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ABSTRACT: We use the Local Analytic Sector Subtraction scheme to construct a completely ana-
lytic set of expressions implementing a fully local infrared subtraction at NNLO for generic coloured
massless final states. The cancellation of all explicit infrared poles appearing in the double-virtual
contribution, in the real-virtual correction and in the integrated local infrared counterterms is
explicitly verified, and all finite contributions arising from integrated local counterterms are analyt-
ically evaluated in terms of ordinary polylogarithms up to weight three. The resulting subtraction
formula can readily be implemented in any numerical framework containing the relevant matrix
elements up to NNLO.
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1 Introduction

The coming decades will see a vast increase in the experimental precision of collider data, as the LHC
experiments move into the high-luminosity era. At the same time, the complexity of the observables
being probed in hadronic collisions is likely to increase as well, as more detailed information becomes
available about multi-particle final states. This future evolution on the experimental side poses a
significant challenge for the theory community, which is called upon to provide increasingly precise
predictions for ever more intricate observables. As a result, a number of innovative theoretical tools
for perturbative calculations have been developed over the last two decades, and continue to be
refined and extended (for a recent review, see Ref. [1]). Predictions at the next-to-next-to-leading
order (NNLO) in the strong coupling are rapidly becoming standard, even for relatively complex
final states (see, for example, Ref. [2-5]), while the frontier has moved to the third perturbative
order in the strong coupling (N3LO) for relatively simple processes [6, 7].

A necessary ingredient for the calculation of differential distributions to the required accuracy
is an efficient and automatic treatment of infrared singularities, which must cancel between virtual
corrections and the phase-space integrals of unresolved final-state radiation, or must be factorised
in a universal manner in the case of collisions involving hadrons in the initial state. The theoretical
foundations of this treatment are well understood (for a recent review, see [8]): the cancellation (or
factorisation) is guaranteed by general theorems valid to all orders in perturbation theory [9-13],
and hinges upon the factorisation properties of virtual corrections to scattering amplitudes [14-25]
and of real-radiation matrix elements [26-28]. The anomalous dimensions required for the infrared
factorisation of virtual corrections are fully known up to three loops [29, 30], while the real-radiation
splitting kernels have been computed at order a? [26-28, 31-33], with near-complete information
available also at o [34-47].

Notwithstanding this extensive body of knowledge, the construction of general and efficient
algorithms for infrared subtraction beyond NLO has proved to be a very difficult task. At NLO, the
task of handling infrared singularities was first approached with phase-space slicing methods [48, 49],
by isolating the phase-space regions where real radiation is singular, introducing for those regions
approximate expressions of the relevant matrix elements, and integrating analytically up to the
slicing parameter. To avoid residual dependence on the slicing parameter, subtraction methods [50—
53], see also [54], were later introduced, which work by defining local counterterms in all regions of
phase space affected by singularities, subtracting them from the full real-radiation matrix elements,
and then adding back their exact integrals. Some of these methods have been developed in full
generality, and versions of the corresponding algorithms are implemented in a number of multi-
purpose NLO event generators [55-63], providing a solution of the problem at this accuracy.

Beyond NLO, the handling of infrared singularities becomes significantly more difficult, both
conceptually and practically, due to the rapid increase in the number of overlapping singular regions,
to the need for considering strongly-ordered infrared limits, and to the mixing between virtual poles
and phase-space singularities. As a consequence, efforts to reach the same degree of universality
and efficiency as was achieved at NLO already span almost two decades. Many different approaches
have been proposed and pursued [64-85], as recently reviewed in Ref. [86]. Some of the methods
proposed belong to the slicing family, or define non-local subtractions, as is the case for Ref. [75],
while others adopt the local-subtraction viewpoint (for example [67, 70]); they also range from
predominantly numerical methods, as in [85], to predominantly analytical ones, as for example [73];
finally, they have reached varying degrees of practical implementation, culminating with the first
differential NNLO calculations for 2 — 3 collider processes with at least two QCD particles in the
final state at Born level, in Refs. [2-5, 87, 88].

All approaches to infrared subtraction beyond NLO are affected by considerable computational
complexity, either at the level of the analytic integration of counterterms, or at the level of numerical



implementation. Even if the underlying physical mechanism for the cancellation is essentially simple
and well understood, concrete technical implementations are intricate, and it is clear that there is
room for improvement in the universality, versatility and efficiency of existing algorithms. With
these goals in mind, we have developed an approach to infrared subtraction, which we call Local
Analytic Sector Subtraction [83, 89]. We attempt to optimise the structure of the calculation at all
stages, while maintaining full locality of the counterterms and complete universality for all hadronic
final states, as well as providing completely analytic expressions for all required counterterms and
their phase-space integrals, including finite contributions. We believe that the completion of this
programme will provide an extremely versatile tool: once fully analytic expressions are available, the
method can in principle be implemented within any existing numerical framework, and applications
to multi-particle final states will be limited only by the available computing power and multi-loop
matrix elements (see for instance Ref. [90]). In parallel, we are studying more formal aspects of
subtraction, from the point of view of factorisation [84], with the hope of further optimising the
structure of local counterterms, taking full advantage of the highly non-trivial structure of infrared
factorisation and exponentiation. In that context, we provided a set of definitions for soft and
collinear local counterterms which apply to all orders in perturbation theory, and we are currently
studying the necessary organisation of strongly-ordered infrared configurations [91].

In the present paper, we complete our subtraction programme for the case of generic massless
coloured final states. All relevant integrals were computed analytically in [92], requiring only
standard techniques. In order to achieve this simplicity, we exploited as much as possible the
existing freedom in the definition of local infrared counterterms. Specifically, a crucial element of
our approach is the smooth partition of phase space in sectors, each of which contains only a minimal
set of soft and collinear singularities, along the lines of Ref. [50]. The next important ingredient
is a flexible family of phase-space parametrisations, which can be applied sector by sector, and
in fact can be varied for each contribution to the local counterterms. This ultimately leads to a
minimal and simple set of phase-space integrals to be performed. Our final result is a completely
analytic subtraction formula, which gives the NNLO contribution to the differential distribution for
any infrared-safe observable built out of massless coloured final states (as well as with an arbitrary
set of massive or massless colourless final-state particles), and requires as input only the relevant
matrix elements: the double-virtual correction to the Born-level process, the one-loop correction to
the single-radiation process, and the tree-level expression for the double-real-emission contribution.

We present the architecture of our method in Section 2, beginning with a quick review of our
approach at NLO, for massless final states, to introduce the relevant notations in a simple con-
text!. The following sections give the details for the construction of all the ingredients entering
the subtracted formula. Section 3 discusses the subtracted double-real contribution, which is inte-
grable over the entire radiative phase space. Explicit expressions for all required counterterms are
included, as well as a detailed analysis of phase-space mappings. Section 4 organises the integration
procedure for all counterterms associated with double-real radiation, expressing the required inte-
grals in terms of a small set of basic integrals, which were discussed in Ref. [92] and are collected
here in Appendix E. Section 5 presents the subtracted real-virtual correction, providing an explicit
expression for the real-virtual counterterm. By combining together the real-virtual correction with
its local counterterm, and the integrals of the single-unresolved and the strongly-ordered countert-
erms, we build an expression that is both free of infrared poles and integrable in the radiative
phase space. The integration of the real-virtual counterterm is discussed in Section 6, and again
can be organised in terms of simple integrals. Finally, Section 7 gives the subtracted double-virtual
contribution, which is free of infrared poles, and Section 8 summarises our results, putting them in

LOur method provides a complete subtraction formalism at NLO, including the case of initial state hadrons, as
discussed in details in Ref. [89].



perspective. Several appendices collect useful formulas and some technical details of the formalism.

2 Subtraction for massless final states: a framework

We consider a generic process where an electroweak initial state with total momentum ¢, ¢ = s,
produces n massless final-state coloured particles at Born level, and we denote with A, (k;), i =

1,...,n, the relevant scattering amplitude?. The perturbative expansion of the amplitude reads
An(k;) = AD (k) + AV (k) + AP (k) + ..., (2.1)

where AE{“) is the k-loop correction, and includes the appropriate power of the strong coupling
constant. For such a process, we consider a generic infrared-safe observable X, and we write the
corresponding differential distribution as

do . dO’LO dO’NLo i dUNNLO

IX © dx IxX e + ... (2.2)

Our task is to express such differential distributions in a manifestly finite form, which is free of
infrared poles, and integrable over the appropriate phase spaces. In order to introduce our method
and notations, we begin with a brief review of the NLO calculation for massless final states.

