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Abstract

We compute three-loop corrections to the singlet form factors for massive quarks
using a semi-analytic method which provides precise results over the whole kinematic
range. Particular emphasis is put on the anomaly contribution originating from
an external axial-vector current. We also discuss in detail the contribution for a
pseudoscalar current and verify the chiral Ward identity to three-loop order. Explicit
results are presented for the low- and high-energy regions and the expansions around
threshold.
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1 Introduction

Form factors are important building blocks in any quantum field theory. In QED and
QCD they constitute the virtual corrections for many important processes both at lepton
and hadron colliders such as Higgs boson production and decay, lepton pair production
via the Drell-Yan process, and electron-muon scattering at low energies.

In this paper we consider QCD corrections to heavy-quark form factors of an external
current. At one- and two-loop order such calculations have been performed already some
time ago [1–11]. Recently we computed the three-loop corrections for the so-called non-
singlet contributions, where the external current couples to the same fermion line as
the external quarks [12, 13] (see also Refs. [8, 11, 14–17] for partial results of simpler
subsets).1 In Ref. [13] we also considered those singlet contributions where the external
current couples to massive internal quarks, but only for vector, scalar, and pseudoscalar
currents, i.e. omitting the axial-vector current. In this work we close this gap, compute all
contributions for all four currents coupling to massless and massive quarks, and provide
complete results for the singlet contributions. This requires a detailed discussion of the
anomaly contribution for the axial-vector current following the line of the corresponding
two-loop calculation of Ref. [5].

For completeness we want to mention that completely massless form factors are available
up to four-loop order [19] (see Refs. [20–22] for the corresponding three-loop results).
Three-loop corrections to massless form factors where the external current couples to
massive quarks have been considered in Ref. [23]. This reference also contains a detailed
discussion of the renormalization of the axial-vector current contribution. However, at
three-loop order there are further subtleties for massive final-state quarks.

In the literature (see, e.g., Refs. [5,24,25]) one often finds the terms “flavour-singlet” and
“flavour-non-singlet” which refer to certain combinations of (axial-vector) currents (and
not to Feynman diagrams). The former is simply the sum of the axial-vector currents of
the quarks involved in the theory. On the other hand, “flavour-non-singlet” refers to the
difference of the axial-vector currents of the two quarks of a generation. The flavour-non-
singlet current, which corresponds to the Z boson coupling in the SM, is conserved while
the flavour-singlet current is anomalous.

In this paper we define “singlet” and “non-singlet” at the level of Feynman diagrams and
use the notion:

• Singlet: The external current does not couple to the fermion line of the final-state
quarks.

• Non-singlet: The external current couples directly to the fermion line of the final-
state quarks.

1Recently the total cross section for heavy-quark production at lepton colliders has been computed at
next-to-next-to-next-to-leading order [18]. In this calculation the vector form factor enters as building
block.
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Figure 1: Sample Feynman diagrams contributing to the heavy-quark form factors. The
top row displays non-singlet and the bottom row singlet diagrams up to three loops in
QCD. The gray blob represents the coupling to the external current.

This is illustrated by the Feynman diagrams shown in Fig. 1, where the first and second
row contain non-singlet and singlet contributions, respectively.

For the non-singlet contributions it is possible to use anti-commuting γ5. On the other
hand, the singlet contributions require a definition of γ5 in which traces of the form
Tr(γ5γ

µγνγργσ) do not vanish. In this work we adopt the approach from Ref. [25], which
is often called Larin scheme. Of course this prescription can also be applied to the non-
singlet contributions. As a cross check we repeat the calculation of Ref. [13] and show
that the final results for the finite form factors are identical in both prescriptions.

In the following we refer to massless and massive singlet contributions depending on
whether the external current couples to massless or massive quarks, respectively. Results
for the massive singlet form factors with external vector and scalar currents have already
been presented in Ref. [13]. In this work we complete the massive and provide the massless
singlet contributions.

For vector and scalar currents γ5 is absent and thus these contributions can be treated in
analogy to the non-singlet contributions. Since the vector current contribution vanishes
at two-loop order due to Furry’s theorem, it is finite at three-loop level. The scalar and
pseudoscalar form factors only receive massive singlet contributions because the triangles
vanish due to the Dirac algebra in the massless case. The results can be found in Ref. [13].
Note, however, that in Ref. [13] the finite renormalization constant for the pseudoscalar
current has not been taken into account. In this work we correct this deficit. We consider
the combination of the singlet and non-singlet contributions and introduce in both parts
a non-anti-commuting γ5. As already mentioned above, the main focus of the present
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work is on the axial-vector contribution.

The outline of this paper is as follows: In the next Section we introduce our notation and
briefly mention our treatment of γ5. Afterwards we discuss the renormalization of the
singlet form factors with special emphasis on the axial-vector current and the subtraction
of infrared divergences. In Section 4 we discuss the chiral Ward identity and we dedicate
Section 5 to the computation of the two- and three-loop vertex integrals and a discussion
of the various cross checks which we have performed. Section 6 contains our results.
Finally we conclude in Section 7. In Appendix A we explicitly state the projectors for the
form factors and in Appendix B we provide all relevant renormalization constants related
to the treatment of γ5. Appendix C contains explicit results for the massive singlet form
factors and in Appendix D analytic results for the one- and two-loop expressions of the
form factor induced by the pseudoscalar gluonic operator are presented. In Appendix E
we provide a description of the package FF3l where all results for the three-loop massive
form factors are implemented.

2 Notation

We consider the vector (v), axial-vector (a), scalar (s), and pseudoscalar (p) currents

jvµ = ψ̄γµψ ,

jaµ = ψ̄γµγ5ψ ,

js = mψ̄ψ ,

jp = imψ̄γ5ψ . (1)

The factor m is introduced such that the scalar and pseudoscalar currents have vanishing
anomalous dimensions.

It is convenient to decompose the three-point functions with an external quark-anti-quark
pair into scalar form factors which we denote by

Γvµ(q1, q2) = F v
1 (q2)γµ −

i

2m
F v

2 (q2)σµνq
ν ,

Γaµ(q1, q2) = F a
1 (q2)γµγ5−

1

2m
F a

2 (q2)qµγ5 ,

Γs(q1, q2) = mF s(q2) ,

Γp(q1, q2) = imF p(q2)γ5 , (2)

where the momenta q1 and q2 are the momenta of the incoming quark and the outgoing
anti-quark, respectively, which are on-shell, i.e. q2

1 = q2
2 = m2. Furthermore, q = q1 − q2

is the outgoing momentum of the current with q2 = s and σµν = i[γµ, γν ]/2. The form
factors F k

i are conveniently obtained by applying appropriate projectors which we show
in Appendix A. We denote the non-singlet and singlet contributions to the form factors
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by2

F k
non−sing and F k

sing,h/l . (3)

The second subscript h or l is used to distinguish the contributions where the external
current couples to a massive or massless internal quark loop.

The colour structure of the two-loop singlet form factors is CFTF . For the three-loop
singlet contributions we have altogether five colour structures: C2

FTF , CFCATF , CFT
2
Fnh,

CFT
2
Fnl and (dabc)2/NC where CF = TF (N2

C − 1)/NC and CA = 2TFNC are the quadratic
Casimir operators of the SU(NC) gauge group in the fundamental and adjoint repre-
sentation, respectively, nl is the number of massless quark flavors, and TF = 1/2. For
convenience we introduce nh = 1 for closed quark loops which have the same mass as
the external quarks. We then denote the total number of quark flavors by nf = nl + nh.
Furthermore we have (dabc)2 = T 3

F (N2
C − 1)(N2

C − 4)/(2NC). This colour structure only
appears for the vector current, whereas the remaining four colour factors only appear for
the axial-vector, scalar, and pseudoscalar currents.

For later convenience we introduce the perturbative expansion of the various (bare, renor-
malized, finite, . . . ) quantities as

F =
∑

i≥0

(
αs(µ)

π

)i
F (i) , (4)

where αs depends on the number of active flavours. We perform the calculation of the
bare diagrams and the renormalization of the ultraviolet counterterms in nf -flavour QCD
with nf = nl+nh. We decouple the heavy quark from the running of αs before subtracting
the infrared poles (cf. Subsection 3.3) such that our final finite result for the form factors

is parameterized in terms of α
(nl)
s . Note that in Eq. (4) the singlet diagrams start to

contribute to F (2).

