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Form factors are crucial theory input in order to extract |Vcb| from B → D(∗)ℓν decays, to calculate

the Standard Model prediction for R(D(∗)) and to assess the impact of New Physics. In this
context, the Dispersive Matrix approach, a first-principle calculation of the form factors, using no
experimental data but rather only lattice QCD results as input, was recently applied to B → D(∗)ℓν.
It predicts (within the Standard Model) a much milder tension with the R(D∗) measurements than
the other form factor approaches, while at the same time giving a value of |Vcb| compatible with the
inclusive value. However, this comes at the expense of creating tensions with differential B → D∗ℓν
distributions (with light leptons). In this article, we explore the implications of using the Dispersive
Matrix method form factors, in light of the recent Belle (II) measurements of the longitudinal
polarization fraction of the D∗ in B → D∗ℓν with light leptons, F ℓ

L, and the forward-backward
asymmetry, Aℓ

FB. We find that the Dispersive Matrix approach predicts a Standard Model value
of F ℓ

L that is in significant tension with these measurements, while mild deviations in Aℓ
FB appear.

Furthermore, F ℓ
L is very insensitive to New Physics such that the latter cannot account for the tension

between Dispersive Matrix predictions and its measurement. While this tension can be resolved by
deforming the original Dispersive Matrix form factor shapes within a global fit, a tension in R(D∗)
reemerges. As this tension is milder than for the other form factors, it can be explained by New
Physics not only in the tau lepton channel but also in the light lepton modes.

I. INTRODUCTION

Due to the chiral suppression of purely leptonic B de-
cays, the most precise direct determinations of the CKM
element |Vcb| originate from semi-leptonic B decays [1–
12]. However, the exclusive and inclusive determinations
of |Vcb| have been in tension with each other for a long
time now [12, 13]. Furthermore, the exclusive value is
also in tension with the indirect determination of |Vcb|
from the Unitarity Triangle analysis [14, 15], which points
towards its inclusive value. As this inclusive/exclusive
discrepancy cannot be explained by physics beyond the
Standard Model (SM) [16–18],1 scrutiny of the different
theoretical methods is even more important.

In the exclusive case, the SM value of |Vcb| relies on
form factors (FFs), which can be calculated by different
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1 Previously, an explanation via a right-handed charged current
was possible [19]. However, with the recent exclusive values of
|Vcb| from B → D(∗)ℓν̄, which are both below the inclusive one,
this is not feasible anymore.

non-perturbative methods, in particular light-cone sum
rules [11, 20, 21] and lattice QCD [22, 23]. These FFs
also enter the SM predictions for the ratios

R(D(∗)) =
BR(B → D(∗)τ ν̄)

BR(B → D(∗)ℓν̄)
, ℓ = e, µ , (1)

testing lepton flavour universality (LFU). Here, a tension
between the measurements of BaBar [24, 25], Belle [26–
30] and LHCb [31–34], whose average reads [12]

R(D) = 0.356± 0.029 ,

R(D∗) = 0.284± 0.013 ,
(2)

and the SM prediction [12]2

RSM(D) = 0.298± 0.004 ,

RSM(D∗) = 0.254± 0.005 ,
(3)

of 3.2σ exists. While in this case a New Physics (NP)
explanation is possible, and these ratios have the advan-
tage of being fairly insensitive to hadronic uncertainties,
the HFLAV value is challenged by alternative calcula-
tions of the FFs, in particular the one based on the Dis-
persive Matrix (DM) approach [35, 36]. The DM FFs

2 The HFLAV value is based on Refs. [1–3, 5, 6, 8].
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do not only reduce the tension in R(D∗) to 1.3σ [37],
but also give |Vcb| = (41.2 ± 0.8) × 10−3 from B(s) →
D

(∗)
(s)ℓν [8, 37, 38], which agrees with the inclusive values

of (42.16±0.51)×10−3 [39] or (41.69±0.63)×10−3 [40].
However, this agreement comes at the cost of creating

tensions between the DM FFs and the ones measured in
differential B → D(∗)ℓν distributions. While this opens
up the possibility of NP coupling to light leptons (instead
or in addition to taus) it is not clear that this is a feasi-
ble option once all experimental information is taken into
account. Indeed, the Belle and Belle II collaborations re-
cently released the results of the first measurement of the
D∗ longitudinal polarization fraction F ℓ

L [41, 42] finding

F e
L,Belle = 0.485± 0.017± 0.005 ,

Fµ
L,Belle = 0.518± 0.017± 0.005 ,

F e
L,Belle II = 0.521± 0.005± 0.007 ,

Fµ
L,Belle II = 0.534± 0.005± 0.006 .

(4)

Here, the first uncertainties are statistical while the sec-
ond ones are systematic. Moreover, also the forward-
backward asymmetry Aℓ

FB was measured, for which they
find

Ae
FB,Belle = 0.230± 0.018± 0.005 ,

Aµ
FB,Belle = 0.252± 0.019± 0.005 ,

Ae
FB,Belle II = 0.219± 0.011± 0.020 ,

Aµ
FB,Belle II = 0.215± 0.011± 0.022 .

(5)

For the case of FL, while a small tension is present among
the two measurements in the electron channel, the muon
ones are in good agreement. The situation is opposite for
AFB, with the two measurements in the electron channel
in good agreement, while a small discrepancy is present
in the muon one. Importantly, the theoretical predictions
for these quantities crucially depend on the FF choice.

Given this new level of accuracy in these observables,
it is imperative to inspect the impact of these measure-
ments on the global b → cℓν fit, including the dependence
on the FF set used. In this article, we focus in partic-
ular on the DM FFs, compared to the “standard” FFs
of Ref. [5, 6, 18, 22]. For this, we first review the for-
malism used to describe B → D∗ℓν decays in Sec. II and
give a short summary to the DM approach in Sec. III.
Implications of the measurements of F e,µ

L are discussed
in Sec. IV before we conclude in Sec. V.

II. FORMALISM

The effective Hamiltonian

Heff = 2
√
2GFVcb

[
(1 + gℓVL

)Oℓ
VL

+ gℓVR
Oℓ

VR

+gℓSL
Oℓ

SL
+ gℓSR

Oℓ
SR

+ gℓTO
ℓ
T

]
+ h.c. ,

(6)

with the dimension-six operators

Oℓ
VL

= (c̄γµPLb)
(
ℓ̄γµPLνℓ

)
,

Oℓ
VR

= (c̄γµPRb)
(
ℓ̄γµPLνℓ

)
,

Oℓ
SL

= (c̄PLb)
(
ℓ̄PLνℓ

)
,

Oℓ
SR

= (c̄PRb)
(
ℓ̄PLνℓ

)
,

Oℓ
T = (c̄σµνPLb)

(
ℓ̄σµνPLνℓ

)
,

(7)

describes B̄ → D∗ℓν transitions within the SM and heavy
NP extensions. Here σµν = i

2 [γµ, γν ] and PL,R = (1 ∓
γ5)/2, and we do not consider here the case of light right-
handed neutrinos. Note that at the dimension-six level
in the SMEFT, gVR

is lepton flavour-universal, implying
geVR

= gµVR
= gτVR

.
For the SM operator, the B → D∗ matrix element is

described as

⟨D∗(p, ϵ)|c̄γµPLb|B̄(pB)⟩ = (8)