2.1 Local Analytic Sector Subtraction at NLO

The standard expression for the NLO term in the distribution in Eq. (2.2) requires combining virtual
corrections to the Born term, which contain IR poles in € = (4 — d)/2, where d is the number of
space-time dimensions, and the phase-space integral of unresolved radiation, which is also singular
in d = 4. One must then compute the combination

doyio

o = lim Udcbnvan(X) +Jd<1>n+1R5n+1(X)]. (2.3)

Here 0,,(X) = 0(X —X,,,) fixes X,,,, the expression for the observable X, computed for an m-particle
configuration, to its prescribed value, d®,, denotes the Lorentz-invariant phase-space measure for
m massless final-state particles, and

R = ‘Aﬂl SV~ 2Re [AS))TA;”] : (2.4)

are the real and the (MS-renormalised) virtual contributions, respectively. To rewrite Eq. (2.3) in
terms of finite quantities we need a sequence of steps. First, we must define a local counterterm,
denoted here by K, which is required to reproduce the singular IR behaviour of the real-radiation
matrix element R locally in phase space. At the same time, it is expected to be simple enough to
be analytically integrated in the phase space of the unresolved radiation. In order to perform this
integration, we need to introduce a parametrisation of the radiative phase space d®,,,1, which must
factorise as

ATy = 4D, d g, (2.5)

n

where, as before, d®,, is the phase space for n massless particles, while d®,.q is the measure of
integration for the degrees of freedom of the unresolved radiation, and we explicitly extracted the

2The subtraction presented in the following applies with no modifications to the case of an arbitrary number of
colourless particles accompanying the n coloured ones in the final state, so that in general ). k; # ¢. Just for the
sake of notational simplicity, we will assume n to coincide with the total number of final-state particles and the total
momentum to be q.



ratio of the relevant symmetry factors ¢,,1 and ¢,. The factorisation theorems for real radiation
guarantee that the function K will be a combination of products of Born-level squared amplitudes
(to be integrated over d®,,) and infrared kernels, to be integrated in d®,,q. Once a parametrisation
yielding Eq. (2.5) is in place, one can compute the integrated counterterm

I = qu)wdf(. (2.6)

Eq. (2.6) will reproduce, by construction, the infrared poles arising from the integration of the real-
radiation squared matrix element. It is now possible to rewrite Eq. (2.3) identically as a combination
of virtual corrections and real contributions that are separately finite, and therefore phase-space
integrals can be performed numerically when needed. Using §d®, 1K = {d®,, I, we obtain

dfggo - Jd@nvsub(X) +fd<1>n+1Rsub(X), (2.7)
with
Ven(X) = (V+1)6,(X), Ropn(X) = R61(X) — K6, (X). (2.8)

The subtracted real matrix element Rq,,(X) is free of phase-space singularities by construction,
while Vg, (X) is finite as € — 0 as a consequence of the KLN theorem, and both contributions
are now suitable for a numerical implementation in four space-time dimensions. Notice that the
IR safety of the observable X is necessary for the cancellation, which requires that d,,41(X) turns
smoothly into &, (X) in all unresolved limits.

Egs. (2.3)-(2.7) provide just an outline of NLO subtraction task: the actual definition of the
required local counterterm is in fact not unique, and characterises the subtraction scheme. Fur-
thermore, it is necessary to include a prescription to perform the phase-space mapping implied by
Eq. (2.5). Within the context of Local Analytic Sector Subtraction at NLO, we proceed as follows.

o We define projection operators S; and C;; that extract from the real-radiation squared matrix
element R its singular behaviour in soft and collinear limits. In practice, one must pick specific
phase-space variables in order to perform the projection: one could for example choose a
Lorentz frame and define the soft limit in terms of the energy of particle ¢ in that frame, and
the collinear limit in terms of the angle between ¢ and j, as was done in Ref. [50]. We prefer
to use Lorentz-invariant quantities, as discussed in detail in Refs. [83] and [89]. Concretely,
we introduce the variables

ssij

e, = — wij = (2.9)
7 s ) ij Sqisqj7

where sq¢ = 2¢ - k,. We then define S; as extracting the leading power in e;, and C;; = Cj;
as extracting the leading power in w;;. It is not difficult to verify that, with this definition,
the two operators commute when acting on the squared matrix element, S; C;; R = C;; S; R.

e We then partition the radiative phase space into sectors, defined by introducing a set of sector
functions, W;;, along the lines of Ref. [50], which constitute a partition of unity, namely a
set of kinematical weights smoothly dampening all radiative singularities but those due to
particle ¢ becoming soft, or becoming collinear to a second particle j. Our sector functions
are constructed in terms of Lorentz invariants. We indeed define

o1y = . Wiy = <

L — 2.10
€W Dkl Okl (2.10)



satisfying >, ; Wij = 1. These sector functions have the further defining property that their
soft and collinear limits still form a partition of unity. Indeed, one easily verifies that

S; Z Wir =1, Cij [Wij + Wji] =1. (2.11)
k#i
Eq. (2.11) guarantees that, upon summing over sectors, the full soft and collinear singular-
ities will be recovered, and sector functions will not explicitly appear in counterterms to be
integrated.

The purpose of introducing sector functions is to minimise the number of singular limits of
RW;j, so that we can easily identify a combination which is by construction integrable in the
radiative phase space. Indeed, in sector (ij)

(1-8:)(1—Cij) RW;; = RWi; — LY RW,;; — integrable, (2.12)

where we introduced LEJI-) = S; + C;; — S; C;;. We stress here that the operators S; and
C,; are defined to act on all elements that lie to their right: therefore, if L denotes a generic
singular limit, the relation L RW;; = (L R) (L W;;) is understood. Summing over sectors we
get the expression

SO RW, = 33 [si+ Cy1 -8 |[Rwy, (2.13)
i@ i i@ i
which satisfies the requirement of reproducing the singular behaviour of R in all soft and

collinear regions. Eq. (2.13), however, cannot yet be used directly in Eq. (2.7), since it does
not properly factorise a Born-level squared matrix element involving n on-shell particles.

For this purpose, we must introduce a set of mappings of the (n + 1)-particle momenta {k}
onto the n-particle momenta {k}, which must not affect soft and collinear limits at leading
power. We adopt the Catani-Seymour mappings [51]

7. ] . 7 Sab 7 Sabe

k(abc) — k. itabec: k(abc) — kot — a k.. Jlabe) _ _ Zabe 4 2.14

i 79 sy Uy Oy b a b Sae & Sbe cy c Sae + Sbe cH ( )

where ¢ runs from 1 to n + 1. The mappings above satisfy the on-shell and momentum-
conservation conditions

n n+1
(]%j(‘abc))Q =0, j=1,....n; Z ];ylbc) — Z k; . (215)
j=1 i=1

One easily verifies the two sets of momenta coincide when k, becomes soft, and when £k,
becomes collinear to ky.

Finally, we can turn Eq. (2.13) into a local counterterm, by using the factorised expressions
for soft and collinear limits of R, and evaluating the Born-level squared matrix elements with
the mapped momenta defined Eq. (2.14), sector by sector in the radiative phase space. We
do this by introducing improved projection operators S; and Cij, which are defined at NLO
to project on leading-power soft and collinear limits, and at the same time apply the selected
phase-space mappings. For NLO massless final states their action is defined by

SiR=-ND Y DB, (2.16)
c#i d#1,c
_ PO
Cy; R = Ny —20) plian) |
: 557
gléwR = 2N10fj gj(:,)B(Ur), r="Tij.



The quantities entering Eq. (2.17) are defined as follows. We denote by B the Born matrix el-
ement squared, B = |A7(10) |2, while B,,, is its spin-correlated counterpart, defined by removing
the gluon polarisation vectors from the matrix element and from its complex conjugate®. Simi-
larly, B4 is the colour-correlated Born, defined in Eq. (A.5). These three objects are evaluated
in Eq. (2.17) with mapped momenta, and are therefore denoted with a bar and with a label
identifying the specific mapping to be employed. Thus, for example, B#™) = B({k}(#™)) is
the Born squared matrix element with mapped momenta {k}(™). Furthermore, Cy, is the
Casimir eigenvalue of the colour representation of parton j, while the eikonal kernel S{E? and
the DGLAP kernels Pi‘]‘.l('r) are presented in Eq. (B.3) and Eq. (B.7) respectively*. The overall
normalisation is given by

26’YE €
Ny = Sma, <“47T ) . (2.17)

Importantly, the improved operators must preserve the correct soft and collinear limits of R
to ensure the locality of the subtraction procedure: in this case, one must verify that

SlglR = SZR, Cijéin = Cin7 (218)
as well as
These consistency conditions are indeed verified by Eq. (2.17). We also stress that r = r;
is any particle different from 4, j, chosen according to the rule defined in Eq. (A.14) (in this
case it means that the same r must be chosen for the pair ¢j and for the pair ji). In what
follows, we will describe the action of the improved operators as realising improved limits.

