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Abstract: Leptoquarks with masses between 2 TeV and 50 TeV are commonly invoked to

explain deviations between data and Standard-Model (SM) predictions of several observ-

ables in the decays b → cτ ν̄ and b → sℓ+ℓ− with ℓ = e, µ. While Leptoquarks appear in

theories unifying quarks and leptons, the corresponding unification scaleMQLU is typically

many orders of magnitude above this mass range. We study the case that the mass gap

between the electroweak scale and MQLU is only populated by scalar Leptoquarks and SM

particles, restricting ourselves to scenarios addressing the mentioned flavour anomalies,

and determine the renormalisation-group evolution of Leptoquark couplings to fermions

below MQLU . In the most general case, we consider three SU(2) triplet Leptoquarks Sℓ
3,

ℓ = e, µ, τ , which couple quark doublets to the lepton doublet (νℓ, ℓ
−) to address the

b → sℓ+ℓ− anomalies. In this case, we find a scenario in which the Leptoquark couplings

to electrons and muons are driven to the same infrared fixed point, so that lepton flavour

universality emerges dynamically. However, the corresponding fixed point for the couplings

to taus is necessarily opposite in sign, leading to a unique signature in b → sτ+τ−. For

b → cτ ν̄ we complement these with either an SU(2) singlet Sτ
1 or doublet Rτ

2 and study

further the cases that also these Leptoquarks come in three replicas. The fixed point so-

lutions for the Sℓ
3 couplings explain the b → sℓ+ℓ− data for Se,µ

3 masses around 10 TeV.

b → cτ ν̄ data can only be fully explained by couplings exceeding their fixed-point values

and evolving into Landau poles at high energies, so that one can place an upper bound on

MQLU between 108 and 1011 GeV.
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1 Introduction

Several measured branching ratios driven by the quark decay b → sµ+µ− show a deficit

of events in the kinematic region with q2 ≤ 8GeV, where q2 is the invariant mass of the

lepton pair [1–3], if confronted with the Standard-Model (SM) prediction of Refs. [4, 5].

Also the observable P ′
5 parametrising an angular distribution in B → K∗µ+µ− follows

this pattern [6–9]. In a 2022 reanalysis of LHCb data for the lepton flavour universality

violating (LFUV) ratios

RK(∗) ≡ B(B → K(∗)µ+µ−)

B(B → K(∗)e+e−)
(1.1)

has resulted in values compatible with the SM predictions RK(∗) ≃ 1 [10, 11]. Thus earlier

hints for the violation of lepton flavour universality violation inferred from RK(∗) < 1 have

disappeared. Therefore, if beyond-SM (BSM) physics is invoked to explain the b→ sµ+µ−,

it will couple with similar strengths to muons and electrons.
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Figure 1. Contributions of scalar Leptoquarks to anomalous quark decays.

Another long-standing flavour anomaly is related to b → cτν decays and observed in

the ratios

RD∗ ≡ B(B → D(∗)τν)

B(B → D(∗)ℓν)
, ℓ = e, µ. (1.2)

While BaBar and Belle have measured both ratios jointly, early LHCb measurements could

only determine RD∗ . While all measurements have always been very consistent concern-

ing RD∗ , there is some tension between the large 2012 BaBar value for RD [12] and the

corresponding 2019 Belle measurement with a smaller, SM-like result to the level expected

by statistical fluctuation [13]. In 2022 LHCb has presented a combined RD − RD∗ mea-

surement which has increased the overall consistency among all experimental results [14].

HFLAV combines six measurements [12–17] to [18]

Rexp
D = 0.358± 0.025± 0.012 , Rexp

D∗ = 0.285± 0.010± 0.008 , (1.3)

which have to be compared with the SM predictions of [19–24]

RD = 0.298± 0.004 , RD∗ = 0.254± 0.005 , (1.4)

entailing a discrepancy with Eq. (1.3) of 3.2σ. Better measurements of D∗ and τ polari-

sations can discriminate between different BSM explanations of RD(∗) [25, 26]. The ratio

RΛc ≡ B(Λb → Λcτν)/B(Λb → Λcℓν) contains redundant information to RD∗ in any model

of New Physics (NP) [25, 26] and must move upward in future measurements from its 2022

value RLHCb
Λc

= 0.242 ± 0.026 ± 0.040 ± 0.059 [27] to RΛc = 0.39 ± 0.05 [28] if Rexp

D(∗) in

Eq. (1.3) are correct.

Leptoquarks (LQs) are the most popular particle species postulated to remedy the

flavour anomalies [29–40]. In this paper we focus on scalar LQs, which can be consistently

added to the SM particle content. That is, their mass MLQ is much below the scale MQLU

determining the masses of the remaining particles of some complete theory of quark-lepton

unification (QLU) and the effects of the latter particles decouple for MQLU → ∞. By

contrast, a vector LQ with mass MLQ ≪ MQLU corresponds to a non-decoupling scenario

unless the Higgs sector responsible for its mass is taken into account as well. Flavour

anomalies are addressed with the scalar LQs S1, R2 and S3, denoting SU(2) singlet, doublet

and triplet respectively, see Fig. 1 for sample diagrams. The combinations (S1, S3) or

(R2, S3) can simultaneously cure b → cτ ν̄ and b → sℓ+ℓ−, with the caveat that one needs

more than one copy of some SU(2) representations as explained below in Sec. 3. The former
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scenario also affects the decay b→ sνν̄ which is currently probed at the Belle II experiment.

In both scenarios one can find large effects on the anomalous magnetic moment of the muon

[41].

The presence of a sizable mass gap between MLQ and MQLU opens the possibility to

study the renormalisation group (RG) to find generic predictions for the low-energy param-

eters without specifying details of the complete theory valid at MQLU. The prototypical

example for such a study is gauge coupling unification, which can be assessed from the SM

beta functions alone, without knowing the parameters of the grand unified theory valid at

the high scale. Indeed, the “near miss” of these running couplings nurtures the hope to find

new particles in the reach of current particle colliders, because they change the slope of the

beta functions. Another opportunity of RG analyses is the possibility to find infrared (IR)

(quasi-) fixed points (FP) of parameters. Such studies have been pioneered in Ref. [42] for

the top Yukawa coupling, aiming at a prediction of the top mass. In this paper we derive

and study the RG equations for LQ Yukawa couplings and SM gauge couplings.

The paper is organised as follows: In Sec. 2 we report the effective Hamiltonians

employed to describe B Meson decays in and beyond the SM, and summarize the current

status of bounds on the NP couplings from the latest global fits. Sec. 3 reviews some

basics and assesses the implications of low-energy data on the flavour pattern of the LQ

Lagrangian. In Sec. 4 we present the RG equations (RGE) of the LQ couplings first in a

fully general theory and then specifically for the scenarios which can explain the flavour

anomalies. Sec. 5 discusses the RGE FPs and their implications. Finally we conclude in

Sec. 6.

2 Effective Hamiltonians for B Meson Decays

It is customary to describe the decays of B mesons in the SM by means of effective field

theories (EFTs), obtained after integrating out the top quark, the heavy gauge bosons

Z and W , and the Higgs field. This approach is particularly helpful in the presence of

BSM physics as well. Indeed, the low-scale footprints of any heavy degree of freedom can

be parametrized at the B meson decay scale as shifts to the Wilson coefficients (WCs),

describing the short-distance effects associated to all the fields integrated out of the theory.

Therefore, after performing fits to all the available experimental data, it is possible to

obtain bounds on the NP effects in a model independent way. These bounds can be then

translated into constraints to any given model once the matching between the EFT and

the desired BSM theory is performed. We will give the results of such matching for the

relevant LQs in Sec. 3.

The effective Hamiltonian employed to describe b→ sℓ+ℓ− transitions reads

Hℓℓ
eff ⊃ 4GF√

2
VtbV

∗
ts

(
Cℓ
9Oℓ

9 + Cℓ
10Oℓ

10

)
+ h.c. , (2.1)

where we focus on the phenomenologically relevant operators

Oℓ
9 =

αem

4π
(s̄γµPLb)(ℓ̄γ

µℓ) , Oℓ
10 =

αem

4π
(s̄γµPLb)(ℓ̄γ

µγ5ℓ) . (2.2)
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HereGF is the Fermi constant, Vtb and Vts are elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix, αem is the fine structure constant and PL,R = (1 ∓ γ5)/2. In the SM, the

WCs are LFU and at the renormalization scale µ ≡ µb = 4.8 GeV equal to Cℓ
9(µb) ≃ 4.1

and Cℓ
10(µb) ≃ −4.3, respectively.

