On the non-factorizable corrections to Higgs boson production in weak boson fusion

Konstantin Asteriadis, ${ }^{1, *}$ Christian Brønnum-Hansen, ${ }^{2, \dagger}$ and Kirill Melnikov ${ }^{2, \ddagger}$
${ }^{1}$ High Energy Theory Group, Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
${ }^{2}$ Institute for Theoretical Particle Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Abstract

We discuss the non-factorizable corrections to Higgs boson production in weak boson fusion at the Large Hadron Collider. Such corrections depend on the finite part of the two-loop virtual amplitude $q Q \rightarrow q^{\prime} Q^{\prime}+H$ which, up to now, has only been computed in the eikonal approximation. We combine this contribution with real-virtual and double-real non-factorizable QCD corrections and study their impact on the various observables in weak boson fusion. We find that the nonfactorizable corrections are strongly dominated by the two-loop virtual contributions, while all other contributions play a very minor role. This striking imbalance between real and virtual contributions is caused by a process-specific kinematic suppression of the former and a particular enhancement of the virtual corrections related to a Glauber phase.

I. INTRODUCTION

Weak boson fusion (WBF) is an important Higgs boson production channel; it has the second-largest cross section at the Large Hadron Collider (LHC). In addition, it is directly sensitive to the couplings of the Higgs boson to W and Z bosons allowing for a detailed exploration of their strengths and Lorentz structures.
Theoretical predictions for Higgs boson production in weak boson fusion are very advanced. They include next-to-leading order (NLO) QCD [1] and electroweak [2] corrections as well as next-to-next-to-leading order (NNLO) QCD [3-5] and next-to-next-to-next-to-leading order $\left(\mathrm{N}^{3} \mathrm{LO}\right)$ QCD [6] corrections. In addition, effects of multijet merging and an interplay between fixed order perturbative computations and parton showers in weak boson fusion was studied in Ref. [7]. However, available QCD corrections are computed in the so-called factorization approximation where strong interactions between the incoming quark lines are systematically ignored.
Historically, non-factorizable corrections were neglected because they are colour-suppressed [3] and, moreover, they appear at NNLO QCD for the first time. However, it was pointed out in Ref. [8] that these corrections receive a peculiar π^{2}-enhancement associated with a Glauber phase. In Refs. [8, 9] the numerical impact of non-factorizable corrections on various observables in WBF was investigated. It was found that these corrections are somewhat smaller than the factorizable corrections at NNLO QCD but that they certainly exceed the magnitude of $\mathrm{N}^{3} \mathrm{LO}$ QCD corrections.

[^0]To make further progress in understanding the nonfactorizable effects in weak boson fusion, there are two directions to take. First, one can extend the calculation of the non-factorizable two-loop amplitude for the WBF process $q Q \rightarrow q^{\prime} Q^{\prime}+H$ beyond the eikonal approximation. This is a formidable task since it requires the computation of two-loop five-point amplitudes with two massive propagators and an additional external massive particle which is beyond the current state of the art. Second, one can study the effects of all the other contributions relevant for computing the non-factorizable correction through NNLO in perturbative QCD while accounting for the double-virtual contribution in the eikonal approximation. This is what we do in this paper.

Computation of NNLO QCD corrections to WBF requires double-real and real-virtual contributions, in addition to the two-loop virtual corrections. Individually, each of these contributions is infrared divergent; to properly define them a subtraction procedure is needed. Since in the past decade remarkable progress in the development of NNLO QCD subtraction schemes for collider processes has been made, and since certain features of the non-factorizable correction to Higgs boson fusion in WBF make the infrared structure of this process simple, construction of the subtraction scheme for computing the non-factorizable corrections to WBF becomes straightforward. In fact, the relevant computation can be borrowed, almost verbatim, from a similar computation of the non-factorizable corrections to single-top production reported recently in Ref. [10].

It is worth pointing out that the situation with realvirtual contributions is somewhat peculiar. Although the relevant one-loop amplitudes can be extracted from an existing computation of NLO QCD corrections to $H+j$ production in weak boson fusion [11], the fact that the corresponding six-point amplitude needs to be evaluated

Figure 1. Momentum, parton and line conventions at Born level used throughout the discussion. We do not show fermion flow because q and Q each represent any (light) quark or antiquark.
close to singular limits makes its use in the computation of NNLO QCD corrections non-trivial.

The remaining part of the paper is organized as follows. In the next section we recapitulate the construction of the infrared-finite fully-differential cross section suitable for numerical computation. We discuss the numerical implementation and address difficulties with evaluating subtracted real-virtual contributions in Section III. We then present the results of our computation and show that the non-factorizable corrections are strongly dominated by two-loop virtual corrections. We conclude in Section V.

II. CONSTRUCTION OF AN INFRARED FINITE CROSS SECTION

A NNLO QCD computation requires the construction of an infrared-finite cross section which can be integrated over phase space of final-state particles in four dimensions. This requires the use of a subtraction scheme since contributions with different number of final-state partons are not separately finite.

The construction of such a subtraction scheme for the case of non-factorizable contributions to single-top production was recently presented in Ref. [10]. The discussion in that reference applies almost verbatim to the computation of non-factorizable corrections to Higgs boson production in weak boson fusion. Because of that, we confine ourselves to reviewing the major building blocks of such a construction in this section, and note that further details can be found in Ref. [10].

Non-factorizable corrections involve exchanges of real and virtual gluons between the two quark lines of the partonic process $q Q \rightarrow q^{\prime} Q^{\prime}+H$, where q and Q are arbitrary quarks or anti-quarks, see Fig. 1. Such corrections do not contribute at next-to-leading order due to colour conservation. Indeed, both real and virtual nonfactorizable corrections at NLO QCD contain just one
single colour generator T^{a} on each fermion line. When one computes the interference of the one-loop virtual amplitude with the leading-order amplitude or the square of the real-emission amplitude, the corrections vanish since the colour generators are traceless. ${ }^{1}$

Despite being absent at lower orders, non-factorizable contributions do appear at NNLO in perturbative QCD. For example, virtual contributions with two gluons connecting the upper and lower quark lines lead to a colour factor $\operatorname{Tr}\left(T^{a} T^{b}\right)=T_{R} \delta^{a b}$ for each line and clearly do not vanish when the interference with the leading-order amplitude is computed. We show some of the non-vanishing contributions in Fig. 2. Furthermore, it is easy to see that non-factorizable contributions at NNLO cannot involve non-abelian QCD vertices. This feature renders all non-factorizable corrections QED-like and leads, as we will discuss later in more detail, to a simple infrared structure of such contributions. We will now consider the various contributions to the NNLO QCD non-factorizable corrections and review the construction of the subtraction terms.