Notice that, at this stage, we have a residual freedom in the definition of improved limits of
sector functions, subject to the preservation of the constraints in Eq. (2.11) and in Eq. (2.12).

e The definition of the improved operators given above contains a subtlety [89], which must be
analysed with care. The DGLAP kernels Pi’;l('r) reported in Appendix B are written in terms
of the invariants

wpo= —r g = S (2.20)

Sir + Sjr Sir + Sjr

as opposed to the energy fractions e;/(e; +€;), €j/(e; + €;). This is a useful choice in view of
analytical integration, and a legitimate one since z; and =; reduce to e; and e; in the collinear
limit C;;. This choice, however, introduces spurious singularities in the collinear limits C;,.
and C;, in the sectors W;; and Wj;, so that the combination (1 — S)(1 - él-j)R W;j is not
integrable in the limits C; and C;,. This problem can be solved by using our freedom to
define the action of the improved operators S; and 61-]» on sector functions W;; (r = ry;):

1

— W — €W [
SiWi; = SiWi; = =24,  CyW,; = ——2" S, C,;w,; =1. (221
J J Zu%, J J €iWir +€w;, J J ( )
I#£i

The presence of the angular factors w;, and wj,, vanishing in the C;, and C;, limits respec-
tively, allows to verify the following auziliary consistency conditions

Cir{17

er { 1 5 §1 5 éij 5 §1 623} RW” i integrable, (222)

Si, Cij (1-58)) }RWij — integrable,

3If the parent parton in the collinear ij splitting is not a gluon, the corresponding kernel is diagonal in spin space
by helicity conservation, and B, reduces to B.

4We note that, as seen in Appendix B, these and all other kernels are written in terms of Lorentz invariants and
in a manifestly flavour-symmetric notation.



on top of the standard ones, corresponding to Egs. (2.18) and (2.19), which now need to be
written explicitly including the sector functions, as

Si { (1 - gz) s éij (]. - §1) }RWU i integrable,
Cij { (1 — éij) , gl (1 — 6”) }RW” i integrable. (223)

Recall that in Eq. (2.22) the index r labels the reference vector used to define the collinear
kernel P;;l(’r): in fact, all collinear projection operators should properly be labelled with the
index r, which in general we omit for brevity. Notice also that our definition of improved
limits of sector functions, Eq. (2.21), is not symmetric under ¢ < j. As a consequence, the
two lines of Eq. (2.22) are not identical: in the first line, only the combination éij(l -8S)
gives an integrable result in the 7 collinear limit, when acting on R W;; (which is sufficient for
our purposes), while in the second line éij and S; élvj give separately integrable contributions

in the same limit.

With these definitions, our first expressions for the NLO local counterterm is

K = Z Kij; Kij = (gz"_éw —§161]>RW” (224)
i

so that the subtracted squared matrix element is given by

Ran(X) = Y. RIP(X), RYP(X) = RWijbni1(X) — Kij 6,(X). (2.25)
i,j#i

The counterterm defined in Eq. (2.24) is sufficient to construct a fully functional subtraction
algorithm at NLO. There is however some room for optimisation: for example, we note
that the sector functions W;; are useful to identify the improved limits to be defined, and
the consistency relations they must satisfy, but the stability of numerical integrations will
improve when sectors involving the same parametrisations are combined. To pursue this idea,
we introduce symmetrised sector functions defined by

Zij = Wij + Wji . (2.26)

The corresponding improved limits read

1
SiZij = SiWij = 2“’7]1) Cij2ij =1, 8,C;zi; = SiCyW;; = 1. (2.27)
Wil

l#i

This symmetrisation of the sector functions reduces the number of sectors and, to some extent,
simplifies the scheme in view of an efficient numerical performance. In fact, the counterterm
K, with symmetrised sector functions, can be written as

K = ZK{”}, K{U} = (gz +§j +TCij)RZij, (2.28)
ij>i

where we have introduced the hard-collinear improved limit

he,uv
HC,R=C;(1-S,-S,)R = M\ %@ngﬂ, (2.29)
i

with the hard-collinear splitting kernel Pi};z’r’;” defined in Appendix B. The subtracted squared

matrix element is now given by

Ran(X) = D RUB(X),  RUPR(X) = RZij 0041 (X) — Kjp6a(X) . (2.30)

1,5>1



A third expression for the NLO counterterm, important for analytic integration, is obtained
by summing over all sectors. Using Eq. (2.11), one can then write

Ran(X) = Ro,1(X)—K6,(X), K =) SR+ > HC;R. (2.31)

i5>i

This expression for R, (X), though very compact, is not the most suited for numerical
implementation: the expression in Eq. (2.30), with symmetrised sector functions, is to be pre-
ferred, since it allows to parallelise the contribution of different sectors, and to independently
optimise their numerical evaluation.

As discussed in detail in [83, 89, 92], these definitions enable a straightforward integration of local
counterterms, and yield an implementation of NLO subtraction that can be extended to initial-state
radiation as well. We now turn to the case of NNLO massless final states.

2.2 Local Analytic Sector Subtraction at NNLO

The NNLO contribution to the differential cross section in Eq. (2.2) can be written as

LR [ | a2, vV 6,0) + [ doia RV 5,00(0) + [ a2 B 6n+2(X)] C@32)

where

2 2
RR = |A[, RV = 2Re[ADS AL, ] vV = [AD] 4 2Re [AD AT ] (233)

In this case, the MS-renormalised double-virtual contribution V'V displays IR poles up to €4, the
double-real RR contains up to four phase-space singularities, and the MS-renormalised real-virtual
term RV has poles up to e~2 and up to two phase-space singularities. In order to rewrite Eq. (2.32)
as a sum of finite contributions, we will define four local counterterms, which we label K1), K (2),
K (12) and K®Y) | The counterterm K () is designed to reproduce all phase-space singularities of
RR due to a single particle becoming unresolved, while K () takes care of situations where two
particles become unresolved at the same rate. The two sets of singularities overlap, and K (12)
is responsible for subtracting the double-counted overlap region. Finally, K®Y) will subtract the
phase-space singularities arising from the single-real radiation in RV'.

In order to integrate these counterterms, we will need to introduce phase-space parametrisations
factorising single and double radiation, in analogy with Eq. (2.5). In this case we will need the
factorisations

ADyi0 = 24, 1 dBrag,  dBrys = 22 AP, dBrags,  dBryr = 2L dD, dBrag. (2.34)

n+1 Sn Sn

Once a parametrisation yielding Eq. (2.34) is in place, one can define integrated counterterms as
I = Jdcpde(l), I® = fdcpmdzf((?),
102) = f AP raq K 12 TRY) = f A®raq K BY) (2.35)

We are now ready to write down the master formula for our subtraction at NNLO: in the rest
of the paper we will precisely define and construct all the necessary ingredients, generalising the
discussion summarised in Section 2.1. We aim to construct an expression of the form

doxnio

dX

= Jd@n VVewn(X) + Jd@nﬂ RVau(X) + f AP 5 RR (X)), (2.36)



where each one of the three contributions is finite in € and is free of phase-space singularities.
Using the local counterterms introduced above, and their integrals over the radiative degrees
of freedom, the subtracted matrix elements V'V, RVsu, and RR g, are given by

RVoin(X) = (RV + 1) 6,0(X) = (K& 4+ 109) 5,(X), (2.38)
RRup(X) = RR6pia(X) — KM 6,4 (X) - (K @) _ K<12>) Su(X) . (2.39)

Once again, Eqs. (2.36) and (2.37)-(2.39) provide an identical rewriting of Eq. (2.32): their logic is
as follows:

e in Eq. (2.39), RR,»(X) must be integrated in the full phase space ®,, 12, and it is built out
of tree-level quantities®, therefore has no explicit IR poles. It has no phase-space singularities
either, since single-unresolved contributions are subtracted by K (1), double-unresolved con-

tributions are subtracted by K (), and their double-counted overlap is reinstated by adding
back K (12),

e in Eq. (2.38), RV must be integrated in ®,,.1, and is affected by both explicit IR poles and
phase-space singularities. The IR poles arising from the loop integration in RV are cancelled
by the integral 7 (), by virtue of general cancellation theorems; the first parenthesis is thus
finite, but both terms are singular in the phase space of the radiated particle. By construction,
the phase-space singularities of I (1) are cancelled by T2 and K®V) is designed to cancel
the phase-space singularities of RV. This however does not guarantee that explicit IR poles
will cancel in the second parenthesis. Anyway, one can fine-tune the definition of K ®VY) by
including explicit IR poles not associated with the phase-space singularities of RV, in order
to make the second parenthesis finite as well. At this point, Eq. (2.38) is both finite and
integrable.

e The complete cancellation of real and virtual singularities in Eq. (2.38) and Eq. (2.39) guar-
antees then, as a consequence of the KLN theorem, that Eq. (2.37), to be integrated in the
Born-level phase space ®,,, will be free of IR poles.

In the next sections we will construct explicit expressions for all counterterms, compute their
integrals analytically, and finally obtain RRsup(X), RVsup(X) and VVgp(X). As was the case
at NLO, this will require identifying the relevant single- and double-unresolved limits, introducing
an appropriate set of NNLO sector functions, and defining flexible and consistent phase-space
mappings. Needless to say, the multiplicity of singular configurations and of their overlaps will lead
to long and intricate expressions: therefore, detailed formulas for NNLO soft and collinear kernels,
for the relevant mapped limits, and for the required integrals, as well as a number of notational
shortcuts, will be presented in the Appendices.

