ→0 =CF

{
25775

5184
− 13339π2

2592
− 101ζ3

72
+

17

3
π2 log 2 +

17π4

120
+

(
13

8
− π2

4
+ ζ3

)
lρ

− 5π2

3
ρ + ρ2

[
− 45323

162
+

403π2

54
+

599ζ3
3

− 20

3
π2 log 2 +

991π4

540

−
(

290

9
− 4π2

3

)
l2ρ −

14

3
l3ρ −

2

3
l4ρ +

(
− 6631

54
+

52π2

9
+ 60ζ3

)
lρ

]}
+ CA

{
75623

5184
− 101π2

5184
− 1111ζ3

144
− 17

6
π2 log 2 +

11π4

240
−
(

13

16
− π2

8
+

ζ3
2

)
lρ

+
5π2

6
ρ + ρ2

[
− 56207

648
+

7

3
l3ρ +

1

3
l4ρ −

745π2

108
− 599ζ3

6
+

10

3
π2 log 2 − 331π4

1080

−
(

5699

108
+

26π2

9
+ 30ζ3

)
lρ +

(
181

9
− 2π2

3

)
l2ρ

]}
+ TFnl

[
− 1009

288
+

77π2

216
+

8ζ3
3

+ ρ2
(

118

3
− 4π2

3
+

52

3
lρ − 8l2ρ

)]
+ TFnb

[
16987

576
− 85π2

216
− 64ζ3

3
+ ρ2

(
− 1198

45
+

8π2

3

)]
+ TFnc

[
20063

5184
+

61π2

216
+

4ζ3
3

+
2

9
l3ρ +

5

3
l2ρ +

(
415

72
− π2

9

)
lρ −

13π2

8
ρ

+ ρ2
(
− 1475

162
+

106π2

27
− 184

9
lρ −

44

3
l2ρ

)]
+ . . . , (14)

X1c
2 |ρ→1 =CF

[
δ5
(
− 46

5
+

32π2

5
− 32

5
π2 log 2 +

48ζ3
5

)
+ δ6

(
69

5
− 48π2

5
+

48

5
π2 log 2

− 72ζ3
5

)
+ δ7

(
39329

3675
+

3044π2

945
− 496

105
π2 log 2 +

248ζ3
35

− 352

105
l2δ

)]
+ CA

{
δ5
(
− 286

15
− 8π2

5
− 24ζ3

5
+

16

5
π2 log 2

)
+ δ6

(
99

5
+

12π2

5
+

36ζ3
5

− 24

5
π2 log 2

)
+ δ7

[
− 99547507

1157625
+

62206π2

33075
+

132ζ3
35

+
248

105
π2 log 2

+

(
1333376

33075
− 256π2

315

)
l2δ −

1408

315
l22δ

]}
+ TFnl

[
56

15
δ5 − 12

5
δ6
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+ δ7
(

25577548

1157625
− 512π2

945
− 417664

33075
l2δ +

512

315
l22δ

)]
+ TFnb

[
δ5
(

184

3
− 32π2

5

)
+ δ6

(
− 12 +

8π2

5

)
+ δ7

(
107444

2835
− 3848π2

945

)]
+ TFnc

[
δ5
(

184

3
− 32π2

5

)
+ δ6

(
− 828

5
+

88π2

5

)
+ δ7

(
108580

567
− 18968π2

945

)]
+ . . . , (15)

with lρ = log(ρ) and l2δ = log(2δ). The ellipses stand for higher order terms in ρ and δ.
For the expansion around ρ = 1, we obtain a power-log series starting with δ5. This is in
agreement with the results from [6–8]. In the expansion around ρ = 0 we observe that for
the color factors CFTFnl and CFTFnb the limit ρ → 0 exists whereas the other three colour
structures develop logarithmic divergences. The non-fermionic structures (C2

F and CFCA)
contain linear logarithms in the leading expansion term. For the colour structure CFTFnc

we have a cubic logarithm. These logarithms originate from the mass singularities. They
cancel against the real radiation contribution contained in the three-charm contribution
X3c

2 . At higher order in ρ also quartic logarithms start to appear; see, e.g., the colour
factors C2

F and CFCA. We note that the coefficients of the odd expansion terms in ρ are
simpler than those of the even terms.