− V (q2)

mB +mD∗
εµαβγϵ

∗αpβqγ + i A0(q
2)
mD∗

q2
(ϵ∗ ·q)qµ

− iA1(q
2)

2(mB −mD∗)

[
(m2

B −m2
D∗)ϵ∗µ − (ϵ∗ ·q)(p+ pB)

µ
]

− iA3(q
2)

mD∗

q2
(ϵ∗ ·q)

[
q2

m2
B −m2

D∗
(p+ pB)

µ − qµ
]

,

with

2mD∗A3(q
2) = (mB+mD∗)A1(q

2)−(mB−mD∗)A2(q
2),
(9)

where q = pB − p, such that q2 is the invariant mass of
the dilepton pair. The FFs can be decomposed as

V (q2) =
mB +mD∗

2
g(w) ,

A1(q
2) =

f(w)

mB +mD∗
, (10)

A2(q
2) =

1

2

mB +mD∗

(w2 − 1)mBmD∗

[(
w − mD∗

mB

)
f(w)− F1(w)

mB

]
,

A0(q
2) =

1

2

mB +mD∗
√
mBmD∗

P1(w) ,

in the Boyd-Grinstein-Lebed (BGL) formalism [43–45]
with

w =
m2

B +m2
D∗ − q2

2mBmD∗
. (11)

The FFs obey two kinematical constraints: at zero recoil
(w = 1), where only two out of the three helicity ampli-
tudes are independent when the D∗ meson is at rest,

F1(1) = (mB −mD∗)f(1) (12)

holds, while at maximum recoil, due to the cancellation
of any apparent kinematical singularity in the Lorentz
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decomposition of Eq. (8), we have

P1(wmax) =
F1(wmax)

(1 + wmax)(mB −mD∗)
√
mBmD∗

. (13)

Here, we introduced wmax which for a massless lepton

reads

wmax =
m2

B +m2
D∗

2mBmD∗
≃ 1.504 . (14)

We can now define the differential decay width as

dΓ(B → D∗(→ Dπ)ℓν)

dw dcos θℓ dcos θD dχ
=

G2
F |Vcb|2

4(4π)4
3mBm

2
D∗

√
w2 − 1

(
1− 2

mD∗

mB
w +

m2
D∗

m2
B

)
B(D∗ → Dπ){

(1− cos θℓ)
2 sin2 θD|H+|2 + (1 + cos θℓ)

2 sin2 θD|H−|2 + 4 sin2 θℓ cos
2 θD|H0|2

− 2 sin2 θℓ sin
2 θD cos 2χH+H− − 4 sin θℓ(1− cos θℓ) sin θD cos θD cosχH+H0

+ 4 sin θℓ(1 + cos θℓ) sin θD cos θD cosχH−H0

}
,

(15)

in the massless lepton limit.3 In the differential width,
the angle (in the virtual W boson rest frame) between
the lepton and the direction opposite to the B meson
momentum is defined as θℓ; the angle in the D∗ rest
frame between the D meson and the direction opposite
the B meson momentum is θD, and finally the angle in
the B meson rest frame between the two decay planes
spanned by the D∗ −D and W − ℓ systems is χ.

In Eq. (15) we have introduced the helicity amplitudes

H0(w) =
F1(w)√

m2
B +m2

D∗ − 2mBmD∗w
,

H±(w) = f(w)∓mBmD∗

√
w2 − 1 g(w) ,

(16)

which enter in the decay rate, in the D∗ longitudinal
polarization fraction and in the forward-backward asym-
metry:

dΓ

dw
∝ |H0(w)|2 + |H+(w)|2 + |H−(w)|2 , (17)

F ℓ
L(w) =

|H0(w)|2

|H0(w)|2 + |H+(w)|2 + |H−(w)|2
, (18)

Aℓ
FB(w) =

|H−(w)|2 − |H+(w)|2

|H0(w)|2 + |H+(w)|2 + |H−(w)|2
. (19)

These quantities are usually predicted and measured af-
ter integrating the helicity amplitudes over the available
phase space, i.e. w ∈ [1, wmax]. This implies an inter-
esting feature for the F1(w) FF: if its integral over the
phase space increases, e.g. due to an increase of F1(w)
at large w, this induces an increase for both observables
in Eqs. (17)-(18) and a decrease for the one in Eq. (19).
Remembering now the definition of R(D∗) in Eq. (1), we
observe that an increase in the light lepton dΓ/dw in-
duces a decrease in the LFUV ratio. We can therefore

3 In our analysis we nevertheless keep the full lepton mass depen-
dence which introduces the additional FF P1.

infer that a change of the shape of F1(w), resulting in
an increase (decrease) of its integrated value, would im-
ply an increase (decrease) for the prediction for F ℓ

L and
a decrease (increase) for the ones of R(D∗) and Aℓ

FB. As
we will see in Sec. IV, this is crucial for understanding
how the DM FFs affect the predictions for F ℓ

L and Aℓ
FB

within the SM.

III. SUMMARY OF FORM FACTORS

We give a short description of the four FF sets we use.4

• DM: See detailed explanation below;

• F/M: The results obtained employing the lattice
QCD by the Fermilab(FNAL)/MILC collabora-
tion [22], which for the first time computed the FFs
at non-zero recoil and analysed them with the BGL
parametrization, which is model-independent and
based only on QCD dispersion relations5;

• BGL: The recent results [5, 49, 50] without the
inclusion of FNAL/MILC data [22] obtained em-
ploying the BGL parametrization [45] at the (2,2,2)
truncation order;

• HQET: An approach [6, 17] that adopts a sys-
tematic expansion in terms of inverse powers of
heavy quark masses and in particular incorporates
Λ2
QCD/m

2
c corrections; in our numerical study we

employ the latest results based on the (2/1/0) ex-
pansion scheme [18].

4 We do not include the CLN parametrization [46], obtained by
applying heavy quark symmetry to FFs based on the Heavy
Quark Effective Theory (HQET) [47, 48] as this method uses
approximations such that it is e.g. not possible to consistently
incorporate Λ2

QCD/m2
c correction which are non-negligible [17].

5 Novel results have recently been released by the HPQCD collab-
oration as well [23], confirming the FNAL/MILC results.
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Let us now consider the DM formalism in some
more detail, as these FFs have never been used be-
fore in a global fit. The DM approach is a non-
perturbative method for computing hadronic FFs in a
model-independent way [35], applied, in particular, to the

investigation of B → D(∗)ℓνℓ [8, 37], Bs → D
(∗)
s ℓνℓ [38]

and B(Bs) → π(K)ℓνℓ [51] decays.
The starting point is a dispersion relation that, for a

generic FF f can be written as [45, 46, 52]

1

2πi

∮
|z|=1

dz

z
|ϕ(z)f(z)|2 ≤ χ , (20)

where ϕ(z) is a function depending on the specific spin-
parity channel (and including the Blaschke factors needed
to remove sub-threshold bound-state poles) and χ is the
so-called susceptibility related to the derivative of the
Fourier transform of a suitable Green function of bilinear
quark operators [45], calculated within lattice QCD in
Ref. [36] for several spin-parity channels of interest. The
conformal variable z(t) is defined as

z(t) =

√
t+ − t−

√
t+ − t−√

t+ − t+
√
t+ − t−

, (21)

with t = q2 being the squared 4-momentum transfer and
t± ≡ (mB ±mD∗)2 for the case of interest in this work.
By introducing the inner product [53, 54]

⟨g|h⟩ = 1

2πi

∮
|z|=1

dz

z
ḡ(z)h(z) , (22)

where ḡ(z) is the complex conjugate of the function g(z),
Eq. (20) can be also written as

0 ≤ ⟨ϕf |ϕf⟩ ≤ χ . (23)

Following Refs. [53, 54] we introduce the set of functions

gt(z) ≡
1

1− z̄(t)z
,

where z̄(t) is the complex conjugate of the conformal vari-
able z(t), so that the use of Cauchy’s theorem yields

⟨gt|ϕf⟩ = ϕ(z(t)) f (z(t)) ,

⟨gtm |gtl⟩ =
1

1− z̄(tl)z(tm)
.

