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On the non-factorizable corrections to Higgs boson production in weak boson fusion
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We discuss the non-factorizable corrections to Higgs boson production in weak boson fusion at
the Large Hadron Collider. Such corrections depend on the finite part of the two-loop virtual
amplitude q Q→ q′Q′+H which, up to now, has only been computed in the eikonal approximation.
We combine this contribution with real-virtual and double-real non-factorizable QCD corrections
and study their impact on the various observables in weak boson fusion. We find that the non-
factorizable corrections are strongly dominated by the two-loop virtual contributions, while all other
contributions play a very minor role. This striking imbalance between real and virtual contributions
is caused by a process-specific kinematic suppression of the former and a particular enhancement of
the virtual corrections related to a Glauber phase.

I. INTRODUCTION

Weak boson fusion (WBF) is an important Higgs boson
production channel; it has the second-largest cross sec-
tion at the Large Hadron Collider (LHC). In addition, it
is directly sensitive to the couplings of the Higgs boson
to W and Z bosons allowing for a detailed exploration of
their strengths and Lorentz structures.

Theoretical predictions for Higgs boson production in
weak boson fusion are very advanced. They include next-
to-leading order (NLO) QCD [1] and electroweak [2] cor-
rections as well as next-to-next-to-leading order (NNLO)
QCD [3–5] and next-to-next-to-next-to-leading order
(N3LO) QCD [6] corrections. In addition, effects of mul-
tijet merging and an interplay between fixed order per-
turbative computations and parton showers in weak bo-
son fusion was studied in Ref. [7]. However, available
QCD corrections are computed in the so-called factor-
ization approximation where strong interactions between
the incoming quark lines are systematically ignored.

Historically, non-factorizable corrections were neglected
because they are colour-suppressed [3] and, moreover,
they appear at NNLO QCD for the first time. How-
ever, it was pointed out in Ref. [8] that these correc-
tions receive a peculiar π2-enhancement associated with
a Glauber phase. In Refs. [8, 9] the numerical impact
of non-factorizable corrections on various observables in
WBF was investigated. It was found that these correc-
tions are somewhat smaller than the factorizable correc-
tions at NNLO QCD but that they certainly exceed the
magnitude of N3LO QCD corrections.
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To make further progress in understanding the non-
factorizable effects in weak boson fusion, there are two
directions to take. First, one can extend the calculation
of the non-factorizable two-loop amplitude for the WBF
process q Q → q′ Q′ + H beyond the eikonal approxi-
mation. This is a formidable task since it requires the
computation of two-loop five-point amplitudes with two
massive propagators and an additional external massive
particle which is beyond the current state of the art. Sec-
ond, one can study the effects of all the other contribu-
tions relevant for computing the non-factorizable correc-
tion through NNLO in perturbative QCD while account-
ing for the double-virtual contribution in the eikonal ap-
proximation. This is what we do in this paper.

Computation of NNLO QCD corrections to WBF re-
quires double-real and real-virtual contributions, in ad-
dition to the two-loop virtual corrections. Individually,
each of these contributions is infrared divergent; to prop-
erly define them a subtraction procedure is needed. Since
in the past decade remarkable progress in the develop-
ment of NNLO QCD subtraction schemes for collider
processes has been made, and since certain features of
the non-factorizable correction to Higgs boson fusion in
WBF make the infrared structure of this process simple,
construction of the subtraction scheme for computing the
non-factorizable corrections to WBF becomes straight-
forward. In fact, the relevant computation can be bor-
rowed, almost verbatim, from a similar computation of
the non-factorizable corrections to single-top production
reported recently in Ref. [10].

It is worth pointing out that the situation with real-
virtual contributions is somewhat peculiar. Although the
relevant one-loop amplitudes can be extracted from an
existing computation of NLO QCD corrections to H + j

production in weak boson fusion [11], the fact that the
corresponding six-point amplitude needs to be evaluated
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Figure 1. Momentum, parton and line conventions at Born
level used throughout the discussion. We do not show fermion
flow because q and Q each represent any (light) quark or anti-
quark.

close to singular limits makes its use in the computation
of NNLO QCD corrections non-trivial.

The remaining part of the paper is organized as follows.
In the next section we recapitulate the construction of
the infrared-finite fully-differential cross section suitable
for numerical computation. We discuss the numerical
implementation and address difficulties with evaluating
subtracted real-virtual contributions in Section III. We
then present the results of our computation and show
that the non-factorizable corrections are strongly dom-
inated by two-loop virtual corrections. We conclude in
Section V.

