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Proto-neutron stars formed during core-collapse supernovae are hot and dense environments that
contain a sizable population of muons. If these interact with new long-lived particles with masses
up to roughly 100 MeV, the latter can be produced and escape from the stellar plasma, causing
an excessive energy loss constrained by observations of SN 1987A. In this article we calculate the
emission of light dark fermions that are coupled to leptons via a new massive vector boson, and
determine the resulting constraints on the general parameter space. We apply these limits to the
gauged Lµ − Lτ model with dark fermions, and show that the SN 1987A constraints exclude a
significant portion of the parameter space targeted by future experiments. We also extend our
analysis to generic effective four-fermion operators that couple dark fermions to muons, electrons,
or neutrinos. We find that SN 1987A cooling probes a new-physics scale up to ∼ 7 TeV, which is
an order of magnitude larger than current bounds from laboratory experiments.

I. INTRODUCTION

Understanding the fundamental nature of Dark Mat-
ter (DM), which comprises ∼ 84% of the matter of the
Universe [1], has become one of the most pressing prob-
lems in contemporary physics (see Ref. [2] for a review).
A wide class of theoretical models describe DM as new
light (sub-GeV) particles, which couple only very weakly
to the particles of the Standard Model (SM). The sim-
plest possible interactions between these two sectors have
been systematically classified within the so-called portal
framework [3–20], giving rise to several benchmark sce-
narios for SM interactions with a dark sector that can be
tested experimentally (see Refs. [21–25] for reviews).

Interestingly, if the dark particles are sufficiently light
to be produced in stellar plasmas, then their emission
modifies the standard picture of stellar evolution and
stringent constraints on SM interactions with the dark
sector can be obtained also from astrophysical observa-
tions [26–35]. Ordinary stars yield strong constraints on
DM coupled to electrons and photons [30], while the ex-
treme temperatures and densities reached in the proto-
neutron stars (PNS) formed during core-collapse super-
novae (SN) allow one to probe also DM couplings to nu-
cleons [31, 32, 36–50], pions [33, 34, 51–54], hyperons [55–
57] and muons [35, 58–60]. Most of these analyses focus
on direct production and emission of light dark bosons
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(such as axions or dark photons) from the stellar medium.
In this article we aim to study instead the case where

these bosons merely serve as massive mediators between
dark fermions and SM leptons; i.e. they serve only as a
portal to the dark sector, which allows the production of
sufficiently light dark fermions in stellar plasmas. Promi-
nent examples of this scenario are gauged lepton flavor
models such as U(1)Lµ−Lτ

, which contain a light massive
gauge boson [61–73] and a dark sector charged under the
corresponding group [74–84]. This type of scenarios has
attracted much attention as they can simultaneously ad-
dress the (g − 2)µ anomaly [85–91], provide a DM can-
didate with the right abundance, and contribute to the
effective number of neutrino species, alleviating the Hub-
ble constant tension [1, 92–95]. Although we will present
novel constraints on this scenario from SN 1987A later
on, we perform our analysis within a more general setup.

For definiteness, let us consider a vector mediator Z ′

with mass mZ′ and couplings to SM leptons and dark
fermions χ with mass mχ,

L ⊃ Z ′
ν

(
gℓℓγ

νℓ + gνℓ
νℓγ

νPLνℓ + gχχγ
νχ
)
, (1)

where ℓ = e, µ, τ , and gℓ, gνℓ
and gχ are generic cou-

plings. Assuming that the dark fermions are sufficiently
light (mχ ≲ 150 MeV), we will show in the following
that their production from the PNS in SN 1987A leads
to stringent constraints on their couplings to SM leptons.
For the benchmark U(1)Lµ−Lτ

model, this excludes large
regions of the parameter space targeted by future exper-
iments [21, 96–104].

While our analysis is valid for any mass of the Z ′, we
can integrate it out and describe its contribution with an
effective four-fermion operator, if mZ′ is much larger than
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the PNS’s temperature and chemical potentials. This
leads to significant simplifications in the analysis, and
allows us to extend it to derive SN 1987A bounds on
completely generic interactions of the dark sector with
leptons through heavy portal mediators. In the heavy
Z ′ limit, our calculations are in fact analogous to the
ones necessary to study the SM production of neutrinos
from leptons in stellar plasmas, which have received much
attention over the past half century, since the seminal
works in the 1960’s [105–121] (see also Refs. [111, 122–
124] for production of light dark fermions from heavy new
physics). On the other hand, in case the Z ′ is a light and
narrow state, the calculation is similar to the on-shell
production of massive vector bosons coupled to leptons
in the plasma [60, 125–128] (see also Refs. [35, 58, 60, 129]
for massive axions).

In this article we focus on the portal interactions with
muons, but we also study neutrinos, which could be nat-
urally linked to muons via SU(2)L. Electrons however
form a highly degenerate and ultra-relativistic plasma in
the PNS, which might lead to important medium effects
in the electron and photon dispersion relations, requiring
the inclusion of other production mechanisms not rele-
vant for muons and neutrinos. With this caveat in mind,
our calculations are easily extensible to electrons, gen-
eralizing and updating the pioneering work of Ref. [123]
and improving the results presented in Ref. [124].

The rest of the paper is organized as follows. In Sec. II
we outline the classical SN argument to constrain new
exotic cooling agents using the neutrino flux observed
from SN 1987A. Besides describing the general theoret-
ical framework, we specify the SN simulations that we
employ in our numerical analysis. In Sec. III we describe
and compute the rates of the main emission mechanisms
induced by the model in Eq. (1). We focus on extracting
the main physical features of the rates using different ap-
proximations in the various regimes of the Z ′ mass, and
on deriving analytical estimates. However, our final re-
sults rely on exact numerical computations whose details
are deferred to Appendices. In Sec. IV, then, we imple-
ment these calculations of the rates in the SN simulations
and derive the constraints on the parameter space of the
Z ′ model in Eq. (1). We also generalize this analysis in
terms of effective operators in the heavy Z ′ limit, and
to one particular realization of the model arising from a
Lµ − Lτ gauged symmetry. Finally, in Sec. V we sum-
marize the results of our paper and close with a brief
outlook.

II. SUPERNOVA COOLING

In the dense and hot environment within proto-neutron
stars [130–133] neutrinos become trapped and a ther-
mal population of muons is predicted to arise [134, 135].
New light dark particles that couple to leptons, e.g. via
the interactions in Eq. (1), can be produced efficiently
in the stellar plasma, leading to a significant loss of en-

ergy if they can escape from the PNS. The corresponding
dark luminosity Lχ is then subject to the classical bound
Lχ ≲ Lν at 1 s post-bounce, where Lν is the neutrino
luminosity [30, 39, 40]. This limit is obtained from the
observation of a neutrino pulse over ∼ 10 s [136, 137] dur-
ing SN 1987A [138–140], which is in accordance with the
predictions of the standard theory of core-collapse SN
(see Refs. [58, 141, 142] for a critical reappraisal of this
limit1).

Here, we apply this argument to scenarios where light
dark fermions couple to leptons with interactions such as
those in Eq. (1). One needs to distinguish two regimes
based on the mean free path (MFP) of the dark fermions
in the plasma or, equivalently, the strength of the portal
interactions. If the dark particles are very weakly coupled
(or the MFP is much larger than the radius of the PNS)
then they free stream out from the SN once produced,
whereas for large couplings (or MFP much shorter than
the radius of the PNS) they thermalize with the medium
and get trapped inside of the PNS.

In the free-streaming regime the general expression for
the total energy-loss rate per unit volume, Q, for a given
emission process is

Q =

∫ [ ∏
init, i

d3pi
(2π)32Ei

fi

][ ∏
final, j

d3pj
(2π)32Ej

(1 ± fj)
]

× (2π)4δ4(
∑
i

pi −
∑
j

pj)
∑
spins

|M|2Eχ . (2)

These are thermal integrals over the phase space of all the
initial- and final-state particles weighted by their number
density distributions fi and the Pauli blocking or Bose
enhancement factors (1∓ fj), respectively. Furthermore,
|M|2 is the the squared matrix element of the given pro-
duction process and Eχ is the total energy carried away
by the dark particles. In the calculations of the free-
streaming regime, one conventionally uses fχ = 0 for the
new particles, because their occupation numbers inside
the PNS are very low and not thermalized by assump-
tion.

In the trapping regime, on the other hand, the dark-
sector particles are in thermal equilibrium with the
plasma and they are emitted from a surface with radius
rχ (dark sphere) following a law analogous to the one of
the black body radiation,

Ltrap
χ =

gχ
π
r2χT

4
χ

∫ ∞

xm

dx
x2
√

x2 − x2
m

ex + 1
, (3)

where gχ is the number of degrees of freedom of the χ
particle (gχ = 2 for massive dark fermions), xm = mχ/Tχ

1 It has been also recently noted in Ref. [143] that there is a co-
herent disagreement between the results of state-of-the-art simu-
lations and the observed neutrino signal of SN 1987A during the
first second.
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and Tχ = T (rχ) is the temperature of the dark sphere.
The radius rχ is defined, as is conventional in astro-
physics [144–146], through the optical depth τχ(r), by
requiring

τχ(rχ) =

∫ ∞

rχ

dr

λ(r)
=

2

3
, (4)

where λ(r) is a suitable spectral average of the dark
fermion’s MFP at a radius r. In this work, we use a
“naive” thermal average

λ(r) = ⟨λ(r, pχ)⟩χ ≡ gχ
nχ(r)

∫
d3pχ
(2π)3

λ(r, pχ)

eEχ/T (r) + 1
, (5)

for computational simplicity 2 (see Appendix A for our
definitions of thermal averages). The energy-dependent
MFP λ(r, pχ) is related to the total rate of interaction of
a dark-sector particle in the medium, Γχ = vχ/λ(r, pχ),
through its velocity vχ = pχ/Eχ.

The contribution to Γχ of a given process with a bunch
of target particles b colliding with χ in the initial state is
defined through

Cb
abs = gχ

∫
d3pχ
(2π)3

fχΓb
χ . (6)

The quantity Cabs is the collision operator describing the
absorption rate per unit volume of the medium

Cb
abs =

∫ [ ∏
init, i

d3pi
(2π)32Ei

fi

][ ∏
final, j

d3pj
(2π)32Ej

(1 ± fj)
]

× (2π)4δ4(
∑
i

pi −
∑
j

pj)
∑
spins

|M|2] , (7)

which uses the same definitions as in Eq. (2), except for
|M|2 which is now the squared matrix element of the
given absorption process3.

For the numerical analyses of this paper we use SN
simulations including muons presented in Ref. [58] and
whose radial profiles for the relevant quantities are re-
ported in [147]. Our fiducial results are obtained using
the simulation labeled as SFHo-18.80, which reaches the
lowest temperatures and, therefore, will lead to the most
conservative limits on the dark luminosity (at 1 s post-
bounce). The upper bound is set by the neutrino lumi-
nosity calculated within the same simulation, which for

2 We have checked that other averages, such as the conventional
Rosseland MFP [144–146], give very similar results.

3 Denoting Γours for our definition, the standard approach in
the literature [35] is to work in terms of emission rates ΓE =
gχfχΓours. However, one then has to use Boltzmann-equation
arguments to argue which rate has to be used for absorptive pro-
cesses, leading to the reduced absorption rate ΓA. The definition
Γours is chosen such that Γours = Γb

χ = nb⟨σv⟩b, which naturally
leads to Γours = ΓA (see Appendix A).