The central ingredient of the DM method is the ma-
trix [53, 54]

M ≡


⟨ϕf|ϕf⟩ ⟨ϕf|gt⟩ ⟨ϕf|gt1 ⟩ · · · ⟨ϕf|gtN ⟩

⟨gt|ϕf⟩ ⟨gt|gt⟩ ⟨gt|gt1 ⟩ · · · ⟨gt|gtN ⟩

⟨gt1 |ϕf⟩ ⟨gt1 |gt⟩ ⟨gt1 |gt1 ⟩ · · · ⟨gt1 |gtN ⟩

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⟨gtN |ϕf⟩ ⟨gtN |gt⟩ ⟨gtN |gt1 ⟩ · · · ⟨gtN |gtN ⟩

 , (24)

where t1, . . . , tN are the values of the squared 4-
momentum transfer at which the FF f(z) is known. In

the DM method we consider only values f(z(ti)) (with
i = 1, 2, ...N) computed nonperturbatively on the lattice.
The important feature of the matrix M is that, thanks

to the positivity of the inner products, its determinant
is positive semidefinite, i.e. detM ≥ 0. This property is
not modified when the first matrix element in Eq. (24) is
replaced by the upper bound given by the susceptibility
χ through Eq. (23). Thus, using also the fact that both
z and f(z) can assume only real values in the allowed
kinematical region for semileptonic decays, the original
matrix (24) can be replaced by

Mχ =



χ ϕf ϕ1f1 ... ϕNfN

ϕf 1
1−z2

1
1−zz1

... 1
1−zzN

ϕ1f1
1

1−z1z
1

1−z21
... 1

1−z1zN

... ... ... ... ...

ϕNfN
1

1−zNz
1

1−zNz1
... 1

1−z2
N


, (25)

where ϕifi ≡ ϕ(zi)f(zi) (with i = 1, 2, ...N) represent
the known values of ϕ(z)f(z) corresponding to the given
set of values zi.
By imposing the positivity of the determinant of the

matrix (25) it is possible to explicitly compute the lower
and upper bounds that unitarity imposes on the FF f(z)
for a generic value of z, namely [35]

β(z)−
√
γ(z) ≤ f(z) ≤ β(z) +

√
γ(z) , (26)

where

β(z) ≡ 1

ϕ(z)d(z)

N∑
j=1

ϕjfjdj
1− z2j
z − zj

, (27)

γ(z) ≡ 1

1− z2
1

ϕ2(z)d2(z)
(χ− χDM) , (28)

χDM ≡
N∑

i,j=1

ϕifiϕjfjdidj
(1− z2i )(1− z2j )

1− zizj
, (29)

d(z) ≡
N∏

m=1

1− zzm
z − zm

, (30)

dj ≡
N∏

m ̸=j=1

1− zjzm
zj − zm

. (31)

Unitarity is satisfied only when γ(z) ≥ 0, which implies
χ ≥ χDM and represents a parametrization-independent
test of it for a given set of input values fj . In this way,
the input data are filtered by unitarity. Within the DM
approach only the subset of input data satisfying the uni-
tary filter χ ≥ χDM is considered.
Moreover, when z → zj one has β(z) → fj and

γ(z) → 0 (see Ref. [35]). In other words, Eq. (26) ex-
actly reproduces the input unitary data, i.e. the subset
satisfying the unitary filter χ ≥ χDM. Therefore, the
DM band for the form factor f(z) at a generic value of



5

0.44 0.46 0.48 0.50 0.52 0.54

●

●

●

●

0.44 0.46 0.48 0.50 0.52 0.54

●

●

●

●

0.20 0.22 0.24 0.26 0.28

●

●

●

●

0.20 0.22 0.24 0.26 0.28

●

●

●

●

0.24 0.25 0.26 0.27 0.28 0.29 0.30

●

●

●

●

FIG. 1. Comparisons among measurements [12, 41, 42] and SM predictions for F ℓ
L, Aℓ

FB and R(D∗) at the 1σ level. See
Sec. IVA for details on the different predictions.

z is given by the convolution of the uniform distribu-
tion corresponding to Eqs. (27)-(28) with the distribu-
tion of the input (lattice) data {fj} having χ ≥ χDM. It
represents the envelope of the results of all possible (ei-
ther truncated or not truncated) z-expansions, like the
BGL ones [45], which satisfy unitarity and at the same
time exactly reproduce the input unitary data. In a fre-
quentist language, this corresponds to a null value of the
χ2-variable. This is at variance with what happens when
working directly with (either truncated or not truncated)
BGL fits, which may have χ2 > 0 even when the fitting
function is constructed to satisfy unitarity.

For the purpose of our numerical analysis, for each of
ten equally spaced recoil bins of the B → D∗ channel we
use a linear parametrization of the four DM FFs of the
form fi(w) = ai + w · bi. We then use values for each ai
and bi, assuming normally distributed errors and includ-
ing correlations among the total of 80 values. We have
checked that such a parametrization accurately repro-
duces the predicted values for R(D∗) and F τ

L [37]. The
same procedure is adopted for the two FFs describing the
B → D channel.6

IV. IMPACT OF F ℓ
L AND Aℓ

FB

A. SM predictions and fit

In our analysis we distinguish between predictions and
fits. In the former case, we only use the theoretical results
relevant to each approach as priors in our analyses, with-
out employing any further (experimental) information; in
the latter case, all the relevant experimental results, like
e.g. Refs. [41, 42], are enforced in the likelihood as well.

