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Abstract

We consider two-loop corrections to 2→ 2 scattering processes with massive parti-
cles in the final state and massive particles in the loop. We discuss the combination
of analytic expansions in the high-energy limit and for small Mandelstam variable t.
For the example of double Higgs boson production we show that the whole phase
space can be covered and time-consuming numerical integrations can be avoided.
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1 Introduction

In many higher-order calculations of cross sections the virtual corrections are the bot-
tleneck, particularly if they involve massive particles propagating in loops. A prominent
example of such a process is Higgs boson pair production, where the real-radiation con-
tribution with exact dependence on the top quark mass [1] was available long before the
corresponding virtual corrections [2–4]. One of the reasons is certainly the enormous
expressions which are present in intermediate stages of the calculation, and the compli-
cated integrals which in general depend on several invariants. Often a purely numerical
approach for the evaluation of the loop integrals is necessary, which comes with the well-
known disadvantages of long run-times and reduced flexibility in the choice of values for
parameters. In this paper we suggest an alternative approach for the computation of
virtual loop integrals for 2 → 2 processes. It is based on the combination expansions in
different kinematic regions.

We consider the scattering of two (massless) partons in the initial state with momenta
q1 and q2 into two massive particles in the final state with momenta q3 and q4. It is
convenient to introduce the Mandelstam variables as

s = (q1 + q2)2 , t = (q1 + q3)2 , u = (q1 + q4)2 , (1)

where all momenta are incoming. Furthermore we have

q2
1 = q2

2 = 0 , q2
3 = m2

X , q2
4 = m2

Y , (2)

where in general mX and mY are allowed to be different and the transverse momentum
of the final-state particles is given by

p2
T =

u t−m2
Xm

2
Y

s
. (3)

For definiteness we will denote the internal mass by mt, the top quark mass.

The computation of massive two-loop integrals with the kinematics described above is a
difficult problem. Purely numerical approaches have been developed and applied to the
processes gg → HH, gg → ZZ, gg → ZH, gg → W+W− (see, e.g., Refs. [2–7]). Usually
these computations require a large amount of CPU time for a single phase space point.
Furthermore, it is often necessary to fix numerical values for the top quark and Higgs boson
masses at an early stage of the calculation. Thus a change of value or renormalization
scheme makes it necessary to repeat a large part of the calculation.

In order to avoid the disadvantages of a purely numerical calculation a number of analytic
approximation methods have been developed. Initially they have usually been applied to
Higgs boson pair production and afterwards also to more complicated processes. Among
the approximations for gg → HH are large top quark mass expansions [8–10], high-energy
expansions [11, 12], small transverse-momentum expansions [13] and expansions around
the top quark threshold [14]. In Refs. [15, 16] a method has been developed where the
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two-loop amplitude is expanded for small Higgs boson mass with a subsequent numerical
evaluation.

Since such approximations are only valid in a restricted phase space it is tempting to
combine different approaches. A first example of such a combination has been presented
in Ref. [17] where the exact numerical results from Refs. [2, 3] were combined with the
high-energy expansion of Refs. [11, 12]. The CPU-time expensive calculations were only
necessary for relatively small values of the Higgs transverse momentum, say below pT ≈
200 GeV, and the fast evaluation of the analytic high-energy expansions could be used
for the remaining phase space.

A similar approach to the one proposed in this paper has been discussed in Refs. [18,
19] where the analytic small pT and high-energy expansions are “merged”. For both
expansions Padé approximations are constructed, however, only to low order ([1/1] and
[6/6], respectively). The Padé approximants are constructed from the analytic expression
and kept fixed, thus there is no estimation of the uncertainty due to this approach. In
our approach high-order Padé approximants are constructed numerically in the high-
energy region and the approach of Ref. [20] is used to determine an uncertainty estimate.
Furthermore, instead of an expansion in pT we perform an expansion in the Mandelstam
variable t. We believe that our approach leads to simpler expressions in intermediate
steps. Note that in [18, 19] only terms up to m2

H have been used in the high-energy
approximation. This introduces a systematic uncertainty of up to a few percent, as we
will discuss below. In this work we will include quartic corrections which reduces this
uncertainty below the percent level.

In this paper we review the high-energy expansion method developed in Refs. [12, 17, 20].
An improvement in the method allows us to obtain significantly deeper expansions in
m2
t/s, m

2
t/t and m2

t/u which includes terms up to about m120
t (see also Ref. [21]) (instead

of m32
t as in [12, 20]). The deeper expansions combined with the construction of Padé

approximants extends the range of validity to even smaller values of
√
s and pT . We will

provide details regarding this approach in Section 2.1.

