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Abstract

We consider light-fermion three-loop corrections to gg → HH using forward scat-
tering kinematics in the limit of a vanishing Higgs boson mass, which covers a large
part of the physical phase space. We compute the form factors and discuss the
technical challenges. The approach outlined in this letter can be used to obtain the
full virtual corrections to gg → HH at next-to-next-to-leading order.
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1 Introduction

The simultaneous production of two Higgs bosons is a promising process to obtain infor-
mation about their self-coupling in the scalar sector of the Standard Model and beyond.
Its study will be of primary importance after the high-luminosity upgrade of the Large
Hadron Collider and thus it is important that there are precise predictions from the theory
side.

The cross section for Higgs boson pair production is dominated by the gluon-fusion pro-
cess, which is loop-induced [1]. Thus, at next-to-leading (NLO) order the virtual correc-
tions require the computation of two-loop four-point function with massive internal top
quarks. There are numerical results which take into account the full dependence of all
mass scales [2–4]. Furthermore, there are a number of analytic approximations which
are valid in various limits, which cover different parts of the phase space. Particularly
appealing approaches have been presented in Refs. [5, 6] where the expansion around the
forward-scattering kinematics has been combined with the high-energy expansion and it
has been shown that the full phase space can be covered. Thus, these results are attractive
alternatives to computationally expensive purely numerical approaches.

Beyond NLO, current results are based on expansions for large top quark masses. Results
in the infinite-mass limit are available at NNLO [7–9] and N3LO [10, 11] and finite 1/mt

corrections have been considered at NNLO in Refs. [12–14].

In Ref. [15] the renormalization scheme dependence on the top quark mass has been
identified as a major source of uncertainty of the NLO predictions. In general, such
uncertainties are reduced after including higher-order corrections, i.e., virtual corrections
at NNLO including the exact dependence on the top quark mass. This requires the
computation of 2 → 2 scattering amplitudes at three-loop order with massive internal
quarks; this is a highly non-trivial problem. Current analytic and numerical methods
are not sufficient to obtain results with full dependence on all kinematic variables, as is
already the case at two loops. However, after an expansion in the Mandelstam variable t
(see Refs. [5, 6, 16]) and the application of the “expand and match” [17, 18] method to
compute the master integrals, one obtains semi-analytic results which cover a large part of
the phase space. Such a result allows the study of the renormalizations scheme dependence
at three-loop order. In this letter we outline a path to the three-loop calculation and
present first results for the light-fermionic corrections.

Let us briefly introduce the kinematic variables describing the 2 → 2 process, with mass-
less momenta q1 and q2 in the initial state and massive momenta q3 and q4 in the final
state. It is convenient to introduce the Mandelstam variables as

s = (q1 + q2)
2 , t = (q1 + q3)

2 , u = (q1 + q4)
2 , (1)

where all momenta are incoming. For gg → HH we have

q21 = q22 = 0 , q23 = m2
H , q24 = m2

H , (2)
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and the transverse momentum of the final-state particles is given by

p2T =
u t−m4

H

s
. (3)

For Higgs boson pair production one can identify two linearly independent Lorentz struc-
tures

Aµν
1 = gµν − 1

q12
qν1q

µ
2 ,

Aµν
2 = gµν +

1

p2T q12
(q33q

ν
1q

µ
2 − 2q23q

ν
1q

µ
3 − 2q13q

ν
3q

µ
2 + 2q12q

µ
3 q

ν
3 ) , (4)

where qij = qi · qj, which allows us to introduce two form factors in the amplitude

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
abX0s (F1A

µν
1 + F2A

µν
2 ) . (5)

Here a and b are adjoint colour indices and X0 = GF/2
√
2 × TFαs(µ)/(2π) with TF =

1/2. GF is Fermi’s constant and αs(µ) is the strong coupling constant evaluated at the
renormalization scale µ. We write the perturbative expansion of the form factors as

F = F (0) +

(
αs(µ)

π

)
F (1) +

(
αs(µ)

π

)2

F (2) + · · · , (6)

and decompose F1 and F2 into “triangle” and “box” form factors

F
(k)
1 =

3m2
H

s−m2
H

F
(k)
tri + F

(k)
box1 ,

F
(k)
2 = F

(k)
box2 . (7)

In this notation F
(k)
box1 and F

(k)
box2 contain both one-particle irreducible and reducible con-

tributions. The latter appear for the first time at two-loop order; exact results for the
so-called “double-triangle” contributions can be found in [19].