As anticipated in the Introduction, the latest experimental results concerningRK(∗) [10,

11] require NP effects to be LFU, if one wants to address the discrepancies in b→ sµ+µ−

transitions by means of BSM physics. Defining therefore these additional contributions

as CU
9 ≡ Ce

9 = Cµ
9 and CU

10 ≡ Ce
10 = Cµ

10, the most likely results found by the latest global

fits [43–45] are

I) CU
9 (µb) ∼ −1 ,

II) CU
9 (µb) = −CU

10(µb) ∼ −0.4 .
(2.3)

As we will see in the next Section, the WCs configuration found in scenario II) arises in

the presence of S3 LQs coupling equally to electron and muons.

It is interesting to notice that b → sνν̄ transitions can be described by an effective

Hamiltonian closely related to the one given at Eq. (2.1), namely

Hνν̄
eff ⊃ −4GF√

2
VtbV

∗
tsC

ℓ
νν̄Oℓ

νν̄ + h.c. , (2.4)

where we have introduced the neutrino operator

Oℓ
νν̄ =

αem

4π
(s̄γµPLb)(ν̄ℓγ

µ(1− γ5)νℓ) . (2.5)

Since experiment cannot distinguish neutrino flavours, the sum over all flavours appears in

the ratio of the branching fraction and its SM prediction [46]:

Rνν̄
K(∗) =

Bexp(B → K(∗)νν̄)

BSM(B → K(∗)νν̄)
=

(CSM
νν̄ + Ce

νν̄)
2 + (CSM

νν̄ + Cµ
νν̄)

2 + (CSM
νν̄ + Cτ

νν̄)
2

3(CSM
νν̄ )2

, (2.6)

where CSM
νν̄ (µb) ≃ −6.35. The current experimental limits are set by the Belle collabora-

tion [47], and read at 90% C.L. Rνν̄
K < 3.9 and Rνν̄

K∗ < 2.7. In the case where NP couples

to only one lepton flavour, these bounds imply

−9 ≲ CNP
νν̄ ≲ 22 , (2.7)

where CNP
νν̄ represents any of Ce,µ,τ

νν̄ . An upcoming measurement by the Belle II collabo-

rations is expected to significantly improve these constraints thanks to the expected first

direct observation of these channels, with an estimated accuracy of 10% [48].

The b→ cℓν transitions are described by the following effective Hamiltonian:

Hℓν
eff ⊃ 4GF√

2
Vcb

[
(1 + Cℓ

VL
)Oℓ

VL
+ Cℓ

SL
Oℓ

SL
+ Cℓ

SR
Oℓ

SR
+ Cℓ

TOℓ
T

]
+ h.c. , (2.8)

where we have introduced the operators

Oℓ
VL

= (c̄γµPLb)
(
ℓ̄γµPLνℓ

)
, Oℓ

SL
= (c̄PLb)

(
ℓ̄PLνℓ

)
,

Oℓ
SR

= (c̄PRb)
(
ℓ̄PLνℓ

)
, Oℓ

T = (c̄σµνPLb)
(
ℓ̄σµνPLνℓ

)
,

(2.9)
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with σµν = i
2 [γµ, γν ]. Given the normalization employed in Eq. (2.8), all the WCs there

appearing are describing genuine NP effects. It is worth to mention that in our study we

will not consider effects coming from the operator OVR
, which is obtained by replacing PL

with PR in the quark bilinear of OVL
, as it is LFU at dimension-six in the SMEFT [49–52].

Moreover, we do not allow for effects coming from right-handed neutrinos.

The latest bounds on the NP WCs involved in b → cℓν transitions, both in a model-

independent way and for specific UV models, can be found, e.g., in Ref. [53]. As detailed

in the following Section, out of the several possible scenarios identified by the fit we focus

here on the following scenarios, given at the renormalization scale µb:

A) Cτ
VL

(µb) ∼ 0.08 ,

B) Cτ
SL

(µb) = −8.9Cτ
T (µb) ∼ 0.19 ,

C) Cτ
SL

(µb) = 8.4Cτ
T (µb) ∼ ±i0.58 .

(2.10)

Scenarios A) and/or B) can arise in the presence of a S1 LQ coupled to taus, while C)

is instead a combination of WCs induced at the low scale by the presence of a R2 LQ,

coupling to taus.

3 Theory of Leptoquarks

The updated LHCb values for RK(∗) [10, 11] imply that the NP interpretation of b→ sℓ+ℓ−

data requires that both b→ sµ+µ− and b→ se+e− receive NP contributions with similar

size [43–45]. As an immediate consequence, the S3 LQ potentially mediating these decays

must come in two copies, Se
3 and Sµ

3 , each coupling only to the indicated lepton species.

The reason why a single LQ cannot couple to both electrons and muons is the strong

experimental bound on µ → e conversion, which such a LQ would otherwise mediate. In

the SM we observe an approximate SU(2)2 flavour symmetry, corresponding to rotations of

the charged right-handed fields (l1R, l2R) and the left-handed doublets (L1, L2) of the first

two fermion generation. A priori the S3 fields will couple to the weak eigenstates and the

rotations of the latter into the flavour eigenstates eL,R, µL,R (upon diagonalisation of the

SM lepton Yukawa matrix) will lead to Leptoquarks coupling to both e and µ, which we

must avoid. This rotation, however, is unphysical, if the LQ mass matrix is proportional

to the unit matrix, in which case one finds Se
3 and Sµ

3 as desired. Mass-degenerate Se
3 and

Sµ
3 mean that the LQ mass term in the Lagrangian also obeys an SU(2) flavour symmetry

related to rotations of leptons in flavour space. Thus we conclude from the experimental

evidence for RK(∗) ∼ 1 that Leptoquarks are part of the flavour puzzle and part (or even

actors) of its explanation in term of approximate SU(2) symmetries.

For the b → cτν anomalies one may employ S1 or R2 exchange, see Fig. 1. For the

former solution the S1 coupling to c̄Lτ
c
L comes with a coupling to s̄Lν

c
τL by SU(2) symmetry.

This gives a large contribution to b→ sνν̄, which could be mitigated by an Sτ
3 contribution

of opposite sign in an appropriate model [35]. Therefore the (S1, S3) scenario could permit

a significant enhancement of the branching ratio of B → K(∗)νν̄ currently studied at Belle

II [48]. The R2 scenario can only successfully explain both R(D) and R(D∗) if the real
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part of the product of the τ̄ bL and c̄τR Yukawa couplings of R2 is much smaller than the

imaginary part (in the usual quark basis in which Vcb is real) [25, 26, 40, 54].

3.1 Lagrangians

Let us here review the formalism employed to describe scalar LQs. In order to do so,

we adopt for fermion fields ψ the following formalism: ψL,R = PL,Rψ, ψ̄ = ψ†γ0 and

ψC = Cψ̄T , where we have introduced C = iγ2γ0.

In the following we report the Lagrangians describing the interaction of scalar LQs

with SM fields. We do not permit here diquark coupling of LQ, which would lead to

dangerous and undesired proton decays [30], and do not consider LQs coupling to right-

handed neutrinos. Hence, we will focus only on five families of scalar LQs, each denoted

by different quantum numbers relatively to the SM gauge group (SU(3), SU(2), U(1)) [55].

In particular, we employ a fully general formalism, allowing in principle multiple copies for

each LQ.

Before going in the details relative to each LQ we report here the generalization of the

SM Yukawa Lagrangian to the case of nH scalar Higgs doublets Φa, where a = 1, . . . , nH ,

with generic flavour structure. These theories are usually defined as generic nH Higgs

doublet models (GNHDM), and can be described by the following Lagrangian:

LΦ = −Y a
u, ijQ̄

l
L, iϵ

lmΦa,muR, j − Y a
d, ijQ̄L, iΦ

adR, j − Y a
e, ijL̄L, iΦ

aeR, j + h.c. , (3.1)

where ϵlm = (iτ2)lm, with τ2 being the second Pauli matrix. Moreover, l,m = 1, 2 are

SU(2) indices and i, j = 1, 2, 3 are flavour indices. As stated above, we do not assume any

particular flavour structure in the couplings among the several scalar Higgs doublets and

the SM fields, namely each Higgs doublet Φa can couple with all SM fermions through the

fully general coupling matrices Y a
u,d,e.

Finally, we adopt the convention g1 ≡
√
3/5g′, g2 ≡ g and g3 ≡ gs, with g

′, g and gs
being the U(1), SU(2) and SU(3) gauge couplings, respectively.

3.1.1 Singlet Leptoquarks

A scalar LQ S1 ≡ (3̄,1, 1/3) interacts with the SM fields via the following Lagrangian:

LYS1
= ya1 ijQ̄

C, l
L, iS

a
1 ϵ

lmLm
L, j + xa1 ij ū

C
R, iS

a
1eR, j + h.c. . (3.2)

This Lagrangian describes all the coupling that are allowed for a weak singlet S1, which

can couple either to two left-handed SM fermions, or to two right-handed ones. Similarly

to the convention adopted for the Higgs doublets, here and below the index a is a family

index employed to denote an arbitrary number of copies of a scalar LQ. This index can also

be interpreted as a flavour index, analogously to the flavour indices i, j of the SM fermion

fields. The interaction between an Sa
1 LQ and the SM fields is mediated by arbitrary

complex 3 × 3 Yukawa coupling matrices ya1 and xa1, connected to left-handed and right-

handed fermions respectively.