In Section 2.2 we will describe our approach for the expansion around t → 0. It is
based on the observation that for this limit a simple Taylor expansion can be performed,
rather than a complicated asymptotic expansion. We can thus reduce the calculation
to integrals which only depend on m2

t/s. These integrals are obtained with the help of
differential equations using the “expand and match” approach developed in Refs. [22, 23].
The boundary conditions are obtained from the large-mt limit, in which the integrals are
simple and can be computed analytically.

In Section 3 we will use the process gg → HH to illustrate the methods of Sections 2.1
and 2.2. However, the approach is more general and with straightforward modifications
it can also be applied to other processes as, e.g., gg → ZH. We will show that we can
cover the whole kinematic phase space which we parametrize in terms of

√
s and pT . A

summary of our findings together with a discussion of possible bottlenecks are discussed
in Section 4.

3



2 Analytic expansions

We begin by performing a Taylor expansion in the masses of the final-state particles. This
is always possible for diagrams where the final-state particles couple to massive internal
lines. This produces an amplitude in terms of four-point functions which depend on s, t
and mt, but not on mX or mY . We then proceed by considering analytic expansions of
the amplitude in the following limits:

A. high energy

B. t→ 0

In both cases we perform an exact reduction of the amplitude to master integrals, which
we then expand in the relevant limit. The reduction is the same for both cases, leading
to the same master integrals. For the process gg → HH this step was first done in
Refs. [11, 12] and leads to 161 two-loop master integrals. In the following subsections we
briefly discuss the features of methods A and B in more detail.

It is also possible to perform an asymptotic expansion in the limit of a large top quark
mass. In this case it is not necessary to expand in the masses of the final state particles.
Such an expansion is automated in the program exp [24, 25] and the approach is well
established; results for the gg → HH form factors at three loops can be found in Refs. [9,
26]. In this work we use the results of this approach to provide boundary conditions
for the differential equations considered in method B described above. We also show
some numerical values for the form factors in this approximation in Section 3.3, however
our proposed procedure to approximate the two-loop form factors requires only the high-
energy and small-t expansions.

2.1 High-energy expansion

The method of high-energy expansion, including a subsequent Padé approximant–based
improvement, has been developed in Ref. [11, 12, 17, 20, 27]. We improve this approach
by constructing a deeper expansion of the master integrals, which includes 120 terms in
the small-mt expansion. Such an expansion is obtained in the following way:

1. We insert an ansatz for the expansion of each master integral Mi, i = 1, ..., 161

Mi(ε, s, t,mt) =

ai,max∑
a=−3

bmax∑
b=−3

4+a∑
c=0

c
(i)
abc(s, t) ε

a

(
mt√
s

)b
ln

(
m2
t

s

)c
, (4)

into the system of differential equations for the master integrals, with respect to
mt. ai,max is a master integral–specific value determined by the ε order required
to produce the amplitude to ε0 and we choose bmax = 120 for each master integral.
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The planar master integrals depend only on even powers of mt, while the non-planar
integrals also have contributions from odd powers as was shown in Ref. [12].

2. By comparing the coefficients of powers of ε, mt and ln(mt) we establish a system

of linear equations for the expansion coefficients c
(i)
abc(s, t), which depend on the

Mandelstam variables s and t. We solve this system in terms of a small number of
boundary constants by making use of the reduce_user_defined_system feature of
Kira [28]. Solving over finite fields with subsequent rational reconstruction using
FireFly [29, 30] is much faster than solving symbolically using Fermat [31]. It is
this method of solving the system of equations which allows us to expand much
more deeply than Ref. [12], which expands only up to bmax = 32.

3. The boundary constants can be fixed using the solutions from Refs. [11, 12], where
these constants were computed using the method of regions and Mellin-Barnes tech-
niques, see also Ref. [32] for more details.

The expansion coefficients of the master integrals are then exported to a FORM Tablebase

which is used to efficiently insert the expansions into the amplitude, which is also expanded
in ε and mt to the required depth.

The subsequent Padé approximation is performed numerically following Refs. [17, 20]. For
convenience we repeat the important steps in the following. The starting point is a form
factor as an expansion in mt, i.e., numerical values for all other kinematic variables and
masses are inserted. We then apply the replacements m2k

t → m2k
t x

k and m2k−1
t → m2k−1

t xk

to pair together the even and odd powers of mt, yielding a degree-N polynomial in the
variable x, with half the maximum degree of the mt expansion.

Next we construct Padé approximants in the variable x and write the form factor as a
rational function of the form

[n/m](x) =
a0 + a1x+ . . .+ anx

n

1 + b1x+ . . .+ bmxm
, (5)

where the coefficients ai and bi are determined by comparing the coefficients of xk after
expanding the right-hand side of Eq. (5) around the point x = 0. Evaluation of this
rational function at x = 1 yields the Padé approximated value for the form factor.