3 The subtracted double-real contribution RR,,

In this section we provide a detailed construction of the subtracted squared matrix element for
double-real radiation, RR . As noted in Eq. (2.39), this will require the definition of three separate
local counterterms. From a combinatorial viewpoint, this task represents the most intricate part of
the NNLO-subtraction programme, due to the large number of overlapping singular limits affecting

5We have implicitly understood the underlying Born reaction to be associated with tree-level diagrams; however,
in case of loop-induced processes, all arguments and techniques presented in this article carry over.
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double-real radiation. In analogy to Section 2.1, we will proceed as follows: first, in Section 3.1, we
will list and briefly discuss the relevant singular limits, which can be single- or double-unresolved;
next, in Section 3.2, we will introduce a set of sector functions, smoothly partitioning the (n + 2)-
particle phase space so as to minimise the number of singular configurations to be considered in any
given sector. These sectors will naturally be grouped into three different topologies, corresponding
to the structure of the limits relevant to each sector. Next, in Section 3.3, we will identify specific
combinations of limits that yield integrable contributions in each topology, in the spirit of Eq. (2.12);
we will then construct, in Section 3.4, a family of phase-space mappings in order to properly
factorise the double-radiative phase space in all relevant configurations. Finally, in Section 3.5,
we will introduce improved limits appropriate for each topology, discuss the required consistency
conditions, and then use the improved limits to compose an expression for the subtracted double-
real contribution RR . As was the case at NLO for single-real radiation, it is possible to improve
upon the resulting expression for RR gy, by introducing symmetrised sector functions in order to
optimise the subsequent numerical integration. This construction is discussed in Section 3.6. We
note that the construction presented in this paper differs slightly in some technical choices from the
one given in Ref. [83]: we will note the differences as we go along.

3.1 Singular limits for double-real radiation

Double-real radiation matrix elements are characterised by a variety of overlapping singular limits.
It is important, from the outset, to pick a complete set of limits, in order to then study (and
subtract) their overlaps, to avoid double counting. Clearly, single-unresolved soft and collinear
limits are relevant also for double radiation, so our list must include the limits S; and C;; introduced
in Section 2.1. Next, we need to collect all possible double-unresolved limits. Importantly, when two
particles become unresolved, one needs to distinguish uniform limits, where the rate at which the two
particles become unresolved is the same, and strongly-ordered limits, where one particle becomes
unresolved at a higher rate with respect to the second one. Obviously, this distinction becomes
relevant starting at NNLO. Our set of fundamental uniform limits consists of four independent
configurations. First, two particles ¢ and j can become soft at the same rate, a limit which we
denote by S;;; second, a single hard particle can branch into three collinear ones, ¢, j and %, a
limit which we denote by C,;; third, two hard partons can independently branch into two collinear
pairs, which we denote by C,;;, with (¢, ) and (k,{) labelling the two independent pairs; finally,
a particle i can become soft while another pair of particles, j and k, become collinear at the same
rateS, which we denote by SCiji. In these four limits, the double-real-radiation squared matrix
element factorises, with the relevant kernels derived and presented in Ref. [27]. Given these uniform
limits, the strongly-ordered ones can be reached by acting iteratively: for example, the strongly-
ordered double-soft limit, with particle ¢ becoming soft faster than particle j, can be reached by
computing S; S;;,while the strongly-ordered double-collinear limit, with particles ¢ and j becoming
collinear faster than the third particle £, will be given by the combination C;; C;j;. All singular
configurations can be reached in this way.

In order to proceed, we need to characterise the limits more precisely, in terms of phase-space
variables. As was the case at NLO, we choose to define the limits in terms of Mandelstam invariants,
and we pay attention to the fact that all limits must commute when acting on the double-real
radiation squared matrix element. Using the variables e; and w;; given in Eq. (2.9), the definitions
of the independent limits, both single-and double-unresolved, are specified in Table 1. Importantly,
our choice of independent limits is related to our choice of sector functions, which will be tuned so
that only a minimal pre-defined set of the chosen limits will contribute in each sector.

6In Ref. [83], two strongly-ordered soft-collinear limits were considered, instead of the uniform one chosen here.
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S; e; — 0  (soft configuration of parton i)

Cij w;; — 0 (collinear configuration of partons (i, 5))

Sij ei,e; — 0 and e;/e; — constant

(uniform double-soft configuration of partons (7, 7))

Cijk Wij, Wik, Wik — 0 and w;j /wig, Wij /Wjk, Wik/wj, — constant

(uniform double-collinear configuration of partons (i, j, k))

Cijri | wij, wp — 0 and w;;/wy; — constant
(uniform double-collinear configuration of partons (4,5) and (k,1))

SCijk | e, wjr — 0 and e;/w,; — constant
(uniform soft and collinear configuration for partons i and (7, k))

Table 1. Definitions of the single-unresolved singular limits S;, C;; and of our set of basic independent
double-unresolved singular limits S;;, Cijx, Cijri, SCijk.

3.2 Sector functions and topologies for double-real radiation

We now introduce a smooth unitary partition of the double-real-radiation phase space, in the spirit
of Ref. [50]. Since at most four particles can be involved in singular infrared limits at NNLO,
we label the sector functions with four indices, and denote them by W;jr;. We pick the first two
indices to label the single-unresolved configurations assigned to the chosen sector. In particular,
we will design the sector (ijkl) to contain the limits S; and C;; (thus we take j # 7). We then
need to distinguish sectors involving only three distinct particles from sectors involving four distinct
particles. In sectors where only three particles are involved, the double-unresolved limit C;j;, will
be relevant; furthermore, a second particle (besides i) may become soft, and it can be particle j or
particle k. Correspondingly, we will have distinct sector functions W;;;, and Wji;, where we take
the third index to indicate the second particle that can become soft. Similarly, if all four indices
are distinct, we take Wjji to select the sector where particles ¢ and & can become soft, while the
possible collinear pairs are (4, j) and (k, ). Notice that in all cases the last three indices j, k and [ are
distinct from ¢, and k # I. We will refer to the three allowed combinations of sector indices, (ijjk),
(ijkj) and (ijkl) as topologies, and we will denote them collectively by 7 = abed € {ijjk,ijkj, ijkl}.

We now need to introduce a precise definition of NNLO sector functions, which will enable us to
list all the fundamental limits contributing to each topology. As was done at NLO (see Eq. (2.10)),
we will define NNLO sector functions as ratios of the type

Oabed
Wabed = g’ g = Z Z Oabed 5 (31)
a,b#a c#a
d+#a,c

so that

Z Z Weaved = 1. (3.2)

a,b#a c#a
d#a,c

Such a partition allows us to rewrite the double-real squared matrix element RR as

RR= Y > > RRWijm = ». >, [RR Wijjk + RR Wi + >, RR Wijkl] . (3.3)
i, 541 k#i l#ik i, j#i k#i,j 1,5,k
Our choice for the functions ogp.q” is given by

1 1
_ >1. 3.4
Oabed (ea wab)a (ec + 5bc €a) Wed ’ o ( )

"This choice corresponds to setting a = 8 in the NNLO sector functions introduced in Ref. [83].
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Given Eq. (3.4), we can list which of the fundamental limits discussed in Section 3.1 will affect each
topology. One finds that the combination RR W, will be singular in the limits listed below.

RRWijj = Siy Cij, Sij, Cik, SCyjk;
RRWijkj + Si, Cij, Sk, Cijk, SCyjk, SCpijs; (3.5)
RRWijri = Si, Cij, Sik, Cijri, SCirr, SCrij-

In analogy with the NLO sum-rule requirements in Eq. (2.11), also NNLO sector functions which
share a given singular configuration must form a unitary partition. This is a crucial feature in order
to minimise the complexity of the counterterm structure in view of analytic integration. The choice
of the functions o4peq in Eq. (3.4) guarantees that the required partial sums reduce to unity. For
example, we report the sum rules for the double-unresolved limits in Table 1, which read

Sik (Z Z Wibka + Z Z kaid) =1, (3.6)

b#i d#i,k b#k d#k,i

Cijrk Z (Wabbe + Waber) = 1, Cijkl Z (Wabed + Wedas) = 1, (3.7)

abcem(ijk) abe ﬂgijg
cdem(kl

SCijk < Z Widab + Z Wabid> =1, (3.8)

d#1 d#1i,a
abe w(jk) abe(jk)
where by 7(ij) and 7w (ijk) we denote respectively the sets {ij, ji} and {ijk,ikj, jik, jki, kij, kji}.
In order for the double-real contribution to properly combine with the real-virtual correction,

we require NNLO sector functions to factorise into NLO-like sector functions under the action of
single-unresolved limits. As discussed in Ref. [83], and below in Section 5, this ensures the local
cancellation of integrated phase-space singularities with the poles of the real-virtual correction,
sector by sector in the single-radiative phase space: indeed RV needs to be partitioned with NLO-
like sector functions, since it involves a single-real radiation. As an example, one may verify that
the sector functions for the topology (ijjk) satisfy

Si Wijjk = Wik Si WZ-(J-Q)7 Cij Wijje = Wyijik Cij Wi(ja)7 Si Cij Wijjk = Wik S; Cij W7;(ja)7 (3.9)
where Wi, i, is the NLO sector function defined in the (n + 1)-particle phase space including the
parent parton [ij] of the collinear pair (7, ), and we introduced the NLO-like, a-dependent sector
functions

5@

w@ — _ i (@) _ 1

o) o W 0! S a>1 (3.10)
¥ a) ? ©] Cap. Yo ’
Zk;él Jl(cl) (ei wij)

so that ordinary NLO sector functions are given by W;; = Wi(jl). Similar relations hold for the
other two topologies.