II. CONSTRUCTION OF AN INFRARED
FINITE CROSS SECTION

A NNLO QCD computation requires the construction of
an infrared-finite cross section which can be integrated
over phase space of final-state particles in four dimen-
sions. This requires the use of a subtraction scheme since
contributions with different number of final-state partons
are not separately finite.

The construction of such a subtraction scheme for the
case of non-factorizable contributions to single-top pro-
duction was recently presented in Ref. [10]. The dis-
cussion in that reference applies almost verbatim to the
computation of non-factorizable corrections to Higgs bo-
son production in weak boson fusion. Because of that, we
confine ourselves to reviewing the major building blocks
of such a construction in this section, and note that fur-
ther details can be found in Ref. [10].

Non-factorizable corrections involve exchanges of real
and virtual gluons between the two quark lines of the
partonic process q Q → q′Q′ + H , where q and Q are
arbitrary quarks or anti-quarks, see Fig. 1. Such correc-
tions do not contribute at next-to-leading order due to
colour conservation. Indeed, both real and virtual non-
factorizable corrections at NLO QCD contain just one

single colour generator T a on each fermion line. When
one computes the interference of the one-loop virtual am-
plitude with the leading-order amplitude or the square of
the real-emission amplitude, the corrections vanish since
the colour generators are traceless.1

Despite being absent at lower orders, non-factorizable
contributions do appear at NNLO in perturbative QCD.
For example, virtual contributions with two gluons con-
necting the upper and lower quark lines lead to a colour
factor Tr

(
T aT b

)
= TR δ

ab for each line and clearly do not
vanish when the interference with the leading-order am-
plitude is computed. We show some of the non-vanishing
contributions in Fig. 2. Furthermore, it is easy to see
that non-factorizable contributions at NNLO cannot in-
volve non-abelian QCD vertices. This feature renders
all non-factorizable corrections QED-like and leads, as
we will discuss later in more detail, to a simple infrared
structure of such contributions. We will now consider the
various contributions to the NNLOQCD non-factorizable
corrections and review the construction of the subtrac-
tion terms.

Double-real emission contribution

We begin with the non-factorizable contributions to the
double-real emission process

q(p1) +Q(p2)

→ q′(p3) +Q′(p4) + g(p5) + g(p6) +H(pH) .
(1)

All such contributions to the amplitude squared carry the
same colour factor given by∑

a,b

Tr
(
T aT b

)2
= T 2

R(N2
c − 1) , (2)

where TR = 1/2, Nc = 3, a and b are the colour indices
of gluons p5 and p6, respectively, and the summation
over quark colours has been performed. Since the colour
factor is always the same, it is convenient to work with
colour-stripped amplitudes and restore the overall colour
factor at the end.

We write the relevant colour-stripped amplitudes as2

Aij0 (1q, 2Q, 3q′ , 4Q′ | 5g, 6g) , (3)

1 We neglect identical-flavour contributions which are known to be
suppressed both kinematically and by colour at NLO QCD [1].

2 Dependence of the amplitude on the Higgs boson momentum pH
is not shown because it is not relevant for the present discussion.
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(a) (b) (c) (d)

Figure 2. Schematic examples of non-vanishing contributions to the non-factorizable double-real (a–b), real-virtual (c), and
double-virtual (d) amplitude squared. It is easy to see that the colour factor for each contribution is T 2

R(N
2
c − 1), as stated in

the main text. To distinguish the two massless quark lines, one is printed in bold.

where superscript i(j) ∈ {1, 2} refers to one of the two
quark lines from which gluon 5(6) is emitted (see Fig. 1).
We emphasize again that only abelian diagrams con-
tribute to Aij0 and that, to obtain them, the colour gen-
erators in quark-gluon vertices are to be removed. Simi-
larly, we define colour-stripped amplitudes Ai0 for a single
gluon emission from line i ∈ {1, 2}, and A0 for the am-
plitude of the process without additional gluons.

Following Ref. [12] we define

F nf
LM(1q, 2Q, 3q′ , 4Q′ | 5g, 6g) ≡ N

∫
dLips34H

× Ô({pi=1,...,6, pH})(2π)d δ(d)
(
p1 + p2 − pH −

6∑
i=3

pi

)
× 2Re

[
A11

0 A
22
0
?

+A12
0 A

21
0
?
]
(1, 2, 3, 4 | 5, 6) , (4)

where dLips34H is the Lorentz-invariant phase space
of the two final-state fermions and the Higgs boson,
N = 1/(4N2

c ) includes spin and colour-averaging fac-
tors, Ô({pi=1,...,6, pH}) is an arbitrary infrared-safe ob-
servable, and d = 4− 2ε is the space-time dimension.