Analytic results for the leading-order form factors are available from [1, 20] and the two-
loop triangle form factor has been computed in Refs. [21–23]. The main focus of this letter

is on the light-fermionic contribution to the three-loop quantities F
(2)
box1 and F

(2)
box2 for t = 0

and mH = 0. Expansions around the large top quark mass limit of F
(2)
tri , F

(2)
box1 and F

(2)
box2

can be found in Ref. [13] and results for F
(2)
tri valid for all s/m2

t have been computed in
Refs. [24–27].

We decompose the three-loop form factors as

F (2) = nlTFF
(2),nl = nlTF

(
CFF

FL + CAF
AL

)
+ . . . , (8)

where the ellipses stand for further colour factors which we do not consider here. Sample
Feynman diagrams contributing to F FL and FAL are shown in Fig. 1.
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Figure 1: Sample Feynman diagrams. Curly lines denote gluons, dashed ones Higgs
bosons, while thin (thick) lines are massless (top) quarks.

In this letter we consider t = 0 and mH = 0, i.e. the leading term in an expansion around
t → 0 and mH → 0. This constitutes a crude approximation, however, in a large part
of the phase space it contributes a major part of the corrections. For example, choosing
t = 0 and mH = 0 at two loops (NLO), at a transverse momentum of pT = 100 GeV the
form factor Fbox1 deviates from its exact value by at most 30%, depending on the value of√
s considered. This means that more than two thirds of the form factor value are covered

by the t = 0, mH = 0 approximation. Furthermore, we concentrate on the one-particle
irreducible contributions. We note that Fbox2 vanishes for t = 0. More details are given
below in Section 3.

We present here results for the light-fermionic (“nl”) terms and show that this approach
can be used to obtain the three-loop virtual corrections to gg → HH. The remaining con-
tributions contain many more integral topologies and more complicated integrals, which
have to be integration-by-parts (IBP) reduced to master integrals.

In the next section we outline the techniques used for the calculations and discuss the
results in Section 3. In Section 4 we conclude and provide an outlook for the computation
of the full corrections.

2 Technical Details

The basic philosophy of our calculation has already been outlined in Ref. [6], where the
two-loop amplitude for gg → HH has been considered in the small-t and high-energy
limit and it has been shown that the combination of both expansions covers the whole
phase-space. The starting point for both expansions is the amplitude expressed in terms
of the same master integrals which are obtained from a reduction problem which involves
the dimensional variables s, t and mt.

1 Using currently available tools such a reduction

1A Taylor expansion in mH in a first step eliminates the Higgs boson mass from the reduction problem.
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is not possible at three loops. To avoid such an IBP reduction, one can try to expand the
unreduced amplitude in the respective limit. The high-energy expansion is obtained via
a complicated asymptotic expansion which involves a large number of different regions.
On the other hand, the limit t → 0 leads to a simple Taylor expansion which can be
easily realized at the level of the integrands. Furthermore, the expansion around forward-
scattering kinematics covers a large part of the physically relevant phase space [5].

Our computation begins by generating the amplitude with qgraf [28], and then using
tapir [29] and exp [30, 31] to map the diagrams onto integral topologies and convert
the output to FORM [32] notation. The diagrams are then computed with the in-house
“calc” setup, to produce an amplitude in terms of scalar Feynman integrals. These tools
work together to provide a high degree of automation. We perform the calculation for
general QCD gauge parameter which drops out once the amplitude is expressed in terms
of master integrals. This is a welcome check for our calculation.

The scalar integrals can be Taylor expanded in mH at this point, as done at two loops
in Refs. [6, 33, 34], however at three loops in this letter we keep only the leading term in
this expansion, i.e., set mH = 0.

The next step is to expand the amplitude around the forward kinematics (t → 0) at
the integrand level. This is implemented in FORM by introducing qδ = q1 + q3 in the
propagators and expanding in qδ to the required order. Note that q2δ = t. After treating
the tensor integrals, where qδ appears contracted with a loop momentum, we need to
perform a partial-fraction decomposition to eliminate linearly dependent propagators.
The partial fractioning rules are produced automatically by tapir when run with the
forward kinematics (q3 = −q1) specified

2. Note that although for the present publication
we compute the “t = 0 contribution”, we must properly expand in qδ to produce the
amplitude to order t0 due to inverse powers of t appearing in the projectors. These
inverse powers ultimately cancel in the final result. This procedure yields amplitudes for
Fbox1 and Fbox2 in terms of scalar Feynman integrals which belong to topologies which
depend only on s and mt (and not on t).