Let us start by studying F ℓ
L and Aℓ

FB in the SM within
the four sets of FFs discussed in the previous section.
In the absence of NP, and without using any additional
experimental information, F ℓ

L (ℓ = e, µ) is predicted to

6 Details regarding the numerical values, their associated errors
and correlations can be provided upon request to the authors.

be

F ℓ
L,DM = 0.448± 0.020 ,

F ℓ
L,F/M = 0.467± 0.023 ,

F ℓ
L,BGL = 0.498± 0.015 ,

F ℓ
L,HQET = 0.534± 0.002 ,

(32)

which has to be compared with Eq. (4). Similarly, the
predictions for Ae,µ

FB read

A
e(µ)
FB,DM = 0.262(0.258)± 0.014 ,

A
e(µ)
FB,F/M = 0.250(0.246)± 0.016

A
e(µ)
FB,BGL = 0.255(0.250)± 0.021 ,

A
e(µ)
FB,HQET = 0.217(0.211)± 0.003 ,

(33)

to be compared with Eq. (5). A visual summary can
be found in Fig. 1. Note that at the current level of
precision, there is no difference among the predictions of
F e
L and Fµ

L , while Ae
FB and Aµ

FB slightly differ.
For F ℓ

L we observe in the DM approach compatibil-
ity in the electron channel with the Belle result but a
∼ 2.5σ tension with Belle II. In the muon channel, the
tension is even ∼ 2σ (∼ 3σ) compared to the Belle (II)
result. In the FNAL/MILC and BGL approaches the
tension is smaller, while the HQET FFs describe data
very well. Concerning Aℓ

FB, the DM approach predicts
values slightly above both Belle II measurements, while
well reproducing the Belle ones. On the other hand, the
HQET FFs have a prediction lower than the Belle muon
measurement but describe well the other data. Finally,
both FNAL/MILC and BGL results are in good agree-
ment with all measured values.
To better understand these differences in the predic-

tions of F ℓ
L and Aℓ

FB, it is useful to study their q2 be-
haviour, as shown in the two panels of Fig. 2. The
discrepancies between the DM and FNAL/MILC predic-
tions originate from deviations in the shapes at smaller
q2. This behaviour is expected since the DM FFs use lat-
tice input at low recoil, and a deviation among the two
methods at large recoil can be traced back to the kine-
matic constraint in Eq. (13), enforced only for the DM
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FIG. 2. Predicted 1σ range for F ℓ
L (left panel) and Aℓ

FB (right panel) as a function of q2 for the four different FF sets.

FFs. The values predicted in the BGL approach deviate
from the ones of the previous methods due to a difference
in the shapes of the two observables. On the other hand,
the HQET results share the same shape with DM and
FNAL/MILC while being shifted towards larger (lower)
values for F ℓ

L (Aℓ
FB), and display the smallest overall un-

certainty.
Let us now focus on the DM FFs, which predict R(D∗)

to be in agreement with the measurements while having
significant tensions in F ℓ

L and, to a lesser extent, in Aℓ
FB.

If one includes all relevant data in a global fit, i.e. the
τ lepton polarization Pτ (D

∗) [55], the longitudinal po-
larization fraction in τ decays F τ

L [56], R(D(∗)) [12] and
the longitudinal polarization fractions for light leptons
F ℓ
L and forward-backward asymmetries Aℓ

FB [41, 42], and
uses the SM values of the DM FFs as (correlated) nor-
mal priors, one obtains the following results for all the
relevant observables currently measured:

R(D∗)fit = 0.265± 0.005 ,

F ℓ
L, fit = 0.515± 0.005 ,

Ae
FB, fit = 0.227± 0.007 ,

Aµ
FB, fit = 0.222± 0.007 .

(34)

This means that the pull of the F ℓ
L and Aℓ

FB measure-
ments on the shape of the FFs (for which, we remind,
the SM values of the DM FFs act only as priors) are so
strong that the post-fit values of the asymmetries are in
agreement with data, while tensions in R(D∗) reemerge.
We, therefore, find ourselves in a situation similar to the
other FF sets, i.e. agreement within F ℓ

L and Aℓ
FB but

tension in R(D∗) (even though the latter is a bit less
severe).

In order to understand how the predicted values for F ℓ
L

and Aℓ
FB in Eqs. (32)-(33) are related to the post-fit ones

given in Eq. (34), it is useful to study the shape of the
FFs in the two scenarios. We report them in Fig. 3,

together with the lattice data points [22] used in the
DM approach. One sees that while the shape of f(w)
and g(w) are not particularly altered when performing
a global fit, the FFs F1(w) and P1(w) show a ∼ 30%
growth at w ≃ 1.5.7 Moreover, the shape of F1(w) and
P1(w) are stretched to a point hardly compatible with the
original DM values (pre-fit), not only at high recoil but
also for lower values of w, where they now fail to repro-
duce lattice data. Hence, not only the tensions with data
are present as in all other FF approaches, but in addi-
tion the post-fit FF shapes disagree with the lattice data
used as input. Note that a similar tension among the ex-
perimental differential decay widths of Refs. [57, 58] and
the theoretical lattice data of Ref. [22] has already been
pointed out in Refs. [22, 37].
Given this change in the FF shapes, it is interesting to

study the implications regarding the extraction of |Vcb|.
Going through the details of a systematic analysis of the
correlated differential distributions from Refs. [57, 58] is
beyond the scope of this paper; however, as originally
proposed in Ref. [59], the CKM matrix element |Vcb| can
also be extracted from a comparison among the exper-
imental determination of the total branching ratio and
the corresponding theoretical value (modulo |Vcb|2). Fol-
lowing this procedure, the value extracted for |Vcb| cor-
responding to the FFs described by the green bands in
Fig. 3 equals to |Vcb| = (43.1±1.2)×10−3, while the one
induced by the FFs described by the blue bands in the
same figure equals to |Vcb|fit = (41.2±1.2)×10−3, which
is compatible with the inclusive determinations. It is also
compatible with the value predicted by a Unitarity Tri-
angle analysis (UTA), equal to |Vcb| = (42.22 ± 0.51) ×

7 The changes in F1(w) shape (and therefore in P1(w) one) is
expected from Eq. (34), since an increase of its integrated value
induces an enhancement of F ℓ

L and a decrease of Aℓ
FB andR(D∗),

as detailed at the end of Sec. II.
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FNAL/MILC results [22], which are used to calculate the green band. See Sec. IVA for a discussion.

10−3 [14, 15] and obtained considering in the global anal-
ysis all relevant channels except the ones directly con-
tributing to |Vcb|.

B. NP involving light leptons

While it is well known that a deviation in R(D∗)
can be explained by NP effects related to taus (see
e.g. Refs. [60, 61] for very early accounts), it is inter-
esting to see whether the predictions for F ℓ

L and Aℓ
FB

with the DM FFs can be addressed by NP coupled to
light leptons. In the following, due to the strong con-
straint from RD∗

eµ = BR(B → D∗eν̄)/BR(B → D∗µν̄) =

0.990 ± 0.031 [41] and RD∗
eµ = 1.001 ± 0.023 [42], we as-

sume LFU contributions to electrons and muons, namely
gei = gµi ≡ gi.

8

8 We have checked that allowing for different NP effects in elec-
trons and muons does not change the picture.

Since left-handed vector operators only change the to-
tal decay width, we consider scalar and tensor operators
as well as the right-handed vector current.9 However,
when considering NP effects to one operator at a time,
no significant preference for any non-vanishing Wilson
coefficient is found.10 The bounds at the 1σ level read

gVR
∈ [−0.04, 0.01] ,

gSL
∈ [−0.07, 0.02] ,

gSR
∈ [−0.05, 0.03] ,

gT ∈ [−0.01, 0.02] .

(35)

These results are not significantly changed if all co-
efficients are considered at the same time in a four-

9 As explained in Sec. II, we assume LFU contributions in all three
leptons for the case of gVR

.
10 Including NP effects in the scalar or tensor currents induces the

presence of three additional matrix elements in the amplitude.
In order to include the corresponding FFs, we rely on the results
obtained in Ref. [2].
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dimensional fit. This means that the tension between
the F ℓ

L measurements and the prediction using the DM
FFs cannot be explained by NP as F ℓ

L is very insensitive
to it. This is in contrast to the case of NP coupled to
tau leptons, where hints for scalar and/or tensor opera-
tors can be found, and F τ

L and Aτ
FB can be significantly

altered by their presence (see e.g. Ref. [62] for a recent
review). This feature can be ascribed to the more ac-
curate measurements for light lepton channels and the
m2

ℓ suppression in interference terms of scalar or tensor
operators with the SM contribution.