Double-real emission contribution

We begin with the non-factorizable contributions to the double-real emission process

$$
\begin{align*}
& q\left(p_{1}\right)+Q\left(p_{2}\right) \\
& \rightarrow q^{\prime}\left(p_{3}\right)+Q^{\prime}\left(p_{4}\right)+g\left(p_{5}\right)+g\left(p_{6}\right)+H\left(p_{H}\right) \tag{1}
\end{align*}
$$

All such contributions to the amplitude squared carry the same colour factor given by

$$
\begin{equation*}
\sum_{a, b} \operatorname{Tr}\left(T^{a} T^{b}\right)^{2}=T_{R}^{2}\left(N_{c}^{2}-1\right) \tag{2}
\end{equation*}
$$

where $T_{R}=1 / 2, N_{c}=3, a$ and b are the colour indices of gluons p_{5} and p_{6}, respectively, and the summation over quark colours has been performed. Since the colour factor is always the same, it is convenient to work with colour-stripped amplitudes and restore the overall colour factor at the end.

We write the relevant colour-stripped amplitudes as ${ }^{2}$

$$
\begin{equation*}
A_{0}^{i j}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 5_{g}, 6_{g}\right) \tag{3}
\end{equation*}
$$

[^1]

Figure 2. Schematic examples of non-vanishing contributions to the non-factorizable double-real (a-b), real-virtual (c), and double-virtual (d) amplitude squared. It is easy to see that the colour factor for each contribution is $T_{R}^{2}\left(N_{c}^{2}-1\right)$, as stated in the main text. To distinguish the two massless quark lines, one is printed in bold.
where superscript $i(j) \in\{1,2\}$ refers to one of the two quark lines from which gluon $5(6)$ is emitted (see Fig. 1). We emphasize again that only abelian diagrams contribute to $A_{0}^{i j}$ and that, to obtain them, the colour generators in quark-gluon vertices are to be removed. Similarly, we define colour-stripped amplitudes A_{0}^{i} for a single gluon emission from line $i \in\{1,2\}$, and A_{0} for the amplitude of the process without additional gluons.

Following Ref. [12] we define

$$
\begin{align*}
& F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 5_{g}, 6_{g}\right) \equiv \mathcal{N} \int \mathrm{dLips}_{34 H} \\
& \times \hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 6}, p_{H}\right\}\right)(2 \pi)^{d} \delta^{(d)}\left(p_{1}+p_{2}-p_{H}-\sum_{i=3}^{6} p_{i}\right) \\
& \times 2 \operatorname{Re}\left[A_{0}^{11} A_{0}^{22^{\star}}+A_{0}^{12} A_{0}^{21^{\star}}\right](1,2,3,4 \mid 5,6), \tag{4}
\end{align*}
$$

where $\mathrm{dLips}_{34 H}$ is the Lorentz-invariant phase space of the two final-state fermions and the Higgs boson, $\mathcal{N}=1 /\left(4 N_{c}^{2}\right)$ includes spin and colour-averaging factors, $\hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 6}, p_{H}\right\}\right)$ is an arbitrary infrared-safe observable, and $d=4-2 \epsilon$ is the space-time dimension.

To obtain the partonic differential cross section we restore colour charges and write

$$
\begin{equation*}
\mathrm{d} \sigma_{\mathrm{rr}}^{\mathrm{nf}}=\frac{T_{R}^{2}\left(N_{c}^{2}-1\right)}{2 s}\left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle \tag{5}
\end{equation*}
$$

where $s=2 p_{1} \cdot p_{2}$. We also define $\left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle$ as an integral over the two-gluon phase space ${ }^{3}$

$$
\begin{align*}
& \left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle \equiv \\
& =\int\left[\mathrm{d} p_{5}\right]\left[\mathrm{d} p_{6}\right] \theta\left(E_{5}-E_{6}\right) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6) \tag{6}
\end{align*}
$$

[^2]Note that we dropped the subscripts indicating the parton type for brevity; we will continue to use this shortened notation in what follows, unless parton type becomes relevant. The phase-space element $\left[\mathrm{d} p_{k}\right]$ is defined as

$$
\begin{equation*}
\left[\mathrm{d} p_{k}\right] \equiv \frac{\mathrm{d}^{d-1} p_{k}}{(2 \pi)^{d-1} 2 E_{k}} \theta\left(E_{\max }-E_{k}\right) \tag{7}
\end{equation*}
$$

where $E_{\max }$ is a parameter that should be equal to or greater than the maximal energy that a final-state parton can have because of momentum conservation.

To construct the subtraction terms, we need to understand the singularities of the matrix element in Eq. (6). Although, in general, such singularities can arise when the emitted gluons are either soft or collinear to other partons, the case of non-factorizable corrections is special because only soft singularities are possible. However, since we order gluons in energy and since the matrix element fully factorizes in the double-soft $E_{5} \sim E_{6} \rightarrow 0$ limit because of the abelian nature of non-factorizable corrections, it is sufficient to write

$$
\begin{align*}
& \left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle \\
& =\left\langle\left[I-S_{6}\right] F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle \tag{8}\\
& +\left\langle S_{6} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle
\end{align*}
$$

to obtain a fully-regulated double-real emission contribution. We remind the reader that an operator S_{i} extracts the leading behavior of the function $F_{\mathrm{LM}}^{\mathrm{nf}}$ in the limit where the energy of parton i vanishes, see Ref. [12] for additional details.
We now turn our attention to the subtraction term containing the single soft singularity, i.e. the second term on the right-hand side of Eq. (8). It is given by