In case we implement the definition of γ5 from Ref. [25] we replace it both in the Feynman
rule for the current and in the projector for the axial-vector and pseudoscalar current
according to

γµγ5 → i

3!
εµνρσγ[νγργσ] ,

γ5 → i

4!
εµνρσγ[µγνγργσ] . (5)

The square brackets on the r.h.s. denote anti-symmetrization of the corresponding indices.
After applying the projectors we obtain products of two ε tensors which we replace by

εα1α2α3α4εβ1β2β3α4 = |(δαiβj)| . (6)

The determinant on the r.h.s. of this equation is interpreted in d = 4− 2ε dimensions.

2In Refs. [12, 13] no subscript has been used for the non-singlet contribution.
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3 Renormalization and infrared subtraction

In order to obtain the UV-renormalized form factors we perform a parameter renormal-
ization for αs in the MS and for the heavy-quark mass m in the on-shell scheme. In
addition, we take into account the wave function renormalization for the external quarks
in the on-shell scheme. For the scalar and pseudoscalar current we renormalize the factor
m in the definition of the currents (see Eq. (1)) in the MS scheme.3

For the pseudoscalar and axial-vector currents there are additional renormalization con-
stants which depend on the considered current and on the treatment of γ5. In the following
we discuss in detail the renormalization of the corresponding form factors.

After renormalization the form factors still contain infrared poles. We discuss their sub-
traction in Subsection 3.3.

3.1 Pseudoscalar form factor F p

The two-loop singlet diagram contributing to the pseudoscalar form factor does not de-
velop sub-divergences and thus the form factor is finite. Similarly, at three-loop order the
counterterm contributions from the quark wave function, αs, m, and the overall renor-
malization constant related to the non-vanishing anomalous dimension of jp are sufficient
to render the three-loop singlet contributions ultraviolet finite. As a consequence it is
not necessary to separate singlet and non-singlet contributions and we can consider the
proper sum

F p,bare = F p,bare
non−sing + F p,bare

sing , (7)

and adopt the γ5 prescription of Ref. [25] in all contributions. This leads to

F p = Zfin
p Z

MS
p ZOS

2 F p,bare

∣∣∣∣∣
mbare=ZOS

m mOS, αbare
s =Zαsαs

, (8)

where ZOS
2 is the on-shell wave function renormalization constant for the external quarks.

In case we drop the singlet contributions and use anti-commuting γ5 we have Zfin
p = 1

and ZMS
p = ZMS

m in the above formula, where ZMS
m is the MS renormalization constant of

the quark mass. For the γ5 prescription of Ref. [25] explicit results for Zfin
p and ZMS

p can
be found in Eq. (50). It is a welcome cross check of our calculation that the non-singlet
contribution of F p agrees in the two approaches up to three-loop order.

The results for F p
sing have already been shown in Ref. [13]. However, in this reference

Zfin
p = 1 has been chosen and ZOS

m has been used instead of ZMS
p . This has, of course, no

influence on the finiteness of the form factor (after infrared subtraction), but the finite
terms differ.

3Note that in Ref. [13] the factor m has been renormalized in the MS scheme for the non-singlet
current. However, for the singlet currents the on-shell scheme has been used.
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3.2 Axial-vector form factors F a
1 and F a

2

The singlet diagram contributions to the axial-vector form factor develop the famous
Adler-Bell-Jackiw anomaly [26, 27] which leads to a rather non-trivial renormalization.
In our derivation we assume that all nf = nl + nh quarks are grouped into doublets and
nh = 1. We then introduce the “flavour-non-singlet” current

JaNS,µ =

nf∑

i=1

aiψ̄iγµγ5ψi , (9)

where ai is the coupling of the quarks to the Z boson in the SM. For us it is sufficient to
assume ai = ±1 depending on the weak isospin of the quark. The sum in Eq. (9) is to be
understood such that the massive form factors of quark flavour i originating from JaNS,µ

can be written as
F a
i,NS = F a

i,non−sing + F a
i,sing,h − F a

i,sing,l , (10)

where F a
i,sing,h and F a

i,sing,l denote the massive and massless singlet contributions as intro-
duced in Section 2, respectively. The relative sign between F a

i,sing,h and F a
i,sing,l guarantees

the anomaly cancellation in the SM. It is well known that JaNS,µ renormalizes multiplica-
tively which also holds for the form factors

F a
i,NS = ZNSZ

OS
2 F a,bare

i,NS , (11)

where parameter renormalization on the r.h.s. in analogy to Eq. (8) is understood. The
renormalization constant ZNS can be decomposed into

ZNS = Zfin
a,NSZ

MS
a,NS (12)

with the MS renormalization constant ZMS
a,NS and the finite renormalization Zfin

a,NS. Up to

the required order Zfin
a,NS and ZMS

a,NS can be found in Eq. (49) in Appendix B.

We also define the “flavour-singlet” current

JaS,µ =

nf∑

i=1

ψ̄iγµγ5ψi , (13)

where all quarks couple to the axial-vector current with the same sign. Hence the form
factors decompose into

F a
i,S = F a

i,non−sing + F a
i,sing,h +

nl∑

j=1

F a
i,sing,j . (14)

Again the current and the form factors renormalize multiplicatively, i.e.

F a
i,S = ZSZ

OS
2 F a,bare

i,S , (15)

7



where

ZS = Zfin
a,SZ

MS
a,S (16)

can be decomposed in the same manner as ZNS in Eq. (12). We again refer to Eq. (49)
for the explicit renormalization constants.

With these definitions one can derive the renormalization for the non-singlet and singlet
axial-vector form factors F a

i,sing and F a
i,non−sing. In the non-singlet case we have a multi-

plicatively renormalization without any interference of the singlet diagram contributions.
It is given by

F a
i,non−sing = ZNSZ

OS
2 F a,bare

i,non−sing . (17)

On the other hand, for the renormalized singlet diagram contributions we have to consider
the difference 1

nf
(F a

i,S − F a
i,NS). Since the SM is anomaly free, F a,bare

i,sing,h and F a,bare
i,sing,l have to

renormalize in the same way and one finds (see also Ref. [23])

F a
i,sing,j = ZNSZ

OS
2 F a,bare

i,sing,j +
1

nf
(ZS − ZNS)ZOS

2

(
F a,bare
i,non−sing +

nf∑

k=1

F a,bare
i,sing,k

)
, (18)

where j ∈ {h, l} and

1

nf
(ZS − ZNS) = Zfin

a,SZ
MS
a,S − Zfin

a,NSZ
MS
a,NS

=
(αs
π

)2

CFTF

(
3

8ε
+

3

16

)
+
(αs
π

)3

CFTF

(
1

ε2

[
1

12
TF
(
nh + nl

)

−11

48
CA

]
+

1

ε

[
109

288
CA −

9

16
CF +

1

72
TF
(
nh + nl

)]
+

[
13

16
ζ3 −

163

864

]
CA

−
[

3

4
ζ3 −

23

64

]
CF +

11

54
TF
(
nh + nl

))
+O(α4

s) . (19)

Again we implicitly assume parameter renormalization in analogy to Eq. (8).

Since (ZS − ZNS) starts at O(α2
s ), we need F a,bare

i,non−sing only to one-loop order and the last
term on the right-hand-side can be neglected. It is crucial to use the same prescription
for γ5 both in the calculation of F a,bare

i,sing,j and F a,bare
i,non−sing. Furthermore, it is important to

keep the higher-order terms in ε in the tree-level expression F
a,bare,(0)
i,non−sing. For example, the

α3
s/ε

2 term of (ZS − ZNS) multiplies the O(ε) term of F
a,bare,(0)
i,non−sing and produces a term

proportional to α3
s/ε which is necessary to cancel all poles for the CACFTF and CFT

2
F

colour factors. The finiteness of the C2
FTF colour factor is guaranteed through the O(α2

s)

term of (ZS − ZNS) which multiplies F
a,(1),bare
1,non−sing.

3.3 Infrared divergences

After the ultraviolet renormalization we still have infrared poles which we treat via

F f = Z−1F , (20)
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where F is the UV renormalized form factor and F f is finite, i.e., the limit ε → 0 can
be taken. Z can be constructed from the cusp anomalous dimension which has been
computed to three-loop order in Refs. [28–31]. In our calculation we express F f in terms

of α
(nl)
s .