The numerator and denominator degrees (n,m) in Eq. (5) are free parameters; one only
must ensure that n + m ≤ N such that a sufficient number of expansion terms are
available to determine the coefficients ai and bi. We define Nlow and Nhigh and include
Padé approximations in our analysis which fulfil

Nlow ≤ n+m ≤ Nhigh and Nlow ≤ n+m− |n−m| . (6)

Our default choice is Nlow = 49 and Nhigh = 56 which leads to 28 different Padé approxi-
mants1. They are combined using three different criteria:

1While the master integrals are determined up to N = 60 (m120
t ), negative powers of mt in the

amplitude coefficients mean that the expansion of the form factors can be produced up to N = 56
(m112

t ).
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q2 q4

q1 q3

Figure 1: The two-loop Feynman diagram G59(1, 1, 1, 1, 1, 1, 1,−1, 0) (see Appendix A of
Ref. [12] for more details). Solid and dashed lines correspond to massive and massless
propagators. All external momenta are massless.

• The rational function in Eq. (5) develops poles at the roots of the denominator. We
give more weight to those Padé approximants which have poles further away from
the evaluation point x = 1 (“pole-distance re-weighted” Padé approximation).

• We give more weight to Padé approximants which are derived from a larger number
of expansion terms.

• We give more weight to “near-diagonal” Padé approximants.

We combine the weights from each criterion for each of the Padé approximants, and use
the combined weight to produce a central value and corresponding uncertainty for the
phase-space point under consideration. Explicit formulae for the individual steps of the
construction are given in Section 4 of Ref. [20]. In the supplementary material [33] to
this paper we provide Mathematica code which can be used to construct, for a given
polynomial in x, an approximation based on the procedure described above, including an
uncertainty estimate.

We have demonstrated this approach applied to a single planar master integral in Ref. [21]
and the comparison to (exact) numerical results can be found in Fig. 7(a) of that reference.
In Fig. 2 we discuss results for the non-planar integral shown in Fig. 1. We choose
pT = 40 GeV and vary

√
s between 300 GeV and 1100 GeV. In Fig. 2(a) we compare Padé

results constructed from expansions up to m32
t and m112

t , which are shown by the green
and orange bands, respectively. One observes a dramatic reduction of the uncertainty. At
the same time it is reassuring to see that the uncertainty estimate of the Padé procedure
is reliable, when comparing to the numerical values obtained using FIESTA [34]. In
Fig. 2(b) we focus on the comparison of the orange band with the results from FIESTA;
we observe good agreement within uncertainties in the whole plotted range of

√
s, even

very close to the threshold for the production of two top quarks.
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Figure 2: Comparison of Padé-based approximations constructed from different expansion
depths (Nlow, Nhigh) with numerical results obtained using FIESTA, for the non-planar
master integral shown in Fig. 1, with a numerator.

2.2 Expansion for t → 0

In this subsection we aim for an expansion of the original 161 master integrals around
t = 0 such that the amplitude can be expanded in this limit. This complements the
the high-energy expansion, i.e. we aim for a good description in the region around the
threshold where s ≈ 4m2

t and the high-energy expansion breaks down. However, as we
will see below, good results are also obtained for larger values of

√
s, in particular for

smaller values of pT . The expansion is performed as follows.

• As for the high-energy expansion, we first expand in the masses of the final-state
particles. For gg → HH it is sufficient to expand up to m4

H to obtain a precision
below the percent level. We are left with integral families which depend on s, t and
mt. Here we note that the expansion in mH generates spurious 1/t terms which
cancel after inserting the t-expansion of the master integrals.

As discussed previously, this expansion is a simple Taylor expansion in cases where
the final-state particles couple to massive internal lines; otherwise, a more involved
asymptotic expansion must be performed.

• Establish differential equations, with respect to t, for the master integrals of the
2 → 2 problem where all external lines are massless. The master integrals, and
thus the resulting t-differential equations, are the same as in the high-energy case
discussed in Section 2.1.

• We use the differential equations to obtain, for each master integral, a generic Taylor
expansion around t = 0. This is achieved by expanding the coefficients of the
differential equations around t→ 0 and for each master integral, inserting an ansatz
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of the form

Mi(ε, s, t,mt) =

ai,max∑
a=−3

∑
b≥0

c
(i)
ab (s,m2

t ) ε
a

(
t

m2
t

)b
,

where the (unknown) coefficients c
(i)
ab (s,m2

t ) are functions of s and m2
t .

Note that for t → 0 some of the propagators of the original integral families (see Ap-
pendix A of Refs. [11] and [12]) become linearly dependent. After a partial fraction
decomposition we can define new integral families which contain fewer propagators. In
terms of these new families, the number of master integrals in the t → 0 limit reduces
from 161 to 48. One of the resulting topologies has been studied in Ref. [35], where it was
shown that two master integrals are elliptic and cannot be expressed in terms of iterated
integrals. These master integrals depend on two different square roots.