3.3 Combining singular limits of topologies

As listed in Eq. (3.5), a limited number of products of IR projectors is sufficient to collect all singular
configurations of the double-real squared matrix element in each topology. Since the action of the
relevant limits on both RR and on the sector functions does not depend on the order they are
applied, the following combinations are by construction integrable in the whole phase space
(1 — Sz) (1 — C”) (1 — S”) (1 — Cijk) (1 — SCi]‘k) RR Wijjk - integrable,
(1-5S;)(1 - Cij) (1—-Si) (11— Cijk) (1-— SCijk) (1-— SCM]‘) RR W;j,; — integrable, (3.11)
(1 — Si) (1 — Cij) (1 — Sik:) (1 — Cijkl) (1 — SCZ-M) (1 — SCkij) RR Wijkl — integrable.
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Note that, in analogy to the definition used for NLO projection operators, if we take L to be any
one of the singular limits in Table 1, the action L RRWgpeq = (L RR) (L Wapeq) is understood for
all topologies.

Applying directly Eq. (3.11) would be quite cumbersome, as the three lines generate a total of
160 terms. Fortunately, the resulting combinations of limits are not all independent, and several
non-trivial relations can be obtained exploiting the symmetries of the limits under exchanges of
indices, as well as the definitions of the various limits involved as projection operators on singular
terms of RR. Consider for example, in four-particle sector W, the projection (1 —S;;) RRW;j.
This will contain only terms in RR that are not singular in sector (ijkl) when the uniform soft
limit is taken for particles i and k. As a consequence, if further projections involving both the i and
k soft limits are taken, the result will be integrable. We conclude, for example, that

SCW SCkij(l - Szk) RR Wijkl - integrable. (312)

Working in this way, topology by topology, we can write a set of finite relations, which help us
remove redundant configurations contributing to Eq. (3.11). They read

Ci; SCijr(1 —S;)(1 — Sy

) ijk) RR W;jjr — integrable,
S; SC;%]( zk)
Sik)

C
Cijk) RR W;ji; — integrable,
Ci; SCiji(1—8i)(1 Cijr) RR Wijr; — integrable,
Cij Sik(1 —8;)(1 — SChyj) Cijx) RR W;ji; — integrable,
SCijk SChij(1 — Six) RR Wiji; — integrable,
SiSChij(1 — Six)(1 — Cijri) RR Wijri — integrable,
Si Cijri(1 —Si)(1 — SCipi) RR Wijp — integrable, (3.13)
Cij SCiri(1 —S;)(1 — Six)(1 — Cyjri) RR Wijry — integrable,
Cij Sik(1 —8;)(1 — SCj)(1 — Czjkz) RR W;jx — integrable,
)
)
)

(1-—
(1-—
(1-—
(1-—

SCiu Scki]’(l Sik) RR W;j;ii — integrable,
Cijkl Sik( —SC;u) RR Wijkl — integrable,
Czjkl Szk(]- - SC;W RR Wijkl i integrable.

These finite relations allow us to simplify considerably Eq. (3.11), leading to the integrable expres-
sion

RRW, — (LZ(.;) L L@ - L§12>) RRW, — integrable, (3.14)

which is the NNLO equivalent of Eq. (2.12) for double-real radiation®. In Eq. (3.14) we distin-

guished, for each topology 7, the single-unresolved limit Lg)

Lg), and the strongly-ordered double-unresolved limit L(le)

, the uniform double-unresolved limit

. Their explicit expressions for each

8Note that there is no ambiguity in the notation: we denote by (ij) the first two indices of the sector, which are
common to all three topologies.
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topology, in terms of the projectors discussed in Section 3.1, are

LY =S, +Cy(1-8)),

L) = Sy +SCiji (1 - 8y;) + Cijie (1 Si) (1 = SCyjp)

L% = Sit + (SCiji + SCrij) (1 — Sir) + Ciji (1 — Sir) (1 — SCyjis — SChij)

Lg;il = Sir + (SCirt + SChrij) (1 — Six) + Cijrr (1 + Six — SCixy — SChij) ,

L) = 8:[Si + SCux (1 - Sy) + Ce (1~ 815) (1~ STy | (3.15)

— Cij (1
L2 — s, [s,¢ +8Cij (

~S)) [sij + Cyp (1 — sij)] ,
1—Si) + Cijr (1—Si) (1 — scijk)]
S

— Cij (1 — Sl) [SC]”‘J‘ + Cijk (1 — SC]WJ)] R
L7 = Si[Sik + SCusa (1 = Six) | = Cij (1 = 8:) [SChij + Cigua (1 = SCiy) |

The projection operators appearing in Eq. (3.15) are organised so as to display, in order, the soft (S),
the uniform soft and collinear (SC) and the collinear (C) singular contributions. Upon summing
over sectors, Eq. (3.14) and Eq. (3.15) build up the equivalent at NNLO of Eq. (2.12) and Eq. (2.13),
for double-real radiation: indeed, applying the limits defined in Eq. (3.15) on RR and on the sector
functions gives the starting point to determine the form of the counterterms for each sector, since
the limits contain all phase-space singularities of RR in a given sector, without double counting.
In order to promote them to actual counterterms, it is now necessary to introduce phase-space
mappings, allowing to properly factorise the (n + 2)-body phase space into an (n + 1)-body phase
space times a single-radiation phase space for L(Y) and L(?) | and into an n-body phase space times
a double-radiation phase space for L(?), as shown in Eq. (2.34). We now turn to the discussion of
these mappings.

3.4 Phase-space mappings for double-real radiation

There is considerable freedom to define phase-space mappings for double-real radiation (see for
example [93]). We have chosen to use nested Catani-Seymour final-state mappings, which involve a
minimal set of the (n + 2) momenta, and are built in terms of Mandelstam invariants, simplifying
both the factorised expression for the (n + 2)-body phase space and the dependence of the coun-
terterms on the integration variables of the radiative phase spaces. In this framework, the mappings
to factorise the (n + 2)-body phase space into an (n + 1)-body phase space times a single-radiation
phase space, necessary for L(Y) and L(?), can be constructed with the same procedure followed at
NLO, and one is lead to Eq. (2.14) and Eq. (2.15), with ¢ running from 1 to n + 2, and j running
from 1 ton + 1.

For the construction of an on-shell, momentum conserving n-tuple of massless momenta in the
(n + 2)-particle phase space, necessary for L(?), we distinguish the following three possibilities.

e We choose six final-state massless momenta ko, ky, ke, kq, ke, ks (all different) and construct
the n-tuple (without k, and ky)

7.1 (acd,be 7 (acd.be 7.(acd,be 7 (acd.be 7 (acd,be
(R aete) — Lk} gyuggp, RooheD Fipetted) gloctben) aeatelll = (3.16)
with
Eéacd,bef) — Ky + ke — Sac kq, kc(lacd,bef) _ Sacd K,
Slacld Slacld
]_ggacd,bef) — Ky + k, — Sbe kf7 I—ﬂ;acd,bef) _ Shef k'f, (317)
Slbelf Slbel f
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while all other momenta are left unchanged (EﬁbaCd’bef) =k,,n #a,bcde, f). Here and in
the following s[ap)c = Sac + Spe-

e We choose five final-state massless momenta kg, kp, k¢, k4, ke (all different) and construct the
n-tuple (without k, and k)

(kylacdbed) _ {{k}¢5¢d¢’ ]-Cgacd,bed),]—géacd,bed)’]—ggacd,bed)} , (3.18)
with
Egacd,bed) — o+ Ky — Sac kg, Ec(lacd,bed) _ <1+ Sac n Sbe >kd7
Slacld Slac)d S[beld
flacdbed) _ oy p Ste ka, (3.19)
S[beld

while all other momenta are left unchanged (l%,ﬁ“d’bed) =k,,n #a,bcde).

e We choose four final-state massless momenta kg, ks, kc, kq (all different) and construct the
n-tuple (without k, and kj)

 Caed.be = (abe.be = (abe 7.(abed) 7.(abed
{k}( d,bed) _ {k}( be,bed) _ {k}( bed) _ {{k}¢lf¢¢la ICE b d)?k((i )} , (320)
with

7. Sabc 7.(abed) Sabed
[ GRS A SN — L C— k = — k 3.21
¢ ¢ ’ © Sad + Sbd + Scd ¢ d Sad + Sbd + Sed ¢ ( )

while all other momenta are left unchanged (l_ﬂﬁlade) =k,,n#a,b,cd).