4 Chiral Ward identity

For the axial-vector current the non-renormalization of the Adler-Bell-Jackiw (ABJ)
anomaly implies that the equation

(∂µjaµ)R = 2(jp)R +
αs
4π
TF (GG̃)R (21)

holds at the level of renormalized operators (indicated by the subscript R) [32]. It relates
the derivative of the axial-vector current to the pseudoscalar current and the pseudoscalar
gluonic operator

GG̃ = εµνρσG
a,µνGa,ρσ , (22)

where Ga,µν is the field strength tensor of the gluon. In analogy to Eq. (2) the three-point
functions of ∂µjaµ and GG̃ with a massive quark-anti-quark pair can be decomposed as

Γa∂J(q1, q2) = 2imF∂J(q2)γ5 ,

ΓGG̃(q1, q2) = 2imFGG̃(q2)γ5 , (23)

with the form factors F∂J and FGG̃. This allows us to rewrite Eq. (21) at the level of form
factors as

F∂J,non−sing = F p,f
non−sing (24)

for the non-singlet and

F∂J,sing = F p,f
sing +

αs
4π
TFF

f

GG̃
(25)

for the singlet contributions. Equations (24) and (25) are usually referred to as chiral
Ward identities, the latter especially as the anomalous chiral Ward identity. In this work
we use them as non-trivial cross checks of our results. This is particularly interesting for
Eq. (25) which involves finite renormalization constants related to the treatment of γ5.

For this check we require F f

GG̃
to O(α2

s). Since the operators GG̃ and ∂µjaµ mix under
renormalization, the finite expression is given by

F f

GG̃
= Z−1ZOS

2

(
ZGG̃F

bare
GG̃

+ ZGJF
bare
∂J

) ∣∣∣
mbare=ZOS

m mOS, αbare
s =Zαsαs

. (26)

The renormalization constants ZGG̃ and ZGJ have been computed in Refs. [25,33–37]. To
the required orders they read

ZGG̃ = Zαs = 1 +
αs
π

1

ε

(
−11

12
CA +

1

3
TFnf

)
+O(α2

s) ,
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Figure 2: One- and two-loop sample Feynman diagrams contributing to FGG̃.

ZGJ =
αs
π

3CF
ε

+
(αs
π

)2
(

1

ε2

[
CFnfTF −

11

4
CACF

]
+

1

ε

[
71

24
CACF

−21

8
C2
F −

1

6
CFTFnf

])
+O(α3

s) . (27)

The factor Z−1 again subtracts infrared poles, cf. Subsection 3.3. We thus have to compute
one- and two-loop corrections for FGG̃ and one-loop corrections to F∂J since ZGJ starts
at O(αs).

We compute F bare
GG̃

using the same setup as for the other form factors which is described
in Section 5. Sample Feynman diagrams contributing to it are shown in Fig. 2. We apply
the same projector as for the pseudoscalar current and use the prescription of γ5 from
Eq. (5).

To compute F∂J we follow two different strategies: First we treat ∂µjaµ as an independent
operator, implement its Feynman rule using Eq. (5), and then apply again the projector
to the pseudoscalar current. Secondly we apply the derivative to Γaµ in its decomposed
form of Eq. (2) and employ the Dirac equation as well as an anti-commuting γ5 to find

F∂J = F a,f
1 +

s

4m2
F a,f

2 . (28)

Thus we can simply use the expressions for F a,f
1 and F a,f

2 directly instead of computing
F∂J . Both approaches lead to identical results. It is interesting to mention that the higher
order ε terms of the tree-level expression

F
(0)
∂J = 1− 11ε

3
+ 4ε2 − 4ε3

3
, (29)

are crucial to obtain the correct result, at least with our choice of projectors, cf. Ap-
pendix A.

After inserting the bare results and counterterms into Eq. (26) we obtain a finite result
for F f

GG̃
which we present in Appendix D. This then allows us to check the anomalous

Ward identity (24) in Subsection 5.3.
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5 Computational details

For our calculation we use the same automated setup as for the calculation of the non-
singlet form factors in Refs. [12,13]. We generate the diagrams with qgraf [38] and process
them with q2e and exp [39–41] to obtain FORM [42] code for each individual amplitude.
After applying the projectors and taking the traces each amplitude is written as a linear
combination of scalar functions which belong to certain integral families. The reduction
to master integrals is performed with Kira [43, 44] with Fermat [45]. At this step it is
important to choose a good basis where the dependence on the kinematic variable and the
space-time factorizes. For this step we use the program ImproveMaster.m developed in
Ref. [46] in an improved version. Once we know the master integrals for each individual
integral family we use Kira to find a minimal set which reduces the number of master
integrals from 1995 to 316 for the massive and from 698 to 158 for massless singlet
contributions. Next we establish the differential equations with the help of LiteRed [47,
48]. At this point only the boundary conditions of all master integrals at some initial
value for s/m2 are needed such that the method of Ref. [49] can be applied to obtain
results for all master integrals in the whole kinematic range. We already computed the
master integrals for the massive singlet contributions in Ref. [13]. Thus we only describe
the calculation of the massless singlet contributions in Subsection 5.1.

The calculation of FGG̃ follows the same general setup. However, instead of q2e we use
tapir [50]. The different mass patterns require the introduction of new integral families
which lead to 3 and 24 master integrals at one- and two-loop order, respectively. 9 of the
two-loop master integrals are known from the two-loop calculation of the non-singlet form
factors. We describe the analytical computation of the remaining 15 master integrals in
Subsection 5.2.

5.1 Computation of massive vertex integrals at three loops

The method for our calculation of the three-loop master integrals is described in detail in
Ref. [13]. We deviate slightly from the steps outlined in this reference by not computing
analytical boundary conditions in the asymptotic limit s→ 0. Instead we use numerical
boundary conditions obtained with AMFlow [51]4 at s/m2 = −1 which corresponds to a
regular point. More precisely, we use AMFlow with Kira [43, 44] as reduction back-end to
compute all master integrals as expansions up to ε6 at s/m2 = −1. The coefficients of
these expansions are floating point numbers which we obtain with 100 significant digits
within a few days of runtime for all integral families except one for which we obtain only
85 significant digits. From there we derive symbolic expansion at

s/m2 = {−∞,−32,−28,−24,−16,−12,−8,−4,−3,−2,−1,−3/4,−1/2,−1/4, 0,

1/4, 1/2, 1, 2, 3, 7/2, 4, 9/2, 5, 6, 8, 10, 14, 20, 26, 32, 40, 52} (30)

4See Refs. [52–56] for more details on the auxiliary mass flow method.
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and match subsequent expansions in between where the radii of convergence overlap. In
this way we find a semianalytic expression for the master integrals over the whole range
of s/m2. In practice we do the following: We start from the expansion at s/m2 = −1
where we can directly match to the numerical boundary conditions provided by AMFlow.
From there we can move with the expansions either to smaller or larger values of s/m2.
On the one hand, we match along the negative axis to s/m2 → −∞ and obtain the
expansion for s/m2 → +∞ by analytic continuation. Then we match down to smaller
positive values of s/m2 until s/m2 = 1. On the other hand, we move from s/m2 = −1
to larger values where we stop at the two-particle treshold at s/m2 = 4. We check that
both ways of expanding and matching agree in the overlap region of 1 < s/m2 < 4 within
the expected accuracy. This constitues a non-trivial cross check on the calculation of the
master integrals. We additionally cross check the expansion at s = 0 where a subset of
master integrals have been computed analytically. Furthermore, all master integrals have
been computed at s/m2 = 2 and s/m2 = 6 with 30 digit precision using AMFlow to check
the results obtained through the differential equations. We find agreement within the
expected uncertainty.