On the other hand, the interaction among a scalar LQ S̃1 ≡ (3̄,1, 4/3) and SM fields

is described by

LYS̃1
= x̃a1 ij d̄

C
R, iS̃

a
1eR, j + h.c. . (3.3)
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Contrarily to S1 in Eq. (3.2), a weak singlet S̃1 can only couple to two right-handed fields

due to hypercharge conservation. This interaction is mediated by the arbitrary complex

3× 3 Yukawa coupling matrix x̃a1.

The only scalar LQ which is going to be relevant for the phenomenological studies

carried out in Sec. 5 is Sτ
1 , once non-vanishing values for the couplings yτ1 23, y

τ
1 33 and xτ1 23

are allowed. Indeed, it can contribute to b→ cτν decays via [56]

Cτ
SL

(µLQ) = −4Cτ
T (µLQ) = − v2

4Vcb

yτ1 33x
τ ∗
1 23

M2
Sτ
1

, Cτ
VL

(µLQ) =
v2

4Vcb

yτ1 33(Vcsy
τ ∗
1 23 + Vcby

τ ∗
1 33)

M2
Sτ
1

,

(3.4)

at the matching scale µLQ = MSτ
1
∼ 2 TeV, with v = 246 GeV. Notice that the relations

among Cτ
SL

and Cτ
T is modified due to RGE effects once the coefficients are run down

to the low scale, becoming Cτ
SL

(µb) = −8.9Cτ
T (µb) [57, 58]. It is worth mentioning that,

due to SU(2) invariance, the presence of yτ1 33 and yτ1 23 implies a contribution to b → sνν̄

transitions as well, equal to [46]

Cτ
νν̄ =

πv2

VtbV
∗
tsαem

yτ1 33y
τ ∗
1 23

m2
Sτ
1

. (3.5)

Employing the results for scenarios B) or A) given in Eq. (2.10) at the decay scale (which

therefore take into account the running effects from µLQ = MSτ
1
to µ = µb) implies the

following expected size for the NP parameters ratios, respectively:

B)
yτ1 33x

τ ∗
1 23

M2
Sτ
1

∼ −0.5TeV−2 ,

A)
yτ1 33(Vcsy

τ ∗
1 23 + Vcby

τ ∗
1 33)

M2
Sτ
1

∼ 0.2TeV−2 .

(3.6)

A few considerations are now in order. Starting from the Cτ
SL

= −4Cτ
T scenario in Eq. (3.4)

one can infer that, for couplings of order unity, the LQ mass is of order MSτ
1
∼ 1.5TeV.

Even if yτ1 23 is now assumed to be vanishing, we nevertheless obtain a vectorial contribution

Cτ
VL

∝ Vcby
τ
1 33y

τ ∗
1 33, which is, however, negligible due to the CKM suppression: we are

therefore consistent with scenario B) of Eq. (2.10), where Cτ
VL

is assumed to be 0.

If, on the other hand, one would like to pursue the vectorial solution identified by sce-

nario A) in Eq. (2.10), a non-vanishing value for yτ1 23 is required together with a vanishing

xτ1 23, in order to remove the scalar/tensor WCs while evading CKM suppression in the vec-

torial one. In this scenario, coupling of order unity would imply for the LQ a mass of order

mSτ
1
∼ 3TeV. However, with this new choice of non-vanishing parameters a contribution

for Cτ
νν̄ is implied as well, equal to ∼ −130 and well above the current experimental bounds

given at Eq. (2.7). Such a scenario would therefore require some additional mechanism in

order to avoid the B → K(∗)νν̄ bounds, like e.g. the one proposed in Ref. [35].

3.1.2 Doublet Leptoquarks

Moving on to weak doublets, the R2 ≡ (3,2, 7/6) scalar LQ Lagrangian is given by

LYR2
= −ya2 ij ūR, iR

a, l
2 ϵlmLm

L, j + xa2 ij ēR, iR
a∗
2 QL, j + h.c. , (3.7)
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Due to R2 being a doublet, it can either couple to a left-handed lepton doublet and a

right-handed quark singlet, or vice-versa. These interactions are mediated by the arbitrary

complex 3× 3 matrices ya2 and xa2, respectively.

Similarly, the Lagrangian for R̃2 ≡ (3,2, 1/6) reads

LYR̃2
= −ỹa2 ij d̄R, iR̃

a, l
2 ϵlmLm

L, j + h.c. . (3.8)

Analogously to Eq. (3.3), due to the different hypercharges of R2 and R̃2 only an interaction

with a left-handed lepton doublet and a right-handed quark singlet is allowed for the latter,

parameterized by the arbitrary complex 3× 3 matrix ỹa2 .

The doublet scalar Rτ
2 LQ becomes phenomenologically relevant for us once the cou-

plings yτ2 23 and xτ2 33 are allowed to be non-vanishing. Indeed, it contributes to b → cτν

transitions via [56]

Cτ
SL

(µLQ) = 4Cτ
T (µLQ) =

v2

4Vcb

yτ2 23x
τ ∗
2 33

M2
Rτ

2

, (3.9)

at the matching scale µLQ = MRτ
2
∼ 2 TeV. Once again, due to RGE effects the relation

among the coefficients reads Cτ
SL

(µb) = 8.4Cτ
T (µb) at the low scale [57, 58]. The bound

reported for scenario C) in Eq. (2.10) can therefore be recast into a constraint on the

parameter ratio
yτ2 23x

τ ∗
2 33

M2
Rτ

2

∼ 1.5TeV−2 , (3.10)

where we assumed one of the two coupling to be purely real and the other purely imaginary.

Assuming for each coupling a size ∼ 1 would imply a mass for the LQ below 1 TeV, already

excluded by current constraints; it is however enough to require their size to be ∼
√
2, which

is still below the current bounds obtained from searches for pair-produced LQs at the LHC,

to obtain a mass of the order MRτ
2
∼ 1.7TeV, heavy enough to evade present limits. See

Ref. [59] and references therein for a detailed discussion on the matter.

3.1.3 Triplet Leptoquarks

We conclude this Section describing the interactions among the weak triplet S3 ≡ (3̄,3, 1/3)

and the SM fields, ruled by the following Lagrangian:

LYS3
= ya3 ijQ̄

C, l
L, iϵ

lm(τkSa, k
3 )mnLn

L, j + h.c. , (3.11)

where τk are the Pauli matrices, with k = 1, 2, 3. The contraction (τkSa, k
3 ) can also be

written as (τ⃗ · S⃗a
3 ), as originally done in Ref. [55]. Due to its triplet nature, S3 LQs can

couple only with two left-handed SM fermions through the arbitrary complex 3× 3 matrix

ya3 , analogously to the first term of Eq. (3.2).

The triplet LQ has relevant phenomenological implications on b → sℓ+ℓ− transitions.

Indeed, allowing non-vanishing values for the couplings yℓ3 3ℓ and y
ℓ
3 2ℓ, with ℓ = e, µ ≡ 1, 2,

it is possible to obtain contributions of the form [56]

Cℓ
9(µLQ) = −Cℓ

10(µLQ) =
πv2

VtbV
∗
tsαem

yℓ3 3ℓy
ℓ ∗
3 2ℓ

M2
Sℓ
3

, (3.12)
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at the matching scale µLQ = MSℓ
3
. Remembering that C9 and C10 do not run in QCD,

the result for scenario II) in Eq. (2.3) can be directly applied, and implies for the NP

parameter ratio the value

yℓ3 3ℓy
ℓ ∗
3 2ℓ

m2
Sℓ
3

∼ 0.001TeV−2 . (3.13)

Assuming the couplings to be of order unity, we can therefore infer the scale of the LQ

mass to be MSℓ
3
∼ 30TeV.

It is worth mentioning that, due to SU(2) invariance, allowing additional couplings to

τ would induce contributions to b → cτν transitions as well, similar to the ones obtained

for S1 LQs. However, the sign of such contributions would be strictly negative due to

additional constraints coming, e.g., from ∆mBs
[56] and hence not phenomenologically

interesting, unless additional symmetries are imposed to the Lagrangian [35]. On the other

hand, and again in a similar fashion to what is observed for the singlet LQ, contributions

to b→ sνν̄ transitions are unavoidable in this channel as well, and take the form

Cℓ
νν̄ =

πv2

VtbV
∗
tsαem

yℓ3 3ℓy
ℓ ∗
3 2ℓ

M2
Sℓ
3

. (3.14)

In this scenario, however, the induced size on Cℓ
νν̄ from b→ sℓ+ℓ− data would correspond

to Cℓ
νν̄ ∼ −0.6. This value is well within the current bounds, even when allowing for NP

coupled to two lepton families which imply a more stringent bound than the one given in

Eq. (2.7).