The divergent behaviour of X1c
2 for ρ → 0 is due to the mass singularities for massless

charm quarks which are present since not all possible cuts are considered. In the complete
result as computed in Refs. [4, 5] the limit ρ → 0 exists. We can subtract the expansion
in Eq. (14) from the result computed in Refs. [4, 5] to obtain analytic expressions for the
contribution from three-charm cuts. We obtain

X3c
2 |ρ→0 =CF

{
− 409

576
− 349π2

288
− 115ζ3

24
+

19

6
π2 log 2 − 7π4

144
−
(

13

8
− π2

4
+ ζ3

)
lρ +

5π2

3
ρ

+ ρ2
[

12083

648
− 103π2

36
− 341ζ3

3
− 4

3
π2 log 2 − 29π4

18
+

(
961

54
− 52π2

9
− 60ζ3

)
lρ

−
(

34

9
+

4π2

3

)
l2ρ +

14

3
l3ρ +

2

3
l4ρ

]}
+ CA

{
409

1152
+

349π2

576
− 19

12
π2 log 2

+
115ζ3

48
+

7π4

288
− 5π2

6
ρ +

(
13

16
− π2

8
+

ζ3
2

)
lρ + ρ2

[
− 12083

1296
+

103π2

72
+

341ζ3
6

+
2

3
π2 log 2 +

29π4

36
−

(
961

108
− 26π2

9
− 30ζ3

)
lρ +

(
17

9
+

2π2

3

)
l2ρ −

7

3
l3ρ −

1

3
l4ρ

]}
+ TFnc

[
− 38225

5184
+

2π2

27
+

4ζ3
3

+

(
− 415

72
+

π2

9

)
lρ −

5

3
l2ρ −

2

9
l3ρ +

3π2

8
ρ

+ ρ2
(

9305

162
+

38π2

27
+

340

9
lρ +

20

3
l2ρ

)]
+ . . . . (16)

A deeper expansion is again available from [43]. After specifying the QCD colour factors
to QED, the result in Eq. (16) yields the LO branching ratio also for the rare muon decay
µ → e(e+e−)νµν̄e in an analytic form. We find perfect agreement with the numerical
results for the branching ratio in Refs. [50, 51].
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3.2 Numeric results of complete contributions

The “expand and match” approach described in Section 2.4 provides results for the whole
ρ range as (power-log) expansions around values ρi with numerical coefficients. Each
expansion is used in the respective convergence region.

There are a number of checks of our results which we describe in the following. A strong
check of the individual master integrals is provided by the comparison to results obtained
with AMFlow at various values for ρ. The numerical results we obtain from AMFlow are
compared to the values we obtain from the power-log expansion of the masters. Looking
at the relative difference, we observe that in the region between ρ = 1 and the threshold at
ρ = 1/3 the accuracy for the Taylor expansions is of the order of 10−35 to 10−40. When we
match to the expansion around threshold, we loose some precision (because of the more
complicated expansion) and observe for the Taylor expansions a relative difference of the
order of 10−15 to 10−20 in the region between the threshold and ρ = 0. After matching to
the power-log expansion around ρ = 0 we loose again some precision. Nevertheless we can
reproduce the coefficients of the analytic expansion from Refs. [4, 5] to 8 or more digits,
see also below.

The bare NNLO expression contains spurious ϵ poles which are introduced during the
integration-by-parts reduction. After inserting results for the master integrals we observe
poles up to sixth order. Since the counterterm contributions provide at most 1/ϵ2 poles
the higher poles have to cancel in the bare NNLO result. In the worst case we observe
a pole cancellation of order 10−15 for certain 1/ϵ3 poles while for the higher poles the
cancellation is much better.