5.2 Calculation of master integrals for FGG̃

Let us briefly describe the calculation for the master integrals needed for FGG̃ at two-loop
order. First, we establish a system of differential equations in the variable x defined by

s = −(1− x)2

x
. (31)

The system of differential equations is subsequently solved with the methods described
in Ref. [16]. In practice this means that we do not bring the system to canonical form,
but we decouple coupled systems of differential equations into one higher-dimensional one
using the package OreSys [57] (which is based on Sigma [58]) and solve this equation
order-by-order in ε with HarmonicSums [59]. The largest coupled system we encounter
here is a 3×3 system. For the complete solution we have to provide boundary conditions.
To do this, we choose to compute the master integrals in the limit s → 0 (x → 1).
However, since the diagrams can have cuts through only massless lines, the limit s → 0
needs an asymptotic expansion. While the asymptotic expansion for some integrals can be
constructed by direct integration or via simple Mellin-Barnes representations, we apply the
method of regions [60] as implemented in asy.m [61] to the more involved master integrals.
It turns out that there are three different regions, which scale as χ−0ε, χ−2ε and χ−4ε in
the variable χ =

√
−s/m2. The hard region ∝ χ−0ε leads to massive propagators which

are well studied in the literature (see, e.g., Ref. [62]). The integrals in the second region
∝ χ−2ε can be calculated in closed form in terms of Γ functions. In the region ∝ χ−4ε we
encountered one integral which could not be calculated in terms of Γ functions. For this
integral we used HyperInt [63] to obtain the result expanded in ε. It turns out that the
solutions of all master integrals can be written in terms of harmonic polylogarithms [64].
We provide these results in an ancillary file [65].
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The analytic results have been cross checked against numerical evaluations with
FIESTA5 [66] in the euclidean region (0 < x < 1).

5.3 Cross checks

There are a number of checks which support the correctness of our result which we sum-
marize in the following.

At two-loop order we reproduce the massless and massive singlet axial-vector and pseu-
doscalar results presented in Ref. [5]. We also agree with the one-loop corrections to
FGG̃.

Furthermore, we have performed our calculation for general QCD gauge parameter ξ
and have checked that it drops out in the final result. This is a non-trivial check at
three loops where ξ cancels only after including the counterterm contribution from mass
renormalization.

At three loops we have cross checked the results for the massless singlet master integrals
by evaluating them numerically with AMFlow [51] at s/m2 = 2 and s/m2 = 6. This
is an important consistency check for the method which we use to compute the master
integrals. We chose these points because they are separated by at least one special point
like the thresholds and the high-energy expansion from our boundary conditions. Crossing
these special points is the most difficult step in our approach.

A further check is the use of naive γ5 and non-anti-commuting γ5 for the non-singlet
contributions of the axial-vector and pseudoscalar currents. Both calculations agree after
taking into account the proper MS and finite renormalization constants, see Section 6.

Since our three-loop results are mainly floating point numbers, the poles also only cancel
numerically against the analytically known counterterms. We can therefore use the preci-
sion of these cancellations as cross check and estimate of the uncertainty. As in Ref. [13]
we define

δ
(
F f,(3)

∣∣
εi

)
=
F (3)

∣∣
εi

+ F (CT+Z)
∣∣
εi

F (CT+Z)
∣∣
εi

, (32)

which represents the number of correct digits for the poles of order εi. As representative
examples we show the C2

FTF colour factor of F
a,f,(3)
1,sing,h and the CACFTF colour factor of

F
a,f,(3)
1,sing,l in Fig. 3.

It is clearly visible that the poles cancel with at least around 20 digits for the massive
singlet and at least around 15 digits for the massless singlet contributions. In both cases
we obtain this worst precision in the region 0 ≤ s < 4m2, while it is around 30 digits over
large ranges of s. Since the precision is similar or better for the other colour factors and
form factors, we refrain from showing more plots.

Finally, we can explicitly check the chiral Ward identities of Eqs. (24) and (25) which
relate F a

1 , F a
2 , Fp, and FGG̃. Since they hold on the level of finite form factors, they allow
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Figure 3: Relative cancellation of the poles for the C2
FTF colour factor of F

a,f,(3)
1,sing,h and

the CACFTF colour factor of F
a,f,(3)
1,sing,l.

us to check their finite terms. This is especially interesting for the singlet contributions
with their nontrivial renormalization including finite pieces, cf. Section 3. We define the
relative precision with respect to the analytically computed FGG̃ as

δW

(
F
f,(3)
sing

)
=
F
a,f,(3)
1,sing + s

4m2F
a,f,(3)
2,sing − F p,f,(3)

sing −
(
αs
4π
TFF

f

GG̃

)(3)

(
αs
4π
TFF

f

GG̃

)(3)
. (33)

In Fig. 4 we show it for two colour factors of the massive and massless singlet contributions.

The precision is similar compared to the pole cancellation discussed before and we again
refrain from showing more than two representative examples.
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Figure 4: Precision to which the anomalous Ward identity in Eq. (25) is fulfilled for the
C2
FTF colour factor of the massive and the CACFTF colour factor for the massless singlet

contributions. The quantity δW is defined in Eq. (33).

6 Results for the singlet form factors

In this Section we discuss our results for the singlet form factors. We present expansions
for small and large values of s and for s → 4m2 and show results for the finite form
factors in the whole s range. For better readability we concentrate in the main text to
the contributions where the external current couples to massless quarks and relegate the
formulae and plots for the massive singlet contributions to Appendix C.

We provide all results obtained in this paper as well as the non-singlet and singlet results
from Refs. [12,13] as Mathematica package available in Ref. [67]. Furthermore we imple-
mented these results in the Fortran library FF3l available in Ref. [68] which allows for
a fast numerical evaluation of all form factors. The library is described in more detail in
Appendix E.

6.1 Comparison of naive and Larin γ5 prescription for axial-
vector and pseudoscalar non-singlet form factors

It is interesting to discuss the tree-level results for the two γ5 prescriptions. For the
axial-vector and pseudoscalar current we find

F
a,(0)
1,naive = 1 ,

F
a,(0)
2,naive = 0 ,

F
a,(0)
1,larin = 1− ε 32m2 − 5s

3(4m2 − s) + ε2
4(4m2 + s)

3(4m2 − s) − ε
3 4s

3(4m2 − s) ,
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F
a,(0)
2,larin = −ε8m

2(2m2 − s)
s(4m2 − s) + ε2

64m2(2m2 − s)
3s(4m2 − s) − ε3 32m2(2m2 − s)

3s(4m2 − s) ,

F
p,(0)
naive = 1 ,

F
p,(0)
larin = 1− ε12m2 + 19s

6s
+ ε2

44m2 + 13s

6s
− ε3 2(12m2 − s)

3s
+ ε4

2(4m2 − s)
3s

, (34)

with our choice of projectors, cf. Appendix A. Note that there is a non-trivial s dependence
at higher orders in ε. Through renormalization of the quark wave function and the
subtraction of infrared divergences they induce finite terms in ε at one-loop order. At two
and three loops even poles are generated which are important to obtain finite expressions
for the form factors.

We have used the prescription of Ref. [25] for γ5 also for the one-, two-, and three-loop
form factors. After renormalization and infrared subtraction we obtain

F
a,(i),f
1,naive = F

a,(i),f
1,larin ,

F
a,(i),f
2,naive = F

a,(i),f
2,larin ,

F
p,(i),f
naive = F

p,(i),f
larin , (35)

for i = 1, 2, 3. Let us stress that it is important to thoroughly follow the instructions from
Section 3 and take into account all relevant renormalization constants from Appendix B.

6.2 Expansions for s→ 0, s→ −∞, and s→ 4m2

In this Section we concentrate on the singlet contributions and present explicit results for
the expansions for small and large values of s and close to threshold. We choose µ2 = m2

for the renormalization scale. For completeness we present both two- and three-loop
expressions.

Including terms up to linear order in χ =
√
−s/m2 we obtain for the massless singlet

contribution in the limit s→ 0

F v,f
1,sing,l

∣∣∣
s→0

=
(αs
π

)3 dabcd
abc

NC

[−0.64927 + 0.99711χ] , (36)

F v,f
2,sing,l

∣∣∣
s→0

=
(αs
π

)3 dabcd
abc

NC

[
−5.7080− 6.5797 ln(χ) + χ

(
8.1838− 3.7011 ln(χ)

)]
,

(37)

F a,f
1,sing,l

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
−7

4
+
π2

4
χ

]

+
(αs
π

)3

CFTF

[
CF

(
−1.4887 + 1.2337χ

)
+ CA

(
−9.0185 + χ

(
6.3166− 7.8134 ln(χ)

))

+ TFnh

(
−0.32519

)
+ TFnl

(
3.6797 + χ

(
−1.4751 + 3.2899 ln(χ)

))]
, (38)
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F a,f
2,sing,l

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
π2

2χ
− 2

3
ln2(χ) +

25

9
ln(χ)− 95

54
− π2

9

]

+
(αs
π

)3

CFTF

[
CF

(
2.4674

χ
+ 6.3840 ln(χ) + 2.2099 + χ

(
2.8786 ln(χ)− 5.0719

))

+ CA

(
−15.627 ln(χ) + 5.3408

χ
+ 0.81481 ln3(χ)− 2.6308 ln2(χ) + 4.2083 ln(χ)

+ 14.089 + χ(6.0657 ln(χ)− 5.3476)

)
+ TFnh

(
−0.96834 ln(χ) + 0.15303 + 0.90471χ

)

+ TFnl

(
6.5797 ln(χ) + 4.5177

χ
− 0.29630 ln3(χ) + 1.2593 ln2(χ) + 0.47451 ln(χ)

− 5.9964 + χ(−2.4674 ln(χ)− 0.049185)

)]
, (39)

where terms of O(χ2) have been neglected and the analytic continuation for s > 0 is
given by χ =

√
−s/m2 = −i

√
s/m2. The results for the massive singlet form factors can

be found in Eq. (56). It is interesting to note that the axial-vector form factor F a,f
2,sing,l

develops 1/
√
−s/m2 terms, both at two and three loops, which are absent in the massive

case. F a,f
2,sing,l also has logarithmic contributions up to third order in the (s/m2)0 term

whereas F v,f
2,sing,l only has linear logarithms. F a,f

1,sing,l starts to develop logarithms at order√
−s/m2 and the vector contribution F v,f

1,sing,l only at order s/m2.