We have calculated all 46 non-elliptic master integrals analytically by solving the as-
sociated differential equations in the variable s/m2

t following the algorithms outlined
in Ref. [36] implemented with the help of the packages Sigma [37], OreSys [38] and
HarmonicSums [39]. The boundary conditions have been fixed in the large-mt limit, where
the integrals can be calculated by performing a large mass expansion, implemented in
q2e/exp [24, 25]. Our final result can be expressed in terms of iterated integrals over
letters which contain the three square roots

√
x
√

4− x,
√
x
√

4 + x,
√

4− x
√

4 + x. How-
ever, we find that this representation is not well suited for numerical evaluation for several
reasons:

1. Some of the iterated integrals depend on two square-root valued letters at the same
time, which cannot easily be rationalized simultaneously.

2. The iterated integrals have spurious poles at s/m2
t = 1 and s/m2

t = 4, which require
analytic continuation.

3. The analytic results for the two elliptic integrals are rather involved.

Therefore, we calculate all 48 master integrals using the semi-analytic approach developed
in Refs. [40, 41]. For each master integral, we provide a deep expansion of 50 terms
around different values of s/m2

t , with high-precision numerical coefficients. In particular
we construct expansions around 18 values of s/m2

t to cover values of s between 0 and ∞.
Our starting point for the construction of the approximations is the expansion around
s = 0 where all master integrals can be computed analytically. As a by-product we
extend the large-mt expansion of these master integrals (but only at t = 0).

This method has a number of advantages compared to purely numerical approaches. Since
the value of mt is only inserted into the final expression, it is possible to easily change
the value or renormalization scheme used for mt. It is straightforward to take derivatives
w.r.t. mt of the one-loop expressions in order to generate the corresponding counterterm
contributions.
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3 Application to Higgs boson pair production

In this section we apply the expansion methods discussed above to the particular case
of the gg → HH amplitude. We start by examining the mH and t expansions of one-
loop master integrals by comparing to numerical results obtained with FIESTA [34] and
Package-X [42]. We show that the Taylor expansion in mH produces good agreement
with the exact result, even for smaller values of

√
s close to the Higgs pair production

threshold at
√
s = 2mH . Afterwards we discuss results for the one- and two-loop form

factors. Finally we compare the virtual corrections to the Higgs pair production cross
section with the numerical results obtained in Ref. [17].

For the numerical evaluations we use input values for the top quark and Higgs boson
masses of mt = 173.21 GeV and mH = 125.1 GeV, respectively.

For completeness we provide in the following the definition of the form factors for Higgs
boson pair production. The amplitude for the process g(q1)g(q2) → H(q3)H(q4) can be
decomposed into two Lorentz structures (a and b are adjoint colour indices)

Mab = ε1,µε2,νMµν,ab = ε1,µε2,νδ
abX0s (F1A

µν
1 + F2A

µν
2 ) , (7)

where

Aµν1 = gµν − 1

q12

qν1q
µ
2 ,

Aµν2 = gµν +
1

p2
T q12

(q33q
ν
1q

µ
2 − 2q23q

ν
1q

µ
3 − 2q13q

ν
3q

µ
2 + 2q12q

µ
3 q

ν
3 ) . (8)

Here we have introduced the abbreviation qij = qi · qj and pT is given in Eq. (3). The
prefactor X0 is given by

X0 =
GF√

2

αs(µ)

2π
TF , (9)

where TF = 1/2, GF is Fermi’s constant and αs(µ) is the strong coupling constant evalu-
ated at the renormalization scale µ.

We define the expansion in αs of the form factors as

F = F (0) +
αs(µ)

π
F (1) + · · · , (10)

and decompose the functions F1 and F2 introduced in Eq. (7) into “triangle” and “box”
form factors. We thus cast the one- and two-loop corrections in the form (k = 0, 1)

F
(k)
1 =

3m2
H

s−m2
H

F
(k)
tri + F

(k)
box1 + δk1F

(1)
dt1 ,

F
(k)
2 = F

(k)
box2 + δk1F

(1)
dt2 . (11)

9



q1

q2 q3

q4

Figure 3: The one-loop master integral G2(1, 1, 1, 1), where all internal lines are massive
and for the external lines we have q2

1 = q2
2 = 0 and q2

3 = q2
4 = m2

H .

F
(1)
dt1 and F

(1)
dt2 denote the contribution from one-particle reducible double-triangle dia-

grams, see, e.g. Fig. 1(f) of Ref. [17]. The main focus in this paper is on F
(1)
box1 and F

(1)
box2.

Analytic results for the leading-order form factors are available from [43, 44] and the
two-loop triangle form factors have been computed in Refs. [45–47]. The results for the
double-triangle contribution can be found in [10].