$$
\begin{align*}
& S_{6} F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 5_{g}, 6_{g}\right)=-2 g_{s, b}^{2} \kappa_{q Q} \\
& \quad \times \int\left[\mathrm{d} p_{6}\right] \theta\left(E_{5}-E_{6}\right) \operatorname{Eik}_{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 6_{g}\right) \tag{9}\\
& \quad \times F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 5_{g}\right)
\end{align*}
$$

where $\kappa_{q Q}=+1$ if both q and Q are either quarks or antiquarks, and $\kappa_{q Q}=-1$ otherwise. The eikonal function in Eq. (9) reads

$$
\begin{equation*}
\operatorname{Eik}_{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} \mid 6_{g}\right)=\sum_{\substack{i \in\{1,3\} \\ j \in\{2,4\}}} \frac{\lambda_{i j}\left(p_{i} \cdot p_{j}\right)}{\left(p_{i} \cdot p_{6}\right)\left(p_{j} \cdot p_{6}\right)}, \tag{10}
\end{equation*}
$$

with $\lambda_{i j}=+1$ if both i and j are either incoming or outgoing, and $\lambda_{i j}=-1$ otherwise. We also note that in Eq. (9) we have introduced a non-factorizable, singlegluon emission contribution

$$
\begin{align*}
& F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5) \\
& \equiv \mathcal{N} \int \mathrm{dLips}_{34 H} \times \hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 5}, p_{H}\right\}\right) \\
& \quad \times(2 \pi)^{d} \delta^{(d)}\left(p_{1}+p_{2}-p_{H}-\sum_{i=3}^{5} p_{i}\right) \tag{11}\\
& \quad \times 2 \operatorname{Re}\left[A_{0}^{1} A_{0}^{2^{\star}}\right](1,2,3,4 \mid 5) .
\end{align*}
$$

Integration of the eikonal factor over the gluon momentum p_{6} in Eq. (9) has already been discussed in the literature, see e.g. Ref. [13]. We obtain

$$
\begin{align*}
& \left\langle S_{6} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle=-2\left[\alpha_{s, b}\right] \kappa_{q Q} \tag{12}\\
& \quad \times\left\langle\left(2 E_{5}\right)^{-2 \epsilon} K_{\mathrm{nf}}(1,2,3,4) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle .
\end{align*}
$$

The function $K_{\mathrm{nf}}(1,2,3,4,5)$ can be found in the appendix and $\left[\alpha_{s, b}\right]$ is defined as follows

$$
\begin{equation*}
\left[\alpha_{s, b}\right] \equiv \frac{g_{s, b}^{2}}{8 \pi^{2}} \frac{(4 \pi)^{\epsilon}}{\Gamma(1-\epsilon)} \tag{13}
\end{equation*}
$$

There is still a soft singularity, $E_{5} \rightarrow 0$, in the function $F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)$ in Eq. (12) that needs to be extracted. Analogously to Eq. (8), we do this by subtracting and adding the soft limit of gluon g_{5}. We find

$$
\begin{align*}
& \left\langle S_{6} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle=-2\left[\alpha_{s, b}\right] \kappa_{q Q}\left\langle\left[I-S_{5}\right]\right. \\
& \left.\quad \times\left(2 E_{5}\right)^{-2 \epsilon} K_{\mathrm{nf}}(1, . ., 4) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& \quad-2\left[\alpha_{s, b}\right] \kappa_{q Q}\left\langle S_{5}\left(2 E_{5}\right)^{-2 \epsilon} K_{\mathrm{nf}}(1, . ., 4)\right. \tag{14}\\
& \left.\quad \times F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle .
\end{align*}
$$

The limit of the colour-stripped single-real emission amplitude is similar to Eq. (9) and reads

$$
\begin{align*}
& S_{5}\left(2 E_{5}\right)^{-2 \epsilon} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5) \\
& =-2 g_{s, b}^{2} \kappa_{q Q}\left(2 E_{5}\right)^{-2 \epsilon} \operatorname{Eik}_{\mathrm{nf}}(1,2,3,4 \mid 5) \tag{15}\\
& \quad \times F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)
\end{align*}
$$

where we introduced

$$
\begin{align*}
& F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4) \\
& \equiv \tag{16}\\
& \equiv \mathcal{N} \int \mathrm{dLips}_{34 H} \times \hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 4}, p_{H}\right\}\right) \\
& \quad \times(2 \pi)^{d} \delta^{(d)}\left(p_{1}+p_{2}-p_{H}-p_{3}-p_{4}\right) \\
& \quad \times\left|A_{0}\right|^{2}(1,2,3,4)
\end{align*}
$$

to describe the leading-order process. Upon integration over the unresolved phase space of gluon g_{5} we find

$$
\begin{align*}
& \left\langle S_{5}\left(2 E_{5}\right)^{-2 \epsilon} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \tag{17}\\
& =-\left[\alpha_{s, b}\right]\left(2 E_{\max }\right)^{-4 \epsilon}\left\langle K_{\mathrm{nf}} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle
\end{align*}
$$

where we suppressed the dependence of the function K_{nf} on the Born momenta.

Finally, we combine Eqs. $(8,14,17)$ and replace

$$
\begin{equation*}
\left[\alpha_{s, b}\right] \rightarrow \frac{\tilde{\alpha}_{s}}{2 \pi} \mu^{2 \epsilon} \tag{18}
\end{equation*}
$$

where $\tilde{\alpha}_{s}=\alpha_{s}(\mu) e^{\epsilon \gamma_{E}} / \Gamma(1-\epsilon)$, to express the result through the strong coupling defined in the $\overline{\mathrm{MS}}$ scheme. The result is the fully-regulated representation of the double-real contribution to non-factorizable corrections

$$
\begin{align*}
& \left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle \\
& =\left\langle\left[I-S_{6}\right] F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle-2\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right) \kappa_{q Q} \\
& \quad \times\left\langle\left[I-S_{5}\right]\left(\frac{2 E_{5}}{\mu}\right)^{-2 \epsilon} K_{\mathrm{nf}} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \tag{19}\\
& +2\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2}\left(\frac{2 E_{\mathrm{max}}}{\mu}\right)^{-4 \epsilon}\left\langle K_{\mathrm{nf}}^{2} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle .
\end{align*}
$$