SFHo-18.80 is given by4

Lχ ≤ Lν = 5.7 × 1052 erg s−1 . (8)

For a rough estimate of the systematic uncertainties re-
lated to SN modeling, we will also show the more strin-
gent limits obtained from using the hotter SFHo-20.0
simulation, which gives Lχ ≤ 1.0 × 1053 erg s−1. In the
free-streaming regime, the dark luminosity is obtained as
a volume integral of Eq. (2), Lχ =

∫
QdV , while in the

trapping regime we use Eq. (3).
Finally, it will be useful to estimate the contributions

to the dark luminosity of the different processes to un-
derstand their relative importance. For this, we define
“typical PNS conditions” as those at 1 s post-bounce and
at a radius ≈ 10 km. This region dominates the volume
emission in Lχ and is representative of the bounds in
the free-streaming regime. Using the simulation SFHo-
18.80 [147], this approximately corresponds to:

Typical PNS conditions

T = 30 MeV, ρ = 2 × 1014 g cm−3,

µµ = 100 MeV, µνe
= 20 MeV,

µνµ = −10 MeV, µe = 130 MeV,

Yµ = 0.026, Ye = 0.12.

(9)

Here T denotes the temperature, ρ the density, µl the
chemical potential of the lepton l and Yℓ is the number
density fraction of the charged lepton ℓ relative to the
one of baryons. For the Yℓ we quote the results derived
from the rounded temperature and chemical potentials in
Eq. (9) and, therefore, they are slightly different to those
reported in [147]. Let us stress again that Eq. (9) will be
only used for numerical estimates, while our final results
and constraints on the models will be obtained using the
full radial profiles of all relevant thermodynamical quan-
tities.

III. PRODUCTION AND ABSORPTION RATES

There are two main production mechanisms of χχ̄ pairs
from muons and neutrinos in SN (see top and bottom
panel of Fig. 1): (i) Annihilation µ−µ+ → χχ̄ and νℓν̄ℓ →
χχ̄; (ii) photoproduction γµ− → µ−χχ̄. We do not con-
sider bremsstrahlung processes, µ−p → µ−pχχ̄, because
they are suppressed with respect to photo-production
(or semi-Compton production) of (pseudo)scalars and
Z ′ [35, 58, 60].

4 We use the total co-moving neutrino luminosities reported in the
simulations at the radius of the neutrino-sphere ∼ 16 km. We
thank R. Bollig and H-. T. Janka for facilitating us the necessary
data to make these estimates. See also Ref. [35].
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Note also that this is not generally true for produc-
tion from electrons because they are ultra-relativistic and
form a highly degenerate system that suppresses pho-
toproduction compared to bremsstrahlung and annihila-
tion [30]. Moreover, there are important plasma effects
which, for example, dress the electron with an effective
mass m∗

e ∼ 10 MeV and give rise to pseudo-particle ex-
citations that need to be taken into account in a realistic
analysis (see e.g. Ref. [129] for the emission of massive
axions from electrons in SN). Nonetheless, the calcula-
tions we present in this work can be easily extended to
electrons and compared with previous literature where
all these effects have been neglected [123, 124]. We will
estimate some of them below in Sec. III C.

In case of absorption, there are the inverse processes
µ−χχ̄ → γµ− and χχ̄ → µ−µ+, whose rates are related
by detailed balance to those of the photoproduction and
annihilation production, respectively, provided that the
χ and χ̄ particles reach thermal equilibrium. In addi-
tion, other scattering processes may contribute to the
diffusion and energy transport in the trapping regime,
such as χµ− → χµ− and χνℓ → χνℓ (see middle panel of
Fig. 1), or processes in the dark sector such as χχ̄ → χχ̄.

In Appendices B and C we provide the cross sections
for all relevant 2 → 2 and 2 → 3 processes needed to
calculate the energy-loss and absorption rates. In the
following, we discuss in detail the contributions of the
annihilation and photoproduction topologies.

A. Annihilation

The energy-loss rate per unit volume in Eq. (2) for
µ−µ+ → χχ̄ annihilation can be simplified to

Q =
g2µ

16π4

∫ ∞

mµ

dE+

∫ ∞

mµ

dE− (E+ + E−) p+p−f+f−Is .

(10)

In this equation, gµ are the muon’s spin degrees of free-
dom, E−(+) denote the muon (anti-muon) energy in the
PNS rest frame, p± are the absolute values of their 3-

momenta, p± ≡
√
E2

± −m2
µ, and f± ≡ f±(E±) =

1/(e(E±±µ)/T + 1) are their Fermi-Dirac distributions in
the medium. The function Is is a (dimensionless) an-
gular integral over the annihilation cross section σ(s) =
σ(µ+µ− → χχ)

Is =

∫
d cos θ s

√
1 − 4m2

µ/s σ(s) , (11)

which depends on the colliding angle θ between the
muon and anti-muon through the Mandelstam variable
s in the PNS frame, s = 2

(
m2

µ + E+E− − p+p− cos θ
)
.

The cross section is physical only above the 2-particle
threshold which imposes the kinematic constraint s ≥
4 max(m2

χ,m
2
µ) in the angular integral.

ℓ

ℓ̄

χ

χ̄

ℓ

χ

ℓ

χ

ℓ

γ

ℓ ℓ
χ̄

χ

FIG. 1. Most relevant ℓ − χ processes for supernova cooling
where ℓ is a charged lepton. Top-to-bottom panels repre-
sent annihilation, scattering and photoproduction processes,
respectively. Annihilation and scattering diagrams will also
contribute when ℓ is replaced by a neutrino.

The annihilation cross section in Eq. (11) for the Z ′

model in Eq. (1) is

σ(s) =
g2µg

2
χ

3g2µπ

s

(s−m2
Z′)2 + m2

Z′Γ2
Z′

βχ(s)

βµ(s)
κµ(s)κχ(s) ,

(12)

where we have introduced βi(s) =
√

1 − 4m2
i /s, κi(s) =

1 + 2m2
i /s and the total Z ′ width

ΓZ′ =
mZ′

12π

∑
i

g2i κi(m
2
Z′)βi(m

2
Z′)θ(mZ′ − 2mi) , (13)

and where θ(x) is the Heavyside step function.
Note that the average energy carried away by the dark

fermions in the annihilation process is equal to the ther-
mally averaged center-of-mass (CM) energy of the lep-
tons,

El ≡
√
⟨s⟩ll̄. (14)

For typical conditions in the PNS, Eq. (9), Eµ ∼
280 MeV, which sets the scale for 2mχ above which the
production of χ’s in the plasma will become exponentially
(“Boltzmann”) suppressed by the distribution functions
f±. In addition, this energy scale allows one to define
three regimes of mZ′ in Eq. (12) depending on which term
dominates the denominator: (i) A “heavy regime” in
which mZ′ ≳ 1 GeV ≫ Eµ, so that the Z ′ is too heavy to
be produced on-shell; (ii) the “resonant regime” where
the Z ′ can be produced on-shell, 2mµ ≤ mZ′ ≲ Eµ; and
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(iii) the “light regime” with Z ′ masses below the two-
muon threshold, mZ′ < 2mµ, so that the Z ′ is too light
to be produced on-shell.

Analogous expressions can be defined for electrons and
neutrinos by replacing the couplings and masses accord-
ingly (notice that for neutrinos gνℓ

= 1). Moreover, the
average CM energies in these cases are Ee ∼ 160 MeV
and Eν ∼ 130 MeV, and analogous regimes to those for
the muons can be formulated for neutrino-antineutrino
and electron-positron annihilation. The light regime in
these cases is restricted to extremely small Z ′ masses,
making it irrelevant for the range of vector boson masses
we are considering here.

The demarcation of these regimes is useful because one
can use approximations to derive analytic results and iso-
late the main physical factors in control. In the following,
we discuss these approximations and describe their con-
tributions to the absorption rate Γχ.

1. Heavy regime

In this case, the denominator in the propagator (see
Eq. (12)) is dominated by the Z ′ mass. Expanding in
powers of s/m2

Z′ up to leading order, the cross section
can be easily integrated analytically, giving a function
Is(E+, E−,mχ,mµ) proportional to the effective cou-
pling g2χg

2
µ/m

4
Z′ . We can further approximate this ex-

pression by taking the high-energy limit mχ → 0 and
mµ → 0, obtaining5

Iheavys (E+, E−, 0, 0) =
8g2χg

2
µ

9π

E2
+E

2
−

m4
Z′

. (15)

Also setting mµ → 0 in the integrals in Eq. (10), the
integrations can be carried out analytically, giving

Qheavy =
2g2χg

2
µ

9π5

T 9

m4
Z′

[H4(y)H3(−y) + (y → −y)] . (16)

Here we have re-scaled the chemical potential y = µ/T
and introduced the functions

Hn(y) =

∫ ∞

0

dx
xn

ex−y + 1
= −n! Lin+1(−ey) , (17)

where Lin+1(z) is the polylogarithm of order n+ 1. If we
also take vanishing chemical potentials, we recover the
results in Ref. [123]

Qheavy
0 =

4g2χg
2
µ

9π5

T 9

m4
Z′

F4 F3 , (18)

5 In the following discussion we fix gµ = 2 with the understanding
that some intermediate formulas change by factors of 2 for the
neutrino case.

in terms of the Riemann ζ-function

Fn = Hn(0) = n!(1 − 2−n)ζ(n + 1) , (19)

with F4F3 ≈ 133. We have also included a subindex in
Q to indicate that this is a zeroth-order approximation
neglecting masses and chemical potentials of the leptons.

In order to assess the accuracy of the above approx-
imations, we compare Q in Eq. (10) for massless dark
fermions and the cross section in the heavy Z ′ limit
with Eq. (18) for different SM particles at the typical
conditions of PNS in Eq. (9). For muons one finds
Qµ/Q0 ≈ 0.33 while for neutrinos and electrons one finds
Qν/Q0 ≈ 0.99 and Qe/Q0 ≈ 0.54 (using the physical
electron mass in vacuum), respectively.

The thermal suppression of the muon population is
mild for these conditions in the PNS, Ye ≃ 4Yµ. The
positron abundance is also suppressed by the large elec-
tronic chemical potential and, hence, for the same cou-
plings to electrons and muons one obtains similar rates.

With these approximations one can estimate the para-
metric dependence of the energy loss rate per unit mass
(i.e. the emissivity) produced by lepton annihilation in
the heavy regime as

ϵheavyann = ϵmax

(
T

30 MeV

)9(√
gχgl

4.1 TeV

mZ′

)4

, (20)

where we have divided Eq. (18) by the density in Eq. (9),
and ϵmax = 2.1 × 1019 erg s−1 g−1 has been estimated
dividing Lχ in (8) by the total mass of the PNS in this
simulation MPNS = 1.351 M⊙.

2. Resonant regime

If the Z ′ can be produced on-shell, then the denomina-
tor in Eq. (12) is dominated by the Z ′ width ΓZ′ , and it
can be replaced by π/(mZ′ΓZ′)δ(s−m2

Z′) in the narrow
width approximation. The δ-function can be used to per-
form the angular integration in Eq. (11) and for mχ → 0
this gives (neglecting terms of relative size 2m2

µ/m
2
Z′)

Iress =
g2χg

2
µ

24

m3
Z′

ΓZ′E+E−
. (21)

The energy integrations of Eq. (10) can be well-
approximated by neglecting the chemical potentials, but
keeping a non-zero muon mass in the integrand, giving

Qres
µ=0 =

g2µBRχ

4π3
m2

Z′T 2mµe
−2mµ/T , (22)

where BRχ ≡ BR(Z ′ → χχ) denotes the invisible Z ′

branching ratio, and numerically mµ/Te
−2mµ/T ≈ 0.004.