We obtain the renormalized decay rate by adding the counterterm in analytic form. The
cancellation of the poles in ϵ provides a check on the numerical precision of our result. To
quantify the accuracy we introduce the quantity

δ(X2|ϵi) =

∣∣∣∣Xbare
2 |ϵi + XCT

2 |ϵi
XCT

2 |ϵi

∣∣∣∣ . (17)

In Fig. 5 we show δ(X2|ϵ−2) and δ(X2|ϵ−1) for 0 ≤ ρ ≤ 1. Close to the starting point at
ρ = 1/2 both the linear and quadratic poles cancel with more than 70 digits and then
accuracy deteriorates when the distance from ρ = 1/2 increases. Here the accuracy is
limited by the truncation of the expansion around ρ = 1/2.

When moving towards ρ = 0 the accuracy slightly deteriorates. Close to ρ = 0 we observe
still a precision of about 8 digits. The blue and green points in Fig. 5 shows the precision
in the 1/ϵ2 and 1/ϵ poles in case we use the ρ = 0 expansion matched to the AMFlow

evaluation at ρ = 1/100.

To check the numerical accuracy of our approximation we compare for ρ > 1/3 against
analytic results presented in the previous subsection. In Fig. 6 we show for the decay rate
the relative difference between the analytic result and the semi-analytic approximation.
For the “expand and match” approach we have used boundary conditions obtained with
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Figure 5: Relative precision for the cancellation of the 1/ϵ poles according to Eq. (17).
All colour factors have been set to their numerical values.

AMFlow for ρ = 1/2. Over the whole range of ρ we observe an agreement of at least 19
digits.

A further strong check of our result comes from the comparison of our expansion for ρ → 0
to the results of Refs. [4, 5]. Using boundary conditions from ρ = 1/2 and transporting
the solution of the master integrals at ρ = 0, we can reproduce the analytic coefficients
of the asymptotic expansion at ρ = 0 with 10 digits for n = 0 which decreases to 8 for
n = 5.

Alternatively we can also use the ρ = 0 expansion matched at ρ = 1/100. In this case
we reproduce the analytic coefficients [4, 5] with more than 50 digits. Note that in our
approach it is possible to obtain without any effort 50 expansion terms for ρ → 0.

In Fig. 7 we show the NNLO contribution X2 to the decay rate. The complete result is
shown in red. For comparison we also show the contribution which only contains cuts
through one charm quark (black curve, see Section 2.3). The strong log3 ρ behaviour for
small values of ρ is clearly visible, however, only very close to ρ = 0. The blue curve
represents the contribution with three charm quarks in the final state. It has the same
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Figure 6: Relative difference between the semi-analytic approximation and the analytic
results for the NNLO contribution X2 to the decay rate. For the comparison we have set
all colour factors to their numerical values. We consider the region 1/3 < ρ < 1 since
for ρ < 1/3 there are three-charm contributions which are not contained in the analytic
result.

logarithmic behaviour with an opposite sign such that after adding it to the black curve
one obtains the complete NNLO corrections with a smooth limit for ρ → 0.

Finally we note that the three charm contribution to the decay rate is extremely sup-
pressed at the physical value of the charm and bottom masses and therefore irrelevant for
the current accuracy in the extraction of |Vcb|. At ρ = 0.2 we have X3c

2 = 4 × 10−5 which
yields Br(b → cc̄cℓν̄ℓ) = 4 × 10−8.
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Figure 7: The complete result (dashed, red) is compared with the individual contributions
which only contain cuts through one (black) or three charm quark lines (blue), respectively.
The right panel shows the three-charm contribution is a double logarithmic plot.

4 Charm quark contribution in b → u decay rate at

NNLO

In this Section we compute the charm quark mass dependence to b → uℓν̄ℓ at NNLO
which arises from diagrams as the one shown in Fig. 1(i). In analogy to Eq. (2) we write

Γ(B → Xuℓν̄) = Γ0

[
1 +

(αs

π

)2

CFTFX
C
2 + . . .