To obtain the partonic differential cross section we restore
colour charges and write

dσnfrr =
T 2
R(N2

c − 1)

2s

〈
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
, (5)

where s = 2p1 · p2. We also define
〈
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
as an integral over the two-gluon phase space3〈

F nf
LM(1, 2, 3, 4 | 5, 6)

〉
≡

=

∫
[dp5] [dp6] θ(E5 − E6)F nf

LM(1, 2, 3, 4 | 5, 6).
(6)

3 We choose to order gluon emissions in energy and, therefore, do
not include the factor 1/2! to account for identical final states.
This has to be kept in mind when comparing to Ref. [10] where
the gluons were not ordered.

Note that we dropped the subscripts indicating the par-
ton type for brevity; we will continue to use this short-
ened notation in what follows, unless parton type be-
comes relevant. The phase-space element [dpk] is defined
as

[dpk] ≡ dd−1pk
(2π)d−12Ek

θ(Emax − Ek) , (7)

where Emax is a parameter that should be equal to or
greater than the maximal energy that a final-state parton
can have because of momentum conservation.

To construct the subtraction terms, we need to under-
stand the singularities of the matrix element in Eq. (6).
Although, in general, such singularities can arise when
the emitted gluons are either soft or collinear to other
partons, the case of non-factorizable corrections is spe-
cial because only soft singularities are possible. However,
since we order gluons in energy and since the matrix el-
ement fully factorizes in the double-soft E5 ∼ E6 → 0

limit because of the abelian nature of non-factorizable
corrections, it is sufficient to write〈

F nf
LM(1, 2, 3, 4 | 5, 6)

〉
=
〈[
I − S6

]
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
+
〈
S6F

nf
LM(1, 2, 3, 4 | 5, 6)

〉
,

(8)

to obtain a fully-regulated double-real emission contribu-
tion. We remind the reader that an operator Si extracts
the leading behavior of the function F nf

LM in the limit
where the energy of parton i vanishes, see Ref. [12] for
additional details.

We now turn our attention to the subtraction term con-
taining the single soft singularity, i.e. the second term on
the right-hand side of Eq. (8). It is given by

S6F
nf
LM(1q, 2Q, 3q′ , 4Q′ | 5g, 6g) = −2 g2s,b κqQ

×
∫

[dp6] θ(E5 − E6)Eiknf(1q, 2Q, 3q′ , 4Q′ | 6g) (9)

× F nf
LM(1q, 2Q, 3q′ , 4Q′ | 5g) ,
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where κqQ = +1 if both q and Q are either quarks or anti-
quarks, and κqQ = −1 otherwise. The eikonal function
in Eq. (9) reads

Eiknf(1q, 2Q, 3q′ , 4Q′ | 6g) =
∑

i∈{1,3}
j∈{2,4}

λij(pi · pj)
(pi · p6)(pj · p6)

, (10)

with λij = +1 if both i and j are either incoming or
outgoing, and λij = −1 otherwise. We also note that
in Eq. (9) we have introduced a non-factorizable, single-
gluon emission contribution

F nf
LM(1, 2, 3, 4 | 5)

≡ N
∫

dLips34H × Ô({pi=1,...,5, pH})

× (2π)d δ(d)

(
p1 + p2 − pH −

5∑
i=3

pi

)
× 2Re[A1

0A
2
0
?
](1, 2, 3, 4 | 5) .

(11)

Integration of the eikonal factor over the gluon momen-
tum p6 in Eq. (9) has already been discussed in the lit-
erature, see e.g. Ref. [13]. We obtain〈

S6F
nf
LM(1, 2, 3, 4 | 5, 6)

〉
= −2[αs,b]κqQ

×
〈
(2E5)−2εKnf(1, 2, 3, 4)F nf

LM(1, 2, 3, 4 | 5)
〉
.

(12)

The function Knf(1, 2, 3, 4, 5) can be found in the ap-
pendix and [αs,b] is defined as follows

[αs,b] ≡
g2s,b
8π2

(4π)ε

Γ(1− ε) . (13)

There is still a soft singularity, E5 → 0, in the function
F nf
LM(1, 2, 3, 4 | 5) in Eq. (12) that needs to be extracted.

Analogously to Eq. (8), we do this by subtracting and
adding the soft limit of gluon g5. We find〈

S6F
nf
LM(1, 2, 3, 4 | 5, 6)

〉
= −2[αs,b]κqQ

〈[
I − S5

]
× (2E5)−2εKnf(1, .., 4)F nf

LM(1, 2, 3, 4 | 5)
〉

− 2[αs,b]κqQ
〈
S5 (2E5)−2εKnf(1, .., 4)

× F nf
LM(1, 2, 3, 4 | 5)

〉
.