If F ℓ
L is included in the fit, a tension in R(D∗)

reemerges, but is still smaller than for the other FF sets.
Therefore, it could be possible to explain these tensions
with the SM operator Oℓ

VL
related to light leptons (while

for the other FF sets, a full explanation requires NP in
taus). Performing a global fit in this setup to gVL

with
light leptons, we obtain

R(D)gVL
= 0.335± 0.009 ,

R(D∗)gVL
= 0.291± 0.009 ,

F ℓ
L, gVL

= 0.515± 0.005 ,

Ae
FB, gVL

= 0.227± 0.007 ,

Aµ
FB, gVL

= 0.222± 0.007 ,

(36)

corresponding to gVL
= −0.054 ± 0.015. As expected,

gVL
induces only an overall normalization factor, and

therefore both the longitudinal polarization fraction and
the forward-backward asymmetry are insensitive to it,
i.e. their values stay unchanged compared to Eq. (34).
Hence, the tensions in F1(w) and P1(w) between their
predictions within DM and the fitted values are still
present.

The presence of NP in Oℓ
VL

alters the extraction of
|Vcb| by a factor of 1/(1 + gVL

). According to our fit
results, |Vcb|fit = (41.2 ± 1.2) × 10−3 from B → D∗ℓν
would be shifted to |Vcb|gVL

= (43.6± 1.4)× 10−3. This
value is still compatible with the inclusive one, which
receives the same correction 1/(1 + gVL

), and is not too
large to spoil other indirect measurements like ∆F = 2
processes11. Finally, note that gVL

is small enough to
evade constraints from high-pT lepton tail searches [63]
which require |gVL

| < 0.25 [64].

Importantly, an explanation via NP related to light
leptons is only possible when employing the DM FFs in a
global fit, albeit their significant deformation w.r.t. their
original shape. As stated above, such deformations
points to a tension of lattice predictions with experiment,
as also seen in the differential decay widths. On the other
hand, the other FF approaches, due to the larger dis-
crepancy in R(D∗), require larger values for gVL

which,
if related to light leptons, would induce a shift in |Vcb|

too large to be compatible with the UTA and high-pT
constraints [65, 66].

V. CONCLUSIONS

The SM predictions for B → D(∗)ℓν decays depend
critically on the FFs used to calculate them. While most
sets of FFs lead to significant tensions with the mea-
surements of R(D∗), the DM approach results in a SM
value compatible with experiment. In order to further
assess the agreement of the different FF sets with data,
we investigated the impact of the recent measurements of
the longitudinal D∗ polarization fraction F ℓ

L for ℓ = e, µ
by Belle [41] and Belle II [42], as well as that of Aℓ

FB.
While FNAL/MILC, HQET and BGL lead to SM values
in agreement with the experimental results, the DM pre-
dictions show significant tensions with them, up to the
∼ 3σ level.
While it is well known that R(D∗) can be accounted

for by physics beyond the SM, we find that NP cannot
explain the tension in F ℓ

L. The reason for this is that F ℓ
L

(with light leptons) is very insensitive to NP contribu-
tions, such that the constraints from other observables
prevent a consistent NP explanation within a global fit.
We then included F ℓ

L within a global fit within the DM
approach, using the theory predictions for the parameters
as priors, and found that the pull on these parameters is
so strong that it violently deforms them. One then ends
up in a situation similar to the other three FF sets with
a significant (unaccounted) tension in R(D(∗)), which is
however still smaller than in the other cases.
This decreased tension allows for an explanation via

gVL
with (only) light leptons (contrary to the other FFs

where NP in tau leptons is needed), without causing
problems in the determination of |Vcb| or being in ten-
sion with direct LHC searches. However, a tension with
the shape of the FFs predicted on the lattice is unavoid-
able, similar to the one observed previously [22, 37] when
comparing lattice results [22] to experimental differential
decay widths [57, 58].

Acknowledgments.— The authors wish to thank Guido

Martinelli and Manuel Naviglio for useful discussions, and

Markus Prim and Chaoyi Lyu for fruitful exchanges about

the recent Belle and Belle II results. The work of M.B., M.F.,

S.I. and U.N. is supported by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) under grant

396021762-TRR 257. A.C. is supported by a Professorship

Grant (PP00P2 176884) of the Swiss National Science Foun-

dation. S.S. is supported by the Italian Ministery of Univer-

sity and Research (MIUR) under grant PRIN20172LNEEZ.

The work of L.V. is supported by ANR under contract

n. 202650 (ANR-19-CE31-0016, GammaRare). U.N. acknowl-

edges the hospitality of Fermilab and thanks Jim Simone and

Andreas Kronfeld for helpful discussions.



9

[1] D. Bigi and P. Gambino, “Revisiting B → Dℓν,” Phys.
Rev. D 94 (2016) 094008 [arXiv:1606.08030].

[2] F. U. Bernlochner, Z. Ligeti, M. Papucci, and
D. J. Robinson, “Combined analysis of semileptonic B
decays to D and D∗: R(D(∗)), |Vcb|, and new physics,”
Phys. Rev. D 95 (2017) 115008 [arXiv:1703.05330].
[Erratum: Phys.Rev.D 97, 059902 (2018)].

[3] S. Jaiswal, S. Nandi, and S. K. Patra, “Extraction of

|Vcb| from B → D(∗)ℓνℓ and the Standard Model

predictions of R(D(∗)),” JHEP 12 (2017) 060
[arXiv:1707.09977].

[4] F. U. Bernlochner, Z. Ligeti, and D. J. Robinson, “N =
5, 6, 7, 8: Nested hypothesis tests and truncation
dependence of |Vcb|,” Phys. Rev. D 100 (2019) 013005
[arXiv:1902.09553].

[5] P. Gambino, M. Jung, and S. Schacht, “The Vcb puzzle:
An update,” Phys. Lett. B 795 (2019) 386–390
[arXiv:1905.08209].

[6] M. Bordone, M. Jung, and D. van Dyk, “Theory

determination of B̄ → D(∗)ℓ−ν̄ form factors at
O(1/m2

c),” Eur. Phys. J. C 80 (2020) 74
[arXiv:1908.09398].

[7] S. Jaiswal, S. Nandi, and S. K. Patra, “Updates on
extraction of |Vcb| and SM prediction of R(D*) in
B → D∗ℓνℓ decays,” JHEP 06 (2020) 165
[arXiv:2002.05726].

[8] G. Martinelli, S. Simula, and L. Vittorio, “|Vcb| and
R(D(∗)) using lattice QCD and unitarity,” Phys. Rev.
D 105 (2022) 034503 [arXiv:2105.08674].

[9] F. U. Bernlochner, et al., “Constrained second-order
power corrections in HQET: R(D(*)), |V cb|, and new
physics,” Phys. Rev. D 106 (2022) 096015
[arXiv:2206.11281].

[10] A. Biswas, S. Nandi, and I. Ray, “Extractions of
|Vub|/|Vcb| from a combined study of the exclusive
b → u(c)ℓνℓ decays.” arXiv:2212.02528.