With these tools, we are now ready to construct improved infrared projectors, with a proper fac-
torised structure, and we can use them to define our counterterms.

3.5 Building RR,, with improved singular limits

To write explicitly the counterterms we introduce improved versions of the limits in Table 1

ga; Caln Sab; 6aba Cabcd; @abc

They are to be interpreted as operators which, on top of extracting the corresponding singular limit
on the objects they act on, convey a specific mapping of momenta, to be defined case by case, and
may be further refined (for example by tuning their action on sector functions) in order to ensure
the local cancellation of singularities after the implementation of phase-space mappings.

Given the definitions of the improved limits (to be discussed below) we can construct the
expression for RR gy, in the following way. First, we define the improved version of the various
L operators corresponding to the limits in Eq. (3.15), for each topology, denoting the improved
operators by L. Next, we define our local counterterms, for each topology ™ = ijjk, ijkj,ijkl, as

M - TV RRW, K@ =LTPRRW,, kK - T"RrrW, (3.22)
The subtracted double-real squared matrix element for topology 7 is then given by

RR™(X) = RRW; §psa(X) — KM 8,1 (X) — (KT(2) - K§12>)5n(X) . (3.23)
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This allows to build the complete RR 1, (X) of Eq. (2.36) by summing the contributions from all
sectors according to

Ran(X) = >, )] [RRf;fk )+ RRE(X) + YRR (X ] (3.24)
1, JFLk#L] 1#1,7,k

The structure of Eq. (2.39) is then recovered by using Eq. (3.3), and by defining

(1) _ (1) KW

K - 2 2 KU]k zyk] + 2 Kz]kl]
i, j#1 k#i,j - l#1,j,k

(2) _ (2)
K - Z Z Kmk + Kwkj + Z Kmkl]
i, J#1 k#i,5 - 1#4,5,k
12) (12 12

K% = 2 Z Kz(n + Kwk]) T 2 Kfjkl)] (3.25)

i, j#i k#4,5 - l#i,5.k

We emphasise that the definitions of the counterterms are actually complete only after specifying
both the action L RR of improved limits on the double-real matrix element, as well as the action
L W, on sector functions. All the improved limits are reported in Appendix C, and are written in
terms of the soft and collinear kernels listed in Appendix B, multiplying appropriate versions of the
Born-level probabilities, expressed in terms of mapped momenta.

In order to give the reader a feeling for the kind of expressions that emerge from this procedure,
we reproduce here two representative examples. First, the uniform double-unresolved double-soft
improved limit S;; (i # k) can be written as

< N2 i icd,ke icd, ke
Sik RR = 71 Z { 5c(d) Z |: Z g(k Bgde%‘k D + 4€ed cdeddk d):|
c#i,k e#i,k,c,d - f#i,k,c,d,e

d+#1i,k,c
T2l g® plicdked) | gl (zkcd)} , (3.26)

where the NLO eikonal kernel £ C(Z) and the NNLO eikonal kernel 552“ are presented in Eqs. (B.3)
and (B.4), and we employed six-, five- and four-particle mappings for the colour-correlated Born
terms, according to the numbers of particles involved. Note in particular that all eikonal dipoles
are mapped differently, which is essential for the analytic integration, as discussed in Ref. [92] and
in Section 4 below.

For the strongly-ordered double-unresolved double-soft improved limit S; S;, (i # k), on the
other hand, we write

—_ = N2 7 c ic 5 (ic e G icd) (ic e
sSumn = 3 {el| 5 (3 e s a5l
c#ik e#i,k,c,d ™ f#i,k,c,d,e
d#i,k,c

+2 Z 5 k)(idc) (:idc Jked) +9 5(k) icd) (B(zcd ked) 10, Bczdcd kcd))]
e#i,k,c,d

_ac, [515? g ick) plickiked) . o(i) g(k)ika) Béfikd,kcd)]} _ (3.27)

As might be expected, the complexity of the kernels has diminished with respect to Eq. (3.26)
(indeed the expression solely features NLO eikonal factors), but the combinatorics has become
more intricate. Notice that we used mapped momenta also in the eikonal kernels corresponding to
the least-unresolved particle k.
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It is important to stress that, while there appears to be considerable freedom in the choice
of the improved limits, there are also stringent constraints that must be satisfied. In particular,
the improved limits L RR must carry the same symmetries under index exchange as the respective
unimproved countertparts, so that the improved collections f(l) ,L @) ,L (12)
Eq. (3.15), whose content is based on the validity of the integrable relations listed in Eq. (3.13).
Within the limitations of this requirement, there is still a residual freedom to modify the action
of the improved limits acting on both RR and sector functions, with respect to the bare result
extracted by their unimproved version. However, we must make sure that this procedure does
preserve the locality of the cancellation of singularities, or, analogously, the finiteness of RR?;}’,C,
RR f}l}fj and RR :;1?17 defined in Eq. (3.23). To this end, we checked the consistency of the improved
limits listed in Appendix C by analytically verifying that, for any topology 7, the corresponding
RRS" is in fact integrable in all singular limits of that tolopogy. Specifically, we verified analytically

that

are still consistent with

{Si, Cij, Sij, Cijk, Scijk}RRSUb — integrable,

ijjk
{Si, Cij, Sik, Cijk, SCijk, SC/WJ}RR?;}:J — integrable,
{Si, Cij, Siks Cijki, SCint, SChij} RR{, — integrable. (3.28)

Furthermore, since the collinear kernels of Appendix B display spurious collinear singularities in-
volving the reference momentum k,, which are not always screened by the sector functions, we
verified explicitly that also the following relations hold

{Cir, Cjy, Cijr}RRf;‘fk — integrable,

{Cir, Ckr, Cirr} RR}YY; — integrable,

Ci,, Cir} RRSYY — integrable. 3.29
ijkl

Having passed these tests, the improved limits listed in Appendix C, when assembled according to
Egs. (3.22)-(3.24), provide a fully local subtraction of phase-space singularities for the double-real-
emission contribution to the cross section, and Eq. (3.24) is indeed integrable in the (n + 2)-particle
phase space. We now go on to illustrate a different construction for RR s, based on symmetrised
sector functions, similarly to what was done in Section 2.1 at NLO.

3.6 RRg,, with symmetrised sector functions

The partition of the (n + 2)-particle phase space by means of the sector functions Wypeq that
we introduced in Section 3.2 is not the only possible way forward. Analogously to what we did
at NLO (see Egs. (2.29) and (2.31)), this sector structure can be adapted to meet certain sym-
metry conditions that reduce the actual number of sectors: in particular, sectors sharing the same
double-collinear singularities would naturally be parametrised in the same way in a numerical imple-
mentation, whence grouping such sectors in a single contribution is expected to improve numerical
stability. Exploiting the symmetries of the improved limit éijk, we thus sum up the 6 permutations
of 4, j, k in sectors Wijji, Wiji; introducing the symmetrised sector functions

Zijk = Wijjk + Wikkj + Wiiik + Wikki + Whiij + Wijji
+ Wijkj + Wikjk + sz’ki + ijik + Wkiji + ijij . (3.30)

Similarly, in the four-particle sectors Wi, we can exploit the symmetries of the improved limit
éijkl to sum up the 8 permutations ijkl, ijlk, jikl, jilk, klij, klji, lkij, lkji, and define

Zijkt = Wijrt + Wijie + Wiakt + Wiak + Whis; + Whiaji + Wikij + Wik - (3.31)
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We also introduce the NLO-type symmetric sector functions

Zl = W aw,  z; =zl (3.32)

ij

where Wi(f) was defined in Eq. (3.10). We will also find it useful to introduce a notation for the
soft limit of the symmetric sector functions

(@) () _ Wi (1)
2% =8,z = s, W s B = (3.33)
IZi Wi

The use of Z;j, and Z;;5;, upon reducing the number of sectors, simplifies the expression of the
counterterms. In fact, deriving the action of the generic improved limit L on the new sector
functions (which can be directly obtained from the L Wypeq definitions in Appendix C), we verify
that, thanks to their symmetries, any improved limit involving either the operator éijk, or the
operator éijkl, when acting on Z;;1, and Z;;x; respectively, reduces them to unity, according to

Cin(...)RRZy: = Cisn(...) RR, Cin(...)RRZim = Ciyu(...)RR, (3.34)

where the ellipsis denotes a generic sequence of improved limits.
In analogy with Eq. (3.22), we now define our local counterterms with symmetrised sector
functions by

(1) (1) (2) (2) (12) _ $(12)

K{U} L{U} RR Z, , K{U} L{U} RRZ, K{ ) L{U} RRZ,, (3.35)
where we denote the symmetrised topologies by o € {ijk,ijkl}, and the limits f{a} are symmetrised
versions of the limits in Eq. (3.15), to be presented below. The subtracted double-real contribution
for a given symmetrised sector, in analogy with Eq. (3.23), is then given by

RRP(X) = RR Z, 0n42(X) = K1) 0p11(X) — ( 2 - K{(;}z)> 5. (X), (3.36)
and finally the full expression for RR g1, (X) of Eq. (2.36) is obtained by summing the contributions
from the symmetrised sectors Zjx, Z;jr. It reads