(14)

The limit of the colour-stripped single-real emission am-
plitude is similar to Eq. (9) and reads

S5(2E5)−2εF nf
LM(1, 2, 3, 4 | 5)

= −2 g2s,b κqQ (2E5)−2εEiknf(1, 2, 3, 4 | 5)

× F nf
LM(1, 2, 3, 4) ,

(15)

where we introduced

F nf
LM(1, 2, 3, 4)

≡ N
∫

dLips34H × Ô({pi=1,...,4, pH})

× (2π)d δ(d)(p1 + p2 − pH − p3 − p4)

× |A0|2(1, 2, 3, 4) ,

(16)

to describe the leading-order process. Upon integration
over the unresolved phase space of gluon g5 we find〈

S5 (2E5)−2ε F nf
LM(1, 2, 3, 4 | 5)

〉
= −[αs,b](2Emax)−4ε

〈
Knf F

nf
LM(1, 2, 3, 4)

〉
,

(17)

where we suppressed the dependence of the function Knf

on the Born momenta.

Finally, we combine Eqs. (8, 14, 17) and replace

[αs,b]→
α̃s
2π

µ2ε , (18)

where α̃s = αs(µ)eεγE/Γ(1 − ε), to express the result
through the strong coupling defined in the MS scheme.
The result is the fully-regulated representation of the
double-real contribution to non-factorizable corrections〈

F nf
LM(1, 2, 3, 4 | 5, 6)

〉
=
〈[
I − S6

]
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
− 2

(
α̃s
2π

)
κqQ

×
〈[
I − S5

](2E5

µ

)−2ε
Knf F

nf
LM(1, 2, 3, 4 | 5)

〉
+ 2

(
α̃s
2π

)2(
2Emax

µ

)−4ε〈
K2

nf F
nf
LM(1, 2, 3, 4)

〉
.

(19)

Real-virtual contribution

Next, we consider the real-virtual contribution to the
NNLO QCD non-factorizable corrections. It arises from
the one-loop corrections to the process with an additional
gluon in the final state

q(p1) +Q(p2)

→ q′(p3) +Q′(p4) + g(p5) +H(pH) .
(20)

The real-virtual contribution to the non-factorizable cor-
rection is also proportional to the colour factor shown in
Eq. (2). Hence, following the discussion of the double-
real contribution, we define a colour-stripped amplitude
Ai1 as a sum of abelian diagrams where a virtual gluon is
exchanged between the two quark lines and a real gluon
is emitted from line i. Using this amplitude, we write the
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real-virtual contribution as

F nf
LV(1, 2, 3, 4 | 5)

≡ N
∫

dLips34H × Ô({pi=1,...,5, pH})

× (2π)d δ(d)

(
p1 + p2 − pH −

5∑
i=3

pi

)
× 2Re[A1

0A
2
1
?

+A2
0A

1
1
?
](1, 2, 3, 4 | 5) .

(21)

The only singularity present in F nf
LV(1, 2, 3, 4 | 5) arises in

the soft, E5 → 0 limit. To regulate it, we write〈
F nf
LV(1, 2, 3, 4 | 5)

〉
=
〈[
I − S5

]
F nf
LV(1, 2, 3, 4 | 5)

〉
+
〈
S5 F

nf
LV(1, 2, 3, 4 | 5)

〉
. (22)

Although the first term in the above equation is fully
regular inasmuch as the real emission is concerned, it
contains an explicit infrared 1/ε pole which arises as a
result of the integration over the loop momentum. We
extract it by writing [14]

F nf
LV(1, 2, 3, 4 | 5) =

α̃s
2π

2κqQ I1(ε)F nf
LM(1, 2, 3, 4 | 5)

+ F nf
LV,fin(1, 2, 3, 4 | 5) ,

(23)

where

I1(ε) ≡ 1

ε
ln

(
p1 · p4 p2 · p3
p1 · p2 p3 · p4

)
, (24)

F nf
LM(1, 2, 3, 4 | 5) is the colour-stripped single-real

emission contribution defined in Eq. (11) and
F nf
LV,fin(1, 2, 3, 4 | 5) is the O(ε0) coefficient in the
ε-expansion of Eq. (21).