In the high-energy limit the expansions of the massless singlet form factors are given by

F v,f
1,sing,l

∣∣∣
s→−∞

=
(αs
π

)3
[
−0.334349 +

m2

−s

(
−0.00833333l5s − 0.116245l4s − 0.639133l3s

− 0.484656l2s + 13.7669ls + 46.9765

)]
, (40)

F v,f
2,sing,l

∣∣∣
s→−∞

=
(αs
π

)3 m2

−s

[
−4.57974ls − 7.34102

]
, (41)

F a,f
1,sing,l

∣∣∣
s→−∞

=
(αs
π

)2

CFTF

[
−3

4
ls −

9

4
+
π2

12
+
m2

−s

{
1

2
l2s +

3

2
ls +

1

2
+
π2

2

}]

+
(αs
π

)3

CFTF

[
CF

(
0.1875l3s + 0.919383l2s + 1.7663ls + 0.520574

)

+ CA

(
−0.6875l2s − 4.09631ls − 6.70052

)
+ TFnh

(
0.25l2s + 1.03502ls + 2.34309

)

+ TFnl

(
0.25l2s + 1.03502ls + 2.34309

)
+
m2

−s

{
CF

(
−0.0833333l4s − 0.529589l3s

− 5.50593l2s − 17.2508ls − 32.6278

)
+ CA

(
−0.00208333l5s − 0.0751055l4s + 0.141666l3s

+ 3.33973l2s + 15.0217ls + 36.7552

)
+ TFnh

(
−0.166667l3s − 1.59058l2s − 3.29888ls
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− 7.38784

)
+ TFnl

(
−0.166667l3s − 1.09058l2s − 3.50612ls − 6.4258

)}]
, (42)

F a,f
2,sing,l

∣∣∣
s→−∞

=
(αs
π

)2

CFTF
m2

−s

[
−1

2
l2s − 3ls − 2− π2

3

]

+
(αs
π

)3

CFTF
m2

−s

[
CF

(
0.104167l4s + 1.l3s + 6.68117l2s + 22.4839ls + 34.67

)

+ CA

(
0.0208333l4s − 0.611111l3s − 7.80858l2s − 30.0535ls − 49.2293

)

+ TFnh

(
0.222222l3s + 2.05556l2s + 6.33333ls + 8.54753

)

+ TFnl

(
0.222222l3s + 2.05556l2s + 6.33333ls + 10.147

)]
, (43)

where ls = log(m2/(−s − iδ)) and we neglect terms which are suppressed by m4/s2. In
the leading term there are at most cubic logarithms which are present for F a,f

1,sing,l. In the

subleading term l5s terms appear for F a,f
1,sing,l and F v,f

1,sing,l whereas the leading logarithm for

F a,f
2,sing,l is l4s and F v,f

2,sing,l only has linear subleading logarithms. The corresponding results
for the massive singlet form factors can be found in Eq. (62).

For some of the coefficients in the high-energy expansion our method provides a numerical
accuracy of several ten digits for the massless and several hundred digits for the massive
singlet contributions. The accuracy for the massless contributions is of course limited
by the numerical boundary conditions while we have analytic boundary conditions for
the massive contributions. The high accuracy allows for the application of the PSLQ

algorithm [69] to reconstruct the analytic expressions. For example we find

F
a,f,(3)
1,sing,l

∣∣∣
m0/(−s)0, l3s

=
3C2

FTF
16

,

F
a,f,(3)
1,sing,l

∣∣∣
m0/(−s)0, l2s

= C2
FTF

(
9

8
− π2

48

)
− 11CACFTF

16
+
CFT

2
Fnh

4
+
CFT

2
Fnl

4
(44)

for the leading and subleading logarithms of F
a,f,(3)
1,sing,l.

Close to threshold it is convenient to parameterize the form factors in terms of the velocity
of the produced quarks, β =

√
1− 4m2/s. We observe that the two-loop and the three-

loop vector corrections start with β0. The three-loop axial-vector form factors develop
1/β terms which read

F a,f
1,sing,l

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β

[(
2.6544− 0.4750i

)
l2β − 3.4005− 3.6946i

]
, (45)

F a,f
2,sing,l

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β

[
−
(
0.18704 + 1.18515i

)
l2β + 0.79281− 0.18115i

]
, (46)

where l2β = log(2β). The 1/β terms for the massive singlet form factors are provided in
Eq. (66).
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6.3 Finite form factors
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Figure 5: Massless singlet form factors as a function of s for µ2 = m2.

In Fig. 5 we show the finite results for the massless singlet form factors as a function of s.
We subdivide the energy range into three parts corresponding to negative values of s, the
region between s = 0 and the threshold s = 4m2, and above threshold and show results
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for all individual colour factors. We present both real (solid) and imaginary (dashed)
parts. In contrast to the non-singlet contributions the singlet form factors develop an
imaginary part also for s ∈ [0, 4m2] since there are cuts through the gluons and in the
massless singlet case in addition through the massless quarks. One recognizes the strong
power-like divergences for s → 0 and s → 4m2 which are present in some of the form
factors. On the other hand, the logarithmic divergences in the various limits exhibit only
a mild behaviour.

7 Conclusions

The main result of this paper are the three-loop corrections to the singlet form factors
with massive external quarks where external vector, axial-vector, scalar, or pseudoscalar
currents couple to a closed massless or massive quark loop. This complements the non-
singlet and massive singlet contributions presented in Refs. [12,13]. We present our results
in an easy-to-use form as Mathematica package and Fortran library with high numerical
precision in the whole s range. Our method allows for a systematic improvement of the
accuracy if needed.

For the computation of the master integrals we use the “expand and match” approach
which has been introduced in Ref. [49] and further developed in Refs. [12,13]. It provides
analytic expansions with numerical coefficients for all master integrals around properly
chosen kinematic points leading to precise results for the form factors in the respective
energy region. In the paper we provide expansions around the physically interesting points
s→ 0, s→ −∞ and s→ 4m2. In some cases the numerical precision is sufficiently high
such that the analytic result of the expansion coefficients can be reconstructed.

In the course of our calculation we obtained a number of further interesting results.
For example, we have applied two different prescriptions for the treatment of γ5 to the
non-singlet axial-vector and pseudoscalar form factors and have checked by an explicit
calculation that the final finite expressions are identical. Furthermore, we have computed
analytic two-loop corrections to the massive pseudoscalar-gluon-heavy-quark vertex which
we needed to check the non-renormalization of the Adler-Bell-Jackiw anomaly at three-
loop order.
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A Projectors

To project onto the form factors given by Eq. (2) we define the projectors

Fi = Tr[P µ
i ( /q2 +m)Γi,µ( /q1 +m)] (47)

with

P v,µ
1 =

(4m2 − s)γµ − 2(3− 2ε)m(qµ1 + qµ2 )

4(−1 + ε)(4m2 − s)2
,

P v,µ
2 =

−m2(4m2 − s)γµ + (2m2 + s− εs)m(qµ1 + qµ2 )

(−1 + ε)(4m2 − s)2s
,

P a,µ
1 =

sγµγ5 − 2mγ5(qµ1 − qµ2 )

4(−1 + ε)(4m2 − s)s ,

P a,µ
2 =

−sm2γµγ5 + (6m2 − 4εm2 − s+ εs)mγ5(qµ1 − qµ2 )

(−1 + ε)(4m2 − s)s2
,

P s,µ =
1

2m(4m2 − s) ,

P p,µ = −i
γ5

2ms
. (48)

γ5 is replaced using Eq. (5).