3.1 Expansion of a one-loop master integral in mH

In Fig. 4 we show, as a function of
√
s, the real part of the one-loop box master integral

G2(1, 1, 1, 1) (see Appendix A of Ref. [11] for details on the notation), which is depicted
in Fig. 3. The left and right panels correspond to pT = 40 GeV and pT = 200 GeV,
respectively. The coloured lines show expansions in m2

H up to fourth order, and the black
line represents the exact result. After the Taylor expansion in mH a reduction to master
integrals is necessary. It has been performed with LiteRed [48] and for the numerical
evaluation of the resulting master integrals we have used Package-X [42].

The upper row shows the results for the master integral and the lower row shows the
relative error between the expansions and the exact curve. One observes that the m0

H

curves do not describe the exact result particularly well, with differences at the 15-20%
level, however including the quadratic and quartic terms provide a description below the
5% level and 1% level, respectively; these observations are largely independent of the
values of

√
s and pT .
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Figure 4: Real part of the master integral G2(1, 1, 1, 1) as a function of
√
s for pT = 40 GeV

(left) and pT = 200 GeV (right). The coloured lines include expansions in mH up to the
indicated orders. The exact result is shown in black. The lower panels show the relative
error between the expansions and the exact curve.

3.2 Expansion of a one-loop master integral in t

Next we study the t→ 0 expansion of the same one-loop box master integral, G2(1, 1, 1, 1).
For this purpose we choose mH = 0, i.e., the leading term of the expansion discussed in
Section 3.1. We perform the expansion in t using LiteRed [48] and then map the resulting
integrals to new integral families which have only three propagators and depend only on
s/m2

t . For these integrals we establish a system of differential equations which can be
solved analytically, incorporating boundary conditions from the s→ 0 limit. The resulting
coefficients of the polynomial in t can be written in terms of Harmonic Polylogarithms [49],
which we evaluate using the Mathematica package HPL.m [50, 51].

In Fig. 5 we show the convergence of the t expansion for the values pT = 40 GeV and
pT = 200 GeV in the left and right columns, respectively. The lower row shows the relative
error between the expansion and the exact curve. For the smaller value of pT = 40 GeV,
we observe that the leading expansion term (t0) already reproduces the exact result at
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Figure 5: Real part of the master integral G2(1, 1, 1, 1) as a function of
√
s for pT = 40 GeV

(left) and pT = 200 GeV (right). The coloured lines include expansions in t up to t10.
The exact result is shown in black. The lower panels show the relative error between the
expansions and the exact curve.

the percent level. For pT = 200 GeV the leading term does not perform so well, however
by including higher-order terms the expansion converges on the exact result very quickly.

3.3 Expansion of the one-loop form factors

We now discuss the high-energy and small-t expansions at the level of the one-loop form
factors F

(0)
box1 and F

(0)
box2, and compare them to the exact results.

In Figs. 6 and 7 we show, for various values of pT , the results for the form factors F
(0)
box1 and

F
(0)
box2 as a function of

√
s. The high-energy and small-t expansions are shown as coloured

dashed lines; the solid black line (in the background) corresponds to the exact result. For
these plots we have incorporated quartic expansion terms in mH , the order which is also
available at the two-loop level. Furthermore, for the small-t expansion terms up to t5 are
taken into account and the high-energy expansion includes Padé approximations which

12



400 600 800 1000 1200 1400
s (GeV)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

F(0
)

1

pT = 50 GeV

400 600 800 1000 1200 1400
s (GeV)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

F(0
)

1

pT = 100 GeV
exact
t 0, Re
t 0, Im
high-energy, Re
high-energy, Im

400 600 800 1000 1200 1400
s (GeV)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

F(0
)

1

pT = 150 GeV

400 600 800 1000 1200 1400
s (GeV)

2.0

1.5

1.0

0.5

0.0

0.5

F(0
)

1

pT = 170 GeV

400 600 800 1000 1200 1400
s (GeV)

2.0

1.5

1.0

0.5

0.0

0.5

F(0
)

1

pT = 200 GeV

400 600 800 1000 1200 1400
s (GeV)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

F(0
)

1

pT = 300 GeV

Figure 6: One-loop form factor F
(0)
box1 as a function of

√
s for various values of pT .

include terms up to at least (m2
t )

49 and at most (m2
t )

56.

Above the top quark pair threshold we observe that both expansions agree with the exact
result even for values of pT as small as 50 GeV and as large as 200 GeV. For larger values
of pT the small-t expansion starts to deviate from the black curve, as can be seen in
the panel for pT = 300 GeV, whereas the high-energy approximation agrees very well,
as expected. On the other hand, for values of pT below 50 GeV the small-t expansion
provides an excellent approximation. From the panels in Figs. 6 and 7 one observes that
for 100 GeV . pT . 200 GeV both approximations work well for

√
s & 350 GeV.

Below the top quark pair threshold we observe that the small-t expansion provides an
excellent description of the exact result, whereas the high-energy expansion deviates;
this is expected since it does not contain any information about the threshold. Values√
s . 2mt are kinematically only allowed for pT . 120 GeV.