At this point the amplitudes are written in terms of 60 integral topologies, however these
are not all independent; they can be reduced to a smaller set by making use of loop-
momentum shifts and identification of common sub-sectors. In one approach we find
these rules with the help of LiteRed [36], which identifies a minimal set of 28 topologies.
In a second approach we use Feynson [37] to generate these maps and end up with
53 topologies. The difference in the number of topologies is due to LiteRed mapping
topology sub-sectors, while we used Feynson only at the top level. When considering the
full amplitude, i.e., not just the light-fermionic corrections, only the Feynson approach
is feasible for performance reasons. It is also possible to use Feynson to find sub-sector
mappings, which we will also use when considering the full amplitude (which is written
initially in terms of 522 integral topologies).

2In an alternative approach, we have also used LIMIT [35] to generate the partial fractioning rules.
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The amplitude is now ready for a reduction to master integrals using Kira [38] and
FireFly [39, 40]. The most complicated integral topology took about a week on a 16-
core node, using around 500GB of memory. After minimizing the final set of master
integrals across the topologies with Kira, we are left with 177 master integrals to compute.
Comparing results obtained via the LiteRed and Feynson topology-mapping approaches
reveals one additional relation within this set which is missed by Kira, however, we
compute the set of 177 master integrals which was first identified.

To compute the master integrals, we first establish a system of differential equations
w.r.t. x = s/m2

t . Boundary conditions are provided in the large-mt (x → 0) limit: we
prepare the three-loop integrals in the forward kinematics, and pass them to exp which
automates the asymptotic expansion in the limit that m2

t ≫ s. This leads to three-loop
vacuum integrals, as well as products of one- and two-loop vacuum integrals with two-
and one-loop massless s-channel 2 → 1 integrals, respectively. This expansion leads to
tensor vacuum integrals, which our “calc” setup can compute up to rank 10. We compute
the first two expansion terms in s/m2

t for each of the 177 master integrals. To fix the
boundary constants for the differential equations we only need about half of the computed
coefficients; the rest serve as consistency checks.

The differential equations are then used to produce 100 expansion terms for the forward-
kinematics master integrals in the large-mt limit which we use to compute Fbox1. Since
these results are analytic in the large-mt limit we can compare with the results obtained
in Ref. [13] in the limit t = 0, and find agreement.

The final step is to use the “expand and match” approach [17, 18] to obtain “semi-
analytic” results which cover the whole s range. Note that this approach properly takes
into account the threshold effects at the point s = 4m2

t . “Semi analytic” means that our
final results consist of expansions around a set of x values, where the expansion coefficients
are available only numerically. Starting from the (analytic) expansion around x = 0, each
expansion provides numeric boundary conditions to fix the coefficients of the subsequent
expansion. Each expansion is only ever evaluated within its radius of convergence.

3 Three-loop light-fermionic contributions to Fbox1

In this section we present the light-fermionic three-loop corrections to the form factor Fbox1

for Higgs boson pair production. We note again that in our t = 0,mH = 0 approximation,
Fbox2 vanishes; we observe this after IBP reduction and writing the result in terms of the
minimal set of master integrals.

We obtain the renormalized form factors after the renormalization of the parameters αs

and mt and the wave functions of the gluons in the initial state. We then express our
results in terms of α

(5)
s and treat the remaining infrared divergences following Ref. [41].3

3For more details see Section 4 of Ref. [13] where analytic large-mt results for Fbox1 and Fbox2 have
been computed at three-loop order.