RRop(X) = )] [2 RRS,(X) + Y Y RRR (X ] (3.37)

i, J>1 Fk>j Q#J‘ ll;éz],cj
>1 1>

This expression can be written in the form of Eq. (2.39) by building the complete counterterms
KM, K@ and K (12 in terms of symmetrised sector functions, as

1) = 1) (1)
K= Z Z K{wk} + Z Z K{ijkl}]’
4, J>1 - k>j k#jli,j

k>i 1>k
(2) = (2)
K= Z Z K + Z Z K{z]kl}]
1, §>1 - k>j k7 1#4,5
k>i 1>k
(1z2) _ (12) 12)
KOD = 50| 2 K + ZK{W}] (3.38)
1, J>1 - k>j /Z:;é]_ ll;ézkj
>1 >

The symmetrised improved limits required to compute the symmetrised counterterms defined in
Eq. (3.35) can be derived from the limits designed for the W,p.q sector functions, which were
presented in Eq. (3.15) before improvement. The symmetrisation must be done carefully, in order
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not to overcount singular configurations. We adopt the following procedure. First, we expand all
products in Eq. (3.15), and we express the corresponding improved limits as flat sums running over
the respective sets of relevant singular limits. For example, we write

Ly = > @ whee £3 = {S.. Cu, ~SuCuf,

fgflzc = Z 27 where Eé?gc = {gaba @abcy _@abc §ab; 6abC7 _gab 6abcu
feL), _

- SCabc éabm SCabc Sab éabc} ) (339)

and similarly for the remaining limits given in Eq. (3.15). Next, we introduce the index sets

a = {ij, ji, ik, ki, jk, kj} B = {ij, ji, kl, 1k},
v = {ijjk,ikkj, jkki, jiik, kiij, kjji} Y2 = {ijkj,ikjk, jkik, jiki, kiji, kjij}
§ = {ijkl, ijlk, jikl, jilk, klij, klji, (kij, (kji} (3.40)

which enumerate the permutations that will need to be summed in order to perform the required
symmetrisations. The limits f{(;;7 f{f; and f{(;f ) can now be defined by sums running over unions

of the sets L. Specifically, we define

f{(ilj)k} = Z l, where LY = U cly,

fer® abe a
L) = 7, where £fY = | LY,
Zez:g“ abe B
L= T o e o= | e@lo| U,
tec(® abbcem abeb € s
Lo = 2 0 whee £ = ) ). (3.41)
tec® abede &

Similarly, the strongly-ordered double-unresolved limits f{(;}z ) are given by analogous sums, where

for 0 = ijk the sum runs over the collection £§12)7 and, for o = ijkl, the sum runs over the
collection Eém), defined as in the last two lines of Eq. (3.41), with the replacement (2) — (12).
While assembling the set unions introduced in Eq. (3.41), one must take care to count only once
all limits that coincide by symmetry: thus, for example, one should use the fact that éij = éji,
and %ijk = @ikj. To further illustrate the procedure, we note that the first line of Eq. (3.41)
becomes

J— 1 — — J— — — —
L{(ij)k} = Sz + Sj + Sk + Cij + Cik: + Cjk
S,C,,—8,Cy; —S:Cy— S, Cr — S, Csp — 8.y
= §Z + gj + gk + %ij + mm + ﬁjk s (3.42)

properly including all relevant singular regions without double counting.

The explicit results for the sums in Eq. (3.41) appear rather cumbersome at first sight, but in
fact they result in relatively compact expressions when the limits are evaluated. Indeed, thanks
to the symmetry properties of Z;;; and Z;;y, it is possible to merge subsets of singular limits
which factor identical combinations of symmetrised sector functions. One finds then that only
certain combinations of singular limits survive in the result. In detail, all single-unresolved limits
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can be written explicitly as sums of single-soft limits S, plus hard-collinear combinations HC,;,
defined in Eq. (2.29). Furthermore, it is useful to introduce a soft-subtracted version of the uniform
double-unresolved limit SCyy., which is given by

SHC,,. = SC,p. (1 — S — gac) . (3.43)

This combination can appear only when attached to either the S, or Cgp. limits: indeed, in any
other case, the operators SCqupe and Sqp SCoupe do not share the same sector functions in the limit.
Similarly, considering the double-unresolved improved collinear limit Cgp., we can distinguish three
useful combinations, defined by

—_

mabc = 6abc (
(s)

- §ab - Sbc - Sac) )

HiCqbg = 6abc (1 - Sab - Sac) (1 - SCabc) )
ﬁa(;:(? = éab(: (1 - gab - @cab) 5 (344)

which reflect three different possible strategies for removing soft singularities from the collinear
kernel. The superscripts (s) and (c) in the second and third line of Eq. (3.44) refer to the fact that the
(s) combination can appear only in association with a single-soft limit Sy (with d € {a, b, c}), while
the (c) combination can appear only in association with single hard-collinear limits HC ., with
de € {ab, ac,bc}. Finally, for the four-particle double-collinear improved limit éijkl we introduce

HCabcd = é(zbcd (1 + §ac + §b(: + §ad + gbd - @acd - @bcd - @cab - @dab) )
HC,s = Canea (1~ SCeus — SCua) (3.45)
where again the notation (c) refers to the fact that the combined limit in the second line of Eq. (3.45)
can only appear in association with the hard-collinear single-unresolved limits HC,;, and HC_4.
Using these preliminary definitions, we can write down explicit expressions for the symmetrised
improved limits defined in Eq. (3.41). They are

7 (1)

L{ijk} = gz + §j +§k +Tcij +H7Cjk +TCik,

Ly =8 +8;+8,+8, + HC, + HCy,

—(2 — — — - — — - — — - — —
L7k = Sij + 8k + S + 5Ci;5(1-5;~5x) + 5C;(1- 545~ 1) + 5Chi;(1-5.—5 )

+ HCijk — Cijk( SHCijk+SHCjik+SHCkij ) ,
—(2 — — — — - — — - — —
L{(ij)kl} = Sk + Sjk + S+ Sjl + SC; (1—Sik—Sil) + SCjkl (1—Sjk—Sjl)
+@kij (1_§ik _§jk) + @lij (l—gil—gjl) + HCijk-l ,
—(12 - — - — — - — — -
L{(ijk)} =S; (Sij+Sik+SHCijk) + Sj (Sij +Sjk+SHCjik) + Sg (Sik-i-Sjk-i-SHCkij)

+ (8;+8;+5)) HC,})) + HC;; (S;;+5Cyy;+HC,) )
+HCj (Sj4+5Cyx+HC,Y, ) + HCy (S +SC;u+ HC,Y )
—(12 — — — — — — — = —
L{(ijk)l} = S; (Sik + Sil) + Sj (Sjk + Sjl) + S (Sik + Sjk) +S; (Sil + Sjl)
+ gl SHC;;; + gj SHCjkl + gk SHCkij + §l SHClij
+HC,; (SCi; + SCui;) + HCu (SCu + SC,u) + (HC,, + HC,) HC,) . (3.46)
The actions of all these improved limits on RR and on the symmetrised sector functions Z;j, Zijk
are reported in Appendix C.
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Comparing the collections of singular projectors relevant to W,pcq sector functions in Eq. (3.15)
with the ones reported in Eq. (3.46) for the symmetrised case, it is immediate to notice that the
number of different non-trivial singular limits contributing to a given sector changes, depending on
the type of partition we introduce. In particular, this number increases for our choice of Z;;;, and
Zijri. Despite this, though, the ordered sums in Eq. (3.37), building up the relevant integrable
contributions, lead to a significantly more compact final expression (in terms of the number of
different objects one needs to define and evaluate). This is a feature that will translate into a gain
in computational time and resources in the final numerical implementation.

4 Integration of the double-real-radiation counterterms

In the previous section we constructed RRsy, of Eq. (2.39), a combination which is integrable
everywhere in the double-radiative phase space, by subtracting the local counterterms K V), K (2)
and K (*2) (given in Eq. (3.25), or equivalently in Eq. (3.38)) from the double-real squared ma-
trix element RR. These counterterms must now be added back, after integrating out one or two
emissions, yielding the integrated counterterms I, 1(2) 1 (12) The integration procedure in the
presence of sectors involves rather intricate combinatorics, and generates lengthy expressions in the
intermediate stages. However, all integrals that need to be computed are remarkably simple, and
in almost all cases have trivial (logarithmic) dependence on the Mandelstam invariants [92].

We will begin, in Section 4.1, by introducing the relevant phase-space factorisations and param-
eterisations, derived from the nested Catani-Seymour mappings introduced in Section 3.4. Then, in
Section 4.2, we will report the integration of the counterterms K (U, K () K (12) gpecifying how
each singular contribution is treated. The resulting expressions can be simplified, by relabelling the
momenta and rewriting the flavour sums of the original (n + 2)-body phase space, as explained in
Section 4.3. It is then possible to recombine the contributions carrying different mappings, resulting
in relatively compact collections of integrals for 7, 1?1 (12) presented in Section 4.4. At this
stage, the results can be directly employed in the subtraction formula, Eq. (2.36).