Real-virtual contribution

Next, we consider the real-virtual contribution to the NNLO QCD non-factorizable corrections. It arises from the one-loop corrections to the process with an additional gluon in the final state

$$
\begin{align*}
& q\left(p_{1}\right)+Q\left(p_{2}\right) \\
& \rightarrow q^{\prime}\left(p_{3}\right)+Q^{\prime}\left(p_{4}\right)+g\left(p_{5}\right)+H\left(p_{H}\right) \tag{20}
\end{align*}
$$

The real-virtual contribution to the non-factorizable correction is also proportional to the colour factor shown in Eq. (2). Hence, following the discussion of the doublereal contribution, we define a colour-stripped amplitude A_{1}^{i} as a sum of abelian diagrams where a virtual gluon is exchanged between the two quark lines and a real gluon is emitted from line i. Using this amplitude, we write the
real-virtual contribution as

$$
\begin{align*}
& F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5) \\
& \equiv \mathcal{N} \int \mathrm{dLips}_{34 H} \times \hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 5}, p_{H}\right\}\right) \\
& \quad \times(2 \pi)^{d} \delta^{(d)}\left(p_{1}+p_{2}-p_{H}-\sum_{i=3}^{5} p_{i}\right) \tag{21}\\
& \quad \times 2 \operatorname{Re}\left[A_{0}^{1} A_{1}^{2^{\star}}+A_{0}^{2} A_{1}^{1^{\star}}\right](1,2,3,4 \mid 5) .
\end{align*}
$$

The only singularity present in $F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)$ arises in the soft, $E_{5} \rightarrow 0$ limit. To regulate it, we write

$$
\begin{align*}
& \left\langle F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle=\left\langle\left[I-S_{5}\right] F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& +\left\langle S_{5} F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \tag{22}
\end{align*}
$$

Although the first term in the above equation is fully regular inasmuch as the real emission is concerned, it contains an explicit infrared $1 / \epsilon$ pole which arises as a result of the integration over the loop momentum. We extract it by writing [14]

$$
\begin{align*}
& F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)=\frac{\tilde{\alpha}_{s}}{2 \pi} 2 \kappa_{q Q} I_{1}(\epsilon) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5) \tag{23}\\
& +F_{\mathrm{LV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4 \mid 5)
\end{align*}
$$

where

$$
\begin{equation*}
I_{1}(\epsilon) \equiv \frac{1}{\epsilon} \ln \left(\frac{p_{1} \cdot p_{4} p_{2} \cdot p_{3}}{p_{1} \cdot p_{2} p_{3} \cdot p_{4}}\right), \tag{24}
\end{equation*}
$$

$F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)$ is the colour-stripped single-real emission contribution defined in Eq. (11) and $F_{\mathrm{LV}, \text { in }}^{\mathrm{nf}}(1,2,3,4 \mid 5)$ is the $\mathcal{O}\left(\epsilon^{0}\right)$ coefficient in the ϵ-expansion of Eq. (21).

We now discuss the second term on the right-hand side of Eq. (22). The soft-gluon limit of any one-loop QCD amplitude is known [15]. It contains two terms - the product of the tree-level eikonal current and a one-loop amplitude without the soft gluon, as well as the product of a one-loop correction to the eikonal current and the relevant tree-level amplitude. Since the one-loop correction to the eikonal current is purely non-abelian, it plays no role in the computation of non-factorizable corrections. We discard it and write

$$
\begin{align*}
& S_{5} F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5) \\
& =-2 g_{s, b}^{2} \kappa_{q Q} \int\left[\mathrm{~d} p_{5}\right] \operatorname{Eik}_{\mathrm{nf}}(1,2,3,4 \mid 5) \tag{25}\\
& \quad \times F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4)
\end{align*}
$$

where we introduced a colour-stripped one-loop virtual
contribution

$$
\begin{align*}
& F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4) \\
& \equiv \equiv \mathcal{N} \int \mathrm{dLips}_{34 H} \times \hat{\mathcal{O}}\left(\left\{p_{i=1, \ldots, 4}, p_{H}\right\}\right) \tag{26}\\
& \quad \times(2 \pi)^{d} \delta^{(d)}\left(p_{1}+p_{2}-p_{H}-p_{3}-p_{4}\right) \\
& \quad \times 2 \operatorname{Re}\left[A_{0} A_{1}^{\star}\right](1,2,3,4)
\end{align*}
$$

The integral over unresolved momentum p_{5} in Eq. (25) evaluates to

$$
\begin{align*}
& \left\langle S_{5} F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle=-2 \kappa_{q Q} \frac{\tilde{\alpha}_{s}}{2 \pi}\left(\frac{2 E_{\max }}{\mu}\right)^{-2 \epsilon} \tag{27}\\
& \quad \times\left\langle K_{\mathrm{nf}}(1,2,3,4) F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4)\right\rangle
\end{align*}
$$

To proceed further, we note that $F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4)$ contains infrared poles from the loop integration. We make them explicit by writing

$$
\begin{align*}
& F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4)=\frac{\tilde{\alpha}_{s}}{2 \pi} 2 \kappa_{q Q} I_{1}(\epsilon) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4) \tag{28}\\
& +F_{\mathrm{LV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4)
\end{align*}
$$

The function $I_{1}(\epsilon)$ has already appeared in Eq. (24).
Combining Eqs. (22, 23, 27, 28), we obtain the final result for the real-virtual contribution to the non-factorizable corrections

$$
\begin{align*}
& \left\langle F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& =\frac{\tilde{\alpha}_{s}}{2 \pi} \kappa_{q Q}\left\langle 2 I_{1}(\epsilon)\left[I-S_{5}\right] F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& +\left\langle\left[I-S_{5}\right] F_{\mathrm{LV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& -4\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2}\left(\frac{2 E_{\max }}{\mu}\right)^{-2 \epsilon}\left\langle I_{1}(\epsilon) K_{\mathrm{nf}} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle \tag{29}\\
& -2 \frac{\tilde{\alpha}_{s}}{2 \pi} \kappa_{q Q}\left(\frac{2 E_{\max }}{\mu}\right)^{-2 \epsilon}\left\langle K_{\mathrm{nf}} F_{\mathrm{LV}, \text { fin }}^{\mathrm{nf}}(1,2,3,4)\right\rangle
\end{align*}
$$