For muon annihilation this indeed yields a good approx-
imation, with Qµ/Qµ=0 ≈ 0.95, while for electrons one
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can set me → 0 in the integrals, giving a result similar
to Eq. (16), which can be further approximated by6

Qres
m=0 =

g2µBRχ

16π3
m2

Z′Tµ2
ee

−µe/T , (23)

and numerically µ2
e/4T 2e−µe/T ≈ 0.06, resulting in

Qe/Qm=0 ≈ 1.6. Finally neglecting lepton masses and
chemical potential simplifies to

Qres
0 =

g2µBRχ

4π3
m2

Z′T 3 F1F0 , (24)

where numerically F1F0 ≈ 0.57. This is a good approx-
imation for neutrino annihilation with Qν/Q0 ≈ 0.95,
while energy-loss rates for electrons (muons) are smaller
by a factor 10 (100).

Importantly, the contribution to the energy-loss rates
in the resonant regime scales perturbatively with the cou-
plings as ∼ O(g2) instead of ∼ O(g4) in the heavy or light
regimes. In fact, for BRχ = 1, one should recover the
results obtained for the coalescence Z ′ production mech-
anisms in Ref. [60]7. Also, the various rates in Eqs. (22),
(23) and (24) all scale quadratically with the Z ′ mass.

From these expressions one can readily obtain the
emissivities, which for neutrino annihilation read

ϵresann,ν = ϵmax

(
T

30 MeV

)3 ( gνℓ

10−9

mZ′

10 MeV

)2
BRχ ,

(25)

where we have used the same approximations as in
Sec III A 1 which are valid up to mZ′ ∼ 200 MeV. As
discussed above, emissivities for electrons and muons are
expected to be smaller by a factor 10 and 100, respec-
tively.

3. Light regime

In this case the denominator of the propagator is dom-
inated by s, and the cross section can be integrated an-
alytically. For massless χ and muons one obtains

I lights =
g2χg

2
µ

6π
, (26)

which is independent of E+, E−. Similarly as in the res-
onant regime, the energy integrations of Eq. (10) can be
approximated by neglecting the chemical potentials, but
keeping a non-zero lepton mass in the integrand

Qlight
µ=0 =

g2χg
2
µ

12π5
T 2m3

µe
−2mµ/T , (27)

6 For y ≫ 1, one has Hn(y) ≈ yn+1/(n+ 1), Hn(−y) ≈ e−yn!.
7 Indeed, using the approximation f+(E+)f−(E−) ≈ fZ′ (E+ +
E−), we reproduce their expression for the Z′ production rate in
the light Z′ and for massless leptons and χ, up to a factor 2/3.
See also footnote 3 in Ref. [35] for a discussion of the possible
origin of these discrepancies.

where m3
µ/T

3e−2mµ/T ≈ 0.04. For muon annihila-
tion this indeed yields a good approximation, with
Qµ/Qµ=0 ≈ 0.85, while for electrons one can set me → 0
in the integrals (but keep non-zero chemical potentials),
giving a result similar to Eq. (23)

Qlight
mℓ=0 =

g2χg
2
µ

72π5
T 2µ3

ee
−µe/T , (28)

and numerically µ3
e/6T 3e−µe/T ≈ 0.2, resulting in

Qe/Qm=0 ≈ 1.2. Finally neglecting lepton masses and
chemical potential simplifies to

Qlight
0 =

g2χg
2
µ

12π3
T 5F2F1 , (29)

where numerically F2F1 ≈ 1.5. This is a good approx-
imation for neutrino annihilation with Qν/Q0 ≈ 0.97,
while for electrons (muons) the energy-loss rates and
emissivities are smaller by a factor 10 (100) than pre-
dicted by this formula. Nevertheless, using Eq. (29) we
obtain the emissivity

ϵlightann = ϵmax

(
T

30 MeV

)5( √
gχgµ

3 × 10−5

)4

. (30)

4. Annihilation and scattering contributions to trapping

Given the scattering of a χ with another particle b,
the absorption rate can be approximated by (see Ap-
pendix A)

Γb
χ ≈

(∏
i

Fdeg,i

)
gb

∫
d3pb
2π3

fbσ(s)v , (31)

where gb are the number of degrees of freedom of the
particle b (gb = 2 for b = χ̄, µ, e and gb = 1 for b =

νℓ), v =
√

(pχ · pb)2 −m2
χm

2
b/EχEb is the Møller velocity

and σ(s) is the scattering cross section for χ+ b → X1 +
. . .+Xn [148]. Moreover, the index i runs over the final-
state particles and we have approximated the effect of
the Pauli blocking by its thermal average or degeneracy
factors [30]

Fdeg,i = ⟨1 − fi⟩i =
gi
ni

∫
d3pi
(2π)3

fi(1 − fi) , (32)

where gi and ni denote their degrees of freedom and num-
ber densities, respectively.

There are two types of processes related by crossing to
the annihilation diagram that are relevant for the trap-
ping regime: Inverse annihilation, χχ → µ− µ+ and
scattering, χµ− → χµ− and χ̄ µ− → χ̄ µ−. Scatter-
ing processes are kinematically more involved as they
exchange a Z ′ in the t-channel. For very light Z ′’s
(mZ′ ≪ T ), they have a differential cross section with a
Coulombian enhancement in the forward direction which
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involves a small momentum transfer and, therefore, little
contribution to the thermalization rate between the dark
and SM sectors.

The interplay between the contributions of inverse an-
nihilation and scattering to the absorption rate is simi-
lar to the case of heavy-lepton neutrinos in SN [149], as
recently emphasized in Ref. [150]. In the absence of self-
interactions between the dark fermions, these two pro-
cesses really define two surfaces that determine different
properties of the dark luminosity in the trapping regime.
The freeze-out of inverse annihilation first fixes the num-
ber flux of χ’s. The outgoing flow then thermalizes via
scattering processes with the leptons until they decouple
at a larger radius. For Z ′ masses in the resonant regime,
absorption rates will be dominated by the inverse anni-
hilation and the two surfaces coalesce into a single dark
sphere that determines the thermal emission of the χ’s.
In the heavy regime both mechanisms can be important
and this distinction must be kept in mind.

This is also reminiscent of models with new neutrino
self-interactions and their effect in the dynamical evo-
lution of the SN [151–153]. Notably, when consider-
ing the model in Eq. (1) with neutrino interactions,
processes such as νℓν̄ℓ → νℓν̄ℓ also occur. These ef-
fects may lead to a fundamentally different incarnation
of the SN 1987A cooling limit, valid in the trapping
regime [153–155], which is however beyond the scope of
the classical SN 1987A cooling bound that we apply in
our analysis.

With all this in mind, our fiducial analysis in the trap-
ping regime includes both processes, inverse annihilation
and scattering, in the calculation of the MFP to obtain
one single dark sphere that determines Lχ. However, we
repeat the calculations for the case where we do not in-
clude the scattering processes. We take the variation of
our results as an indicator of the potential systematic
uncertainties involved in our treatment of the trapping
regime.

In addition, dark elastic scattering, χχ̄ → χχ̄, may
become relevant in the trapping regime, as recently dis-
cussed in Refs. [45, 156]. In our case, however, this will
not play an important role for the calculations of Lχ

in the trapping regime. The reason is that dark elas-
tic scattering does not directly contribute to maintaining
the population of χ’s in thermal equilibrium with the
SM plasma after they freeze out (after inverse annihi-
lation turns off). Moreover, for low mZ′ , the rate of
dark elastic scattering is resonant and overwhelmingly
larger than scattering or inverse photoproduction (dis-
cussed below in Sec. III B 3), that do tend to maintain
the thermal equilibrium between the dark and SM sec-
tors. This situation is particularly relevant for muons,
whose population drops significantly at the outer layers
of the PNS where freeze out of the χ’s occurs. Therefore,
they would effectively decouple immediately after, except
for the contributions to the MFP induced by their inter-
actions with the leptons, which are already accounted for

in our fiducial analysis8. Nevertheless, we have studied
the contributions of dark elastic scattering processes for
completeness, and discuss in Sec. IV the consequences
for our results if these are included at face value in the
calculation of Γχ and the MFP.

B. Photoproduction

For muons we use two approximations: (1) Describe
the Pauli blocking of the final muon by (1−fi) → Fdeg,i in
Eq. (32) and, (2) in the phase space integrals of the initial
particles we take the extreme non-relativistic limit where
the muon is static and recoilless. Thus, the kinematics is
evaluated in the muon’s rest frame, s = m2

µ+2mµω, with
ω the photon’s energy, and Eχ +Eχ̄ = ω. One arrives at
the conventional formula [30]

Qnr
γ =

nµ Fdeg,µ

π2

∫ ∞

ω0

dωω3fγ σ(s) , (33)

where ω0 = (s0 − m2
µ)/2mµ and s0 is the kinematic

threshold of the process.
While Eq. (33) is approximately valid for muons, elec-

trons are instead ultra-relativistic in the PNS. If we ne-
glect the electron’s mass in the phase space integrals9

and assume that Eχ + Eχ̄ ≈ (ω + ω′)/2, then

Qr
γ =

Fdeg,e

8π4

∫ ∞

0

dωωfγ

∫ ∞

0

dω′ω′(ω + ω′)fe

×
∫ +1

−1

d(cos θ)sσ(s) , (34)

where ω′ is the electron energy and s = 2ωω′(1 − cos θ).
Similarly to the annihilation topologies, one can esti-

mate the average energy available for the production of
dark particles in the photoproduction process. For this
we use the average CM energy at threshold,

Eγ
ℓ =

√
⟨s⟩ℓℓ̄ −mℓ, (35)

and one can also define different regimes of mZ′ for pho-
toproduction: (1) the “heavy regime” where mZ′ ≳
1 GeV ≫ Eγ

ℓ ; (2) the “resonant regime” with mZ′ ≲
Eγ
ℓ , where the Z ′ can be produced on-shell. For the con-

ditions specified in Eq. (9) we find Eγ
µ ∼ 90 MeV and

Eγ
e ∼ 150 MeV.
In Appendix C we provide the results for the photo-

production cross sections along with some details of the

8 A proper treatment of the thermalization rates of dark mat-
ter with self interactions is, actually, an important issue when
studying the structure predicted by these models at the center
of galactic halos (see e.g. Ref. [157]).

9 Since the photoproduction cross sections have a kinematic sin-
gularity in the limit me → 0, we keep the physical value of the
mass in numerical estimates, neglecting also plasma effects.
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calculations. In addition, we have checked the validity of
the approximations in Eqs. (33) and (34) by calculating
the full 5-body phase space thermal integrals exactly, as
described in the seminal work of Ref. [108], where this
was done for effective (axial)vector operators. For com-
pleteness, we outline this calculation in Appendix D. We
find that the approximate formulas provide a very accu-
rate description, within ∼20% (muons) and ∼ 40% (elec-
trons) of the full photoproduction rates in the resonant
regime and neglecting degeneracy of the final state lep-
ton. In the heavy regime, Eq. (33) underestimates the
full result for muons by a factor ∼ 8. Nevertheless, as
shown below in Sec. III B 1, the emission rate for heavy
mZ′ is dominated by annihilation by orders of magnitude.
On the other hand, for the highly degenerate electrons in
the PNS, we find that approximating the Pauli blocking
effects by Fdeg,e overestimates the full energy loss rate by
a factor ∼ 3. In the case of muons, the degeneracy factor
Fdeg,µ instead agree with the exact result within ∼ 5%
accuracy.

In the following, we discuss in more detail the two
regimes of photoproduction and the contribution of in-
verse photoproduction to the interaction rate Γχ.