B Renormalization constants

In our calculation there are several (non-standard) renormalization constants which are
needed due to the use of non-anti-commuting γ5. For convenience of the reader we repro-
duce all of them in the following. We use the notion for “singlet” and “non-singlet” as
defined in Section 1.

For the axial-vector contribution we need [24,25]

ZMS
a,S = 1 +

(αs
π

)2 1

ε

(
11

24
CACF +

5

24
CFnfTF

)
+
(αs
π

)3
(

1

ε2

[
−121

432
C2
ACF

− 11

432
CACFTFnf +

5

108
CFT

2
Fn

2
f

]
+

1

ε

[
− 77

144
CAC

2
F +

1789

2592
C2
ACF

+
149

2592
CACFTFnf −

11

144
C2
FTFnf +

13

648
CFT

2
Fn

2
f

])
+O(α4

s) ,
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ZMS
a,NS = 1 +

(αs
π

)2 1

ε

(
11

24
CACF −

1

6
CFTFnf

)
+
(αs
π

)3
(

1

ε2

[
−121

432
C2
ACF

+
11

54
CACFTFnf −

1

27
CFT

2
Fn

2
f

]
+

1

ε

[
− 77

144
CAC

2
F −

26

81
CACFTFnf

+
1789

2592
C2
ACF +

1

9
C2
FTFnf +

1

162
CFT

2
Fn

2
f

])
+O(α4

s) ,

Zfin
a,S = 1− αs

π
CF +

(αs
π

)2
(
−107

144
CACF +

11

8
C2
F +

31

144
CFTFnf

)

+
(αs
π

)3
([

55ζ3

48
− 133

2592

]
CACFTFnf +

[
2917

864
− 5ζ3

2

]
CAC

2
F

+

[
7ζ3

8
− 2147

1728

]
C2
ACF +

[
497

1728
− 13ζ3

12

]
C2
FTFnf +

79

324
CFn

2
fT

2
F

+

[
3ζ3

2
− 185

96

]
C3
F

)
+O(α4

s) ,

Zfin
a,NS = 1− αs

π
CF +

(αs
π

)2
(
−107

144
CACF +

11

8
C2
F +

1

36
CFTFnf

)

+
(αs
π

)3
([

2917

864
− 5

2
ζ3

]
CAC

2
F +

[
89

648
+
ζ3

3

]
CACFTFnf +

[
−2147

1728

+
7

8
ζ3

]
C2
ACF +

[
−185

96
+

3

2
ζ3

]
C3
F +

[
− 31

432
− 1

3
ζ3

]
C2
FTFnf

+
13

324
CFT

2
Fn

2
f

)
+O(α4

s) . (49)

ZMS
a,S is taken from Eq. (19) of the arXiv version of Ref. [25] and Zfin

a,S from Eq. (5.4) of

Ref. [35]. ZMS
a,NS and Zfin

a,NS are obtained from Eqs. (8) and (11) of Ref. [24].

For the pseudoscalar contribution we have

ZMS
p = 1− αs

π

3CF
4ε

+
(αs
π

)2
(

1

ε2

[
11

32
CACF +

9

32
C2
F −

1

8
CFTFnf

]
+

1

ε

[
79

192
CACF

− 3

64
C2
F −

11

48
CFTFnf

])
+
(αs
π

)3
(

1

ε3

[
− 33

128
CAC

2
F +

11

72
CACFTFnf

−121

576
C2
ACF −

9

128
C3
F +

3

32
C2
FTFnf −

1

36
CFT

2
Fn

2
f

]
+

1

ε2

[
−215

768
CAC

2
F

+
55

432
CACFTFnf −

257

3456
C2
ACF +

9

256
C3
F +

19

192
C2
FTFnf −

11

216
CFT

2
Fn

2
f

]

+
1

ε

[
3203

2304
CAC

2
F +

(
− 29

144
+

1

4
ζ3

)
CACFnfTF −

599

6912
C2
ACF −

43

128
C3
F

+
(
−107

288
− 1

4
ζ3

)
C2
FTFnf +

17

432
CFT

2
Fn

2
f

])
+O(α4

s) ,
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Zfin
p = 1− 2

αs
π
CF +

(αs
π

)2
(

1

72
CACF +

1

18
CFTFnf

)
+
(αs
π

)3
([
−25

54

+
19

2
ζ3

]
CAC

2
F +

[
107

324
+

2

3
ζ3

]
CACFTFnf +

[
−479

864
− 13

4
ζ3

]
C2
ACF

+

[
19

12
− 6ζ3

]
C3
F +

[
−145

216
− 2

3
ζ3

]
C2
FTFnf +

13

162
CFT

2
Fn

2
f

)
+O(α4

s) , (50)

which corresponds to Eqs. (13) and (15) of the arXiv version of Ref. [25].

Note that ZMS
p is the renormalization constant associated to the factor m on the r.h.s. of

jp in Eq. (1). It replaces the usual MS renormalization constant ZMS
m for the heavy-quark

mass which is used for anti-commuting γ5, e.g. for the non-singlet contribution. In case
only the singlet contribution is considered only the O(αs) terms are needed from ZMS

p .

Up to this order ZMS
p agrees with ZMS

m . Note that in Ref. [13] the factor m in Eq. (1) has
been renormalized on-shell.

We refrain from providing explicit expressions for the wave function, strong coupling
constant, and heavy-quark mass renormalization constants, which have already been used
in Refs. [12,13].

C Results for the massive singlet contribution

In this Section we collect the expansions around s = 0, around the threshold s = 4m2,
and in the high-energy limit for the massive singlet contributions in the spirit of those for
the massless singlet contributions shown in Subsection 6.2. We also show plots over the
whole range of s.

In the limit s→ 0 we obtain for the six form factors

F v,f
1,sing,h

∣∣∣
s→0

= 0 , (51)

F v,f
2,sing,h

∣∣∣
s→0

=
(αs
π

)3 dabcd
abc

nc
[0.371005] , (52)

F a,f
1,sing,h

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
−19

12
+

2

9
π2

]

+
(αs
π

)3

CFTF

[
0.79884CA − 4.3999CF + 0.66880TFnh + 1.2009TFnl

]
, (53)

F a,f
2,sing,h

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
2

3
+

1

90
π2 − 1

24
π2χ

]

+
(αs
π

)3

CFTF

[
2.4737CA + 3.1457CF + 0.36848TFnh − 0.73194TFnl
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+ χ

{
CA
(
1.3022 ln(χ)− 2.2422

)
− 1.8506CF + TFnl

(
−0.54831 ln(χ) + 0.86816

)}]
,

(54)

F s,f
sing,h

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
−2 +

1

3
π2 − 1

12
π2χ

]

+
(αs
π

)3

CFTF

[
7.2423CA − 2.1288CF + 0.47311TFnh − 1.4332TFnl

+ χ
(
CA
(
3.0157 ln(χ)− 4.6557

)
− 0.20562CF + TFnl

(
−1.0966 ln(χ) + 1.4622

))]
, (55)

F p,f
sing,h

∣∣∣
s→0

=
(αs
π

)2

CFTF

[
1

6
+

2

9
π2 − 1

8
π2χ

]

+
(αs
π

)3

CFTF

[
+9.8173CA − 0.55128CF + 0.99399TFnh − 2.4788TFnl

+ χ
(
CA
(
3.9067 ln(χ)− 7.6518

)
− 1.8506CF + TFnl

(
−1.6449 ln(χ) + 2.6045

))]
, (56)

where again terms of O(χ2) have been neglected. Logarithmic contributions appear only
at order χ =

√
−s/m2 and thus the limit s = 0 exists for all form factors.