Double-virtual contribution

The last contribution that we need to consider is the twoloop non-factorizable correction to the process

$$
\begin{equation*}
q\left(p_{1}\right)+Q\left(p_{2}\right) \rightarrow q^{\prime}\left(p_{3}\right)+Q^{\prime}\left(p_{4}\right)+H\left(p_{H}\right) \tag{30}
\end{equation*}
$$

We write the two-loop amplitude of this process separating the $1 / \epsilon$ infrared poles from the finite remainder using the results in Refs. [16]. Since the non-factorizable corrections are abelian, the divergent structure of the twoloop amplitude is fully determined by the square of $I_{1}(\epsilon)$,
c.f. Eq. (24). We write

$$
\begin{align*}
& \left\langle F_{\mathrm{LVV}}^{\mathrm{nf}}(1,2,3,4)\right\rangle=\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2}\left\langle 2 I_{1}(\epsilon)^{2} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle \\
& \quad+\frac{\tilde{\alpha}_{s}}{2 \pi} \kappa_{q Q}\left\langle 2 I_{1}(\epsilon) F_{\mathrm{LV}, \text { fin }}^{\mathrm{nf}}(1,2,3,4)\right\rangle \tag{31}\\
& \quad+\left\langle F_{\mathrm{LVV}, \text { fin }}^{\mathrm{nf}}(1,2,3,4)\right\rangle
\end{align*}
$$

where $F_{\mathrm{LVV} \text {,fin }}^{\mathrm{nf}}$ is the finite result for the two-loop amplitude.

Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by combining the double-real, real-virtual and double-virtual contributions given in Eq. (19), Eq. (29) and Eq. (31), respectively. We write the partonic cross section as

$$
\begin{align*}
& \mathrm{d} \sigma_{\mathrm{nnlo}}^{\mathrm{nf}}=\frac{T_{R}^{2}\left(N_{c}^{2}-1\right)}{2 s}\left[\left\langle F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle\right. \\
& \left.\quad+\left\langle F_{\mathrm{LV}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle+\left\langle F_{\mathrm{LVV}}^{\mathrm{nf}}(1,2,3,4)\right\rangle\right] \\
& =\frac{T_{R}^{2}\left(N_{c}^{2}-1\right)}{2 s}\left[\left\langle\left[I-S_{6}\right] F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5,6)\right\rangle\right. \\
& -2 \frac{\tilde{\alpha}_{s}}{2 \pi}\left\langle\left[I-S_{5}\right] \mathcal{W}\left(E_{5} ; 1, . ., 4\right) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& +2\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2}\left\langle\mathcal{W}\left(E_{\max } ; 1, . ., 4\right)^{2} F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle \tag{32}\\
& +\left\langle\left[I-S_{5}\right] F_{\mathrm{LV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4 \mid 5)\right\rangle \\
& -2 \frac{\tilde{\alpha}_{s}}{2 \pi}\left\langle\mathcal{W}\left(E_{\max } ; 1, . ., 4\right) F_{\mathrm{LV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4)\right\rangle \\
& \left.+\left\langle F_{\mathrm{LVV}, \mathrm{fin}}^{\mathrm{nf}}(1,2,3,4)\right\rangle\right] .
\end{align*}
$$

In Eq. (32) we introduced a finite function $\mathcal{W}(E ; 1,2,3,4)$ defined as ${ }^{4}$

$$
\begin{align*}
& \mathcal{W}(E ; 1,2,3,4) \equiv \kappa_{q Q}\left[\left(\frac{2 E}{\mu}\right)^{-2 \epsilon} K_{\mathrm{nf}}(\epsilon)-\mathrm{I}_{1}(\epsilon)\right] \\
& =\kappa_{q Q}\left[-2 \ln \left(\frac{2 E}{\mu}\right) \ln \left(\frac{p_{1} \cdot p_{4} p_{3} \cdot p_{2}}{p_{1} \cdot p_{2} p_{3} \cdot p_{4}}\right)\right. \tag{33}\\
& \left.+\sum_{\substack{i \in\{1,3\} \\
j \in\{2,4\}}} \lambda_{i j}\left(\frac{1}{2} \ln ^{2}\left(\eta_{i j}\right)+\operatorname{Li}_{2}\left(1-\eta_{i j}\right)\right)\right]+\mathcal{O}(\epsilon),
\end{align*}
$$

where $\eta_{i j}=1-\cos \theta_{i j}$ with angles defined in the partonic centre-of-mass frame. The representation of the partonic

[^3]cross section given in Eq. (32) makes the cancellation of all $1 / \epsilon$ poles manifest and allows us to take the $\epsilon \rightarrow 0$ limit right away. Note that upon doing so, the coupling constant $\tilde{\alpha}_{s}$ becomes $\alpha_{s}(\mu)$, the standard $\overline{\mathrm{MS}}$ coupling constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the non-factorizable contribution Eq. (32) requires double-real amplitudes as well as finite parts of real-virtual amplitudes and doublevirtual amplitudes. To obtain the required double-real amplitudes, we extend the calculation of the factorizable NNLO QCD corrections reported in Ref. [4].

To compute the real-virtual contributions, we require non-factorizable one-loop amplitudes for the processes $q+Q \rightarrow q^{\prime}+Q^{\prime}+H$ and $q+Q \rightarrow q^{\prime}+Q^{\prime}+H+g$. These amplitudes were computed in Ref. [11] and we employ them in our numerical implementation. Extracting the non-factorizable contribution from the existing code requires only minor changes. ${ }^{5}$ However, it turns out to be non-trivial to achieve stable and reliable numerical results close to singular limits.

The existing implementation uses on-the-fly numerical Passarino-Veltman reduction and the OneLOop library [17] for the evaluation of scalar integrals. To reach sufficient numerical accuracy we limit catastrophic cancellation by working with scaleless $\mathcal{O}(1)$ quantities. This is achieved by scaling out the energy of the incoming partons in all momenta and masses in each phase space point and re-introducing it at the very end of the calculation.