We now discuss the second term on the right-hand side
of Eq. (22). The soft-gluon limit of any one-loop QCD
amplitude is known [15]. It contains two terms – the
product of the tree-level eikonal current and a one-loop
amplitude without the soft gluon, as well as the product
of a one-loop correction to the eikonal current and the rel-
evant tree-level amplitude. Since the one-loop correction
to the eikonal current is purely non-abelian, it plays no
role in the computation of non-factorizable corrections.
We discard it and write

S5F
nf
LV(1, 2, 3, 4 | 5)

= −2 g2s,b κqQ

∫
[dp5] Eiknf(1, 2, 3, 4 | 5)

× F nf
LV(1, 2, 3, 4),

(25)

where we introduced a colour-stripped one-loop virtual

contribution

F nf
LV(1, 2, 3, 4)

≡ N
∫

dLips34H × Ô({pi=1,...,4, pH})

× (2π)d δ(d)(p1 + p2 − pH − p3 − p4)

× 2Re[A0A
?
1](1, 2, 3, 4) .

(26)

The integral over unresolved momentum p5 in Eq. (25)
evaluates to

〈
S5F

nf
LV(1, 2, 3, 4 | 5)

〉
= −2κqQ

α̃s
2π

(
2Emax

µ

)−2ε
×
〈
Knf(1, 2, 3, 4)F nf

LV(1, 2, 3, 4)
〉
.

(27)

To proceed further, we note that F nf
LV(1, 2, 3, 4) contains

infrared poles from the loop integration. We make them
explicit by writing

F nf
LV(1, 2, 3, 4) =

α̃s
2π

2κqQ I1(ε)F nf
LM(1, 2, 3, 4)

+ F nf
LV,fin(1, 2, 3, 4) .

(28)

The function I1(ε) has already appeared in Eq. (24).

Combining Eqs. (22, 23, 27, 28), we obtain the final result
for the real-virtual contribution to the non-factorizable
corrections〈
F nf
LV(1, 2, 3, 4 | 5)

〉
=
α̃s
2π

κqQ
〈
2 I1(ε)

[
I − S5

]
F nf
LM(1, 2, 3, 4 | 5)

〉
+
〈[
I − S5

]
F nf
LV,fin(1, 2, 3, 4 | 5)

〉
− 4

(
α̃s
2π

)2(
2Emax

µ

)−2ε〈
I1(ε)Knf F

nf
LM(1, 2, 3, 4)

〉
− 2

α̃s
2π

κqQ

(
2Emax

µ

)−2ε〈
Knf F

nf
LV,fin(1, 2, 3, 4)

〉
.

(29)

Double-virtual contribution

The last contribution that we need to consider is the two-
loop non-factorizable correction to the process

q(p1) +Q(p2)→ q′(p3) +Q′(p4) +H(pH) . (30)

We write the two-loop amplitude of this process separat-
ing the 1/ε infrared poles from the finite remainder using
the results in Refs. [16]. Since the non-factorizable cor-
rections are abelian, the divergent structure of the two-
loop amplitude is fully determined by the square of I1(ε),
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c.f. Eq. (24). We write

〈
F nf
LVV(1, 2, 3, 4)

〉
=

(
α̃s
2π

)2〈
2 I1(ε)2F nf

LM(1, 2, 3, 4)
〉

+
α̃s
2π

κqQ
〈
2 I1(ε)F nf

LV,fin(1, 2, 3, 4)
〉

+
〈
F nf
LVV,fin(1, 2, 3, 4)

〉
,

(31)

where F nf
LVV,fin is the finite result for the two-loop ampli-

tude.

Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by com-
bining the double-real, real-virtual and double-virtual
contributions given in Eq. (19), Eq. (29) and Eq. (31),
respectively. We write the partonic cross section as

dσnfnnlo =
T 2
R(N2

c − 1)

2s

[〈
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
+
〈
F nf
LV(1, 2, 3, 4 | 5)

〉
+
〈
F nf
LVV(1, 2, 3, 4)

〉]
=
T 2
R(N2

c − 1)

2s

[〈[
I − S6

]
F nf
LM(1, 2, 3, 4 | 5, 6)

〉
− 2

α̃s
2π

〈[
I − S5

]
W(E5; 1, .., 4)F nf

LM(1, 2, 3, 4 | 5)
〉

+ 2

(
α̃s
2π

)2〈
W(Emax; 1, .., 4)2F nf

LM(1, 2, 3, 4)
〉 (32)

+
〈[
I − S5

]
F nf
LV,fin(1, 2, 3, 4 | 5)

〉
− 2

α̃s
2π

〈
W(Emax; 1, .., 4)F nf

LV,fin(1, 2, 3, 4)
〉

+
〈
F nf
LVV,fin(1, 2, 3, 4)

〉 ]
.