To quantify the quality of the approximations we show in Tabs. 1, 2 and 3, for three
different values of pT , results for the real part of F

(0)
box1 for various values of

√
s. We show

the exact results, the results for the small-t expansion for different expansion depths in
mH , the high-energy expansion including terms up to m4

H , and results for the large-mt

expansion (LME) up to 1/m12
t [26].

Let us start the discussion with Tab. 1 (pT = 50 GeV) where we observe the following:

• If we restrict ourselves to the approximation which includes quartic mH terms, in
the region above the top quark threshold we observe an agreement of at least 3
significant digits between the small-t and high-energy expansions.
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Figure 7: One-loop form factor F
(0)
box2 as a function of

√
s for various values of pT .

• The agreement between the exact result and the approximations based on an ex-
pansion in mH up to quartic order is well below the percent level.

• Including expansion terms in mH , beyond the quartic terms, for the small-t expan-
sion improves the agreement with the exact result.

Similar conclusions also hold for pT = 200 GeV, as can be seen in Tab. 2. In practical
applications the high-energy expansion can be used for such values of pT .

The purpose of Tab. 3 is to show that the small-t expansion also works for small values
of pT and large values of

√
s. It is impressive that for such small values of pT the high-

energy expansion still provides good approximations for
√
s values around 400 GeV. This

demonstrates the power of a deep expansion in mt combined with a Padé improvement.
For larger values of

√
s the high-energy expansion breaks down, because it is no longer

the case that |t|� m2
t .

For F
(0)
box2 the comparison is not so straightforward, as can be seen in the first two panels of

Fig. 7 and in Tab. 4. We observe that the expansion in mH does not converge sufficiently
quickly for the quartic terms to provide a good description of the exact curve for pT .
100 GeV. While including terms to m8

H in the small-t expansion again provides good
agreement, such expansion terms are not available at two loops.

We show in Tab. 4 that below the top quark pair production threshold, the large top quark
expansion of Ref. [26] (including expansion terms to 1/m12

t ) provides a good approximation

of the exact result and can be used instead in this region. However, F
(0)
box2 is numerically

much smaller than F
(0)
box1; we have verified that the use of the large top quark expansion
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√
s (GeV) 270 300 350 400 610 990
exact −1.72013 −1.81435 −2.32246 −2.34773 −0.393996 0.0855054

small-t m0
H −1.44108 −1.52523 −1.92423 −2.01154 −0.420989 0.0626770

m2
H −1.67642 −1.77026 −2.25482 −2.30931 −0.404100 0.0837986

m4
H −1.71321 −1.80759 −2.31050 −2.34518 −0.395265 0.0854682

m6
H −1.71902 −1.81331 −2.32026 −2.34808 −0.394063 0.0855094

m8
H −1.71995 −1.81419 −2.32204 −2.34793 −0.393990 0.0855057

high-en. m4
H — — −2.31129 −2.34521 −0.395262 0.0854694

LME −1.71813 −1.80468 −2.08865 −2.76874 — —

Table 1: Real part of F
(0)
box1 for pT = 50 GeV.

√
s (GeV) 610 990
exact −0.311182 0.110469

small-t m0
H −0.340443 0.089788

m2
H −0.319571 0.109173

m4
H −0.311692 0.110538

m6
H −0.310705 0.110570

m8
H −0.310651 0.110567

high-energy m4
H −0.312218 0.110440

Table 2: Real part of F
(0)
box1 for pT = 200 GeV.

in this region does not affect the results and conclusions of Section 3.5.

From the considerations above, we propose the following selection criteria for the choice
of expansion in the different regions of the {

√
s, pT} plane:

• Below pT = 150 GeV: use small-t expansion for all values of
√
s.

• For 150 GeV. pT . 200 GeV either approximation can be used.

• Above pT = 200 GeV use the high-energy expansion for all values of
√
s.

As a consequence, below
√
s = 2mt the small-t expansion is always selected. The fact

that the high-energy and small-t expansions agree with each other (and with the exact
result) in the region 150 GeV. pT . 200 GeV increases our confidence in the accuracy
of the expansions; we will check for this agreement at two loops, where no exact analytic
result for the form factors is available.
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√
s (GeV) 270 300 350 400 610 990
exact −1.72358 −1.81816 −2.32666 −2.35282 −0.400246 0.0835134

small-t m0
H −1.44780 −1.52956 −1.92815 −2.01570 −0.426920 0.0605334

m2
H −1.68133 −1.77444 −2.25910 −2.31430 −0.410425 0.0817808

m4
H −1.71707 −1.81151 −2.31474 −2.35027 −0.401533 0.0834753

m6
H −1.72257 −1.81714 −2.32446 −2.35317 −0.400314 0.0835175

m8
H −1.72342 −1.81800 −2.32624 −2.35302 −0.400239 0.0835137

high-en. m4
H — — −2.32046 −2.35382 −0.464921 −0.539285

LME −1.72158 −1.80854 −2.09373 −2.77895 — —

Table 3: Real part of F
(0)
box1 for pT = 10 GeV.