1. Heavy regime

The cross section of the process µ−γ → µ−χχ̄, induced
by the exchange of a heavy Z ′, is

σ(s) =
αg2µg

2
χm

2
µ

1728π2m4
Z′

1

ŝ2(ŝ− 1)3
(36)

×
(
− 55ŝ6 + 682ŝ5 + 483ŝ4 − 968ŝ3 − 169ŝ2 + 30ŝ

− 3 + 12ŝ2
(
2ŝ4 − 14ŝ3 − 87ŝ2 − 52ŝ + 1

)
log ŝ

)
,

with ŝ = s/m2
µ, α denotes the fine-structure constant and

we have taken for simplicity the massless limit mχ → 0.
This cross section is equivalent to the expression obtained
by Dicus in [110] for the photoproduction of a neutrino
pair using only vectorial couplings10. One might attempt
to obtain a more simplified expression of the rate by tak-
ing the non-relativistic limit in Eq. (36). However, the
cross section in this case,

σ(ω) =
2αg2µg

2
χ

105π2m2
µ

ω4

m4
Z′

, (37)

grows rapidly with energy and leads to a gross overesti-
mation of the integral in Eq. (33) (see also Ref. [108]).
For instance, for the typical PNS conditions used above,
one obtains a rate that is larger than the one obtained

10 In fact, our results agree with Ref. [110] but not with Ref. [30]
which cites Ref. [110], but with a wrong sign in the ∝ 120ŝ/(ŝ−
1)2 term in Eq. (3.12). See App. C for more details.

using the relativistic expression of the cross section by a
factor ∼ 25.

Nevertheless we use the non-relativistic approximation
together with Eq. (33) to get a rough estimate of the
emissivity produced by the photoproduction process in
this regime, giving

ϵheavyγ = ϵmax

(
Yµ

0.025

)(
T

30 MeV

)8(√
gχgµ

TeV

mZ′

)4

.

(38)

Comparing with the equivalent contribution from anni-
hilation in Eq. (20), we conclude that photoproduction
gives an emissivity rate that is smaller by a factor ∼ 250
and thus can be neglected in the heavy regime.

2. Resonant regime

The resonant µ−γ → µ−Z ′(→ χχ̄) cross section is

σ(s) =
πααχ

m2
µ

BRχ

ŝ2(ŝ− 1)3
(39)

×
((

ŝ(ŝ(ŝ + 7x′ + 15) + 2x′ − 1) − x′ + 1
)
R(x′, ŝ)

+ 4ŝ2
(
ŝ2 − 2ŝ(x′ + 3) + 2x′(x′ + 1) − 3

)
× tanh−1 R(x′, ŝ)

ŝ− x′ + 1

)
,

where we have introduced the notation αχ = g2µ/4π, and

where ŝ = s/m2
µ, x′ = m2

Z′/m2
µ and R(x, ŝ) = (ŝ2 −

2ŝ(x+1)+(x−1)2)1/2. For BRχ → 1 we recover the cross
section for semi-Compton production of massive vector
bosons, γµ− → Z ′µ−. In the mZ′ → 0 limit, one obtains

σ(s) =
πααχ

m2
µ

BRχ

ŝ2(ŝ− 1)3

(
ŝ4 + 14ŝ3 − 16ŝ2 + 2ŝ− 1

+
(
2ŝ4 − 12ŝ3 − 6ŝ2

)
log ŝ

)
, (40)

and if we now perform the non-relativistic expansion,

σ(s) ≈ 8πααχBRχ

3m2
µ

, (41)

we recover the Thomson cross section for αχ → α and
BRχ → 1. This is the expression commonly used for the
semi-Compton production of vector particles in stellar
plasmas [30, 60], but it is less appropriate for the PNS
where leptons are relativistic. In fact, in case of muons
for mZ′ = 0 and in the typical conditions we have been
using for the PNS, we find that the Thomson cross section
overestimates the relativistic one by a factor ∼ 2.

On the other hand, the energy-loss rate of the full res-
onant photoproduction cross section is insensitive to mZ′

up to mZ′ ≳ T , at which point it starts dropping due to
increased Boltzmann suppression and defines the onset



9

of the heavy regime. Taking as a reference the Thom-
son cross section, we can estimate the emissivity of the
photoproduction in the resonant regime as

ϵresγ = ϵmax

(
Yµ

0.025

)(
T

30 MeV

)4(
gµ

5 × 10−10

)2

, (42)

using our typical PNS conditions in Eq. (9). Comparing
this to the emissivity from µ+µ− annihilation, Eq. (30),
we observe that the rate of χχ̄ production from muons
for light Z ′ will be dominated by photoproduction for
many orders of magnitude. For mZ′ ≲ 10 MeV this
process is even more important than resonant neutrino-
antineutrino annihilation for the case gνℓ

= gµ, as demon-
strated by comparing to Eq. (25).

3. Contribution of inverse photoproduction to trapping

Assuming thermal equilibrium, which is adequate in
the trapping regime, the contribution of inverse photo-
production ℓ−χχ̄ → ℓ−γ to Γχ can be related to the
production rates by means of detailed balance (see Ap-
pendix A). In case of muons, the photoproduction rate
of χ per unit volume can be calculated using the same
approximations as in Eq. (33),

Cγ
prod,µ =

nµ Fdeg,µ

π2

∫ ∞

ω0

dωω2fγ σ(s) , (43)

while for electrons we use

Cγ
prod,e =

Fdeg,e

8π4

∫ ∞

0

dωωfγ

∫ ∞

0

dω′ω′fe

×
∫ +1

−1

d(cos θ)sσ(s) . (44)

Then, we estimate the contribution of photoproduc-
tion to the MFP by applying detailed balance, using the
inverse of ⟨Γγ

χ⟩ (see Appendix A)

⟨Γγ
χ⟩χ =

Cγ
prod

nχ
. (45)

Note that this approximation differs from the direct
calculation of the contribution of inverse annihilation and
scattering in Eq. (31). In order to combine the two con-
tributions in our estimate of the MFP we use the approx-
imate formula

λ = ⟨ vχ

Γχ̄
χ + Γl

χ + Γγ
χ

⟩ ≈ 1

⟨vχ/(Γχ̄
χ + Γl

χ)⟩−1 + ⟨Γγ
χ⟩/⟨vχ⟩

,

(46)

where all the thermal averages are understood to be taken
with respect to the χ kinematics (see Appendix A).

C. Other processes and neglected plasma effects

In our analysis, we have selected the processes that
are dominant for the production and absorption of χ’s in
muons and have neglected plasma effects which are ex-
pected to be small in this case. Electrons in the PNS,
on the other hand, are highly degenerate. Moreover,
in the plasma the electron and photon dispersion rela-
tions are significantly modified. The electron mass effec-
tively increases while the photon acquires a longitudinal
mode and an effective mass that could enable the decay
γ̃ → χχ̄, where the “plasmon” γ̃ includes these collective
plasma modes [30, 107, 115, 117].

Nonetheless, the production of χ’s in the heavy regime
and neglecting the χ mass would be analogous to the SM
pair-production of heavy-lepton neutrinos from the elec-
trons in the stellar plasma. Plasmon decay is indeed an
important process in the conditions of high densities pre-
dicted in the PNS. However, at the high temperatures
reached in the SN explosions considered in this work,
e+e− annihilation becomes the dominant process [117].
Adding mass to the χ’s will not affect this conclusion
and may, in fact, kinematically close the plasmon de-
cay if mχ ≳ 10 MeV, which is the scale of the plasma
frequencies expected in the PNS. Finally, accounting for
the increase of the electron mass in the plasma by a sim-
ilar amount does not affect significantly the annihilation
rates as discussed in Sec. III A 1.

On the other hand, for the light Z ′ some of the ne-
glected effects can become important. For instance, res-
onant bremsstrahlung production e−p → e−p(Z ′ → χχ̄)
could become the dominant process for mZ′ ∼ 10 MeV,
as it is the case for on-shell production of axion-like par-
ticles [50]. In addition, for these masses one needs to
consider medium-induced γ̃ − Z ′ mixing which may also
have an impact [158]. For all of these reasons, our re-
sults for the emission from electrons in the light regime,
mZ′ ≲ 50 MeV, should be considered as an intermedi-
ate step towards a more refined and robust calculation,
and the results that we report for this case regarded as
a rough approximation.

IV. RESULTS

In this section, we apply the upper limit on the dark lu-
minosity in Eq. (8) to obtain the SN 1987A constraint on
the parameter space of the different dark sector models
we consider. We start by presenting an analysis in terms
of effective operators, which corresponds to the heavy
regime introduced in Sec. II for the calculation of the rel-
evant processes. This allows us to generalize our analysis
to generic interactions of dark fermions coupled to lep-
tons via dimension-6 operators, and extract a SN 1987A
limit for any portal mediator with mass much larger than
the temperatures and chemical potentials in the PNS. It
is interesting to note that this approach was already ap-
plied in the context of neutrino emission from stellar plas-
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XY Λeff
µ [TeV] Λeff

νµ [TeV] Λeff
e [TeV]

SS 0.0017− 4.4 0.062− 5.2 0.070− 5.4

PS 0.00044− 5.1 0.062− 5.2 0.070− 5.4

V V 0.0017− 5.7 0.072− 5.6 0.11− 5.9

AV 0.0022− 4.7 0.072− 5.6 0.11− 5.8

LL 0.0015− 3.7 0.051− 4.0 0.074− 4.1

LV 0.0018− 4.4 0.061− 4.7 0.088− 4.9

TT 0.0033− 6.8 0.10− 6.7 0.17− 7.0

TABLE I. SN 1987A exclusion range of the effective scale
Λeff

l ≡ Λl/
√

Cl
XY for the EFT interactions defined in Eq. (47),

with mχ = 0 and for the simulation SFHo-18.8. The lower
limit of the constraint is set by the trapping regime. The
bounds for XY = SP , PP , AA, V A, and T ′T are equal to
those of SS, PS, V V , AV , and TT , respectively. The bounds
for RR, LR and RL are identical to those of the LL operators.
The constraints on Λeff

νe essentially coincide with those on Λeff
νµ .

mas in the very early days of the SM [111, 122]. We then
focus on the constraints on the parameter space of the
simplified Z ′ model of Eq. (1), which can be regarded as
the continuous extension of the EFT bounds to low medi-
ator masses for one particular operator (V V ). Finally, we
present the SN 1987A constraints for a phenomenologi-
cally relevant and UV-motivated version of the Z ′ model,
obtained by gauging the Lµ − Lτ symmetry.

A. Effective field theory

The analysis for the heavy Z ′ can be generalized in the
context of an EFT with four-fermion operators. Focusing
on the couplings of dark-sector fermions χ to leptons l =
e, µ, νℓ, the most general effective Lagrangian at leading
order is

LEFT =
1

Λ2
l

∑
X,Y

Cl
XY

(
lΓX l

)
· (χΓY χ) , (47)

where X,Y run over V,A, S, P, L,R, T, T ′, with ΓV = γµ,
ΓA = γµγ5, ΓS = 1, ΓP = γ5, ΓR,L = γµ(1 ± γ5)/2,
ΓT = σµν = i/2[γµ, γν ] and ΓT ′ = σµνγ5, and Lorentz
indices properly contracted11. Matching the effective op-
erators to the Z ′ model in Eq. (1) coupled to charged
leptons yields Λℓ = mZ′ and Cℓ

V V = gℓgχ. For neu-
trinos their bilinears in the EFT Lagrangian are con-
structed with left-handed fields and contribute, instead,
to Cνℓ

LV = gνℓ
gχ.