In Eq. (32) we introduced a finite functionW(E; 1, 2, 3, 4)

defined as4

W(E; 1, 2, 3, 4) ≡ κqQ
[(

2E

µ

)−2ε
Knf(ε)− I1(ε)

]
= κqQ

[
− 2 ln

(
2E

µ

)
ln

(
p1 · p4 p3 · p2
p1 · p2 p3 · p4

)
+
∑

i∈{1,3}
j∈{2,4}

λij

(
1

2
ln2(ηij) + Li2(1− ηij)

)]
+O(ε) ,

(33)

where ηij = 1−cos θij with angles defined in the partonic
centre-of-mass frame. The representation of the partonic

4 The ε-expansion of function Knf can be found in the appendix,
see Eq. (A.2).

cross section given in Eq. (32) makes the cancellation of
all 1/ε poles manifest and allows us to take the ε → 0

limit right away. Note that upon doing so, the coupling
constant α̃s becomes αs(µ), the standard MS coupling
constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the non-factorizable
contribution Eq. (32) requires double-real amplitudes as
well as finite parts of real-virtual amplitudes and double-
virtual amplitudes. To obtain the required double-real
amplitudes, we extend the calculation of the factorizable
NNLO QCD corrections reported in Ref. [4].

To compute the real-virtual contributions, we require
non-factorizable one-loop amplitudes for the processes
q + Q → q′ + Q′ + H and q + Q → q′ + Q′ + H + g.
These amplitudes were computed in Ref. [11] and we em-
ploy them in our numerical implementation. Extracting
the non-factorizable contribution from the existing code
requires only minor changes.5 However, it turns out to
be non-trivial to achieve stable and reliable numerical
results close to singular limits.

The existing implementation uses on-the-fly numeri-
cal Passarino-Veltman reduction and the OneLOop li-
brary [17] for the evaluation of scalar integrals. To reach
sufficient numerical accuracy we limit catastrophic can-
cellation by working with scaleless O(1) quantities. This
is achieved by scaling out the energy of the incoming par-
tons in all momenta and masses in each phase space point
and re-introducing it at the very end of the calculation.

Furthermore, we find it necessary to work with quadru-
ple precision. With these two measures we achieve agree-
ment with the infrared pole prediction in Eq. (24) to more
than 10 digits for most phase space points. In addition
to checking the amplitude’s pole structure, we also find a
satisfactory agreement between the exact six-point am-
plitude and its expected limit when the energy of the
final-state gluon becomes small, see Eq. (25). Obviously,
this last feature is a necessary requirement for being able
to use Eq. (32) for phenomenological studies.

For the finite remainder of the two-loop amplitude,
F nf
LVV,fin, we use the results of Ref. [8]. These results are

obtained in the eikonal approximation which provides the
leading term in the expansion of this amplitude in p⊥/

√
s

5 We are grateful to T. Figy for making the code used for the
computations reported in Ref. [11] available to us.
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where p⊥ is a typical transverse momentum of the final-
state tagging jets. This approximation is motivated by
typical WBF signatures and the fiducial selection cuts
derived from them.6

As a final comment we note that the finite part of the
two-loop amplitude [8] that we use in this computation
is an approximation to the exact result which, so far, re-
mains unknown. In particular, the two-loop amplitude
computed in the eikonal approximation [8] is infrared fi-
nite which means that there is no connection between
the first two terms on the right-hand side of Eq. (31), re-
quired to cancel divergences in the double-real and real-
virtual contributions, and

〈
F nf
LVV,fin(1, 2, 3, 4)

〉
. However,

as we will show in Section IV, it is quite unlikely that
the missing parts of the finite remainder of the two-loop
amplitude that are linked to the cancellation of infrared
divergences can impact the phenomenology of weak bo-
son fusion in a significant way.

IV. RESULTS

The goal of this section is to compute the non-factorizable
NNLO QCD corrections to Higgs boson production in
weak boson fusion and to compare them to the factor-
izable ones. To do that, we adopt standard parameters
and kinematic selection criteria from Refs. [5, 13]; we
reproduce them here for completeness.

We consider 13 TeV proton-proton collisions. The Higgs
boson is chosen to be stable with a mass of mH =

125 GeV. Vector boson masses are taken to be MW =

80.398 GeV and MZ = 91.1876 GeV with widths ΓW =

2.105 GeV and ΓZ = 2.4952 GeV, respectively. Weak
couplings are derived from the Fermi constant GF =

1.16639× 10−5GeV−2 and the CKM matrix is set to the
identity matrix.