[11] B.-Y. Cui, Y.-K. Huang, Y.-M. Wang, and X.-C. Zhao,

“Shedding New Light on R(D
(∗)
(s) ) and |Vcb| from

Semileptonic B̄(s) → D
(∗)
(s)ℓν̄ℓ Decays.”

arXiv:2301.12391.
[12] HFLAV Collaboration, “Averages of b-hadron,

c-hadron, and τ -lepton properties as of 2021.”
arXiv:2206.07501. updated results and plots available
at https://hflav-eos.web.cern.ch/hflav-eos/semi/
fall22/html/RDsDsstar/RDRDs.html.

[13] Flavour Lattice Averaging Group (FLAG)
Collaboration, “FLAG Review 2021,” Eur. Phys. J. C
82 (2022) 869 [arXiv:2111.09849].

[14] UTfit Collaboration, “New UTfit Analysis of the
Unitarity Triangle in the Cabibbo-Kobayashi-Maskawa
scheme,” Rend. Lincei Sci. Fis. Nat. 34 (2023) 37–57
[arXiv:2212.03894].

[15] CKMfitter Collaboration, “Recent CKMfitter updates
on global fits of the CKM matrix.” https://indico.

11 Note that those measurements can be subject to NP contribu-
tions.

cern.ch/event/891123/contributions/4601722/

attachments/2351890/4013122/CKMfitter2021.pdf.
[16] A. Crivellin and S. Pokorski, “Can the differences in the

determinations of Vub and Vcb be explained by New
Physics?” Phys. Rev. Lett. 114 (2015) 011802
[arXiv:1407.1320].

[17] M. Jung and D. M. Straub, “Constraining new physics
in b → cℓν transitions,” JHEP 01 (2019) 009
[arXiv:1801.01112].

[18] S. Iguro and R. Watanabe, “Bayesian fit analysis to full

distribution data of B → D(∗)ℓν : |Vcb| determination
and new physics constraints,” JHEP 08 (2020) 006
[arXiv:2004.10208].

[19] A. Crivellin, “Effects of right-handed charged currents
on the determinations of |V (ub)| and |V (cb)|,” Phys.
Rev. D 81 (2010) 031301 [arXiv:0907.2461].

[20] P. Ball, “V(cb) from semileptonic B decays and the
reliability of the infinite quark mass limit,” Phys. Lett.
B 281 (1992) 133–140.

[21] N. Gubernari, A. Kokulu, and D. van Dyk, “B → P
and B → V Form Factors from B-Meson Light-Cone
Sum Rules beyond Leading Twist,” JHEP 01 (2019)
150 [arXiv:1811.00983].

[22] Fermilab Lattice and MILC Collaboration,
“Semileptonic form factors for B → D∗ℓν at nonzero
recoil from 2 + 1-flavor lattice QCD,” Eur. Phys. J. C
82 (2022) 1141 [arXiv:2105.14019]. [Erratum:
Eur.Phys.J.C 83, 21 (2023)].

[23] J. Harrison and C. T. H. Davies, “B → D∗ vector,
axial-vector and tensor form factors for the full q2 range
from lattice QCD.” arXiv:2304.03137.

[24] BaBar Collaboration, “Evidence for an excess of

B̄ → D(∗)τ−ν̄τ decays,” Phys. Rev. Lett. 109 (2012)
101802 [arXiv:1205.5442].

[25] BaBar Collaboration, “Measurement of an Excess of

B̄ → D(∗)τ−ν̄τ Decays and Implications for Charged
Higgs Bosons,” Phys. Rev. D 88 (2013) 072012
[arXiv:1303.0571].

[26] Belle Collaboration, “Measurement of the branching

ratio of B̄ → D(∗)τ−ν̄τ relative to B̄ → D(∗)ℓ−ν̄ℓ decays
with hadronic tagging at Belle,” Phys. Rev. D 92
(2015) 072014 [arXiv:1507.03233].

[27] Belle Collaboration, “Measurement of the branching
ratio of B̄0 → D∗+τ−ν̄τ relative to B̄0 → D∗+ℓ−ν̄ℓ
decays with a semileptonic tagging method,” Phys. Rev.
D 94 (2016) 072007 [arXiv:1607.07923].

[28] Belle Collaboration, “Measurement of the τ lepton
polarization and R(D∗) in the decay B̄ → D∗τ−ν̄τ ,”
Phys. Rev. Lett. 118 (2017) 211801
[arXiv:1612.00529].

[29] Belle Collaboration, “Measurement of the τ lepton
polarization and R(D∗) in the decay B̄ → D∗τ−ν̄τ with
one-prong hadronic τ decays at Belle,” Phys. Rev. D 97
(2018) 012004 [arXiv:1709.00129].

[30] Belle Collaboration, “Measurement of R(D) and
R(D∗) with a semileptonic tagging method,” Phys.
Rev. Lett. 124 (2020) 161803 [arXiv:1910.05864].

[31] LHCb Collaboration, “Measurement of the ratio of
branching fractions
B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ),” Phys. Rev.

https://dx.doi.org/10.1103/PhysRevD.94.094008
https://dx.doi.org/10.1103/PhysRevD.94.094008
https://arxiv.org/abs/1606.08030
https://dx.doi.org/10.1103/PhysRevD.95.115008
https://arxiv.org/abs/1703.05330
https://dx.doi.org/10.1007/JHEP12(2017)060
https://arxiv.org/abs/1707.09977
https://dx.doi.org/10.1103/PhysRevD.100.013005
https://arxiv.org/abs/1902.09553
https://dx.doi.org/10.1016/j.physletb.2019.06.039
https://arxiv.org/abs/1905.08209
https://dx.doi.org/10.1140/epjc/s10052-020-7616-4
https://arxiv.org/abs/1908.09398
https://dx.doi.org/10.1007/JHEP06(2020)165
https://arxiv.org/abs/2002.05726
https://dx.doi.org/10.1103/PhysRevD.105.034503
https://dx.doi.org/10.1103/PhysRevD.105.034503
https://arxiv.org/abs/2105.08674
https://dx.doi.org/10.1103/PhysRevD.106.096015
https://arxiv.org/abs/2206.11281
https://arxiv.org/abs/2212.02528
https://arxiv.org/abs/2301.12391
https://arxiv.org/abs/2206.07501
https://hflav-eos.web.cern.ch/hflav-eos/semi/fall22/html/RDsDsstar/RDRDs.html
https://hflav-eos.web.cern.ch/hflav-eos/semi/fall22/html/RDsDsstar/RDRDs.html
https://dx.doi.org/10.1140/epjc/s10052-022-10536-1
https://dx.doi.org/10.1140/epjc/s10052-022-10536-1
https://arxiv.org/abs/2111.09849
https://dx.doi.org/10.1007/s12210-023-01137-5
https://arxiv.org/abs/2212.03894
https://indico.cern.ch/event/891123/contributions/4601722/attachments/2351890/4013122/CKMfitter2021.pdf
https://indico.cern.ch/event/891123/contributions/4601722/attachments/2351890/4013122/CKMfitter2021.pdf
https://indico.cern.ch/event/891123/contributions/4601722/attachments/2351890/4013122/CKMfitter2021.pdf
https://indico.cern.ch/event/891123/contributions/4601722/attachments/2351890/4013122/CKMfitter2021.pdf
https://indico.cern.ch/event/891123/contributions/4601722/attachments/2351890/4013122/CKMfitter2021.pdf
https://dx.doi.org/10.1103/PhysRevLett.114.011802
https://arxiv.org/abs/1407.1320
https://dx.doi.org/10.1007/JHEP01(2019)009
https://arxiv.org/abs/1801.01112
https://dx.doi.org/10.1007/JHEP08(2020)006
https://arxiv.org/abs/2004.10208
https://dx.doi.org/10.1103/PhysRevD.81.031301
https://dx.doi.org/10.1103/PhysRevD.81.031301
https://arxiv.org/abs/0907.2461
https://dx.doi.org/10.1016/0370-2693(92)90287-E
https://dx.doi.org/10.1016/0370-2693(92)90287-E
https://dx.doi.org/10.1007/JHEP01(2019)150
https://dx.doi.org/10.1007/JHEP01(2019)150
https://arxiv.org/abs/1811.00983
https://dx.doi.org/10.1140/epjc/s10052-022-10984-9
https://dx.doi.org/10.1140/epjc/s10052-022-10984-9
https://arxiv.org/abs/2105.14019
https://arxiv.org/abs/2304.03137
https://dx.doi.org/10.1103/PhysRevLett.109.101802
https://dx.doi.org/10.1103/PhysRevLett.109.101802
https://arxiv.org/abs/1205.5442
https://dx.doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://dx.doi.org/10.1103/PhysRevD.92.072014
https://dx.doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://dx.doi.org/10.1103/PhysRevD.94.072007
https://dx.doi.org/10.1103/PhysRevD.94.072007
https://arxiv.org/abs/1607.07923
https://dx.doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://dx.doi.org/10.1103/PhysRevD.97.012004
https://dx.doi.org/10.1103/PhysRevD.97.012004
https://arxiv.org/abs/1709.00129
https://dx.doi.org/10.1103/PhysRevLett.124.161803
https://dx.doi.org/10.1103/PhysRevLett.124.161803
https://arxiv.org/abs/1910.05864
https://dx.doi.org/10.1103/PhysRevLett.115.111803