11 Only two tensor operators are independent and we will take those
corresponding to Cl

TT and Cl
T ′T .
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FIG. 2. Comparison between SN 1987A and collider limits on
the effective scale Λeff

e ≡ Λe/
√

Ce
XY for the EFT interactions

of electrons defined in Eq. (47), withmχ = 0. The orange bars
show the exclusion range obtained from SN 1987A, using the
simulation SFHo-18.8. The upper limit is obtained by the
free-streaming regime and the lower limit is set by the trap-
ping regime. The red bars show the lower limits obtained at
LEP [159], while the purple and green hatched bars show the
projections for Belle-II with 50 ab−1 of integrated luminos-
ity [160] and ILC with

√
s = 1TeV and Lint = 1000 fb−1 [161].

In Table I, we show the limits obtained on Λeff
l ≡

(Λl/C
l
XY )1/2 for these interactions in the limit mχ = 0

for muons, neutrinos and electrons. The upper limits
correspond to the free-streaming regime, the lower limits
to the trapping regime. Notice that the excluded re-
gions of Λeff

l are in the EFT range of validity as long as
Λl ≳ 1 GeV, which is much larger than all other energy
scales relevant in the PNS. This is the case for essentially
all operators.

The SN 1987A bounds on the EFT operators are very
strong, reaching up to 4 − 7 TeV. This sensitivity to the
mediator mass scale is approximately one order of mag-
nitude better than the one achieved by laboratory ex-
periments for similar leptonic interactions [159, 160, 162,
163]. For instance, monophoton searches at LEP have
been used to set the following lower bounds on Λeff

e [159],

V V, AA : 0.48 TeV ,

SS : 0.44 TeV .
(48)

In Fig. 2, we show the SN 1987A limits on these EFT
operators compared with those obtained at LEP [159],
and with the projections of the sensitivity that could
be achieved at Belle II [160] or at a future e+e− lin-
ear collider [161]. Remarkably, the SN 1987A bounds
are stronger than LEP by roughly one order of magni-
tude, and will even dominate over future collider lim-
its. Note however that SN 1987A constraints apply only
to sufficiently light dark fermions, while collider bounds
typically extend to larger χ masses, such as LEP, which
provides constraints for mχ ≲ 100 GeV.
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FIG. 3. SN 1987A constraints on the heavy scale Λeff
l as a

function of the dark fermion mass mχ for the V V operator
and different leptons. The solid orange region is excluded
using numerical input from the simulation SFHo-18.8, while
the dotted line encloses the region excluded using SFHo-20.0.
The hatched region gives an estimate of the uncertainty of the
trapping regime, obtained by omitting the contribution to the
MFP from scattering processes, as discussed in Sec. IIIA 4.
The constraints on νe and νµ are essentially similar, so we
show those on νµ and label them as ν.

As discussed in Sec. II, the dominant effect in the heavy
regime of the Z ′ model is annihilation (for typical SN
conditions), and photoproduction can be neglected. We
have checked that this is indeed true for any EFT opera-
tor by calculating their contributions to photoproduction
explicitly (see Appendix C). In fact, we note that, for the
EFT limit of the Z ′ model, the approximate expression
in the high-energy limit (mℓ → 0) in Eq. (18) leads to
a bound on the effective scale that is off only by ∼ 30%

with respect to the full calculation. Therefore, since the
high-energy limit gives quite accurate results, the numer-
ical bounds for different Lorentz structures and different
leptons are of the same order, as in this limit the corre-
sponding cross sections differ at most by O(1) numbers.

In Fig. 3 we show the dependence of the limits on the
heavy scale as a function of the dark fermion mass mχ

for the effective V V interaction and LV for neutrinos.
As expected, the excluded regions shrink with increas-
ing mχ and they are limited to masses mχ ≲ 300 MeV.
We also analyze the variations of the constrained region
produced by using the simulation SFHo-20.0 or differ-
ent prescriptions for the processes included in the trap-
ping regime. The upper limits of Λeff

l obtained from this
hotter simulation are a factor ∼ 2 stronger in the free-
streaming regime, because in this case emission is dom-
inated by the hottest region inside the supernova. On
the other hand, the uncertainties of the boundary with
the trapping regime for electrons and neutrinos are rela-
tively small and our fiducial calculation is, again, on the
conservative side. The reason for this behavior is that
the dark sphere is not located in the region of highest
temperature. This makes trapping sensitive to the shape
of the temperature profile, which is similar for both sim-
ulations.

Moreover, the scale marking the onset of the trapping
regime in these cases is Λeff

l ≈ 100 GeV, which is of the
order of the electroweak scale. This is consistent with the
fact that the boundary of the trapping regime is set by
the luminosity of the trapped neutrinos via Eq. (8), which
interact with SM leptons precisely through dimension-6
operators suppressed by the Fermi scale.

For muons, however, the bound extends to scales that
are a few orders of magnitude lower than for electrons
and neutrinos. In addition, there is a large variation in
the location of the boundary depending on the selection
of processes contributing to trapping. The reason is that
muons are relatively heavy and there is a maximal radius
where they can be produced by thermal fluctuations in
the plasma. Putting it differently, there are no muons
to scatter with in case of inverse photoproduction and
inverse annihilation becomes ineffective because of the
strong phase-space suppression. In case that only µ− χ
interactions are included in the calculation of the MFP,
the radius of the dark sphere is typically smaller than the
one of the neutrino sphere and the bounds on Λeff

µ extend
down to ∼ 1 GeV. However, if one were to also include
χχ̄ elastic scattering in the calculation of the MFP, and
the χ is light, mχ ≲ T , then they would produce contri-
butions analogous in size to those given by the neutrino
and electron interactions and the boundary of the trap-
ping regime would be increased again to ∼ 100 GeV,
cf. the discussion in Section III A 4.
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FIG. 4. Excluded parameter space of the Z′ model in Eq. (1)
using constraints from SN 1987A with the simulation labeled
as SFHo-18.8 in Ref. [58]. The dotted line encloses the region
excluded using SFHo-20.0. The hatched region gives an esti-
mate of the uncertainty of the trapping regime, obtained by
omitting the contribution to the MFP from elastic scattering
processes, as discussed in Sec. III A 4.

B. Simplified Z′ models

We now present the SN 1987A constraints in the pa-
rameter space of the simplified Z ′ model in Eq. (1). In the
derivation of our results for the annihilation contributions
to Q we numerically solve the integral in Eq. (10) (and
the equivalent ones for neutrinos and electrons), as de-
scribed in Appendix E. This procedure allows us to track
the contribution of the annihilation rates across the whole
mZ′ range, including the transition regions between the
three regimes defined in Sec. III A. Instead, for photo-

production we only use the expressions in the resonant
regime, because photoproduction is only relevant for the
low-mZ′ regime of the charged leptons, see Eq. (38).

In Fig. 4 we show the SN 1987A limits for the model
in Eq. (1), for the case when only one of the leptonic
couplings is present and with gχ = gl. In the lower (up-
per) part of the plots we identify the dominant process
for production (absorption) in the indicated mass range.
We also show the variation of the constrained region ob-
tained by using the SFHo-20.0 simulation (dotted curve)
and, independently, by omitting the scattering contri-
bution to the MFP in the trapping regime (hatched re-
gion). In all cases we observe the onset at high masses
of the power-law behavior of the constraints ∝ 1/m4

Z′ ,
characteristic of the EFT. Interestingly, this occurs for
mZ′ ≳ 1 GeV in the free-streaming domain but already
for mZ′ ≳ 100 MeV in the trapping regime. This is
because in the former case emission is governed by the
conditions in the hottest region of the PNS, while in the
latter it corresponds to the cooler outmost layer of the
dark sphere, where all relevant energy scales are smaller.
The boundary of the trapping regime changes very lit-
tle with respect to adding or not scattering contributions
in the absorption rate. Adding dark elastic scattering
(χχ̄ → χχ̄) in the muonic case (for mχ ≲ T ) would in-
stead make the trapping region similar to the neutrino
case.

The shape of the constrained region below mZ′ ≈ 1
GeV depends on the lepton considered. For muons the
low mZ′ region is dominated by (resonant) photopro-
duction, which gives a flat bound up to mZ′ ≳ T ,
where the on-shell production of the Z ′ starts decreas-
ing due to Boltzmann suppression. Nevertheless, it re-
mains more important than µ+µ−-annihilation (in the
light regime), until it becomes resonant at the µ+µ−

threshold, mZ′ ≥ 2mµ. However, this occurs already
at large energies and the production quickly suffers from
the Boltzmannian suppression, converging to the EFT
scaling at higher mZ′ .

For electrons, photoproduction dominates again for
low mZ′ , even though the e+e− threshold is much lower
than for muons. Resonant annihilation of electrons
quickly replaces photoproduction as the dominant pro-
cess above mZ′ ≳ T in the free-streaming domain, un-
til the resonance starts suffering from Boltzmann sup-
pression and the EFT takes over. For the trapping
regime, there is no range of mZ′ where resonant annihi-
lation dominates and the EFT directly replaces inverse-
photoproduction at mZ′ ≳ 100 MeV.

For neutrinos there is no photoproduction and the pro-
duction and absorption rates are given by annihilation in
the resonant and heavy regimes. In the free-streaming
regime we observe a strengthening of the bound up to
T ≲ 100 MeV. This is due to the m2

Z′ scaling of the
emission rate in the resonant regime, see Eq. (24), which
is quickly overcome by Boltzmann suppression until the
heavy regime takes over.
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FIG. 5. SN 1987A cooling constraint (orange region) in the mass-coupling plane of the Lµ − Lτ model, assuming mZ′ = 3mχ

and gχ = gµ−τ . The dotted orange line indicates the bound obtained from using the SN simulation SFHo-20.0, instead of
SFHo-18.8 which gives the weakest constraints. Also shown are the preferred regions to explain the (g − 2)µ anomaly (green
band) and the H0 tension (yellow band), along with current constraints (gray region) and the forecasts for future experiments.
See main text for details.

C. Gauged Lµ − Lτ models

Finally, we study SN 1987A constraints on a UV-
motivated realization of the simplified Z ′ model in
Eq. (1). This is the gauged Lµ − Lτ model coupled to
DM fermions, described by the interaction Lagrangian

Lint = Z ′
µ (gµ−τ j

µ
SM + gχχγ

µχ) , (49)

where χ is the dark fermion and jµSM is the SM part
of the Lµ − Lτ current. These interactions induce an
irreducible contribution to the kinetic mixing of the Z ′

with the photon, through µ and τ loops, giving a mixing
parameter of the order ϵ ∼ gµ−τ/70 [164]. This would
presumably give only small corrections to our analysis
(see e.g. [60]) and thus will be neglected.

It is well known that such models can accommodate
the present (g − 2)µ anomaly with couplings of order
gµ−τ ∼ 10−4 for a light Z ′ gauge boson, mZ′ ≪ mµ [165–
167]. They also allow to reproduce the DM relic abun-
dance through resonant s-channel annihilation, when
muon and DM fermion have similar couplings to the
Z ′ gauge boson and the latter is heavier than the DM
fermion by a factor 2 − 3 [76, 77]. For such light masses,
Z ′ decays and DM annihilation can heat the SM bath
after neutrino decoupling, thereby increasing the effec-
tive number of relativistic degrees of freedom, usually
expressed as an effective number of neutrino species
Neff . Such a contribution could help to reduce the long-
standing tension between local and cosmological deter-
minations of the Hubble constant [93, 95], if the new
contributions is of order ∆Neff ∼ 0.1 − 0.4 [1].