4 Renormalisation Group Equations

In this Section we report the RGE of theories in which the SM sector is amended by an

arbitrary number of Higgs doublets and scalar LQs. We start by giving in Sec. 4.1 the RGEs

for a fully generic theory with multiple copies of all the five scalar LQs. We then move to

phenomenologically relevant cases, reporting the results obtained when the SM extended

either with (S1, S3) LQs or with (R2, S3) LQs, in Sec. 4.2 and Sec. 4.3 respectively. All our

results listed below correspond to the convention of our Lagrangians in Eqs. (3.1)-(3.11).

We give our results at the one-loop level of precision working in the MS-scheme, which we

obtained adopting the findings of Refs. [60, 61] to our specific scenarios. For two-loop level

results including one-loop threshold corrections, see Ref. [62].

4.1 General Results

Let us report here the RGE for the most general case, where arbitrary copies of the Higgs

doublet and the five scalar LQs are allowed.

We start by giving the RGE for the gauge couplings g1, g2 and g3, which we remember

are connected to the U(1), SU(2) and SU(3) gauge couplings by the convention g1 ≡

– 9 –



Φa Φb Ψi Ψj

Ψl

Ψk Ψk

Φa

Φa

ΦbΨi Ψj

Ψk Ψl

Figure 2. Diagrammatic representations of the contributions to the beta functions of the Yukawa

couplings. Φ represents any scalar field, namely a Higgs doublet or a LQ, while Ψ represents any

SM fermion field.

√
3/5g′, g2 ≡ g and g3 ≡ gs. The RGE read

16π2µ
d

dµ
g1 = g31

(4
3
nf +

1

10
nH +

1

15
nS1 +

16

15
nS̃1

+
49

30
nR2 +

1

30
nR̃2

+
1

5
nS3

)
, (4.1)

16π2µ
d

dµ
g2 = g32

(
−22

3
+

4

3
nf +

1

6
nH +

1

2
nR2 +

1

2
nR̃2

+ 2nS3

)
, (4.2)

16π2µ
d

dµ
g3 = g33

(
−11 +

4

3
nf +

1

6
nS1 +

1

6
nS̃1

+
1

3
nR2 +

1

3
nR̃2

+
1

2
nS3

)
, (4.3)

where nf represents the number of SM flavours, nH is the number of scalar Higgs doublets,

and nS1 , nS̃1
, nR2 , nR̃2

, nS3 are the numbers of S1, S̃1, R2, R̃2, S3 scalar LQs, respectively.

Before moving on to the RGE for the Yukawa couplings it is useful to define several

quantities which will later allow us to state these RGE in a more compact and intuitive

way. In particular, we give below the field renormalisation constants for all the relevant

fields, namely the scalar Higgs doublets, the scalar LQs and the SM fermions.

Starting from the six kind of scalars allowed in our theory, the contributions of the

field renormalisation constants to the beta functions of the Yukawa couplings involve the

following combinations of Yukawa matrices:

Tab = Tr
[
NcY

a
u
†Y b

u +NcY
a
d
†Y b

d + Y a
e
†Y b

e

]
,

Tab
1 = Tr

[
2ya1y

b
1
†
+ xa1x

b
1
†]
, Tab

2 = Tr
[
ya2y

b
2
†
+ xa2x

b
2
†]
,

T̃ab
1 = Tr

[
x̃a1x̃

b†
1

]
, T̃ab

2 = Tr
[
ỹa2 ỹ

b†
2

]
, Tab

3 = Tr
[
2ya3y

b
3
†]
,

(4.4)

where Nc = 3 is the colour number, and a, b = 1, . . . , nα with α ∈ {H,S1, S̃1, R2, R̃2, S3} is

an index denoting possible multiple copies of each scalar. All terms in Eq. (4.4) stem from

diagrams involving fermion loops, like the left one in Fig. 2.

Concerning the field renormalisation constants of the SM fermion fields, we start with

the contributions from loops with Higgs fields, which are

[YQ]ij =
1

2

[
Y a
u Y

a
u
† + Y a

d Y
a
d
†
]
ij
, [YL]ij =

1

2

[
Y a
e Y

a
e
†
]
ij
,

[Yu]ij =
[
Y a
u
†Y a

u

]
ij
, [Yd]ij =

[
Y a
d
†Y a

d

]
ij
, [Ye]ij =

[
Y a
e
†Y a

e

]
ij
,

(4.5)

– 10 –



where we denote the (i, j) element of the matrix M by [M ]ij . Here and below, we adopt

the convention that repeated indices are implicitly summed over.

The contribution for the fermion field renormalisations due to the insertion of LQ in

a loop read

[Y1]ij =
1

2

[
ya1y

a
1
†
]
ij
, [Ŷ1]ij =

Nc

2

[
ya1

†ya1

]
ij
, [X1]ij =

1

2

[
xa1x

a
1
†
]
ij
,

[X1̃]ij =
1

2

[
x̃a1x̃

a†
1

]
ij
, [X̂1̃]ij =

Nc

2

[
x̃a†1 x̃

a
1

]
ij
, [X̂1]ij =

Nc

2

[
xa1

†xa1

]
ij
,

[Y2]ij =
[
ya2y

a
2
†
]
ij
, [Ŷ2]ij =

Nc

2

[
ya2

†ya2

]
ij
, [X2]ij = Nc

[
xa2x

a
2
†
]
ij
,

[Y2̃]ij =
[
ỹa2 ỹ

a†
2

]
ij
, [Ŷ2̃]ij =

Nc

2

[
ỹa†2 ỹ

a
2

]
ij
, [X̂2]ij =

1

2

[
xa2

†xa2

]
ij
,

[Y3]ij =
3

2

[
ya3y

a
3
†
]
ij
, [Ŷ3]ij =

3Nc

2

[
ya3

†ya3

]
ij
.

(4.6)

Combining Eq. (4.5) and Eq. (4.6), both stemming from diagrams involving a fermion

and a scalar in a loop as depicted in the center of Fig. 2, allows us to finally define the

total contribution to the field renormalisations of the SM fermions, which read

[YQQ]ij = [YQ + Y∗
1 + X̂2 + Y∗

3 ]ij , [YLL]ij = [YL + Ŷ1 + Ŷ2 + Ŷ2̃ + Ŷ3]ij ,

[Yuu]ij = [Yu + X ∗
1 + Y2]ij , [Ydd]ij = [Yd + X ∗

1̃
+ Y2̃]ij ,

[Yee]ij = [Ye + X̂1 + X̂1̃ + X2]ij ,

(4.7)

where the labels refer to the external fields.

Employing Eq. (4.4) and Eq. (4.7), complemented by additional contributions from

vertex corrections as the one shown in the right side of Fig. 2, we are now ready to give

the RGE for the Yukawa couplings introduced in Sec. 3.1. The RGE of the SM Yukawa

couplings defined in Eq. (3.1) read

16π2µ
d

dµ
[Y a

u ]ij = [Y a
u ]ij

(
−8g23 −

9

4
g22 −

17

20
g21

)
+Tab∗ [Y b

u ]ij + [YQQ]ik[Y
a
u ]kj + [Y a

u ]ik[Yuu]kj

− 2
(
[Y b

d Y
a
d
†Y b

u ]ij − [yb1Y
a
e x

b
1
†
]∗ij + [yb2Y

a
e x

b
2]
†
ij

)
, (4.8)

16π2µ
d

dµ
[Y a

d ]ij = [Y a
d ]ij

(
−8g23 −

9

4
g22 −

1

4
g21

)
+Tab [Y b

d ]ij + [YQQ]ik[Y
a
d ]kj + [Y a

d ]ik[Ydd]kj

− 2[Y b
uY

a
u
†Y b

d ]ij , (4.9)

16π2µ
d

dµ
[Y a

e ]ij = [Y a
e ]ij

(
−9

4
g22 −

9

4
g21

)
+Tab [Y b

e ]ij + [YLL]ik[Y
a
e ]kj + [Y a

e ]ik[Yee]kj

+ 2Nc

(
[yb1

†
Y a
u
∗xb1]ij − [xb2Y

a
u y

b
2]
†
ij

)
. (4.10)
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The RGE of the singlet LQs Yukawa couplings defined in Eqs. (3.2)-(3.3) read

16π2µ
d

dµ
[ya1 ]ij = [ya1 ]ij

(
−4g23 −

9

2
g22 −

1

2
g21

)
+Tab

1 [yb1]ij + [YQQ]
∗
ik[y

a
1 ]kj + [ya1 ]ik[YLL]kj

+ 2
(
[Y b

u
∗
xa1Y

b
e
†
]ij − [xb2

T
xa1

T yb2]ij

)
, (4.11)