]
+ O

(
Λ2

QCD

m2
b

)
, (18)

with TF = 1/2. The ellipses stand for charm quark-independent contributions. In the
following we discuss the results for XC

2 .

In total, there are four Feynman diagrams. After integration-by-parts reduction, we
find 16 master integrals. For the computation of the master integrals we again apply the
“expand and match” approach and use AMFlow in order to obtain the boundary conditions.
In contrast to b → cℓν̄ℓ we have cuts through two charm quarks and thus the threshold is
located at ρ = 1/2 instead of ρ = 1/3. This means the singular points are ρ = 0 and 1/2.
For the expansion around ρ0 = 0 we can use the ansatz given in Eqs. (10). For ρ0 = 1/2
a new ansatz is necessary since we expect the occurrence of square roots according to
Eq. (12). We therefore have

Ii =
ϵmax∑

j=ϵmin

j+4∑
m=0

nmax∑
n=nmin

ci,j,m,n ϵ
j
(√

ρ− ρ0
)n

logm
(√

ρ− ρ0
)
, (19)

where ρ0 = 1/2. Again we allow for negative values of nmin. However, the solution for
the differential equations requires n ≥ 0. We note that the additional imaginary parts
induced by the two particle threshold are now generated by both the square roots and
the logarithms.
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Figure 8: XC
2 as a function of ρ.

Finite results for the decay rate are obtained after renormalizing the bottom wave function
in the on-shell and αs in the MS scheme. Results for this contribution are given in Eq. (A6)
of Ref. [5] in an expansion for ρ → 0 up to ρ7. We use numerical boundary conditions
at δ′ = 0.1 (ρ ≈ 0.95) and apply repeatedly the “expand and match” approach to go
over the two-charm threshold and to obtain a semi-analytic expansion around ρ = 0
(including 50 expansion terms). We can compare the individual coefficients of ρn logk(ρ)
to the analytic results of Ref. [5] and find agreement to at least 9 significant digits. For
ρ = 1 we can compare to the nb term of the b → c decay which is obtained from Eq. (14)
after setting ρ = 0. We observe agreement at the level of 10−30. Similarly, for ρ = 0
we compare to the nl term of Eq. (14) and find agreement within 9 digits. This shows
again the power of our approach. Let us again stress that our numerical precision can be
systematically improved by choosing more expansion points ρ0, deeper expansion depths
or an appropriately chosen value for ρ to compute the boundary terms. In Fig. 8 we show
XC

2 as a function of ρ.
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5 Conclusions and outlook

In this work we reconsider the NNLO corrections to the semileptonic decay of a bottom
quark to a charm quark. In the literature expansions are available [4–6] which are sufficient
for phenomenological studies. The aim of this paper is to provide semi-analytic power-log
expansions which are valid for 0 ≤ ρ = mc/mb ≤ 1. Furthermore, we provide analytic
results for the subset of Feynman diagrams which have contributions with one charm
quark in the final state.

For the semi-analytic calculation we use the “expand and match” [10, 12] method to
transport information about the master integrals at a given starting point ρ = ρ0 to
any value of ρ. It uses the differential equations in combination with an appropriate
ansatz to construct a semi-analytic approximation formula which is composed of power-
log expansions valid is certain sub-intervals of ρ ∈ [0, 1]. To obtain the initial values
of the master integrals we use AMFlow [47]. Our approach is able to properly take into
account singular behaviours of the exact (unknown) function. In our case this concerns the
expansions around ρ = 0, 1/3 and 1. We also compute the charm dependent contributions
to b → uℓν̄ℓ at NNLO. Here the singular points are at ρ = 0 and 1/2.

The method developed in this paper serves as preparation for the computation of non-
leptonic decay rates at NNLO. In these cases the techniques used for the semileptonic
decays to obtain expansions are either not applicable or technically quite challenging. On
the other hand it is straightforward to extend the semi-analytic approach of the present
paper.

We want to remark that the method described in this paper can be applied at N3LO if
the reduction to master integrals is possible and the system of differential equations can
be established. However, it seems that at the moment the latter is a serious bottleneck.
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