At present, the most relevant laboratory constraints

(see Ref. [69] for an overview) stem from BaBar searches
for Z ′-bosons above 212 MeV decaying to muons [168],
neutrino trident production [169] at CCFR [170], bounds
on coherent elastic neutrino nucleus scattering from
the COHERENT collaboration [171] and constraints
on neutrino-electron scattering [172, 173] at BOREX-
INO [174]. A variety of accelerator-based searches have
been proposed to explore the unconstrained parameter
space, such as NA62 [96], which looks for final state
radiation of Z ′-bosons in K+ → µ+νµ, and dedicated
searches using muon beam facilities such as the NA64µ
experiment [175] at CERN and M3 [97] at Fermilab.

Astrophysical limits from white dwarfs have been stud-
ied already in Refs. [69, 176]. Here we show that also
constraints from SN 1987A disfavor a large region of pa-
rameter space with significant overlap with the expected
reach of planned experiments and with the region that
could address the H0 tension. In Fig. 5, we show the
SN 1987A limits on the muon coupling as a function of
the Z ′ mass, in the scenario where muons and dark mat-
ter couple equally to the Z ′, gµ−τ = gχ, and mZ′ = 3mχ.
This is compared to the current bounds discussed above,
shown in gray, and the regions preferred at 95% C.L. by
(g − 2)µ and H0.

In the free-streaming regime we use the same method
as for the simplified model described in Appendix E, in-
cluding the contributions from µ+µ−, νµνµ and ντντ an-
nihilations. We also add the resonant photoproduction
off muons which dominates the rate up to mZ′ ≲ 10 MeV,
where neutrino annihilation starts to give the largest
contribution to the rate, producing the characteristic
strengthening of the bound with mZ′ . At mZ′ = 2mµ
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a small feature signalizes the onset of resonant µ+µ−

annihilation. Instead, the boundary of the constrained
region in the deep trapping regime is dominated by in-
verse resonant annihilation into neutrinos. Note that the
χ mass scales with the Z ′ mass, which has the effect of
slightly suppressing the rate as compared to the massless-
χ case, cf. Fig. 4. A rough estimate of the uncertainty
of the excluded region is indicated with a dashed orange
line, which shows the limits obtained from employing the
hottest SN simulation SFHo-20.0, as described in Sec. II.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the SN 1987A cooling
constraints on dark-sector models induced by the emis-
sion of new light dark fermions χ coupled to leptons.
To provide a concrete framework, we consider general
vector portal interactions arising from the exchange of a
massive Z ′ vector mediator. We focus primarily on the
couplings to muons, which are predicted to have sizable
number densities within the hot and dense environments
of the proto-neutron star formed during core-collapse su-
pernovae. However, we also extend our analysis to cou-
plings to neutrinos and electrons.

We have considered various mechanisms for the pro-
duction and absorption of the χ’s and different regimes
that depend on the ranges of the parameters of the model.
Firstly, the constraints depend on the mass of χ, as
their pair production becomes Boltzmann suppressed for
mχ ≫ T . Secondly, different regions of mZ′ can be iden-
tified based on whether the dark fermions are resonantly
produced or generated from the tail of the Z ′ resonance.
This distinction arises, for instance, when the Z ′ is heavy
and cannot be produced on-shell by the thermal fluc-
tuations in the medium. Finally, there exist two dis-
tinct regimes of coupling values, depending on whether
the dark fermions free-stream or become trapped within
the PNS. Consequently, by analyzing the χχ̄ production
within these two regimes, for given masses of the Z ′ and
the χ, we can determine the range of couplings that is
excluded by the observations from SN 1987A.

For Z ′ particles with masses mZ′ ≲ T ∼ 10 MeV and
massless χ, the observations from SN 1987A place con-
straints on the couplings between ∼ 10−1 and ∼ 10−9,
for equal couplings of the vector mediator to leptons and
dark fermions, cf. Fig. 4. However, the range of these
bounds strongly depends on the Z ′ mass and the specific
lepton to which the Z ′ couples.

These calculations can be readily extended to explicit
Z ′-models, for example motivated by a gauged lepton
flavor symmetry with a dark sector charged under it. We
specifically investigate the case of Lµ − Lτ , which has
been proposed in the literature as a combined solution to
the (g − 2)µ anomaly, the Hubble tension and the dark
matter puzzle. The SN 1987A limit covers a large region
of parameter space that overlaps with the forecasts of
future experiments and with part of the region that could

address some of the tensions, see Fig. 5.

On the other hand, when the Z ′ mass is larger than
the temperature and chemical potentials in the PNS, the
interactions mediated by the Z ′ can be accurately de-
scribed by effective operators. This allows us to gener-
alize the analysis to completely generic heavy portal in-
teractions between dark fermions and SM leptons, sum-
marized in Fig. 3. We find that SN 1987A cooling can
probe new-physics scales up to 4 − 7 TeV (cf. Table I),
which surpasses current bounds from laboratory experi-
ments by an order of magnitude (see Fig. 2).

We emphasize that our analysis is not complete
when a light Z ′ is coupled to electrons. In this case,
bremsstrahlung processes are expected to provide the
dominant contributions to the emission of dark fermions,
and plasma effects can have a significant impact on the
analysis. Nevertheless, we consider our results as an im-
portant step into this direction, which significantly ex-
tends previous studies in the literature.

Finally, other aspects of SN physics could lead to con-
straints complementary to the ones obtained in this work
(see e.g. Refs. [177, 178]). In particular, recent efforts
towards a better understanding of the effect of neutrino
self-interactions [153] may enable a new application of
the SN 1987A cooling bound, potentially extending the
constraints in the trapping regime.

CODE AVAILABILITY

We provide a minimal code example to test differ-
ent parameter points of the Lµ − Lτ model at https:
//github.com/spinjo/SNforMuTau.git.
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Appendix A: Generalities of absorption rates

In the case of generic 2 → n processes, where a dark
particle χ interacts with a particle b in the initial state,
the resulting contributions Γb

χ to the absorption rate of
χ can be approximated by

Γb
χ ≈ 1

2gχEχ

∏
final i

Fdeg,i

∫
d3pb

(2π)32Eb
fb

d3pi
(2π)32Ei

× (2π)4δ4(
∑
i

pi)
∑
spins

|M|2

=
∏

final i

Fdeg,i × nb⟨σv⟩b , (A1)

where ⟨·⟩b denotes the thermal average taken over the
particle b, defined by

⟨X⟩b =
gb
nb

∫
d3pb
(2π)3

fbX . (A2)

Furthermore, σ denotes the cross section of the process,

v =
√

(pb · pχ)2 −m2
χm

2
b/EbEχ is the Møller velocity

and we have approximated the Pauli-blocking effects by
introducing the degeneracy factors defined in Eq. (32).

By performing the d3pχ integral in Eq. (6), one arrives

at

Cb
abs = nχ⟨Γb

χ⟩χ = nχnb⟨σv⟩χ b , (A3)

where ⟨σv⟩χ b denotes the thermal average over the com-
plete initial state kinematics, i.e.

⟨σv⟩χ b ≡
gχgb
nχnb

∫
d3pχ
(2π)3

fχ
d3pb
(2π)3

fbσ(pχ, pb)v . (A4)

The inverse process defines an analogous collision oper-
ator for production of χ’s, Cb

prod, which in conditions of
thermal and chemical equilibrium reads

Cb
prod = Cb

abs . (A5)

This detailed balance relation can then be used to esti-
mate the MFP in the PNS

⟨λ(pχ)⟩χ = ⟨ vχ
Γb
χ

⟩χ ≈ ⟨vχ⟩χ
⟨Γb

χ⟩χ
=

nχ

Cb
prod

⟨vχ⟩χ . (A6)

Appendix B: Cross sections for annihilation (2 → 2)

In this appendix, we list cross sections for the 2 → 2
processes ℓℓ → χχ, χχ → ℓℓ (s-channel) and ℓχ → ℓχ (t-
channel), where ℓ generically refer to any lepton, includ-
ing neutrinos. For the effective interactions in Eq. (47),
a linear independent basis is given by the operators OSS ,
OPP , OSP , OPS , OV V , OAA, OAV , OV A, OTT , OT ′T

and we find12

σℓℓ→χχ =

√
s− 4m2

χ

48πsΛ4
l

√
s− 4m2

ℓ

[
3C2

SS(s− 4m2
ℓ)(s− 4m2

χ) + 3C2
PP s

2 + 3C2
PSs(s− 4m2

χ) + 3C2
SP s(s− 4m2

ℓ)

+ 4C2
V V (s + 2m2

ℓ)(s + 2m2
χ) + 4C2

AA(s2 − 4s(m2
ℓ + m2

χ) + 28m2
ℓm

2
χ) + 4C2

V A(s + 2m2
ℓ)(s− 4m2

χ)

+ 4C2
V A(s− 4m2

ℓ)(s + 2m2
χ) + 8C2

TT (s2 + 2s(m2
ℓ + m2

χ) + 40m2
ℓm

2
χ) + 8C2

T ′T (s2 + 2s(m2
ℓ + m2

χ) − 32m2
ℓm

2
χ)

− 24CAA CPP smℓmχ + 144CV V CTT smℓmχ

]
,

(B1)

12 We disagree with Ref. [124] on the t-channel recovering their
results only in the limit mℓ,mχ → 0.
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σχℓ→χℓ =
1

48πΛ4
l s

3

[
C2

SS

(
s4 + 2s3(m2

ℓ + m2
χ) − 2s2(3m4

ℓ − 14m2
ℓm

2
χ + 3m4

χ) + 2s(m2
ℓ + m2

χ)(m2
ℓ −m2

χ)2 + (m2
ℓ −m2

χ)4
)

+ C2
SP

(
m4

ℓ − 2m2
ℓ(m2

χ − 2s) + (s−m2
χ)2
)(

m4
ℓ − 2m2

ℓ(m2
χ + s) + (s−m2

χ)2
)

+ C2
PS

(
m4

ℓ − 2m2
ℓ(s + m2

χ) + (s−m2
χ)2
)(

m4
ℓ + m4

χ − 2m2
ℓ(m2

χ + s) + s(s + 4m2
χ)
)

+ C2
PP

(
m2

ℓ − 2m2
ℓ(s + m2

χ) + (s−m2
χ)2
)2

+ 2C2
V V

(
4s4 − 10s3(m2

ℓ + m2
χ) + s2(9m2

ℓ + 22m2
ℓm

2
χ + 9m4

χ

)
− 4s(m2

ℓ + m2
χ)(m2

ℓ −m2
χ)2 + (m2

ℓ −m2
χ)4
)

+ 2C2
V A

(
s− (mℓ + mχ)2

)(
s− (mℓ −mχ)2

)(
m4

ℓ − 2m2
ℓ(m2

χ + s) + (2s + m2
χ)2
)

+ 2C2
AV

(
s− (mℓ + mχ)2

)(
s− (mℓ −mχ)2

)(
4s2 + 2s(2m2

ℓ −m2
χ) + (m2

ℓ −m2
χ)2
)

+ 2C2
AA

(
4s4 − 4s3(m2

ℓ + m2
χ) − s2(3m4

ℓ − 46m2
ℓm

2
χ + 3m4

χ) + 2s(m2
ℓ + m2

χ)(m2
ℓ −m2

χ)2 + (m2
ℓ −m2

χ)4
)

+ 8C2
TT

(
7s4 − 13s3(m2

ℓ + m2
χ) + 2s2(3m4

ℓ + 26m2
ℓm

2
χ + 3m4

χ) − s(m2
ℓ + m2

χ)(m2
ℓ −m2

χ)2 + (m2
ℓ −m2

χ)4
)