16π2µ
d

dµ
[xa1]ij = [xa1]ij

(
−4g23 −

13

5
g21

)
+Tab

1 [xb1]ij + [Yuu]
∗
ik[x

a
1]kj + [xa1]ik[Yee]kj

+ 4
(
[Y b

u
T
ya1Y

b
e ]ij − [yb2

∗
ya1

Txb2
†
]ij

)
, (4.12)

16π2µ
d

dµ
[x̃a1]ij = [x̃a1]ij

(
−4g23 − 2g21

)
+ T̃ab

1 [x̃b1]ij + [Ydd]
∗
ik[x̃

a
1]kj + [x̃a1]ik[Yee]kj . (4.13)

The RGE of the doublet LQs Yukawa couplings defined in Eqs. (3.7)-(3.8) read

16π2µ
d

dµ
[ya2 ]ij = [ya2 ]ij

(
−4g23 −

9

4
g22 −

5

4
g21

)
+Tab

2 [yb2]ij + [Yuu]ik[y
a
2 ]kj + [ya2 ]ik[YLL]kj

− 2
(
[Y b

e x
a
2Y

b
u ]

†
ij + [xb1

∗
xa2

∗yb1]ij

)
, (4.14)

16π2µ
d

dµ
[xa2]ij = [xa2]ij

(
−4g23 −

9

4
g22 −

37

20
g21

)
+Tab

2 [xb2]ij + [Yee]ik[x
a
2]kj + [xa2]ik[YQQ]kj

− 2
(
[Y b

u y
a
2Y

b
e ]

†
ij + [yb1

∗
ya2

Txb1]
†
ij

)
, (4.15)

16π2µ
d

dµ
[ỹa2 ]ij = [ỹa2 ]ij

(
−4g23 −

9

4
g22 −

13

20
g21

)
+ T̃ab

2 [ỹb2]ij + [Ydd]ik[ỹ
a
2 ]kj + [ỹa2 ]ik[YLL]kj .

(4.16)

Finally, the RGE of the triplet LQ Yukawa coupling defined in Eq. (3.11) reads

16π2µ
d

dµ
[ya3 ]ij = [ya3 ]ij

(
−4g23 −

9

2
g22 −

1

2
g21

)
+Tab

3 [yb3]ij + [YQQ]
∗
ik[y

a
3 ]kj + [ya3 ]ik[YLL]kj .

(4.17)

4.2 The SM Extended by S1 and S3 LQs

Let us now move our focus to the first of the two phenomenologically relevant models, whose

RGE implications will be studied in Sec. 5, namely the one consisting in the extension of

the SM with S1 and S3 scalar LQs, and no additional Higgs doublets. This kind of models

has been originally proposed in Ref. [35] and subsequently embedded in a composite Higgs

model in Ref. [63]. They originally proposed a singlet LQ S1 to account for the anomalies

in b → cτν transitions, and a triplet LQ S3 for addressing data in b → sµµ decays, as

shown in Fig. 1. As detailed in Sec. 3, the requirement of lepton flavour universality in

b → sℓ+ℓ− transitions implies now the presence of multiple copies of S3 LQs. While a

similar behaviour is not required for the S1 LQ, we will however maintain a degree of

generality here and allow for multiple copies of this scalar LQ as well.
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For this kind of theory Eqs. (4.1)-(4.3) condense to

16π2µ
d

dµ
g1 = g31

(4
3
nf +

1

10
+

1

15
nS1 +

1

5
nS3

)
, (4.18)

16π2µ
d

dµ
g2 = g32

(
−22

3
+

4

3
nf +

1

6
+ 2nS3

)
, (4.19)

16π2µ
d

dµ
g3 = g33

(
−11 +

4

3
nf +

1

6
nS1 +

1

2
nS3

)
. (4.20)

The contribution from scalar field renormalisations are found from Eq. (4.4), by spec-

ifying to only one Higgs doublet and SM Yukawas Y a
u,d,e ≡ Yu,d,e, and hence Tab ≡ T. The

fermion field renormalisations of Eq. (4.7) are altered by the reduced scalar sector of the

theory, and now read

[Y ′
QQ]ij = [YQ + Y∗

1 + Y∗
3 ]ij , [Y ′

LL]ij = [YL + Ŷ1 + Ŷ3]ij ,

[Y ′
uu]ij = [Yu + X ∗

1 ]ij , [Y ′
dd]ij = [Yd]ij ,

[Y ′
ee]ij = [Ye + X̂1]ij .

(4.21)

We have now all the ingredients necessary to give the RGE for the Yukawa couplings of

an extension of the SM by multiple copies of S1 and S3 LQs. The RGE of the SM Yukawa

couplings defined in Eq. (3.1) read

16π2µ
d

dµ
[Yu]ij = [Yu]ij

(
−8g23 −

9

4
g22 −

17

20
g21

)
+T∗ [Yu]ij + [Y ′

QQ]ik[Yu]kj + [Yu]ik[Y
′
uu]kj

− 2
(
[YdY

†
d Yu]ij − [yb1Yex

b
1
†
]∗ij

)
, (4.22)

16π2µ
d

dµ
[Yd]ij = [Yd]ij

(
−8g23 −

9

4
g22 −

1

4
g21

)
+T [Yd]ij + [Y ′

QQ]ik[Yd]kj + [Yd]ik[Y
′
dd]kj

− 2[YuYu
†Yd]ij , (4.23)

16π2µ
d

dµ
[Ye]ij = [Ye]ij

(
−9

4
g22 −

9

4
g21

)
+T [Ye]ij + [Y ′

LL]ik[Ye]kj + [Ye]ik[Y
′
ee]kj

+ 2Nc[y
b
1
†
Y ∗
u x

b
1]ij . (4.24)

The RGE of the singlet LQs Yukawa couplings defined in Eq. (3.2) read

16π2µ
d

dµ
[ya1 ]ij = [ya1 ]ij

(
−4g23 −

9

2
g22 −

1

2
g21

)
+Tab

1 [yb1]ij + [Y ′
QQ]

∗
ik[y

a
1 ]kj + [ya1 ]ik[Y

′
LL]kj

+ 2[Y ∗
u x

a
1Y

†
e ]ij , (4.25)

16π2µ
d

dµ
[xa1]ij = [xa1]ij

(
−4g23 −

13

5
g21

)
+Tab

1 [xb1]ij + [Y ′
uu]

∗
ik[x

a
1]kj + [xa1]ik[Y

′
ee]kj

+ 4[Y T
u y

a
1Ye]ij . (4.26)

Finally, the RGE of the triplet LQ Yukawa coupling defined in Eq. (3.11) reads

16π2µ
d

dµ
[ya3 ]ij = [ya3 ]ij

(
−4g23 −

9

2
g22 −

1

2
g21

)
+Tab

3 [yb3]ij + [Y ′
QQ]

∗
ik[y

a
3 ]kj + [ya3 ]ik[Y

′
LL]kj .

(4.27)
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4.3 The SM Extended by R2 and S3 LQs

The second phenomenologically relevant model consists of the extension of the SM with

R2 and S3 scalar LQs, and again no additional Higgs doublets. This model was originally

proposed in Ref. [54] where the two LQs were embedded in an SU(5) Grand Unification

Theory (GUT) and, as shown in Fig. 1, employs the R2 LQ to address data in b → cτ ν̄

decays, again in combination with the S3 LQ to explain anomalies in b→ sℓ+ℓ− transitions.

Similarly to the previous case, we will permit multiple copies for both scalar LQs.

For this kind of model the gauge coupling RGE from Eqs. (4.1)-(4.3) condense to

16π2µ
d

dµ
g1 = g31

(4
3
nf +

1

10
+

49

30
nR2 +

1

5
nS3

)
, (4.28)

16π2µ
d

dµ
g2 = g32

(
−22

3
+

4

3
nf +

1

6
+

1

2
nR2 + 2nS3

)
, (4.29)

16π2µ
d

dµ
g3 = g33

(
−11 +

4

3
nf +

1

3
nR2 +

1

2
nS3

)
, (4.30)

In a similar fashion to the previous scenario, the scalar field renormalisations are

analogous to the ones given at Eq. (4.4) specified to a single Higgs doublet, while for the

fermion ones we now have

[Y ′′
QQ]ij = [YQ + X̂2 + Y∗

3 ]ij , [Y ′′
LL]ij = [YL + Ŷ2 + Ŷ3]ij ,

[Y ′′
uu]ij = [Yu + Y2]ij , [Y ′′

dd]ij = [Yd]ij ,

[Y ′′
ee]ij = [Ye + X2]ij .