Furthermore, we find it necessary to work with quadruple precision. With these two measures we achieve agreement with the infrared pole prediction in Eq. (24) to more than 10 digits for most phase space points. In addition to checking the amplitude's pole structure, we also find a satisfactory agreement between the exact six-point amplitude and its expected limit when the energy of the final-state gluon becomes small, see Eq. (25). Obviously, this last feature is a necessary requirement for being able to use Eq. (32) for phenomenological studies.

For the finite remainder of the two-loop amplitude, $F_{\mathrm{LVV}, \text { fin }}^{\mathrm{nf}}$, we use the results of Ref. [8]. These results are obtained in the eikonal approximation which provides the leading term in the expansion of this amplitude in p_{\perp} / \sqrt{s}

[^4]where p_{\perp} is a typical transverse momentum of the finalstate tagging jets. This approximation is motivated by typical WBF signatures and the fiducial selection cuts derived from them. ${ }^{6}$

As a final comment we note that the finite part of the two-loop amplitude [8] that we use in this computation is an approximation to the exact result which, so far, remains unknown. In particular, the two-loop amplitude computed in the eikonal approximation [8] is infrared finite which means that there is no connection between the first two terms on the right-hand side of Eq. (31), required to cancel divergences in the double-real and realvirtual contributions, and $\left\langle F_{\mathrm{LVV}, \text { fin }}^{\mathrm{nf}}(1,2,3,4)\right\rangle$. However, as we will show in Section IV, it is quite unlikely that the missing parts of the finite remainder of the two-loop amplitude that are linked to the cancellation of infrared divergences can impact the phenomenology of weak boson fusion in a significant way.

IV. RESULTS

The goal of this section is to compute the non-factorizable NNLO QCD corrections to Higgs boson production in weak boson fusion and to compare them to the factorizable ones. To do that, we adopt standard parameters and kinematic selection criteria from Refs. [5, 13]; we reproduce them here for completeness.
We consider 13 TeV proton-proton collisions. The Higgs boson is chosen to be stable with a mass of $m_{H}=$ 125 GeV . Vector boson masses are taken to be $M_{W}=$ 80.398 GeV and $M_{Z}=91.1876 \mathrm{GeV}$ with widths $\Gamma_{W}=$ 2.105 GeV and $\Gamma_{Z}=2.4952 \mathrm{GeV}$, respectively. Weak couplings are derived from the Fermi constant $G_{F}=$ $1.16639 \times 10^{-5} \mathrm{GeV}^{-2}$ and the CKM matrix is set to the identity matrix.

We use NNPDF31-nnlo-as-118 parton distribution functions [19] and $\alpha_{s}\left(M_{Z}\right)=0.118$ for all calculations reported below. The evolution of both parton distribution functions and the strong coupling constant is obtained directly from LHAPDF [20]. The dynamical renormalization and factorization scales are set equal, $\mu_{R}=\mu_{F}=\mu$, with the central value [3]

$$
\begin{equation*}
\mu_{0}=\sqrt{\frac{m_{H}}{2} \sqrt{\frac{m_{H}^{2}}{4}+p_{\perp, H}^{2}}} \tag{34}
\end{equation*}
$$

[^5]To define the WBF fiducial volume we employ the inclusive anti- k_{\perp} jet algorithm [21] with $R=0.4$. Events are required to contain at least two jets with transverse momenta $p_{\perp, j}>25 \mathrm{GeV}$ and rapidities $\left|y_{j}\right|<4.5$. The two leading- p_{\perp} jets must have well-separated rapidities, $\left|y_{j_{1}}-y_{j_{2}}\right|>4.5$, and their invariant mass should be larger than 600 GeV . In addition, the two leading jets must be in separate hemispheres in the laboratory frame; this is enforced by requiring that the product of their rapidities in the laboratory frame is negative, $y_{j_{1}} y_{j_{2}}<0$.

The analysis of the double-virtual contribution to the non-factorizable correction to Higgs boson production in weak boson fusion has already been performed in Refs. $[8,9]$. The new elements that we add to this analysis are the double-real and real-virtual contributions. Although typically one expects that all types of contributions are comparable in magnitude, we find that for Higgs production in WBF this is not the case.

For example, computing the non-factorizable NNLO QCD corrections to the fiducial WBF cross section for central values of the renormalization and factorization scales and for values of parameters as described above, we find

$$
\begin{equation*}
\sigma_{\mathrm{nf}}=-3.1 \mathrm{fb} \tag{35}
\end{equation*}
$$

We note that this result has a significant scale uncertainty because non-factorizable corrections appear at NNLO for the very first time and there is no mechanism to e.g. compensate the change in the strong coupling constant when the renormalization scale is modified. For this reason it is not surprising that we find $\mathcal{O}(40 \%)$ uncertainty in σ_{nf} upon varying μ_{R} and μ_{F} within an interval $\left[\mu_{0} / 2,2 \mu_{0}\right]$. We also note that σ_{nf} provides $\mathcal{O}(0.5)$ percent correction to the fiducial cross section computed through NNLO QCD in the factorization approximation [4] and is about a factor of ten smaller than the factorizable NNLO QCD corrections.

As we already mentioned, one would normally expect that double-virtual, real-virtual and real-real corrections provide comparable contributions to $\sigma_{\text {nf }}$. However, it turns out that this is not the case and that only 0.01 percent of σ_{nf} comes from the real-virtual and the doublereal contributions whereas the dominant 99.99 percent comes from the double-virtual one.

This relation between the double-virtual and all the other contributions holds for all kinematic distributions that we considered. To give some examples, in Fig. 3 we show the different contributions to the transverse momentum distributions of the hardest jet and the distribution of the invariant mass of the pair of leading jets.

Figure 3. Non-factorizable contribution to the transverse momentum distributions of the leading jet (left) and to the distribution of the invariant mass of the tag-jet system (right). Contributions are shown individually for different terms on the right-hand side of Eq. (32) and we label them with the present matrix element, e.g. the plot label $F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4 \mid 5)$ refers to the contribution of the full second term. Note that, in the plots we use ellipses for the sequence of Born momenta, 1, 2, 3, 4, for representational purposes. For each plot (and differently in upper and lower panes) contributions are scaled to be of similar orders. The lower pane shows the ratio with respect to double-virtual contributions. See text for further details.