6



300 400 500 600 700 800 900 1000
s (GeV)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Re
(F

(0
)

bo
x1

)

full, Re
t = 0, mH = 0, Re
t5, mH = 0, Re
pT = 100 GeV

300 400 500 600 700 800 900 1000
s (GeV)

12

10

8

6

4

2

0

2

4

Re
(F

(1
)

bo
x1

)

t5, m4
H, Re

t = 0, mH = 0, Re
t5, mH = 0, Re
pT = 100 GeV

Figure 2: The real part of Fbox1 at one and two loops, for pT = 100 GeV. The t = 0,
mH = 0 approximation is shown in red, and the t5,mH = 0 approximation in blue. At
one loop we compare with the exact result with full mH and t dependence, in black. At
two loops, in lieu of an exact result, we compare with the t5,m4

H approximation, in black.

This leads to finite results for Fbox1. In the following we present numerical results. For
the top quark and Higgs boson masses, we use the values mt = 173.21 GeV and mH =
125.1 GeV.

Let us first discuss the one- and two-loop results. In Fig. 2 we show the real part of Fbox1

for pT = 100 GeV. In red, we show the approximation that we use at three loops, i.e.,
t = 0 and mH = 0. In black, we show curves with the full dependence on t and mH . At
one loop this is the fully exact result, but at two loops this is an expansion to order t5 and
m4

H ; we have shown in Ref. [6] that this provides an extremely good approximation of the
(unknown) fully exact result. We observe that the t = 0, mH = 0 curves approximate the
“exact” results with an accuracy of about 30% in the region below about

√
s = 500 GeV.

For higher energies the approximation works better.

In Fig. 2 we also show blue curves which include expansion terms up to t5, but still only
the leading term in the mH expansion. These curves lie very close to the red t = 0,
mH = 0 curves, which show that for pT ≈ 100 GeV it is more important to incorporate
additional terms in the mH expansion than in the t expansion. For higher values of pT we
expect that higher t expansion terms become more important. This can be seen in Fig. 3
where results of the two-loop form factor are shown for various values of pT . The panels
also show that a large portion of the cross section is covered by the t = 0 approximation,
even for pT = 200 GeV where, for lower values of

√
s, about 50% are captured by the red

curve.

In Fig. 4 we show the new results obtained in this letter. The plots show both the real (in
red) and imaginary (in green) parts of the light-fermionic part of Fbox1, both separated
into the CF and CA colour factor contributions, and their combination. We observe a
strong variation of the form factor around the top quark pair threshold region. This
behaviour is not caused by a loss of precision of our semi-analytic expansions around this
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Figure 3: Two-loop results for various values of pT . The meaning of the curves is described
in the caption to Fig. 2. Note that the red curves are independent of pT and thus they
are identical in all panels.

threshold; indeed Fbox1 is finite in the limit s → 4m2
t , however whereas at two loops we

observe leading logarithmic contributions which go like v log v, where v =
√
1− 4m2

t/s, at
three loops we find an additional power of log v which is responsible for the large variation
around this point.

The numerical value of the light-fermionic contribution to Fbox1 at three-loops exceeds
the size of the two-loop form factor by almost an order of magnitude. Although this is
compensated by the additional factor of αs/π, this hints at sizeable three-loop corrections.
However, for a final conclusion, the remaining diagrams need to be computed. The full
computation will also allow a study of the top quark mass scheme dependence. These
issues will be addressed in a future publication.
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box1 as a function
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√
s.

4 Conclusions

The computation of three-loop corrections to 2 → 2 scattering processes with massive
internal particles is a technically challenging task. Currently-available techniques are
most likely not sufficient to obtain analytic or numerical results without applying any
approximation. In this letter we apply the ideas of Refs. [5, 6, 16] to gg → HH and
show that three-loop corrections can be obtained. We concentrate on the light-fermionic
three-loop contributions which is a well-defined and gauge-invariant subset. The obtained
results are valid for t = 0 and mH = 0 which approximates the full result to 30% or better
for pT ≈ 100 GeV.

The approach outlined in this letter can also be used to compute the remaining colour
factor contributions, which are needed to study the overall impact of the three-loop virtual
corrections and also the top quark mass renormalization scheme dependence.

In addition to the remaining colour factors, we ultimately aim to compute the t1m2
H

approximation which would address the 30% error discussed in Section 3, improve the
approximation for higher values of pT , and provide a non-zero value for Fbox2. To compute
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these terms will require significantly more CPU time and, most likely, improvements
to IBP reduction software in order to efficiently reduce the large numbers of integrals
produced by the expansions.
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Rev. D 103 (2021) no.5, 056002 [arXiv:2008.11626 [hep-ph]].
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