(4.31)

We can now move on to the RGE equations for the Yukawa couplings in this kind of

theory. The RGE of the SM Yukawa couplings defined in Eq. (3.1) read

16π2µ
d

dµ
[Yu]ij = [Yu]ij

(
−8g23 −

9

4
g22 −

17

20
g21

)
+T∗ [Yu]ij + [Y ′′

QQ]ik[Yu]kj + [Yu]ik[Y
′′
uu]kj

− 2
(
[YdY

†
d Yu]ij + [yb2Yex

b
2]
†
ij

)
, (4.32)

16π2µ
d

dµ
[Yd]ij = [Yd]ij

(
−8g23 −

9

4
g22 −

1

4
g21

)
+T [Yd]ij + [Y ′′

QQ]ik[Yd]kj + [Yd]ik[Y
′′
dd]kj

− 2[YuY
†
uYd]ij , (4.33)

16π2µ
d

dµ
[Ye]ij = [Ye]ij

(
−9

4
g22 −

9

4
g21

)
+T [Ye]ij + [Y ′′

LL]ik[Ye]kj + [Ye]ik[Y
′′
ee]kj

− 2Nc[x
b
2Yuy

b
2]
†
ij . (4.34)

The RGE of the doublet LQ Yukawa couplings defined in Eq. (3.7) read

16π2µ
d

dµ
[ya2 ]ij = [ya2 ]ij

(
−4g23 −

9

4
g22 −

5

4
g21

)
+Tab

2 [yb2]ij + [Y ′′
uu]ik[y

a
2 ]kj + [ya2 ]ik[Y

′′
LL]kj

− 2[Yex
a
2Yu]

†
ij , (4.35)

16π2µ
d

dµ
[xa2]ij = [xa2]ij

(
−4g23 −

9

4
g22 −

37

20
g21

)
+Tab

2 [xb2]ij + [Y ′′
ee]ik[x

a
2]kj + [xa2]ik[Y

′′
QQ]kj

− 2[Yuy
a
2Ye]

†
ij . (4.36)
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Finally, the RGE of the triplet LQ Yukawa coupling defined in Eq. (3.11) reads

16π2µ
d

dµ
[ya3 ]ij = [ya3 ]ij

(
−4g23 −

9

2
g22 −

1

2
g21

)
+Tab

3 [yb3]ij + [Y ′′
QQ]

∗
ik[y

a
3 ]kj + [ya3 ]ik[Y

′′
LL]kj .

(4.37)

5 Phenomenology of Fixed Point Solutions

We have now collected all the necessary ingredients to perform the study of the RGE IR

FPs, and to discuss their potential phenomenological implications for the BSM scenarios

selected in Sec. 4.2 and 4.3. Our aim is the investigation of solutions to the anomalies in

b→ s and b→ c transitions with the IR FP values for such couplings.

As anticipated above, we will perform our studies in two distinct scenarios, differenti-

ated by whether the SM sector is extended by (potentially multiple copies of) S1 and S3
LQs, or R2 and S3 LQs, respectively. In both scenarios we will first study the minimal

case, where only one new field involved in b→ c transitions is considered, namely either Sτ
1

or Rτ
2 , while two new fields are allowed in the b→ s sector due to the requirement of a LFU

phenomenology, namely Se
3 and Sµ

3 . Subsequently, we will also consider the case where 6

NP fields are included in the theory, i.e. three new fields connected to b → c transitions,

namely either Se
1, S

µ
1 and Sτ

1 , or R
e
2, R

µ
2 and Rτ

2 , and three new fields connected to the

b→ s sector, namely Se
3, S

µ
3 and Sτ

3 .

To obtain the FP values for the couplings investigated below, we will be looking for the

values of such couplings that are simultaneous zeros of their relative beta functions with

the SM couplings entering these beta functions set to their experimental values evolved to

the scale of 10 TeV, which we chose as the low-energy scale of the RG evolution. Given

the non linearity of the system and its high dimensionality, listing all the found solutions

goes beyond the scope of our analysis. We will therefore restrict ourselves to reporting

phenomenologically interesting FP solutions, namely those that comply with at least one

of the following requirements:

i) all FP values for the couplings have to be non-vanishing;

ii) the Se
3 and Sµ

3 couplings have to obey the relation ye3 21y
e
3 31 = yµ3 22y

µ
3 32, required by

the LFU scenario II) in Eq. (2.3);

iii) if present, the product of the Rτ
2 couplings yτ2 23x

τ ∗
2 33 has to be purely imaginary, in

accordance with scenario C) in Eq. (2.10).

Once the couplings are determined by their FP values, the experimental constraints

from the anomalies fix the values of the (squared) LQ masses. We will face two possible

outcomes: a) the FP values for the couplings are large enough to reproduce the desired phe-

nomenology with sufficiently heavy LQ masses, not currently excluded by direct searches

at collider. This will also allow us to give a prediction for MLQ, in the case where the

low-energy physics is described by the FP values of the LQ couplings; or b) the FP values

are not large enough to explain the desired phenomenology, because the LQ are too light to
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comply with direct searches results.1 Nevertheless, also in this scenario useful conclusions

can be drawn: indeed, it will imply that in order to explain b → s and b → c data, the

values for (some of) the LQ couplings is required to be above the FP value. It is therefore

interesting to estimate the scale where the Landau pole is induced by such a choice, since

this scale can be interpreted as the upper bound for MQLU.

5.1 The (S1,S3) Extension

We start our analysis from the scenario where the SM is extended by one copy of the singlet

LQ, Sτ
1 , and two copies of the triplet one, Se

3 and Sµ
3 . Indeed, as detailed in Sec. 3.1.1

and 3.1.3 respectively, Sτ
1 is capable to reproduce the desired low-scale phenomenology for

b → cτ ν̄ decays once the couplings yτ1 33 and xτ1 23 are non-vanishing, while Se
3 and Sµ

3 can

produce the correct low-energy effect in b → sℓ+ℓ− transitions when the couplings ye3 31,

ye3 21, y
µ
3 32 and yµ3 22 are allowed. For simplicity, we will assume all couplings to be real.

Aiming at a minimal working example, we set all the other couplings to zero and

consider the following structure for the coupling matrices in our analysis:

yτ1 =

 0 0 0

0 0 0

0 0 yτ1 33

 , xτ1 =

 0 0 0

0 0 xτ1 23
0 0 0

 ,

ye3 =

 0 0 0

ye3 21 0 0

ye3 31 0 0

 , yµ3 =

 0 0 0

0 yµ3 22 0

0 yµ3 32 0

 .

(5.1)

The IR FP values for these six non-vanishing couplings are therefore obtained by

searching for the simultaneous zeros of their relative beta functions, as given in Sec. 4.2.

Only one family of solutions is found to be complying with requirement i) listed above,

namely:

yτ1 33 xτ1 23 ye3 21 ye3 31 yµ3 22 yµ3 32
0.986 0.871 0.672 0.433 0.672 −0.433

The solution is characterized by sign ambiguities, meaning that we can simultaneously

flip signs of several couplings to find new solutions: for each of the two Sτ
1 couplings both

signs are allowed, while for the four Se
3 and Sµ

3 couplings an odd number of them, namely

either one or three, has to be negative, with the remaining ones being positive. This means

that this family of solution is composed by 32 different scenarios, distinguished by sign

permutations.

Unfortunately, this family of solutions is phenomenologically non-viable. On the one

hand, the Sτ
1 sector looks promising, with both couplings being ∼ 1 and hence complying

1A third possibility would consist to ascribe to LQs only a part of the NP contributions required to

address the current experimental picture. This scenario would however require to further extend the NP

sector to fully explain data, with a consequent modification of the RGE due to the presence of additional

degrees of freedom. Such a scenario goes beyond the scope of this paper.
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with the size implied by b → c anomalies and given at Eq. (3.6). On the other hand,

the Sℓ
3 sector has an unacceptable, albeit intriguing, behaviour: indeed, the couplings are

connected by the relation ye3 21y
e
3 31 = −yµ3 22y

µ
3 32, which is in maximal disagreement with

requirement ii). For this reason, it is not possible to connect the low-energy behaviour of

this kind of LQ extension of the SM to the IR FP values of the NP couplings, if trying to

address coherently the pattern of deviations in B meson decays.

We therefore move to inspect a more generalized scenario, where six NP fields are

allowed in the extension of the SM. In analogy of the three particle scenario, we allow only

the following couplings to be non-vanishing:

ye1 =

 0 0 0

0 0 0

ye1 31 0 0

 , yµ1 =

 0 0 0

0 0 0

0 yµ1 32 0

 , yτ1 =

 0 0 0

0 0 0

0 0 yτ1 33

 ,

xe1 =

 0 0 0

xe1 21 0 0

0 0 0

 , xµ1 =

 0 0 0

0 xµ1 22 0

0 0 0

 , xτ1 =

 0 0 0

0 0 xτ1 23
0 0 0

 ,

ye3 =

 0 0 0

ye3 21 0 0

ye3 31 0 0

 , yµ3 =

 0 0 0

0 yµ3 22 0

0 yµ3 32 0

 , yτ3 =

 0 0 0

0 0 yτ3 23
0 0 yτ3 33

 .