To understand the reason for this unusual suppression of the double-real and the real-virtual contributions, consider the quantity

$$
\begin{equation*}
L(1,2,3,4)=\ln \left(\frac{p_{1} \cdot p_{4} p_{3} \cdot p_{2}}{p_{1} \cdot p_{2} p_{3} \cdot p_{4}}\right) \tag{36}
\end{equation*}
$$

which arises upon integration of the eikonal current describing single gluon emission. We note that this quantity appears in the integrated subtraction term described by the function $\mathcal{W}(E ; 1,2,3,4)$ defined in Eq. (33).

For instance, to estimate the contribution of two soft gluons to the non-factorizable corrections in the presence of fiducial WBF cuts, we consdier the following integral

$$
\begin{equation*}
\sigma_{R R} \sim\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2} N_{c}^{2}\left\langle L^{2}(1,2,3,4) F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{q}, 3_{q}, 4_{q}\right)\right\rangle \tag{37}
\end{equation*}
$$

To proceed we use the fact that in the relevant phasespace region p_{3} and p_{4} are nearly collinear to p_{1} and p_{2}, respectively, and compute the function L in this limit.

To this end, we write

$$
\begin{align*}
& p_{3}=\alpha_{3} p_{1}+\beta_{3} p_{2}+p_{3, \perp}, \tag{38}\\
& p_{4}=\alpha_{4} p_{1}+\beta_{4} p_{2}+p_{4, \perp},
\end{align*}
$$

where $\alpha_{3}, \beta_{4} \sim 1$ and

$$
\begin{equation*}
p_{i, \perp} \cdot p_{1}=p_{i, \perp} \cdot p_{2}=0 \tag{39}
\end{equation*}
$$

for $i \in\{3,4\}$. From the mass-shell condition for outgoing quarks, we obtain

$$
\begin{equation*}
\beta_{3} \sim \frac{p_{3, \perp}^{2}}{s} \ll 1, \quad \alpha_{4} \sim \frac{p_{4, \perp}^{2}}{s} \ll 1 \tag{40}
\end{equation*}
$$

We thus find

$$
\begin{align*}
L(1,2,3,4) & =-\ln \left(1+\frac{\beta_{3} \alpha_{4}}{\alpha_{3} \beta_{4}}-\frac{2 \vec{p}_{3, \perp} \cdot \vec{p}_{4, \perp}}{s \alpha_{3} \beta_{4}}\right) \tag{41}\\
& \approx \frac{2 \vec{p}_{3, \perp} \cdot \vec{p}_{4, \perp}}{s}
\end{align*}
$$

A typical transverse momentum in Higgs production in weak boson fusion is $\sim 60 \mathrm{GeV}$ and a typical partonic centre-of-mass energy is approximately $\sqrt{s} \approx 600 \mathrm{GeV}$. Therefore, $L \sim 10^{-2}$ in the relevant region of the partonic
phase space and we find

$$
\begin{align*}
\sigma_{R R} & \sim\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2} N_{c}^{2}\left\langle L^{2}(1,2,3,4) F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{q}, 3_{q}, 4_{q}\right)\right\rangle \tag{42}\\
& \sim\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2} 10^{-4} \sigma_{\mathrm{LO}}
\end{align*}
$$

where we used $N_{c}^{2}\left\langle F_{\mathrm{LM}}^{\mathrm{nf}}\left(1_{q}, 2_{q}, 3_{q}, 4_{q}\right)\right\rangle=\sigma_{\mathrm{LO}}$.

In comparison, virtual corrections do not vanish in the forward region. In fact, as shown in Ref. [8], they are characterised by a phase-space dependent function χ_{nf} which is $\mathcal{O}\left(\pi^{2}\right)$ in the forward region. We then estimate

$$
\begin{align*}
\sigma_{V V} & \sim\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2} N_{c}^{2}\left\langle\chi_{\mathrm{nf}}(1,2,3,4) F_{\mathrm{LM}}^{\mathrm{nf}}(1,2,3,4)\right\rangle \tag{43}\\
& \approx\left(\frac{\tilde{\alpha}_{s}}{2 \pi}\right)^{2} 10 \sigma_{\mathrm{LO}}
\end{align*}
$$

where we used $\pi^{2} \approx 10$. Taking the ratio, we obtain

$$
\begin{equation*}
\frac{\sigma_{R R}}{\sigma_{V V}} \sim 10^{-5} \tag{44}
\end{equation*}
$$

which is consistent with the results of the explicit computation presented earlier in this section.

V. CONCLUSIONS

In this paper we extended the calculation of nonfactorizable contributions to Higgs boson production in weak boson fusion at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ by combining the results for the double-virtual contributions in the eikonal approximation [8] with non-factorizable real-virtual and doublereal QCD corrections. We observed that, thanks to the fiducial cuts used to identify WBF events, and a peculiar enhancement of the double-virtual contributions, the non-factorizable NNLO QCD corrections are entirely dominated by two-loop virtual effects. We have checked that the striking dominance of the two-loop virtual corrections extends to all major kinematic distributions relevant for Higgs production in WBF.

Outside the fiducial region the relative importance of the various contributions levels out. However, the eikonal approximation will also start to break down. It would, therefore, be interesting to understand how to go beyond the eikonal approximation for the double-virtual amplitude and estimate the impact of non-vanishing transverse momenta of the final-state jets on the two-loop correction. This question may be of some relevance for studies that select harder Higgs bosons which happens, for example, when one considers Higgs decays into a b-quark pair. We leave this question for future investigations.

ACKNOWLEDGMENTS

We thank S. Plätzer for useful conversations. We are grateful to T. Figy for providing a Fortran code to compute the one-loop amplitudes for the $q Q \rightarrow q^{\prime} Q^{\prime}+H+g$ process and for explaining to us how to use it. This research is partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762 - TRR 257. The research of K.A. is supported by the United States Department of Energy under Grant Contract DE-SC0012704. The research of C.B.H. is supported by the Carlsberg Foundation.