10

Lett. 115 (2015) 111803 [arXiv:1506.08614].
[Erratum: Phys.Rev.Lett. 115, 159901 (2015)].

[32] LHCb Collaboration, “Measurement of the ratio of the
B0 → D∗−τ+ντ and B0 → D∗−µ+νµ branching
fractions using three-prong τ -lepton decays,” Phys.
Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856].

[33] LHCb Collaboration, “Test of Lepton Flavor
Universality by the measurement of the B0 → D∗−τ+ντ
branching fraction using three-prong τ decays,” Phys.
Rev. D 97 (2018) 072013 [arXiv:1711.02505].

[34] LHCb Collaboration, “First joint measurement of
R(D∗) and R(D0) at LHCb.”
https://indico.cern.ch/event/1187939/.

[35] M. Di Carlo, et al., “Unitarity bounds for semileptonic
decays in lattice QCD,” Phys. Rev. D 104 (2021)
054502 [arXiv:2105.02497].

[36] G. Martinelli, S. Simula, and L. Vittorio, “Constraints
for the semileptonic B→D(*) form factors from lattice
QCD simulations of two-point correlation functions,”
Phys. Rev. D 104 (2021) 094512 [arXiv:2105.07851].

[37] G. Martinelli, S. Simula, and L. Vittorio, “Exclusive
determinations of |Vcb| and R(D∗) through unitarity,”
Eur. Phys. J. C 82 (2022) 1083 [arXiv:2109.15248].

[38] G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio,
“|Vcb|, lepton flavor universality and SU(3)F symmetry

breaking in Bs → D
(∗)
s ℓνℓ decays through unitarity and

lattice QCD,” Phys. Rev. D 106 (2022) 093002
[arXiv:2204.05925].

[39] M. Bordone, B. Capdevila, and P. Gambino, “Three
loop calculations and inclusive Vcb,” Phys. Lett. B 822
(2021) 136679 [arXiv:2107.00604].

[40] F. Bernlochner, et al., “First extraction of inclusive Vcb

from q2 moments,” JHEP 10 (2022) 068
[arXiv:2205.10274].

[41] Belle Collaboration, “Measurement of Differential
Distributions of B → D∗ℓν̄ℓ and Implications on |Vcb|.”
arXiv:2301.07529.

[42] Belle II Collaboration, “Recent semileptonic results
from Belle II.” https://indico.cern.ch/event/

1204084/contributions/5298272/.
[43] C. G. Boyd, B. Grinstein, and R. F. Lebed, “Model

independent extraction of |V(cb)| using dispersion
relations,” Phys. Lett. B 353 (1995) 306–312
[hep-ph/9504235].

[44] C. G. Boyd, B. Grinstein, and R. F. Lebed, “Model
independent determinations of anti-B —> D (lepton),
D* (lepton) anti-neutrino form-factors,” Nucl. Phys. B
461 (1996) 493–511 [hep-ph/9508211].

[45] C. G. Boyd, B. Grinstein, and R. F. Lebed, “Precision
corrections to dispersive bounds on form-factors,” Phys.
Rev. D 56 (1997) 6895–6911 [hep-ph/9705252].

[46] I. Caprini, L. Lellouch, and M. Neubert, “Dispersive

bounds on the shape of B̄ → D(∗)ℓν̄ form-factors,”
Nucl. Phys. B 530 (1998) 153–181 [hep-ph/9712417].

[47] N. Isgur and M. B. Wise, “Weak Decays of Heavy
Mesons in the Static Quark Approximation,” Phys.
Lett. B 232 (1989) 113–117.

[48] M. Neubert, “Heavy quark symmetry,” Phys. Rept.
245 (1994) 259–396 [hep-ph/9306320].

[49] D. Bigi, P. Gambino, and S. Schacht, “A fresh look at
the determination of |Vcb| from B → D∗ℓν,” Phys. Lett.

B 769 (2017) 441–445 [arXiv:1703.06124].
[50] D. Bigi, P. Gambino, and S. Schacht, “R(D∗), |Vcb|, and

the Heavy Quark Symmetry relations between form
factors,” JHEP 11 (2017) 061 [arXiv:1707.09509].

[51] G. Martinelli, S. Simula, and L. Vittorio, “Exclusive
semileptonic B → πℓνℓ and Bs → Kℓνℓ decays through
unitarity and lattice QCD,” JHEP 08 (2022) 022
[arXiv:2202.10285].

[52] C. G. Boyd, B. Grinstein, and R. F. Lebed,
“Constraints on form-factors for exclusive semileptonic
heavy to light meson decays,” Phys. Rev. Lett. 74
(1995) 4603–4606 [hep-ph/9412324].

[53] C. Bourrely, B. Machet, and E. de Rafael,
“Semileptonic Decays of Pseudoscalar Particles
(M → M ′ℓνℓ) and Short Distance Behavior of Quantum
Chromodynamics,” Nucl. Phys. B 189 (1981) 157–181.

[54] L. Lellouch, “Lattice constrained unitarity bounds for
B0 → π+ℓ−ν̄ℓ decays,” Nucl. Phys. B 479 (1996)
353–391 [hep-ph/9509358].

[55] Belle Collaboration, “Measurement of the τ lepton
polarization and R(D∗) in the decay B̄ → D∗τ−ν̄τ ,”
Phys. Rev. Lett. 118 (2017) 211801
[arXiv:1612.00529].