We use NNPDF31-nnlo-as-118 parton distribution func-
tions [19] and αs(MZ) = 0.118 for all calculations re-
ported below. The evolution of both parton distribution
functions and the strong coupling constant is obtained di-
rectly from LHAPDF [20]. The dynamical renormaliza-
tion and factorization scales are set equal, µR = µF = µ,
with the central value [3]

µ0 =

√
mH

2

√
m2
H

4
+ p2⊥,H . (34)

6 We note that fully analytic result for the leading eikonal approx-
imation are available in Ref. [18].

To define the WBF fiducial volume we employ the in-
clusive anti-k⊥ jet algorithm [21] with R = 0.4. Events
are required to contain at least two jets with transverse
momenta p⊥,j > 25 GeV and rapidities |yj | < 4.5. The
two leading-p⊥ jets must have well-separated rapidities,
|yj1−yj2 | > 4.5, and their invariant mass should be larger
than 600 GeV. In addition, the two leading jets must be
in separate hemispheres in the laboratory frame; this is
enforced by requiring that the product of their rapidities
in the laboratory frame is negative, yj1yj2 < 0.

The analysis of the double-virtual contribution to the
non-factorizable correction to Higgs boson production
in weak boson fusion has already been performed in
Refs. [8, 9]. The new elements that we add to this anal-
ysis are the double-real and real-virtual contributions.
Although typically one expects that all types of contri-
butions are comparable in magnitude, we find that for
Higgs production in WBF this is not the case.

For example, computing the non-factorizable NNLO
QCD corrections to the fiducial WBF cross section for
central values of the renormalization and factorization
scales and for values of parameters as described above,
we find

σnf = −3.1 fb . (35)

We note that this result has a significant scale uncertainty
because non-factorizable corrections appear at NNLO for
the very first time and there is no mechanism to e.g. com-
pensate the change in the strong coupling constant when
the renormalization scale is modified. For this reason it
is not surprising that we find O(40 %) uncertainty in σnf
upon varying µR and µF within an interval [µ0/2, 2µ0].
We also note that σnf provides O(0.5) percent correction
to the fiducial cross section computed through NNLO
QCD in the factorization approximation [4] and is about
a factor of ten smaller than the factorizable NNLO QCD
corrections.

As we already mentioned, one would normally expect
that double-virtual, real-virtual and real-real corrections
provide comparable contributions to σnf. However, it
turns out that this is not the case and that only 0.01 per-
cent of σnf comes from the real-virtual and the double-
real contributions whereas the dominant 99.99 percent
comes from the double-virtual one.

This relation between the double-virtual and all the other
contributions holds for all kinematic distributions that
we considered. To give some examples, in Fig. 3 we show
the different contributions to the transverse momentum
distributions of the hardest jet and the distribution of
the invariant mass of the pair of leading jets.
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Figure 3. Non-factorizable contribution to the transverse momentum distributions of the leading jet (left) and to the distribution
of the invariant mass of the tag-jet system (right). Contributions are shown individually for different terms on the right-hand
side of Eq. (32) and we label them with the present matrix element, e.g. the plot label F nf

LM(1, 2, 3, 4 | 5) refers to the contribution
of the full second term. Note that, in the plots we use ellipses for the sequence of Born momenta, 1, 2, 3, 4, for representational
purposes. For each plot (and differently in upper and lower panes) contributions are scaled to be of similar orders. The lower
pane shows the ratio with respect to double-virtual contributions. See text for further details.

To understand the reason for this unusual suppression of
the double-real and the real-virtual contributions, con-
sider the quantity

L(1, 2, 3, 4) = ln

(
p1 · p4 p3 · p2
p1 · p2 p3 · p4

)
, (36)

which arises upon integration of the eikonal current de-
scribing single gluon emission. We note that this quantity
appears in the integrated subtraction term described by
the function W(E; 1, 2, 3, 4) defined in Eq. (33).

For instance, to estimate the contribution of two soft
gluons to the non-factorizable corrections in the presence
of fiducial WBF cuts, we consdier the following integral

σRR ∼
(
α̃s
2π

)2
N2
c

〈
L2(1, 2, 3, 4)F nf

LM(1q, 2q, 3q, 4q)
〉
. (37)

To proceed we use the fact that in the relevant phase-
space region p3 and p4 are nearly collinear to p1 and p2,
respectively, and compute the function L in this limit.