Appendix: Integrated soft eikonal

In this appendix we present results for the integrated soft eikonal function that we have written in terms of the function K_{nf}, c.f. Eq. (12). The exact form of K_{nf} reads

$$
\begin{equation*}
K_{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} ; \epsilon\right)=\frac{1}{\epsilon^{2}}\left[\frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\right] \sum_{\substack{i \in\{1,3\} \\ j \in\{2,4\}}} \lambda_{i j} \eta_{i j 2} \mathrm{~F}_{1}\left(1,1 ; 1-\epsilon ; 1-\eta_{i j}\right) \tag{A.1}
\end{equation*}
$$

where we use $\eta_{i j} \equiv 1-\cos \theta_{i j} \equiv\left(p_{i} \cdot p_{j}\right) /\left(2 E_{i} E_{j}\right)$.

It may appear from Eq. (A.1) that the function K_{nf} contains second-order poles in ϵ. This, however, cannot be the case since collinear singularities cannot appear in non-factorizable contributions. An explicit computation yields the result that confirms this expectation. Expanding K_{nf} in ϵ, we obtain

$$
\begin{equation*}
K_{\mathrm{nf}}\left(1_{q}, 2_{Q}, 3_{q^{\prime}}, 4_{Q^{\prime}} ; \epsilon\right)=\frac{1}{\epsilon} \ln \left(\frac{p_{1} \cdot p_{4} p_{3} \cdot p_{2}}{p_{1} \cdot p_{2} p_{3} \cdot p_{4}}\right)+\sum_{\substack{i \in\{1,3\} \\ j \in\{2,4\}}} \lambda_{i j}\left(\frac{1}{2} \ln ^{2}\left(\eta_{i j}\right)+\operatorname{Li}_{2}\left(1-\eta_{i j}\right)\right)+\mathcal{O}(\epsilon) \tag{A.2}
\end{equation*}
$$

[1] T. Figy, C. Oleari, and D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003); E. L. Berger and J. M. Campbell, Phys. Rev. D 70, 073011 (2004); T. Figy and D. Zeppenfeld, Phys. Lett. B 591, 297 (2004).
[2] M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett. 99, 161803 (2007); Phys. Rev. D 77, 013002 (2008); T. Figy, S. Palmer, and G. Weiglein, JHEP 02, 105 (2012).
[3] P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro, Phys. Rev. Lett. 105, 011801 (2010); Phys. Rev. D 85, 035002 (2012); M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam, and G. Zanderighi, Phys. Rev. Lett. 115, 082002 (2015), [Erratum: Phys.Rev.Lett. 120, 139901 (2018)]; J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover, and A. Huss, Phys. Lett. B 781, 672 (2018).
[4] K. Asteriadis, F. Caola, K. Melnikov, and R. Röntsch, JHEP 02, 046 (2022).
[5] K. Asteriadis, F. Caola, K. Melnikov, and R. Röntsch, Phys. Rev. D 107, 034034 (2023).
[6] F. A. Dreyer and A. Karlberg, Phys. Rev. Lett. 117, 072001 (2016).
[7] T. Chen, T. M. Figy, and S. Plätzer, Eur. Phys. J. C 82, 704 (2022).
[8] T. Liu, K. Melnikov, and A. A. Penin, Phys. Rev. Lett. 123, 122002 (2019).
[9] F. A. Dreyer, A. Karlberg, and L. Tancredi, JHEP 10, 131 (2020).
[10] C. Brønnum-Hansen, K. Melnikov, J. Quarroz,
C. Signorile-Signorile, and C.-Y. Wang, JHEP 06, 061 (2022).
[11] F. Campanario, T. M. Figy, S. Plätzer, and M. Sjödahl, Phys. Rev. Lett. 111, 211802 (2013).
[12] F. Caola, K. Melnikov, and R. Röntsch, Eur. Phys. J. C 77, 248 (2017).
[13] K. Asteriadis, F. Caola, K. Melnikov, and R. Röntsch, Eur. Phys. J. C 80, 8 (2020).
[14] W. T. Giele and E. W. N. Glover, Phys. Rev. D 46, 1980 (1992); Z. Kunszt, A. Signer, and Z. Trocsanyi, Nucl. Phys. B 420, 550 (1994); S. Catani and M. H. Seymour, Phys. Lett. B 378, 287 (1996); Nucl. Phys. B 485, 291 (1997), [Erratum: Nucl.Phys.B 510, 503-504 (1998)].
[15] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidt, Phys. Rev. D 60, 116001 (1999); D. A. Kosower and P. Uwer, Nucl. Phys. B 563, 477 (1999); S. Catani and M. Grazzini, Nucl. Phys. B 591, 435 (2000).
[16] S. Catani, Phys. Lett. B 427, 161 (1998).
[17] A. van Hameren, Comput. Phys. Commun. 182, 2427 (2011).
[18] L. Gates, (2023), arXiv:2305.04407 [hep-ph].
[19] R. D. Ball et al. (NNPDF), Eur. Phys. J. C 77, 663 (2017).
[20] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and G. Watt, Eur. Phys. J. C 75, 132 (2015).
[21] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 04, 063 (2008).

[^0]: * Electronic address: kasteriad@bnl.gov
 ${ }^{\dagger}$ Electronic address: christian.broennum-hansen@partner.kit.edu
 \ddagger Electronic address: kirill.melnikov@kit.edu

[^1]: ${ }^{1}$ We neglect identical-flavour contributions which are known to be suppressed both kinematically and by colour at NLO QCD [1].
 2 Dependence of the amplitude on the Higgs boson momentum p_{H} is not shown because it is not relevant for the present discussion.

[^2]: ${ }^{3}$ We choose to order gluon emissions in energy and, therefore, do not include the factor $1 / 2$! to account for identical final states. This has to be kept in mind when comparing to Ref. [10] where the gluons were not ordered.

[^3]: ${ }^{4}$ The ϵ-expansion of function K_{nf} can be found in the appendix, see Eq. (A.2).

[^4]: ${ }^{5}$ We are grateful to T. Figy for making the code used for the computations reported in Ref. [11] available to us.

[^5]: ${ }^{6}$ We note that fully analytic result for the leading eikonal approximation are available in Ref. [18].