+ 8C2
T ′T

(
s− (mℓ + mχ)2

)(
s− (mℓ −mχ)2

)(
7s2 + s(m2

ℓ + m2
χ) + (m2

ℓ −m2
χ)2
)

+ 4CSS

(
CTT (m8

ℓ −m6
ℓ(4m2

χ + s) + m4
ℓm

2
χ(6m2

χ + s) + m2
ℓ(−4m6

χ + m4
χs− 8m2

χs
2 + 5s3)

+ m8
χ −m6

χs + 5m2
χs

3 − 2s4) − 3CV V mℓmχs(m
4
ℓ − 2m2

ℓ(m2
χ − s) + m4

χ + 2m2
χs− 3s2)

)
+ 4CPP

(
3CAAmχs(m

4
ℓ − 2m2

ℓ(m2
χ + s) + (m2

χ − s)2) + CTT (m8
ℓ −m6

ℓ(4m2
χ + s) + m4

ℓm
2
χ(6m2

χ + s)

+ m2
ℓ(−4m6

χ + m4
χs− 8m2

χs
2 + 5s3) + m8

χ −m6
χs + 5m2

χs
3 − 2s4)

)
+ 4(CSP + CPS)

(
CT ′T (m8

ℓ −m6
ℓ(4m2

χ + s) + m4
ℓm

2
χ(6m2

χ + s) + m2
ℓ(−4m6

χ + m4
χs− 8m2

χs
2 + 5s3) + m8

χ

−m6
χs + 5m2

χs
3 − 2s4) + 6CV Amℓmχs

2(m2
χ −m2

ℓ)
)

− 4CV V

(
CAA(m8

ℓ −m6
ℓ(4m2

χ + s) + m4
ℓm

2
χ

(
6m2

χ + s
)

+ m2
ℓ(−4m6

χ + m4
χs− 8m2

χs
2 + 5s3) + m8

χ

−m6
χs + 5m2

χs
3 − 2s4) + 18CTTmℓmχs(m

4
ℓ − 2m2

ℓ(m2
χ + s) + (m2

χ − s)2)
)

+ 72CAA CTTmℓmχs(m
4
ℓ − 2m2

ℓ

(
m2

χ − s
)

+ m4
χ + 2m2

χs− 3s2)

+ CV A

(
144CT ′Tmℓmχs

2(m2
ℓ −m2

χ) − 4CAV (m8
ℓ −m6

ℓ(4m2
χ + s) + m4

ℓm
2
χ(6m2

χ + s)

+ m2
ℓ(−4m6

χ + m4
χs− 8m2

χs
2 + 5s3) + m8

χ −m6
χs + 5m2

χs
3 − 2s4)

)
+ 144CAV CT ′T s2mℓmχ(m2

ℓ −m2
χ)

]
.

(B2)

We can also generalize the cross sections for the Z ′

model in Eq. (1) by including generic vector (Vi) and
axial (Ai) couplings to the leptons (such that Vℓ = 1,
Aℓ = 0 gives back the model in Eq. (1)):

σV
ℓℓ→χχ =

g2ℓ g
2
χ

12πs

√
s− 4m2

χ

s− 4m2
ℓ

s + 2m2
χ

(s−m2
Z′)2 + m2

Z′Γ2
Z′

×
[
V 2
ℓ (s + 2m2

ℓ) + A2
ℓ(s− 4m2

ℓ)
]
.

The t-channel for small Z ′ masses is more involved be-
cause the propagator depends on the Mandelstam vari-
able t, over which one integrates to obtain the total cross
section. Neglecting the Z ′ decay width, the resulting ex-
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pression reads

σV
χℓ→χℓ =

g2ℓ g
2
χ

8π

[
(V 2

ℓ + A2
ℓ)

2s + m2
Z′

sm2
Z′

(B3)

+
1

m2
Z′

V 2
ℓ (m4

Z′ + 8m2
ℓm

2
χ) + A2

ℓm
2
Z′(m2

Z′ − 4m2
ℓ)

m4
ℓ − 2m2

ℓ(s + m2
χ) + (s−m2

χ)2 + sm2
Z′

− 2
V 2
ℓ (s + m2

Z′) + A2
ℓ(s + m2

Z′ − 2m2
ℓ)

m4
ℓ − 2m2

ℓ(s + m2
χ) + (s−m2

χ)2

× log
m4

ℓ − 2m2
ℓ(s + m2

χ) + (s−m2
χ)2 + sm2

Z′

sm2
Z′

]
.

The cross sections for the inverse process χχ → ℓℓ can
be obtained using

σχχ→ℓℓ =
s− 4m2

ℓ

s− 4m2
χ

σℓℓ→χχ . (B4)

Appendix C: Cross sections for photoproduction
(2 → 3) in the EFT limit

In this appendix, we derive the cross sections for the
photoproduction processes ℓ−γ → ℓ−χ̄χ with the ef-
fective operators given in Eq. (47). For simplicity, we
rewrite Eq. (47) factorizing the Wilson Coefficients in
terms of a leptonic and dark current, Cl

XY = XlYχ. We
start with the most simple case of scalar interactions.
The amplitude reads

iM =
e

Λ2
ℓ

ϵµ(pb)ūχ(p1)(Sχ + iPχγ5)vχ(p2)

× ūℓ(p3)
[
(Sℓ + iPℓγ5)

/pa + /pb + mℓ

(pa + pb)2 −m2
ℓ

γµ

+ γµ /p3 − /pb + mℓ

(p3 − pb)2 −m2
ℓ

(Sℓ + iPℓγ5)
]
uℓ(pa) . (C1)

The squared and spin-averaged amplitude factorizes in
two contributions

|M|2 = X(p1, p2)L(pa, pb, p3) , (C2)

where the X and L denote the traces over dark and SM
particles, respectively. The phase space can be factorized

dΦ3(pa + pb; p1, p2, p3) =

dm2
12

2π
dΦ2(pa + pb; p12, p3)dΦ2(p12; p1, p2) , (C3)

where we introduced s = (pa + pb)
2 and the momentum

of the effective two-body system of dark particles p12 =
p1 + p2 with invariant mass m2

12 = p212.
We start with the dark system, i.e. dΦ2(p12; p1, p2).

The function X(p1, p2) is a scalar and can therefore only
depend on the scalar product p1p2, which can be rewrit-
ten in terms of m2

12 using p1p2 = (m2
12−2m2

χ)/2, leading

to X(p1, p2) = X̃(m12). Thus, we obtain∫
dΦ2(p12; p1, p2)X(p1, p2) =

X̃(m12)

8π

√
1 − 4

m2
χ

m2
12

.

The second phase-space integral can be simplified as∫
dΦ2(pa + pb;p12, p3) =

1

(4π)2
√
s

×
∫

p̄3dp̄3δ
(
p̄3 −

√
s

2
β
)
d cos θdϕ ,

(C4)

with

β =

√
1 − 2

m2
12 + m2

ℓ

s
+

(m2
12 −m2

ℓ)2

s2
, (C5)

where p̄3 is the spatial component of the 4-vector p3, i.e.
p23 = E2

3 − p̄23 = m2
ℓ .

The p3-dependence in the function L(pa, pb, p3) can be
rewritten in terms of s, p̄3 and cos θ in the center-of-mass
(CM) frame using

pap3 =

√
s

2

[
E3

(
1 +

m2
ℓ

s

)
− p̄3 cos θ

(
1 − m2

ℓ

s

)]
,

pbp3 =

√
s

2

(
1 − m2

ℓ

s

)
(E3 + p̄3 cos θ) .

(C6)

One can now evaluate the dΦ2(pa + pb; p12, p3) integral.
After the trivial integrals in dϕ and dp̄3 one can perform
the d cos θ integration analytically. At this point, we are
only left with the m2

12 integration, which can not be done
analytically in the general case. Introducing the dimen-
sionless variable

βχ =
√

1 − 4m2
χ/m

2
12 , (C7)

and x = m2
12/m

2
ℓ , xχ = m2

χ/m
2
ℓ , ŝ = s/m2

ℓ , we arrive at
the result

σ =
αm2

ℓ

64π2Λ4
ℓ

1

(ŝ− 1)3ŝ2

∫ (
√
ŝ−1)2

4xχ

dxxβχ

×
(
β2
χS

2
χ + P 2

χ

)[
S2
ℓ fS(x, ŝ) + P 2

ℓ fP (x, ŝ)
]
,

(C8)

where the functions fS , fP are defined by

fS =4ŝ2
(
ŝ2 − 2ŝ(x− 3) + 2x2 − 10x + 9

)
T (x, ŝ),

−
(

3ŝ3 + ŝ2(25 − 7x) + ŝ(5 − 2x) + x− 1
)
R(x, ŝ) ,

fP =4ŝ2
(
ŝ2 − 2ŝ(x + 1) + 2x2 − 2x + 1

)
T (x, ŝ),

−
(

3ŝ3 − 7ŝ2(x + 1) + ŝ(5 − 2x) + x− 1
)
R(x, ŝ) ,

(C9)

with,

R(x, ŝ) =
√
ŝ2 − 2ŝ(x + 1) + (x− 1)2 ,

T (x, ŝ) = tanh−1 R(x, ŝ)

ŝ− x + 1
. (C10)
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In the limit mχ → 0, the final integral can be evaluated
analytically,

σ =
αm2

ℓ

2304π2Λ4
ℓ

1

(ŝ− 1)3ŝ2

×
(
S2
χ + P 2

χ

)(
S2
ℓ gS(ŝ) + P 2

ℓ gP (ŝ)
)
, (C11)

where

gS = − 79ŝ6 − 14ŝ5 − 189ŝ4 − 296ŝ3 + 527ŝ2 + 54ŝ− 3

+ 12ŝ2
(

2ŝ4 + 10ŝ3 + 9ŝ2 + 44ŝ + 25
)

log ŝ ,

gP = − 79ŝ6 + 338ŝ5 + 675ŝ4 − 1160ŝ3 + 175ŝ2 + 54ŝ

− 3 + 12ŝ2
(

2ŝ4 + 2ŝ3 − 63ŝ2 − 28ŝ + 17
)

log ŝ .

(C12)

The matrix element for vector-like interactions reads

iM =
e

Λ2
ℓ

ϵµ(pb)ūχ(p1)γν(Vχ + iAχγ5)vχ(p2) (C13)

× ūℓ(p3)
[
γν(Vℓ + iAℓγ5)

/pa + /pb + mℓ

(pa + pb)2 −m2
ℓ

γµ

+ γµ /p3 − /pb + mℓ

(p3 − pb)2 −m2
ℓ

γν(Vℓ + iAℓγ5)
]
uℓ(pa) .