(5.2)

In this new scenario, it is possible to find the following two families of solutions, both

complying with requirements i) and ii):

ye1 31 xe1 21 yµ1 32 xµ1 22 yτ1 33 xτ1 23 ye3 21 ye3 31 yµ3 22 yµ3 32 yτ3,23 yτ3 33
0.291 1.006 0.291 1.006 0.291 1.006 0.749 0.172 0.172 0.749 0.664 −0.388

0.291 1.006 0.291 1.006 0.291 1.006 0.172 0.749 0.749 0.171 0.663 −0.388

Similarly to the previous case, also these solutions are characterized by sign ambigui-

ties: concerning the six couplings in the S1 sector, both signs are allowed for each of them,

yielding 64 different configurations; on the other hand, concerning the six couplings in the

S3 sector, the product of the electron couplings and the one of the muon coupling have

to share the same sign, while the product of the tau ones have to be opposite, yielding

16 different configurations. Hence, in total, each family of solutions is composed by 1024

distinct solutions due to sign permutations.

It is interesting to highlight that requirement ii) is not accidentally fulfilled, but it

is met due to the pairs of couplings (ye3 21, y
µ
3 32) and (ye3 31, y

µ
3 22) sharing the same IR FP,

respectively. Hence, the low-energy LFU observed in b → sℓℓ transitions can be elegantly

explained due to a dynamical behaviour, with the couplings not having to share the same

pattern at the high-scale. An example of this behaviour can be seen in the two panels

of Fig. 3, where the four couplings are taken to be different at the high-scale but are

attracted to the same two low-scale values, which corresponds to the FP solution of their

beta functions. Note that the beta functions also depend on SM couplings which depend

on the renormalization scale µ. Therefore the FP solution of the LQ couplings is not a

constant line.

– 17 –



106 109 1012 1015
0.5

1.0

1.5

2.0

2.5

3.0

106 109 1012 1015
0.1

0.2

0.3

0.4

0.5

Figure 3. Scenario of Eq. (5.2): Left panel: running of the couplings (ye3 21 and yµ3 32) from the

high-scale to the low-scale; the FP solution is given in dashed red. Right panel: running of the

couplings (ye3 31 and yµ3 22) from the high-scale to the low-scale; the FP solution is given in dashed

red.

Imposing now the expected size for the NP parameters ratio given at Eq. (3.13), one

obtains that the FP solutions imply a scale for the LQ masses to beMSe
3
∼MSµ

3
∼ 10TeV.

Moreover, with these values for the LQ couplings and mass, the expected impact to the

b → sνν̄ transitions ratio Rνν̄
K(∗) defined at Eq. (2.6) reads Rνν̄

K(∗) ≃ 1.1, namely a 10%

increase with respect to the SM case and therefore potentially detectable at Belle II [48].

It is interesting to notice that the emergence of an electron-muon universality implies

a strong and precise prediction for the tau couplings, whose product is characterized by

an opposite sign w.r.t. the light leptons. In particular, both FP solutions predict an

enhancement in the tau sector (opposite to the suppression implied by present b→ s data

in light leptons) corresponding to Cτ
9 (µb) = −Cτ

10(µb) ∼ 0.8, if one assumes MSe
3
∼MSµ

3
∼

MSτ
3
.

The situation is different in the b → c sector: indeed, the FP solution for the Sτ
1

coupling yield yτ1 33x
τ
1 23 ≃ −0.3, where the freedom on the coupling signs allows us to choose

xτ1 23 ≃ −1; however, when confronting this value with Eq. (3.6), in order to address the

anomalies in b→ c transitions Sτ
1 would be required to have a mass equal toMSτ

1
∼ 0.8TeV,

value which has already been excluded by direct searches at LHC.2 This implies that, if one

would like to address the current experimental situation in this sector as well, the low-scale

value for xτ1 23 has to be taken well above the FP solution, namely equal to xτ1 23 ∼ 1. In

turn, this implies the emergence of a Landau pole at a scale around µ ∼ 1011GeV, as can

be observed in Fig. 4.

To conclude we have obtained that, when extending the SM sector with the 6 scalar

LQs Se
1, S

µ
1 , S

τ
1 , S

e
3, S

µ
3 and Sτ

3 , thanks to the IR FP behaviours of their couplings it is

possible to explain the observed pattern of anomalies in b→ sℓℓ transitions by introducing

Se
3 and Sµ

3 LQs with masses at the ∼ 10TeV scale and arbitrary high-scale couplings; on

the other hand, in order to address the experimental picture in b → cτ ν̄ transitions as

2The NP contribution to Ce,µ
VL

coming from non-vanishing couplings of Se
1 and Sµ

1 are strongly con-

strained, see e.g. Ref. [28] and references therein. In order to suppress such undesirable effects, the masses

of these two LQs are considered to be sensitively heavier than the scale of MSτ
1
.
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Figure 4. Emergence of a Landau pole in the running of the coupling xτ1 23, when a value compatible

with b→ cτ ν̄ data is assumed at the low-scale. The FP solution is given in dashed red.

well, a value above the FP solution is required for one of the couplings, inducing an upper

limit to the LQU scale equal to MLQU ≲ 1011GeV, which is far below the GUT scale and

corroborates ideas of multi-step unification [64].

5.2 The (R2,S3) Extension

We move on to the study of the SM extended by one doublet LQ, Rτ
2 , and two copies

of the triplet one, Se
3 and Sµ

3 . Once again, the triplet LQs are employed to obtain the

desired low-energy effect in b → sℓ+ℓ− transitions by means of non-vanishing values for

the couplings ye3 31, y
e
3 21, y

µ
3 32 and yµ3 22. On the other hand, following now Sec. 3.1.2,

we adopt the doublet LQ in order to explain the b → cτ ν̄ decays phenomenology, which

require the presence of the yτ2 23 and xτ2 33, with their product being imaginary as detailed

in requirement iii). We therefore allow the two Rτ
2 couplings to be complex.

The minimal set of non-vanishing couplings required by our analysis is therefore:

yτ2 =

 0 0 0

0 0 yτ2 23
0 0 0

 , xτ2 =

 0 0 0

0 0 0

0 0 xτ2 33

 ,

ye3 =

 0 0 0

ye3 21 0 0

ye3 31 0 0

 , yµ3 =

 0 0 0

0 yµ3 22 0

0 yµ3 32 0

 .

(5.3)

In a similar fashion to the previous scenario, we look now for the simultaneous zeros

of the couplings beta functions, as given in Sec. 4.3. In this case, two families of solutions

are found to be complying with requirements i) and iii) listed above, identified by which

of the two Rτ
2 couplings is purely imaginary, namely:

yτ2 23 xτ2 33 ye3 21 ye3 31 yµ3 22 yµ3 32
1.094 i 0.783 0.654 0.472 0.654 −0.472

1.094 0.783 i 0.654 0.472 0.654 −0.472
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These solutions are both characterized by the same sign ambiguities: for each of the

two Rτ
2 couplings both signs are allowed, while for the four Se

3 and Sµ
3 couplings an odd

number of them, namely either one or three, has to be negative, with the remaining ones

being positive. This means that both families of solution are composed by 32 different

scenarios each, distinguished by sign permutations.

The minimal scenario is not found to be phenomenologically viable in this configuration

as well. A maximal disagreement with requirement ii) is again present, with ye3 21y
e
3 31 =

−yµ3 22y
µ
3 32, invalidating an explanation to b→ sℓ+ℓ− data. Moreover, even if requirement

iii) is fulfilled, the FP values for the Rτ
2 couplings are not acceptable if one wants to address

anomalies in b → cτ ν̄ transitions: indeed, the product of the two couplings is well below

∼ 2 (in modulus), which is the value required to have a mass for the LQ not excluded by

direct searches, see Sec. 3.1.2.

We therefore move to inspect a more generalized scenario, where six NP fields are

allowed in the extension of the SM. In analogy of the three particle scenario, we allow only

the following couplings to be non-vanishing:

ye2 =

 0 0 0

ye2 21 0 0

0 0 0

 , yµ2 =

 0 0 0

0 yµ2 22 0

0 0 0

 , yτ2 =

 0 0 0

0 0 yτ2 23
0 0 0

 ,

xe2 =

 0 0 xe2 13
0 0 0

0 0 0

 , xµ2 =

 0 0 0

0 0 xµ2 23
0 0 0

 , xτ2 =

 0 0 0

0 0 0

0 0 xτ2 33

 ,

ye3 =

 0 0 0

ye3 21 0 0

ye3 31 0 0

 , yµ3 =

 0 0 0

0 yµ3 22 0

0 yµ3 32 0

 , yτ3 =

 0 0 0

0 0 yτ3 23
0 0 yτ3 33

 .