In the high-energy limit we have

F v,f
1,sing,h

∣∣∣
s→−∞

=
(αs
π

)3 dabcd
abc

nc

[
−0.33435 +

m2

−s
(
− 0.0083333l5s − 0.11624l4s

− 0.63913l3s − 0.83260l2s + 15.749ls + 66.917
)]
, (57)

F v,f
2,sing,h

∣∣∣
s→−∞

=
(αs
π

)3 dabcd
abc

nc

[
m2

−s (−4.5797ls − 7.3410)

]
, (58)

F a,f
1,sing,h

∣∣∣
s→−∞

=
(αs
π

)2

CFTF

[
−3

4
ls−

9

4
+
π2

12
+
m2

−s

{
1

2
l2s +

(3

2
− π2

3

)
ls+

1

2
− π2

2
+ 4ζ3

}]

+
(αs
π

)3

CFTF

[
CF

(
0.18750l3s + 0.91938l2s + 1.7663ls + 0.52057

)

+ CA

(
−0.68750l2s − 4.0963ls − 6.7005

)
+ TFnh

(
0.25000l2s + 1.0350ls + 2.3431

)

+ TFnl

(
0.25000l2s + 1.0350ls + 2.3431

)
+
m2

−s

{
CF

(
−0.083333l4s + 0.29288l3s

− 3.2283l2s − 0.27409ls + 2.5837

)
+ CA

(
−0.0020833l5s − 0.075106l4s + 0.14167l3s

− 0.48000l2s − 6.8168ls + 9.9023

)
+ TFnh

(
−0.16667l3s + 0.054357l2s

+ 3.1403ls + 6.4236

)
+ TFnl

(
−0.16667l3s + 0.55436l2s + 2.9330ls + 5.7888

)}]
, (59)
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F a,f
2,sing,h

∣∣∣
s→−∞

=
(αs
π

)2

CFTF
m2

−s

[
−1

2
l2s − 3ls − 2− π2

3

]

+
(αs
π

)3

CFTF
m2

−s

[
CF

(
0.10417l4s + 1.0000l3s + 6.6812l2s + 22.484ls + 34.670

)

+ CA

(
0.020833l4s − 0.61111l3s − 7.8086l2s − 30.054ls − 49.229

)

+ TFnh

(
0.22222l3s + 2.0556l2s + 6.3333ls + 8.5475

)

+ TFnl

(
0.22222l3s + 2.0556l2s + 6.3333ls + 10.147

)]
, (60)

F s,f
sing,h

∣∣∣
s→−∞

=
(αs
π

)2

CFTF

[
− 1

48
l4s +

(
1− π2

12

)
l2s +

(
4− 3ζ3

)
ls +

2π2

3
− π4

45

]

+
(αs
π

)3

CFTF
m2

−s

[
CF

(
0.0041667l6s − 0.0062500l5s + 0.062124l4s + 1.0817l3s + 4.8496l2s

+ 32.500ls + 58.066

)
+ CA

(
0.0010417l6s − 0.022917l5s − 0.14492l4s + 0.46401l3s

+ 3.6270l2s + 9.0468ls + 16.307

)
+ TFnh

(
0.0083333l5s + 0.023148l4s − 0.078904l3s

− 0.31219l2s − 2.1741ls − 1.2446

)
+ TFnl

(
0.0083333l5s + 0.023148l4s − 0.078904l3s

− 0.31219l2s − 3.8614ls − 6.4797

)]
, (61)

F p,f
sing,h

∣∣∣
s→−∞

=
(αs
π

)2

CFTF

[
− 1

48
l4s +

(
1− π2

12

)
l2s − 3ζ3ls +

π2

3
− π4

45

]

+
(αs
π

)3

CFTF
m2

−s

[
CF

(
0.0041667l6s − 0.0062500l5s + 0.16629l4s + 1.5817l3s + 1.9782l2s

+ 31.884ls + 61.904

)
+ CA

(
0.0010417l6s − 0.022917l5s − 0.12408l4s − 0.14710l3s

− 6.3791l2s − 25.947ls − 33.440

)
+ TFnh

(
0.0083333l5s + 0.023148l4s + 0.14332l3s

+ 2.2434l2s + 4.0771ls + 3.8620

)
+ TFnl

(
0.0083333l5s + 0.023148l4s + 0.14332l3s

+ 2.2434l2s + 2.3898ls − 0.20928

)]
, (62)

where terms of order m4/s2 have been dropped. As expected, the scalar and pseudoscalar
form factors start at order m2/s where both develop leading l6s terms. The vector and
axial-vector form factors show a similar behavior as in the massless case discussed around
Eq. (43).

25



At threshold the three-loop axial-vector, scalar, and pseudoscalar form factors develop
1/β poles which are given by

F a,f
1,sing,h

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β
[0.062172il2β + 0.097660− 0.062172i] , (63)

F a,f
2,sing,h

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β

[
−
(
3.6207− 1.9240i

)
l2β + 3.0223 + 5.7495i

]
, (64)

F s,f
sing,h

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β

[
−
(
2.4674− 0.8781i

)
l2β + 3.8466 + 2.9977i

]
, (65)

F p,f
sing,h

∣∣∣
s→4m2

=
(αs
π

)3

C2
FTF

1

β

[
−
(
6.0881− 3.6463i

)
l2β + 5.7276 + 9.5631i

]
. (66)

In Figs. 6 and 7 we show the finite parts of the massive singlet form factors as a function
of s.

D One- and two-loop result for F f

GG̃

Our one- and two-loop results for F f

GG̃
are given by

F
f,(1)

GG̃
= −3CFLm + CF

(
−7 +

2π2(1− x)

3(1 + x)
+

(1− x)H2
0

2(1 + x)
+

2(1− x)H0,1

1 + x

)
, (67)
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f,(2)
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= L2
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4
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+
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Figure 6: Massive singlet vector and axial-vector form factors as a function of s for
µ2 = m2.
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Figure 7: Massive singlet scalar and pseudoscalar form factors as a function of s for
µ2 = m2.
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2(1− x)2

−
(
− 29 + 159x− 69x2 + 47x3

)
H1

18(1− x)2(1 + x)
− 2x

(
1 + x+ x2

)
H0,1

(1− x)3(1 + x)

−
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,−1

(1− x)3(1 + x)

]
+

[
3

2(1− x)
−
(
5 + x− 5x2 + 7x3

)
H0,1

2(1− x)2(1 + x)

+

(
5− 8x+ 5x2

)
H0,−1

(1− x)2
− 4

(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,1

(1− x)3(1 + x)

+
4
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,−1

(1− x)3(1 + x)

]
H0 +

[
−−305 + 681x− 717x2 + 269x3

72(1− x)2(1 + x)

−
(
− 37 + 63x− 51x2 + x3

)
H1

12(1− x)2(1 + x)
+

2
(
1− 4x+ 7x2 − 4x3 + x4

)
H0,1

(1− x)3(1 + x)

−
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,−1

(1− x)3(1 + x)

]
H2

0 −
(
5− 8x+ 5x2

)
H−1H

2
0

2(1− x)2
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−
[−22 + 46x− 39x2 + 22x3 + 29x4

36(1− x)3(1 + x)
+

2(1− x)H1

3(1 + x)

]
H3

0 −
(
5− 8x+ 5x2

)
H0,0,−1

(1− x)2

−
(
1− 10x− 8x2 − 10x3 + x4

)
H4

0

48(1− x)3(1 + x)
+

[
3

2
+

19(1− x)H0,1

3(1 + x)

]
H1

+

(
287− 412x+ 287x2

)
H0,1

18(1− x)(1 + x)
+

(
37− 3x+ 93x2 + 5x3

)
H0,0,1

6(1− x)2(1 + x)
− 16(1− x)H0,1,1

3(1 + x)

+

(
5− 14x+ 48x2 − 14x3 + 5x4

)
H0,0,0,1

(1− x)3(1 + x)
− 6

(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,0,−1

(1− x)3(1 + x)

)

+ C2
F

(
125

16
− π4

(
− 4 + 12x− 16x2 + 124x3 − 93x4 + 31x5

)

90(1− x)3(1 + x)2

− ζ3

[
3− 3x+ 3x2 + x3

(1− x)2(1 + x)
+

2
(
1− 4x+ 8x2 − 4x3 + x4

)
H0

(1− x)3(1 + x)

]

+ π2

[
−25− 42x+ x2 + 6x3

6(1− x)2(1 + x)
+

(
− 7 + 12x+ 22x2 − 44x3 + 27x4

)
H0

6(1− x)3(1 + x)

−
(
7− 21x+ 28x2 + 68x3 − 51x4 + 17x5

)
H2

0

24(1− x)3(1 + x)2
− 2(1− x)H1

3(1 + x)