After squaring and spin-averaging, one again obtains two
traces for the SM and dark part of the amplitude, respec-
tively. Due to the vector-like nature of the interaction,
these traces are contracted with two Lorentz indices, one
arising from M and one from M†

|M|2 = Xµν(p1, p2)Lµν(pa, pb, p3) . (C14)

Due to the fact that Xµν can not only depend on m2
12,

but also on pµ1 , p
µ
2 , we can not simply factor Xµν out of

the dΦ(p12; p1, p2) integral as in the scalar case. However,
Lorentz covariance implies that the integral can only de-
pend on the vector pµ12 = pµ1 + pµ2∫

dΦ2(p12; p1, p2)Xµν(p1, p2) = A1m
2
12g

µν + A2p
µ
12p

ν
12 ,

(C15)

where A1, A2 are functions of m2
12

A1 = −
(

(V 2
χ + A2

χ) + 2
m2

χ

m2
12

(V 2
χ − 2A2

χ)
)
,

A2 =

(
1 +

2m2
χ

m2
12

)
(V 2

χ + A2
χ) . (C16)

From this point on, the calculation is equivalent to the
scalar case. We arrive at the result

σ =
αm2

ℓ

48π2Λ4
ℓ

1

(ŝ− 1)3ŝ2
(C17)

×
∫ (

√
ŝ−1)2

4xχ

dx βχ

(
V 2
ℓ fV (x, xχ, ŝ) + A2

ℓfA(x, xχ, ŝ)
)
,

with

fV = −4A1ŝ
2x
(
ŝ2 − 2ŝ(x + 3) + 2x2 + 2x− 3

)
T (x, ŝ)

−A1x
(
ŝ3 + ŝ2(7x + 15) + ŝ(2x− 1) − x + 1

)
R(x, ŝ) ,

fA = −4A1ŝ
2x
(
ŝ2 − 2ŝ(x− 5) + 2x2 − 14x + 13

)
T (x, ŝ)

−A1x
(
ŝ3 + 7ŝ2(x− 7) + ŝ(2x− 1) − x + 1

)
R(x, ŝ)

+ 8A2ŝ
2
(
ŝ2 − 2ŝ(x + 1) + 2x2 − 2x + 1

)
T (x, ŝ)

− 2A2

(
3ŝ3 − 7ŝ2(1 + x) + ŝ(5 − 2x) + x− 1

)
R(x, ŝ) .

(C18)

In the limit mχ → 0, one can again perform the dx
integration analytically and arrive at

σ =
αm2

ℓ

1728π2Λ4
ℓ

1

ŝ2(ŝ− 1)3

× (V 2
χ + A2

χ)
(
V 2
ℓ gV (ŝ) + A2

ℓgA(ŝ)
)
, (C19)

with

gV = − 55ŝ6 + 682ŝ5 + 483ŝ4 − 968ŝ3 − 169ŝ2 + 30ŝ

− 3 + 12ŝ2
(

2ŝ4 − 14ŝ3 − 87ŝ2 − 52ŝ + 1
)

log ŝ ,

gA = − 55ŝ6 − 254ŝ5 + 219ŝ4 − 296ŝ3 + 119ŝ2 + 294ŝ

− 27 + 12ŝ2
(

2ŝ4 + 10ŝ3 + 33ŝ2 − 4ŝ + 49
)

log ŝ .

Finally, the matrix element for tensor-like interactions
reads

iM =
e

Λ2
ℓ

ϵµ(pb)ūχ(p1)σνρ(Tχ + T ′
χγ5)vχ(p2) (C20)

× ūℓ(p3)
[
σνρ /pa + /pb + mℓ

(pa + pb)2 −m2
ℓ

γµ (C21)

+ γµ /p3 − /pb + mℓ

(p3 − pb)2 −m2
ℓ

σνρ
]
uℓ(pa) . (C22)

The squared and spin-averaged matrix element can be
factorized as

|M|2 = Xµνρσ(p1, p2)Lµνρσ(pa, pb, p3) . (C23)

We define the index ordering in Xµνρσ such that the first
and second pair of indices each corresponds to one σµν

in the trace that constitutes Xµνρσ, i.e. Xµνρσ is anti-
symmetric under µ ↔ ν and ρ ↔ σ. After proper an-
tisymmetrization, there are only two Lorentz structures
that satisfy this condition, leading to∫
dΦ2(p12; p1, p2)Xµνρσ(p1, p2) = m2

12B1

(
gµρgνσ − gνρgµσ

)
+ B2

(
pµ12(pρ12g

νσ − pσ12g
νρ) − pν12(pρ12g

µσ − pσ12g
µρ)
)
,
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where B1, B2 are functions of m2
12

B1 =
1

12π
βχ

(
(T 2

χ + T ′2
χ ) + 4

m2
χ

m2
12

(2T ′2
χ − T 2

χ)
)
,

B2 = − 1

6π
βχ

m2
12 + 2m2

χ

m2
12

(T 2
χ + T ′2

χ ) .

After following the standard procedure as outlined for
the scalar case, one arrives at the result

σ =
αm2

ℓ

4πΛ4
ℓ

1

(ŝ− 1)3ŝ2
(C24)∫ (

√
ŝ−1)2

4xχ

dx
(
B1f1(x, xχ, ŝ) + B2f2(x, xχ, ŝ)

)
,

where

f1 =96ŝ2
(

(ŝ− x + 1)T (x, ŝ) −R(x, ŝ)
)
,

f2 = −
(

4ŝ4 + ŝ3(x− 16) + ŝ2(7x2 + 59x + 24)

+ ŝ(2x2 + 7x− 16) − x2 − 3x + 4
)
R(x, ŝ)

− 4ŝ2x
(
ŝ2 − 2ŝ(x + 9) + 2x2 + 14x− 15

)
T (x, ŝ) .

(C25)

In the limit mχ → 0, the final dx integration can be done
analytically and we arrive at

σ =
αm2

ℓ

864π2Λ4
ℓ

1

(ŝ− 1)3ŝ2
(T 2

χ + T ′2
χ ) (C26)

×
[
17ŝ6 + 370ŝ5 + 675ŝ4 − 344ŝ3 − 1153ŝ2 + 486ŝ− 51

+ 12ŝ2
(

2ŝ4 − 26ŝ3 − 27ŝ2 − 136ŝ + 37
)

log ŝ
]
.

Appendix D: Full calculation of photoproduction

The energy-loss rate per unit volume for photoproduc-
tion ℓ−(pa)γ(pb) → χ(p1)χ(p2)ℓ−(p3) can be written as

Q =
1

32π4

∫ ∞

mℓ

dEap̄afa

∫ ∞

0

dEbEbfb

×
∫ 1

−1

dcθJs(s, Ea, Eb) , (D1)

Js =

∫
dΦ3(pa + pb; p1, p2, p3)|M|2

× (Ea + Eb − E3)(1 − f3) , (D2)

where dΦ3 is the Lorentz-invariant 3-body phase space
volume, p̄a ≡ |p⃗a| =

√
E2

a −m2
ℓ , f−1

a = e(Ea−µℓ)/T + 1,

f−1
b = eEb/T−1, f−1

3 = e(E3−µℓ)/T +1, s = m2
ℓ+2Eb(Ea−

p̄acθ), cθ ≡ cos θ and all energies refer to the PNS frame.
Using the decomposition of the 3-body phase space in

Eq. (C3), the 2-body phase space integral over the dark

fermion momenta p1 and p2 can be easily performed, as
the spin-summed, squared matrix element |M|2 factor-
izes into two contributions, cf. Eq. (C14)

M(pa, pb, p3,m12) ≡
∫

dΦ2(p12; p1, p2) |M|2 . (D3)

The remaining phase space integral dΦ2(pa + pb; p12, p3)
is suitably evaluated in the CM frame, giving∫

dΦ2 =
2π√
s

∫
p̄′3dp̄

′
3dcδdϕ

4(2π)3
δ(p̄′3 − β

√
s/2) , (D4)

where cδ ≡ cos δ, p̄′3 =
√

(E′
3)2 −m2

ℓ with E′
3 the final

lepton energy in the CM frame, ϕ and δ denote the po-
lar and azimuthal angle of p⃗ ′

3 and β(s,m12) is given in
Eq. (C5).

To evaluate the Lorentz-invariant quantity
M(pa, pb, p3,m

2
12) in this frame, we express the

relevant Lorentz scalars in the CM frame, where
p′a = (E′

a, 0, 0, E
′
b), p

′
b = (E′

b, 0, 0,−E′
b)

papb =
s−m2

ℓ

2
,

pap3 = E′
aE

′
3 + E′

bp̄
′
3cδ ,

pbp3 = E′
bE

′
3 − E′

bp̄
′
3cδ , (D5)

where the energies in the CM frame can be written in
terms of s only using

E′
a =

s + m2
ℓ

2
√
s

, E′
b =

s−m2
ℓ

2
√
s

. (D6)

These expressions allow to write M(pa, pb, p3,m12) as
a function of s, cos δ, E′

3 and m12, and it remains to
evaluate (Ea + Eb − E3)(1 − f3) in the CM frame.
E3 is related to E′

3 by a Lorentz boost with velocity
(p⃗a + p⃗b)/(Ea + Eb) ≡ p⃗ab/Eab = p̄ab/Eab(0, sη, cη) with
sη ≡ sin η, cη ≡ cos η and boost factor γ = Eab/

√
s (since

s = E2
ab − p̄2ab). The same boost relates Eb to E′

b, which
can be used to obtain an expression for cos η as a function
of s and the initial energies in the PNS frame

cη =
s(Eb − Ea) + m2

ℓ(Eb + Ea)

(s−m2
ℓ)
√

(Ea + Eb)2 − s
. (D7)

This angle determines the desired relation between E3

and E′
3 as

E3 =
1√
s

(EabE
′
3 + p̄abp̄

′
3(sηsϕsδ + cηcδ)) . (D8)

Having expressed all final state energies in the CM frame,
one can finally perform the dp̄′3 using the δ-function in
Eq. (D4), giving

p̄′3 = β

√
s

2
, E′

3 =

√
s

2

(
1 − m2

12 −m2
ℓ

s

)
. (D9)
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Putting everything together, we finally obtain for
Eq. (D2)

Js =
1

64π3

∫ (
√
s−ml)

2

4m2
χ

dm2
12 β(s,m12)

∫ 1

−1

dcδM(s,m2
12, cδ)

×
∫ 2π

0

dϕ(Ea + Eb − E3)(1 − f3) , (D10)

where β(s,m12) is given in Eq. (C5), M(s,m2
12, cδ) is

obtained from Eqs. (D3),(D5),(D6),(D9), and E3 =
E3(s,m12, Ea, Eb, ϕ, δ) from Eqs. (D7),(D8),(D9). When
1−f3 is to good approximation independent of E3, the dϕ
integration can be trivially carried out, giving an overall
factor of 2π and (sηsϕsδ + cηcδ) → cηcδ in Eq (D8).

Appendix E: Numerical resolution of the kinematic
integrals for the annihilation rates

Throughout this work, we use Monte Carlo tech-
niques [179] to evaluate the thermal phase space integrals
numerically, e.g. Eq. (10) for annihilation and Eq. (31)
for trapping. For processes where the Z ′ can be pro-
duced resonantly, the Breit-Wigner propagator yields a
peak in the Mandelstam variable s located at mZ′ with
width

√
mZ′ΓZ′ ∼ gmZ′ . We want to calculate these

integrals for very small couplings g ∼ 10−10, translating
into very narrow peaks. When using only several thou-
sands of points for the Monte Carlo estimate, it is unlikely
that this estimate can resolve the peak structure. In par-
ticular, iterative algorithms like VEGAS are unable to
adapt to the peak if they can not extract information
about the peak from samples in early iterations.

Fortunately, we have knowledge about the shape of
the peak, allowing us to provide this information to the
Monte Carlo sampler. To achieve this, we include the
Mandelstam variable s, corresponding to the peak loca-
tion, as one of the integration variables. Subsequently,
we divide the integral into three regions. One of these
regions includes only the peak

m2
Z′ − σmZ′ΓZ′ ≤ s ≤ m2

Z′ + σmZ′ΓZ′ , (E1)

with σ ∼ 5. The other two regions cover the regions to
the left and to the right of the peak, respectively. This
approach ensures that the sum of the three integrals ef-
fectively captures and resolves the peak.

These integrals scale as ∝ g2 when the contribution
from the resonance dominates the integral, otherwise
they scale as ∝ g4. We can employ this observation
to validate our approach of calculating the integrals, as
shown in Fig. 6.
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