To this end, we write

p3 = α3 p1 + β3 p2 + p3,⊥ ,

p4 = α4 p1 + β4 p2 + p4,⊥ ,
(38)

where α3, β4 ∼ 1 and

pi,⊥ · p1 = pi,⊥ · p2 = 0 , (39)

for i ∈ {3, 4}. From the mass-shell condition for outgoing
quarks, we obtain

β3 ∼
p23,⊥
s
� 1 , α4 ∼

p24,⊥
s
� 1 . (40)

We thus find

L(1, 2, 3, 4) = − ln

(
1 +

β3 α4

α3 β4
− 2 ~p3,⊥ · ~p4,⊥

s α3 β4

)
≈ 2~p3,⊥ · ~p4,⊥

s
.

(41)

A typical transverse momentum in Higgs production in
weak boson fusion is ∼ 60 GeV and a typical partonic
centre-of-mass energy is approximately

√
s ≈ 600 GeV.

Therefore, L ∼ 10−2 in the relevant region of the partonic
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phase space and we find

σRR ∼
(
α̃s
2π

)2
N2
c

〈
L2(1, 2, 3, 4)F nf

LM(1q, 2q, 3q, 4q)
〉

∼
(
α̃s
2π

)2
10−4 σLO ,

(42)

where we used N2
c

〈
F nf
LM(1q, 2q, 3q, 4q)

〉
= σLO.

In comparison, virtual corrections do not vanish in the
forward region. In fact, as shown in Ref. [8], they are
characterised by a phase-space dependent function χnf

which is O(π2) in the forward region. We then estimate

σV V ∼
(
α̃s
2π

)2
N2
c

〈
χnf(1, 2, 3, 4) F nf

LM(1, 2, 3, 4)
〉

≈
(
α̃s
2π

)2
10σLO ,

(43)

where we used π2 ≈ 10. Taking the ratio, we obtain

σRR
σV V

∼ 10−5 , (44)

which is consistent with the results of the explicit com-
putation presented earlier in this section.

We have checked that the extraordinarily strong suppres-
sion of the double-real and real-virtual corrections is a
consequence of the fiducial cuts which are used to identify
events when the Higgs boson is produced in weak boson
fusion. If the cuts are relaxed so that one does not require
strong rapidity separation of the two tagging jets and a
strong constraint on their invariant mass, the double-real
and real-virtual contributions increase by several orders
of magnitude. In fact, they become comparable to the
double-virtual corrections which only grows by an O(1)

factor.

V. CONCLUSIONS

In this paper we extended the calculation of non-
factorizable contributions to Higgs boson production in
weak boson fusion at O(α2

s) by combining the results for
the double-virtual contributions in the eikonal approxi-
mation [8] with non-factorizable real-virtual and double-
real QCD corrections. We observed that, thanks to the
fiducial cuts used to identify WBF events, and a pe-
culiar enhancement of the double-virtual contributions,
the non-factorizable NNLO QCD corrections are entirely
dominated by two-loop virtual effects. We have checked
that the striking dominance of the two-loop virtual cor-
rections extends to all major kinematic distributions rel-
evant for Higgs production in WBF.

Outside the fiducial region the relative importance of the
various contributions levels out. However, the eikonal
approximation will also start to break down. It would,
therefore, be interesting to understand how to go beyond
the eikonal approximation for the double-virtual ampli-
tude and estimate the impact of non-vanishing transverse
momenta of the final-state jets on the two-loop correc-
tion. This question may be of some relevance for studies
that select harder Higgs bosons which happens, for ex-
ample, when one considers Higgs decays into a b-quark
pair. We leave this question for future investigations.
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Appendix: Integrated soft eikonal

In this appendix we present results for the integrated soft eikonal function that we have written in terms of the
function Knf, c.f. Eq. (12). The exact form of Knf reads

Knf(1q, 2Q, 3q′ , 4Q′ ; ε) =
1

ε2

[
Γ2(1− ε)
Γ(1− 2ε)

] ∑
i∈{1,3}
j∈{2,4}

λij ηij 2F1(1, 1; 1− ε; 1− ηij) ,
(A.1)

where we use ηij ≡ 1− cos θij ≡ (pi · pj)/(2EiEj).
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It may appear from Eq. (A.1) that the function Knf contains second-order poles in ε. This, however, cannot be the
case since collinear singularities cannot appear in non-factorizable contributions. An explicit computation yields the
result that confirms this expectation. Expanding Knf in ε, we obtain

Knf(1q, 2Q, 3q′ , 4Q′ ; ε) =
1

ε
ln

(
p1 · p4 p3 · p2
p1 · p2 p3 · p4

)
+

∑
i∈{1,3}
j∈{2,4}

λij

(
1

2
ln2(ηij) + Li2(1− ηij)

)
+O(ε) .

(A.2)
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