√
s (GeV) 270 300 350 400 610 990
exact −0.025050 −0.026046 −0.033323 −0.029569 −0.006633 −0.001207

small-t m0
H −0.111991 −0.072393 −0.064400 −0.050849 −0.009550 −0.001571

m2
H −0.069277 −0.058082 −0.061193 −0.048812 −0.008496 −0.001339

m4
H −0.033254 −0.031982 −0.039319 −0.032503 −0.006558 −0.001190

m6
H −0.026450 −0.027041 −0.034525 −0.029807 −0.006603 −0.001206

m8
H −0.025286 −0.026208 −0.033565 −0.029543 −0.006631 −0.001207

high-en. m4
H — — −0.039369 −0.032504 −0.006558 −0.001189

LME −0.024977 −0.025767 −0.028531 −0.034309 — —

Table 4: Real part of F
(0)
box2 for pT = 50 GeV.

3.4 Two-loop form factors

In the following we present results for the two-loop box form factors where for the ultra-
violet renormalization and infra-red subtraction we follow Ref. [12]. In particular, we
renormalize the top quark mass in the on-shell scheme.

In Figs. 8, 9, 10 and 11 we show the results for the two colour factors of the two-loop form
factors, for various values of pT , as a function of

√
s. For the small-t expansion terms

up to t5 are taken into account and the high-energy expansion includes Padé approxima-
tions with at least (m2

t )
49 and at most (m2

t )
56 terms. In all cases quartic terms in mH

are included. Results for the high-energy form factors at the deeper expansion depths
considered here are provided in the ancillary files of this paper [33].

An exact result for the form factors is not at our disposal, however, we observe that the
approximations show a very similar behaviour as at one-loop order. In particular, we
observe that for 100 GeV. pT . 200 GeV there is a wide range in

√
s where we find

excellent agreement between the two approximations. We want to stress that for these pT
values the small-t expansion works well even for larger values of

√
s. This is demonstrated

by the black and gray curves which show the relative percentage difference between the
small-t and high-energy expansions for the real and imaginary parts of the form factors,
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Figure 8: CF contribution to the two-loop form factor F
(1)
box1 as a function of

√
s for various

values of pT .

respectively. For each value of 100 GeV. pT . 170 GeV there is an overlap region in
which the relative difference is far below 1%, and mostly even below 0.1%. Note that the
spikes in the gray and black curves are related to zeros of the form factors.

For pT > 200 GeV we can rely on the high-energy expansion. This is supported by the fact
that even for pT ≈ 100 GeV the high-energy expansion agrees with the small-t expansion
even for

√
s ≈ 2mt. Note that for

√
s < 2mt the high-energy expansion is not valid for

any value of pT since no information about the top quark pair threshold is used for the
construction of the approximation. However, for

√
s < 2mt the small-t approximation is

always valid since pT is kinematically constrained to be less than about 120 GeV.

For smaller values of pT the small-t expansion is even more reliable, as can been seen from
the one-loop comparison in Tab. 3.

In summary, in Sections 2.1 and 2.2 we demonstrate that the combination of the small-t
and high-energy expansions is sufficient to cover the whole phase space, and that the final
uncertainty is given only by the expansion in mH which we estimate to be below 1%.

In our current implementation in Mathematica we have an explicit dependence on all
parameters (mt,mH , s and t) which allows for a straightforward change of parameter
values or renormalization scheme. Thus the computing time required to evaluate the
form factors is not very optimized. Nevertheless, it takes just a few seconds to evaluate
the small t expansion. The numerical evaluation of the high-energy expansion and the
subsequent Padé approximation takes between 40 and 50 seconds. If required a significant
speed-up is possible.
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Figure 9: CA contribution to the two-loop form factor F
(1)
box1 as a function of

√
s for various

values of pT .
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Figure 10: CF contribution to the two-loop form factor F
(1)
box2 as a function of

√
s for

various values of pT .
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Figure 11: CA contribution to the two-loop form factor F
(1)
box2 as a function of

√
s for

various values of pT .