[56] A. Abdesselam et al., on behalf of Belle Collaboration,
“Measurement of the D∗− polarization in the decay
B0 → D∗−τ+ντ ,” in 10th International Workshop on
the CKM Unitarity Triangle. 2019. arXiv:1903.03102.

[57] Belle Collaboration, “Precise determination of the
CKM matrix element |Vcb| with B̄0 → D∗+ ℓ− ν̄ℓ decays
with hadronic tagging at Belle.” arXiv:1702.01521.

[58] Belle Collaboration, “Measurement of the CKM matrix
element |Vcb| from B0 → D∗−ℓ+νℓ at Belle,” Phys. Rev.
D 100 (2019) 052007 [arXiv:1809.03290]. [Erratum:
Phys.Rev.D 103, 079901 (2021)].

[59] L. Vittorio, The D(M)M perspective on Flavour
Physics. PhD thesis, Pisa, Scuola Normale Superiore,
Pisa, Scuola Normale Superiore, 2022.

[60] S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan,
“Implications of Lepton Flavor Universality Violations
in B Decays,” Phys. Rev. Lett. 109 (2012) 161801
[arXiv:1206.1872].

[61] A. Crivellin, C. Greub, and A. Kokulu, “Explaining
B → Dτν, B → D∗τν and B → τν in a 2HDM of type
III,” Phys. Rev. D 86 (2012) 054014
[arXiv:1206.2634].

[62] S. Iguro, T. Kitahara, and R. Watanabe, “Global fit to
b → cτν anomalies 2022 mid-autumn.”
arXiv:2210.10751.

[63] ATLAS Collaboration, “Search for a heavy charged
boson in events with a charged lepton and missing
transverse momentum from pp collisions at

√
s = 13

TeV with the ATLAS detector,” Phys. Rev. D 100
(2019) 052013 [arXiv:1906.05609].

[64] S. Iguro, M. Takeuchi, and R. Watanabe, “Testing

leptoquark/EFT in B̄ → D(∗)lν̄ at the LHC,” Eur.
Phys. J. C 81 (2021) 406 [arXiv:2011.02486].

[65] M. Fedele, et al., “Impact of Λb→Λcτν measurement on
new physics in b→cℓν transitions,” Phys. Rev. D 107
(2023) 055005 [arXiv:2211.14172].

[66] I. Ray and S. Nandi, “Test of new physics effects in

B̄ → (D(∗), π)ℓ−ν̄ℓ decays with heavy and light
leptons.” arXiv:2305.11855.

https://dx.doi.org/10.1103/PhysRevLett.115.111803
https://arxiv.org/abs/1506.08614
https://dx.doi.org/10.1103/PhysRevLett.120.171802
https://dx.doi.org/10.1103/PhysRevLett.120.171802
https://arxiv.org/abs/1708.08856
https://dx.doi.org/10.1103/PhysRevD.97.072013
https://dx.doi.org/10.1103/PhysRevD.97.072013
https://arxiv.org/abs/1711.02505
https://indico.cern.ch/event/1187939/
https://dx.doi.org/10.1103/PhysRevD.104.054502
https://dx.doi.org/10.1103/PhysRevD.104.054502
https://arxiv.org/abs/2105.02497
https://dx.doi.org/10.1103/PhysRevD.104.094512
https://arxiv.org/abs/2105.07851
https://dx.doi.org/10.1140/epjc/s10052-022-11050-0
https://arxiv.org/abs/2109.15248
https://dx.doi.org/10.1103/PhysRevD.106.093002
https://arxiv.org/abs/2204.05925
https://dx.doi.org/10.1016/j.physletb.2021.136679
https://dx.doi.org/10.1016/j.physletb.2021.136679
https://arxiv.org/abs/2107.00604
https://dx.doi.org/10.1007/JHEP10(2022)068
https://arxiv.org/abs/2205.10274
https://arxiv.org/abs/2301.07529
https://indico.cern.ch/event/1204084/contributions/5298272/
https://indico.cern.ch/event/1204084/contributions/5298272/
https://dx.doi.org/10.1016/0370-2693(95)00480-9
https://arxiv.org/abs/hep-ph/9504235
https://dx.doi.org/10.1016/0550-3213(95)00653-2
https://dx.doi.org/10.1016/0550-3213(95)00653-2
https://arxiv.org/abs/hep-ph/9508211
https://dx.doi.org/10.1103/PhysRevD.56.6895
https://dx.doi.org/10.1103/PhysRevD.56.6895
https://arxiv.org/abs/hep-ph/9705252
https://dx.doi.org/10.1016/S0550-3213(98)00350-2
https://arxiv.org/abs/hep-ph/9712417
https://dx.doi.org/10.1016/0370-2693(89)90566-2
https://dx.doi.org/10.1016/0370-2693(89)90566-2
https://dx.doi.org/10.1016/0370-1573(94)90091-4
https://dx.doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://dx.doi.org/10.1016/j.physletb.2017.04.022
https://dx.doi.org/10.1016/j.physletb.2017.04.022
https://arxiv.org/abs/1703.06124
https://dx.doi.org/10.1007/JHEP11(2017)061
https://arxiv.org/abs/1707.09509
https://dx.doi.org/10.1007/JHEP08(2022)022
https://arxiv.org/abs/2202.10285
https://dx.doi.org/10.1103/PhysRevLett.74.4603
https://dx.doi.org/10.1103/PhysRevLett.74.4603
https://arxiv.org/abs/hep-ph/9412324
https://dx.doi.org/10.1016/0550-3213(81)90086-9
https://dx.doi.org/10.1016/0550-3213(96)00443-9
https://dx.doi.org/10.1016/0550-3213(96)00443-9
https://arxiv.org/abs/hep-ph/9509358
https://dx.doi.org/10.1103/PhysRevLett.118.211801
https://arxiv.org/abs/1612.00529
https://arxiv.org/abs/1903.03102
https://arxiv.org/abs/1702.01521
https://dx.doi.org/10.1103/PhysRevD.100.052007
https://dx.doi.org/10.1103/PhysRevD.100.052007
https://arxiv.org/abs/1809.03290
https://dx.doi.org/10.1103/PhysRevLett.109.161801
https://arxiv.org/abs/1206.1872
https://dx.doi.org/10.1103/PhysRevD.86.054014
https://arxiv.org/abs/1206.2634
https://arxiv.org/abs/2210.10751
https://dx.doi.org/10.1103/PhysRevD.100.052013
https://dx.doi.org/10.1103/PhysRevD.100.052013
https://arxiv.org/abs/1906.05609
https://dx.doi.org/10.1140/epjc/s10052-021-09125-5
https://dx.doi.org/10.1140/epjc/s10052-021-09125-5
https://arxiv.org/abs/2011.02486
https://dx.doi.org/10.1103/PhysRevD.107.055005
https://dx.doi.org/10.1103/PhysRevD.107.055005
https://arxiv.org/abs/2211.14172
https://arxiv.org/abs/2305.11855

	Discriminating B to D* ell nu form factors via polarization observables and asymmetries 
	Abstract
	Introduction
	Formalism
	Summary of Form Factors
	Impact of FLell and AFBell
	SM predictions and fit
	NP involving light leptons

	Conclusions
	References