(5.4)

We find also in this generalized scenario two families of solution complying with re-

quirements i) and iii), according to which is the Rτ
2 coupling to assume imaginary values:

ye2 21 xe2 13 yµ2 22 xµ2 23 yτ2 23 xτ2 33 ye3 21 ye3 31 yµ3 22 yµ3 32 yτ3,23 yτ3 33
0.584 0.837 0.584 0.837 0.584 i 0.837 0.679 0.181 0.679 0.181 0.521 −0.472

0.584 0.837 0.584 0.837 0.584 0.837 i 0.679 0.181 0.679 0.181 0.521 −0.472

In a similar fashion to what observed in the previous Section, these solutions are

characterized by the same sign ambiguities: both signs are allowed for each of the R2

couplings, yielding 64 different configurations, while the sign has to be the same for the

product of both Se
3 and Sµ

3 couplings, respectively, and opposite for the product of Sτ
3 ones,

yielding 16 different configurations. Summarizing, each family of solutions is composed by

1024 distinct solutions due to sign permutations.

These found solutions share a similar phenomenology to the ones found in the general

case studied in Sec. 5.1. Indeed, requirement ii) is fulfilled since the pairs of couplings

(ye3 21, y
µ
3 32) and (ye3 31, y

µ
3 22) share the same IR FP, respectively: we therefore obtain that,
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also in this scenario, the low-energy LFU behaviour required to address b → sℓ+ℓ− data

can be ascribed to a FP origin. Moreover, the found values for the couplings imply again

a value for the LQs masses equal to MSe
3
∼ MSµ

3
∼ 10TeV and a prediction for Rνν̄

K(∗)

defined at Eq. (2.6), equal to Rνν̄
K(∗) ≃ 1.1, potentially appreciable at Belle II [48]. Finally,

in this scenario as well we observe an opposite behaviour in the tau sector compared to the

one observed for the light leptons, with the product of the tau couplings showing again an

opposite sign and a prediction for the NP effect in this sector equal to Cτ
9 (µb) = −Cτ

10(µb) ∼
0.8, again in the case of degenerate masses.

On the other hand, the situation in the b→ c sector is again different: the tau couplings

product reads here in both cases |yτ1 33xτ1 23| ≃ 0.5, again too small to reproduce the desired

phenomenology. It is nevertheless interesting to investigate, in this scenario as well, the

implications of taking values for the couplings above the FP solution. Indeed, taking for

both couplings a value in modulus of the order ∼
√
2, we can observe again the emergence

of a Landau pole, found this time at the scale µ ∼ 108GeV.

In conclusion, we observed that the study of IR FPs yield interesting phenomenological

implications when the SM is extended with the 6 scalar LQs Re
2, R

µ
2 , R

τ
3 , S

e
3, S

µ
3 and Sτ

3 .

In particular, the LFU required at the low scale for b→ sℓ+ℓ− transitions can be obtained

by the FP behaviours of the Se
3 and Sµ

3 couplings, whose masses are require to be at the

∼ 10TeV scale while no additional conditions are requested for the coupling values at the

high-scale. On the other hand, a value for the Rτ
3 couplings is required to be above the FP

solution when confronting with b → cτ ν̄, implying the emergence of an upper limit to the

LQU scale equal to MLQU ≲ 108GeV.

5.3 The S3 Extension

We conclude this Section by studying the FP solution of SM extensions of S3 LQs only, even

if in this scenario b→ cτ ν̄ data cannot be explained. Indeed, motivated by the findings of

Secs. 5.1 and 5.2, it is interesting to investigate whether the dynamical emergence of LFU

in the S3 contributions to b → sℓ+ℓ− transitions arises only in the presence of additional

LQs in the theory as well, or it is an exclusive feature of the triplet LQs.

Following the approach of the previous analyses, we start our study from the scenario

where only Se
3 and Sµ

3 are added to the theory, with non-vanishing values for the couplings

ye3 31, y
e
3 21, y

µ
3 32 and yµ3 22. The only found family of solutions complying with requirement

i) is listed below:

ye3 21 ye3 31 yµ3 22 yµ3 32
0.622 0.533 0.622 −0.533

These solutions share the same features of the scenarios studied in Secs. 5.1 and 5.2,

when only two copies of the triplet LQ were allowed. In particular, once again an odd

number of minus signs is allowed for the four couplings, yielding to 8 different solutions

distinguished by sign permutations. Moreover, requirement ii) is again not fulfilled, due

to the emerging feature ye3 21y
e
3 31 = −yµ3 22y

µ
3 32.
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Moving on to the generalized case where the Sτ
3 LQ is included as well, the solutions

following requirements i) and ii) are:

ye3 21 ye3 31 yµ3 22 yµ3 32 yτ3 23 yτ3 33
0.760 0.189 0.191 0.759 0.639 −0.452

0.189 0.760 0.759 0.191 0.639 −0.452

Also these solutions are qualitatively similar to the ones studied in the previous sec-

tions, when all three copies of S3 were allowed. Indeed, each family of solutions is charac-

terized by the same sign ambiguity, with the sign for both Se
3 and Sµ

3 couplings products

having to be the same, respectively, and opposite for Sτ
3 one. Moreover, requirement ii) is

again dynamically fulfilled and masses of the order MSe
3
∼ MSµ

3
∼ 10TeV are predicted.

We therefore find that, in order to obtain this feature, the additional presence of singlet

or doublet LQs in the theory is not required. It is worth to mention that, if one would

employ a different version of requirement ii) requesting, e.g., universality among electrons

and taus, those two sectors would be the ones having couplings with the same product,

with the product of muon ones being different and opposite in sign.

6 Conclusions

In this paper, we studied the implications of RGE effects to LQ couplings to fermions in

selected BSM scenarios. A popular way to address the recent discrepancies observed in

several observables in the decays b→ cτ ν̄ and b→ sℓ+ℓ− with ℓ = e, µ consists of extending

the SM sectors by means of scalar LQs. In particular, the minimal subset of required

new fields includes the presence of triplet LQs Se
3 and Sµ

3 , coupled with equal strength

to electrons and muons, respectively, and of either the singlet LQ Sτ
1 or the doublet LQ

Rτ
2 coupled to taus. Indeed, the former pair of LQs are required to explain anomalies in

b → sµ+µ− without violating the reanalysed results of the LFUV ratios RK(∗) ∼ 1, while

the latter LQ is necessary to address anomalies in the b→ cτ ν̄ sector.

While these new fields are expected to live at scales between a few and a few tens of

TeV, nothing forbids a priori the presence of a large mass gap between MLQ and MQLU,

the scale where the LQs are generated within a theory of quark-lepton unification. The

presence of this large scale separation therefore implies the possibility that the pattern of

values of the LQ Yukawa couplings observed at the B meson decay scale (when employing

this kind of SM extensions to address the anomalous data) has a dynamical origin. In

particular, the possibility of such an explanation of the LFU pattern inferred for the Se
3

and Sµ
3 couplings from RK(∗) ∼ 1 is tantalizing. To this end, we studied the IR FP solutions

for the LQs couplings beta functions and inspected their phenomenology using low-energy

flavour data.

We found interesting phenomenological solutions in several scenarios. In particular,

every time that the SM is extended by three triplet LQs coupled each to a specific lepton,

namely Se
3, S

µ
3 and Sτ

3 , we find IR fixed point solutions for which the product of Se
3 couplings

is equal to the one relative to Sµ
3 couplings, so that electron-muon universality can arise
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dynamically. Such universality is therefore independent from the values assumed by the

couplings at the high scale, as shown in an illustrative example in Fig. 3, and occours

both when the triplet LQs are the only fields added to the SM, or come in pair with

either three singlet LQs or three doublet ones, namely Se
1, S

µ
1 and Sτ

1 , or R
e
2, R

µ
2 and Rτ

2 ,

respectively. Moreover, a prediction for the mass of the triplets LQs is obtained, equal

to MSe
3
∼ MSµ

3
∼ 10TeV, together with a 10% enhancement in Rνν̄

K(∗) . While LQs with

these masses are beyond the reach of current collider searches, such an increase in Rνν̄
K(∗)

is within the reach of the Belle II experiment. Furthermore, electron-muon universality

implies a IR FP for the product of Sτ
3 couplings with opposite sign, enhancing Cτ

9 = −Cτ
10

over Ce,µ
9 = −Ce,µ

10 .

On the other hand, a dynamical origin has not been found for the couplings required

to address anomalies in b → cτ ν̄ decays. Indeed, both in the singlet and in the doublet

scenario the IR FP for the relevant couplings have been always found to be below the

implied values from low-energy data. Nevertheless, such findings are of phenomenological

interest as well, since couplings values above the IR FP imply the emergence of a Landau

pole at the scale µ ∼ 1011GeV or µ ∼ 108GeV, depending on whether the SM is extended

by scalar or doublet LQs, respectively. This scale can therefore be interpreted as an upper

limit on MQLU, giving an upper bound on the energy scale where quark-lepton unification

should occour.
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