+

(
5− 8x+ 5x2

(1− x)2
+

2
(
1 + x2

)
H0

3(1 + x)2

)
H−1 −

(
1 + x2

)
H0,1

2(1 + x)2

+
4
(
1− 3x+ 4x2 + 8x3 − 6x4 + 2x5

)
H0,−1

3(1− x)3(1 + x)2

]
+

[
3(1 + x)

2(−1 + x)
+

4
(
3− 5x+ 3x2

)
H0,1

(1− x)2

− 2
(
5− 8x+ 5x2

)
H0,−1

(1− x)2
+

8
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,1

(1− x)3(1 + x)

− 8
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,−1

(1− x)3(1 + x)

]
H0 +

[
−1− 3x+ 5x2 + 17x3

8(1− x)2(1 + x)

−
(
13− 11x− 5x2 + 11x3

)
H1

2(1− x)2(1 + x)
−
(
3− 9x+ 12x2 + 4x3 − 3x4 + x5

)
H0,1

(1− x)3(1 + x)2

+

(
3− 9x+ 12x2 + 20x3 − 15x4 + 5x5

)
H0,−1

2(1− x)3(1 + x)2

]
H2

0

+

(
− 3 + 6x+ 44x2 − 70x3 + 43x4

)
H3

0

12(1− x)3(1 + x)
− 3(1− x)H0,1

1 + x
− 2(1− x)H1H0,1

1 + x

−
(
5− 15x+ 20x2 + 44x3 − 33x4 + 11x5

)
H4

0

48(1− x)3(1 + x)2
+

2(1− x)H0,1,1

1 + x

+

[(
− 7

(
1 + x2

)

(1− x)(1 + x)
+

2
(
1 + x2

)
H0,1

(1 + x)2

)
H0 +

(
5− 8x+ 5x2

)
H2

0

(1− x)2

+

(
1 + x2

)
H3

0

2(1 + x)2

]
H−1 −

(
1 + x2

)
H2

0,1

(1 + x)2
+

[
7
(
1 + x2

)

(1− x)(1 + x)
− 2

(
1 + x2

)
H0,1

(1 + x)2

]
H0,−1
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− 2
(
7− 6x− 3x2 + 6x3

)
H0,0,1

(1− x)2(1 + x)
+

2
(
5− 8x+ 5x2

)
H0,0,−1

(1− x)2

− 12
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,0,1

(1− x)3(1 + x)
+

12
(
1− 4x+ 8x2 − 4x3 + x4

)
H0,0,0,−1

(1− x)3(1 + x)

)
,

(68)

with Lm = ln(µ2/m2) and we dropped the arguments of the harmonic polylogarithms
H~w ≡ H~w(x) [64].

The one-loop result agrees with Ref. [5], the two-loop expression is new.

E The Fortran library FF3l

In this appendix we present the Fortran library FF3l for the numerical evaluation of the
third-order corrections to the form factors. We implement the ultraviolet renormalized
form factors, but we do not perform the infrared subtraction. In this way, any infrared
subtraction scheme can be applied and it is the task of the user to implement it. The
code is available at

https://gitlab.com/formfactors3l/ff3l

where a documentation and sample programs can be found. The code provides interpola-
tion grids and series expansion which can be used for instance in a Monte Carlo program.
For the non-singlet contributions interpolation grids are used in the ranges

• −40 < s/m2 < 3.75,

• 4.25 < s/m2 < 16,

• 16 < s/m2 < 60.

In the remaining regions we implemented the series expansion around s = ±∞ and
s = 4m2. We do not implement the expansion around s = 16m2 since at this point
the form factors are continuous functions (but not holomorphic). For the massive singlet
contributions interpolation grids are used for

• −40 < s/m2 < −1,

• 1 < s/m2 < 3.75,

• 4.25 < s/m2 < 16,

• 16 < s/m2 < 60,
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and for the massless singlet contributions interpolation grids are used in the ranges

• −40 < s/m2 < −0.125,

• 0.125 < s/m2 < 3.75,

• 4.25 < s/m2 < 16,

• 16 < s/m2 < 60.

In the remaining regions we implemented the series expansion around s = ±∞, s = 0,
and s = 4m2.

A copy of FF3l can be obtained with

$ git clone https://gitlab.com/formfactors3l/ff3l.git

A Fortran compiler such as gfortran is needed. The library can be compiled by running

$ ./configure

make

The command make will generate the static library libff3l.a which can be linked to the
user’s program. The module files are located in the directory modules which must be also
passed to the compiler. This gives access to the public functions and subroutines. The
names of all subroutines start with the suffix ff3l_.

It is instructive to look at a program that uses FF3l. We evaluate the vector form factor
F
v,(3)
1 (s) at s/m2 = 10 at order ε = −3, . . . , 0 in the ε expansion. The fortran program

looks as follows:

program example1

use ff3l

implicit none

double complex :: f1v

double precision :: s = 10

integer :: eporder

do eporder = -3,0

f1v = ff3l_veF1(s,eporder)

print *,"F1( s = ",s,", ep = ",eporder," ) = ", f1v

enddo

end program example1
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In the preamble of the program, use ff3l loads the respective module. The function
ff3l_veF1 returns the sum of non-singlet, massive, and massless singlet contributions to
the ultraviolet renormalized vector form factor F v

1 at three loops and receives two input
parameters:

double precision :: s

integer :: eporder

The variable s= s/m2 is the squared momentum transferred normalized w.r.t. the quark
mass. The order in the ε is set by the integer eporder. Only the values eporder=
−3,−2,−1, 0 are valid. The returned values is a double complex, corresponding to the

form factor value at third order as an expansion in α
(nl+nh)
s (m). We assume that the

strong coupling constant is renormalized in the MS scheme with the renormalization scale
µ = m. The choice whether to use interpolation grids or series expansion is handled
internally.

The other types of form factors can be evaluated in a similar way with the func-
tions ff3l_type where type can be veF1, veF2, axF1, axF2, scF1, psF1. These
six routines are implemented for the QCD group SU(3). We implemented also the
abelian form factors. The corresponding functions come with the suffix _qed, e.g.
ff3l_veF1_qed(s,eporder).

By default, if not set explicitly, the library assumes the number of massive and massless
quarks to be nl = 4 and nh = 1, respectively. However the user can chose other values,
for instance nl = 3 and nh = 1, in the following way:

call ff3l_set_nl(3)

call ff3l_set_nh(1)

Also by default all contributions from non-singlet and singlet diagrams are included. They
can be turned off with

call ff3l_nonsinglet_off()

call ff3l_nhsinglet_off()

call ff3l_nlsinglet_off()

and turned on with

call ff3l_nonsinglet_on()

call ff3l_nhsinglet_on()

call ff3l_nlsinglet_on()

In that case the output is the sum of the non-singlet and massive and massless singlet
contributions. In case a different linear combination is needed (see, e.g., Eq. (10)), the
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individual contributions have to be computed individually using FF3l and the combination
has to be done afterwards.

It is useful to interface the library to Mathematica for simple and fast numerical evaluation
and cross checks. To this end, we provide also a Mathematica interface by making use of
Wolfram’s MathLink interface (for details on the set up see Ref. [72]). The interface is
complied with

$ make mathlink

To use the library within Mathematica, the interface must be loaded

In[] := Install["PATH/ff3l"]

where PATH is the directory where the mathlink executable ff3l is saved. Form factors in
QCD are evaluated with one of the following: FF3lveF1, FF3lveF2, FF3laxF1, FF3laxF2,
FF3lscF1, FF3lpsF1. For example, the ε0 term of the vector form factor F1 at third order
in αs is evaluated in the following way:

In[] := s = 10;

In[] := eporder = 0;

In[] := FF3lveF1[s,eporder]

Out[]:= 60.1219 - 172.027 I

The number of massless and massive quarks can be set with FF3lSetNl and FF3lSetNh.
The contribution from non-singlet, nl- and nh-singlet diagrams can be switched on and
off with the following commands:

In[] := FF3lNonSingletOff[]

In[] := FF3lNonSingletOn[]

In[] := FF3lNhSingletOff[]

In[] := FF3lNhSingletOn[]

In[] := FF3lNlSingletOff[]

In[] := FF3lNlSingletOn[]

The standalone Mathematica package formfactors3l, which evalutes the bare and finite
form factors, can be found in Ref. [67].
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(Springer, Wien, 2013), 325–360 [arXiv:1304.4134 [cs.SC]].

[59] J. A. M. Vermaseren, Int. J. Mod. Phys. A 14 (1999), 2037-2076 [arXiv:hep-
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