3.5 Virtual NLO corrections

As a final comparison, we construct the infra-red subtracted virtual corrections, following
Ref. [52]. They are given by

Ṽfin =
α2
s (µ)

16π2

G2
F s

2

64

[
C + 2

(
F̃

(0)∗
1 F̃

(1)
1 + F̃

(0)∗
2 F̃

(1)
2 + F̃

(0)
1 F̃

(1)∗
1 + F̃

(0)
2 F̃

(1)∗
2

)]
, (12)

with

C =

[∣∣∣F̃ (0)
1

∣∣∣2 +
∣∣∣F̃ (0)

2

∣∣∣2](CAπ2 − CA log2 µ
2

s

)
, (13)

where αs corresponds to the five-flavour strong coupling constant. It is convenient to
introduce the αs-independent quantity

Vfin =
Ṽfin

α2
s(µ)

. (14)

We use the exact expressions for the one-loop form factors along with the approximations
discussed in the previous section for the two-loop form factors, to compute Vfin. The
triangle and double-triangle diagrams are included in the form factors, as described in
Eq. (11); we use exact expressions for the double-triangle diagrams, while for the triangle
diagrams we use the expansions discussed above.
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Figure 12: Vfin as a function of pT , normalized to the central values of the pySecDec-
evaluated points of hhgrid. We switch from the small-t to the high-energy expansion at
pT = 175 GeV.

In Ref. [17] the high-energy expansions of Refs. [11, 12, 32] have been combined with the
exact, numerical two-loop results of [52], such that Vfin can be evaluated at any phase-
space point and costly two-loop numerical integrations are only required in a restricted
phase space, namely for pT < 150 GeV if

√
s ≥ 700 GeV and for pT < 200 GeV if√

s < 700 GeV. The results of [17] are collected as data points in hhgrid [53]. The
high-energy expansion used in [17] only includes terms up to m32

t , in contrast to the much
deeper expansions which we consider in this work.

In Fig. 12 we compare our new results for Vfin to those obtained using pySecDec [54, 55] in
Ref. [17]. The grey data points and uncertainties correspond to the pySecDec data points,
normalized to their central values. In comparison the uncertainty of our approximation is
negligible.2 The blue and red data points are obtained from the small-t and high-energy
expansions, where we normalize to the central values of the hhgrid data. This plot may
be compared with Fig. 3 of Ref. [17].

To quantify the agreement between our approximations and the pySecDec evaluations,
the following table describes the proportion of points which are contained within a number
of pySecDec error intervals.

pySecDec err. intervals 1σ 2σ 3σ
small-t 0.57 0.85 0.92

high-energy 0.65 0.94 0.99

2The systematic uncertainty of about 1% due to the expansion in mH up to quartic order is not shown.
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We observe that the high-energy expansion demonstrates a Gaussian behaviour, while the
small-t expansion shows a non-Gaussian disagreement, which we ascribe to the systematic
error due to the slower convergence of the m2

H expansion in the lower-pT region, as shown
in Fig. 4.

Let us finally compare to the findings of Refs. [18, 19]. In these works the integration over
t has been performed and an uncertainty of 1% is claimed. We present detailed results for
the form factors and find a several-digit agreement in the overlap region for pT ≈ 100 GeV
to 200 GeV. On the other hand, the result for the form factors in Refs. [18, 19] suggest a
several-percent difference between the expansions in some cases.

In Refs. [18, 19] only 13 high-energy terms have been taken into account to construct
a [6/6] Padé approximant and thus the transition from the small-pT to the high-energy
approximation is made at relatively high values of pT (pT ≈ 312 GeV and 340 GeV for
the choices

√
s = 900 GeV and

√
s = 2000 GeV in Fig. 3 of Ref. [18]). As we show

in Figs. 6 and 7 the t → 0 expansion does not perform very well in this region. In our
approach, we use the high-energy expansion at much smaller values of pT so this region
is well described. Let us also mention that in Refs. [18, 19] only quadratic mH terms are
taken into account which leads to a few-percent systematic uncertainty at the level of the
form factors.

In the small-pT expansion in Refs. [18, 19] only a [1/1] Padé approximant is constructed
which means that three expansion terms are available. In our analysis we use terms up
to t5, i.e. six expansion terms; no Padé improvement of the t→ 0 expansion is necessary.

4 Conclusions

In this paper we consider a 2 → 2 process with massive internal particles, which is a
multi-scale problem and thus notoriously difficult, both in an analytic and in a numerical
approach. We show that the combination of analytic expansions in two regions of phase
space provides a complete description of the two-loop virtual amplitude. On the one hand
we consider a deep expansion in the high-energy limit where the internal mass (in our
application, the top quark mass) is small compared to the Mandelstam variables s and t.
On the other hand we perform an expansion in t which again eliminates a scale from the
integrand. In both cases we expand in the mass of the final-state particles.

We discuss in detail the two-loop corrections for gg → HH and show that for this process
no numerical integration is necessary to obtain the differential virtual corrections. Other
processes such as gg → ZH or gg → ZZ can be treated in analogy.

Using a similar approach to the one developed in this paper it might be possible to
extend the t → 0 expansion to three loops, yielding the NNLO virtual corrections to
this gluon fusion processes. Possible bottlenecks, which have to be studied in the future,
are huge intermediate expressions and the integration-by-parts reduction of the expanded
amplitudes to master integrals.
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