It is natural to define I (1) as the integral of K () in the single-unresolved radiation, and I ?) as
the integral of K (3) in both unresolved emissions. For the strongly-ordered counterterm K (*2) both
possibilities are in principle viable. In our framework, we define I 12 as the integral of K (12) jp
a single radiation, corresponding to the ‘most unresolved’ radiated particle, as explicitly noted in
Eq. (2.35). As a consequence, before performing the integrations, we rewrite both K 1) and K (12)
by summing up the sector functions related to the most unresolved radiation (the ones carrying the
suffix «r), while keeping the sector functions for the second (least-unresolved) radiation untouched.
Note however that these remaining sector functions carry mapped kinematics. In this way, it will
be possible to combine directly the integrated counterterms I V) and I(*?) with the real-virtual
contribution RV, and with the real-virtual counterterm K®V) in Eq. (2.38), sector by sector in
®,,, 1. For the sake of simplicity, in the following all integrations are described using the expressions
for KM, K ) and K ) in terms of symmetrised sector functions, as given in Eq. (3.38), but the
resulting expressions for T, T(2) and T (12 will be given also in terms of the W sector functions.

4.1 Phase-space parametrisations

We start by giving precise definitions for the measures of integration in the radiative phase spaces
d®raq and dP,.q2, according to Eq. (2.5), but now highlighting the dependence on the chosen
mappings (discussed in Section 3.4), and making specific choices of integration variables.

The single-unresolved counterterm K (1) contains just single mappings of the type {l_c}(“Cd)
(a, ¢, d all different) and is going to be integrated in the corresponding single-radiation phase space.

9We note that in the context of the CoLoRFul approach to subtraction [94, 95], the strongly-ordered counterterm
is integrated directly in both unresolved radiations.
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On the contrary, K *2) and K (?) are built by means of iterated mappings of the type {k}(@cdtef)
(a,c,d all different and b, e, f all different). However, while K (*2) needs to be integrated just in the
phase space of the single radiation corresponding to the first mapping, K () must be integrated in
the whole double-radiation phase space.

We start specifying Eq. (2.34), needed for the integration of K () and K (*2), We write

[ dniatn = =22 [aal [asis”, (41)
Sn+1
where we defined
B = 40, (F}D). 42

The explicit expression for the radiative measure is

[ aales? = wo) (s5) fO%(siw)-%fdy lez[y(l_y>2z<1_z>]€<1_y), (43)

where
(47’(’)6_2 .
VAT(1-9

The invariants composed by the momenta k,, k., kq are related to the integration variables y and

N(e) = (4.4)
z by
Soe = 30" sa0 = 2(1—y) 5", sed = (1=2)(1—y)5g™,  (45)
so that Sged = Sgc + Sad + Sed = EEZCCI).
To parametrise the double-radiative phase space, needed for K (), we employ double mappings
of three different types, as discussed in Section 3.4. We examine them in turn.

The six-particle mapping {k}(@<4ef) (a,b, ¢, d, e, f all different) presented in Egs. (3.16) and
(3.17) induces the factorization

qu)n” (k}) = Sn+2 qu)(acd Jbef) qu)r(;;tébef ’ dq)glacd,bef) = dq)n({]%}(acd,bef)% (4.6)

and the radiative measure of integration is

Jd(br(:’;:dzbef N2(e) <§¢(:36d7b6f) ~(acd, b6f f dg¢’ (sin¢’)~ de sz J d¢ (sin ¢)~

< [ [ ya-wp20- 90 -0220-2] ‘0= -0, @

where the expressions for relevant invariants in terms of the integration variables are

_(acd,b _(acd,b d,b
Sae = Y 5N s = 2 (=) s = (1= 2) (A —y) Sy
sbe = Y5 sy = 2 (1 y) P sep = (1= 2)(1—y) 85D (4.8)

so that sqca = Sac + Sad + Sca = E(GCd bef) SSCd) and Spep = Spe + Spp + Sef = s(?d el _S}ef).

The five-particle mapping {k}(““d bed) (a,b,c,d,e all different) presented in Egs. (3.18) and
(3.19) induces the factorization

f d%,a({k}) = 7 f daietied f o550 deetted = o, ({k}ectted) | (4.9)
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and we write

Jd@rjdcébed N2(e) (Egzw’bw) (acd, bEd f dg¢’ (sin¢’)~ de J-dz J d¢ (sin )~ de

xjodz[y'a 2=y —yP a1 -2)] -y)1-y?,  (410)

with
Sac = y' (1 — y) 84cbbed) Sag = 2 (1—y)(1 —y)5L2ebbed)
Sbe = Y3 7((;(zicd ,bed) ’ Spg = (1 _ y/) P (1 _ y) gizcd,bed) ,
Sed = (1= 3 )(1 = 2")(1 —y) 570D sed = (1—9y)(1—2)(1 —y) 852D (4.11)

so that the five-parton invariant Sgpede = Sap + Sac + Sad + Sae + Sbe + Sbd + Spe + Sed + Sce + Sde 18
_(acd,bed) _(acd,bed) + g(acd,bed) +3 _(acd, bed)

equal to 5, =54 ce 54e

Finally, we have the four-particle mapping, {k}(@cdted) — (E1(abed) (g b ¢ d all different),
presented in Egs. (3.20) and (3.21). This is the most intricate mapping, inducing the factorization

[ dneatiny = 222 [aage [an i 4ot = g, ({k} D), (1.12)

n

where we write

fd@r(;fczd 272 N2(e) ade - 27 dw’ fdy jdz fd(b sin @)~ fdyfdz
<[ w)] -y =)t a-9? 20-2)] 0=y -m).
with
_(abed) (abed)

_ bed
Sab = y YS.q ) Sac = Z/(l_y/)yscd 3 Sbe = (1—1/)(1_2)%92116 )7

bed
sea = (1—y)(1—y)(1 — z) st

Sad = (1—y) [y'(l )1 —2) + 22— 201 — 20 )2 (1 — 2)z(1 — z)] glabed)
spa = (1—1) [y'z’(l —2)+ (1 =2z +2(1 — 20')\/y/2'(1 — 2/)2(1 — z)] _(Zde) (4.13)
_(abed)

50 that Sapca = Sab + Sac + Sad + Sve + Svd + Scd = 5oy

4.2 Integration of K, K (2) and K (12

We now have all the ingredients to actually perform the required integrations. Our task is simpli-
fied by the fact that the integrals of the azimuthal parts of the collinear kernels (see (B.7)) vanish,
as shown in Appendix D. All remaining integrals are then computed following the techniques ex-
plained in [92]. We will later recombine the components that were differently mapped by relabelling
momenta, in order to compose the complete results, which will be considerably simpler.

For the single-unresolved counterterm K () the required integral is

fd@n+2[(<1> - qu>n+2{ > ) SiRRZj+ >, ) ). HC; RRZ_M}. (4.14)

0, j#1 k#i i, J>1 k#i 1#4
k>j 1>k

The integrand on the right-hand side has been obtained from K™ of Eq. (3.38) by summing
up the NLO sector functions with label « of Egs. (C.92)-(C.93). As explained in Appendix C, the
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mapped sector functions Z_ij are understood to carry the same mapping as the matrix elements they
multiply. Since Eq. (4.14) will have to be combined with the real-virtual contribution RV, as part
of Eq. (2.38), we need to express the integral in Eq. (4.14) as a sum of terms in which the integration
over the single-particle radiative phase space has been performed, a specific parametrisation for the
(n + 1)-particle phase space has been identified, and the full single-real-radiation squared matrix
element R has been factored, and computed in the chosen variables. The results for the summands
of the two terms in Eq. (4.14) take the form

f d%,:2S, RRZ), = — 22 ) f o) Jict RUD 20D (4.15)
Sn+1 c#i d#i,c
J d®, 42 HC;j RR 2y = jij J d®\m) giar ggr) Zlar) (4.16)
n—+

where the measure of integration d@glaﬁl) was defined in Eq. (4.2). The integration over the appro-

priate d®,,q has been performed, yielding the integrals JSiCd and inr, whose explicit expressions are
given in Eq. (E.1) and in Eq. (E.7), respectively. The choice of r = 75 # i, 7, k, [, according to the
rule of Eq. (A.14), which reflects the choice made for HC;; RR in Eq. (C.11), causes a dependence
of the integrated kernel inr on the indices k and [ of the sector function Z,Sj "), Notice that the
choice 7 = 7451, implies the need for at least five massless partons in ®,,42, namely three massless
final-state partons at Born level. A solution for the case of two massless final-state partons in the
Born phase space requires minor technical modifications, which have been developed, and will be
presented elsewhere.

We now turn to the integration of K (3, which is the most involved part of the calculation.
In this case, since I(?) enters Eq. (2.37), which lives in ®,,, we start from K (3 in Eq. (3.38)
and perform the complete sum over sector functions, exploiting their sum rules (see for example
Egs. (3.6)-(3.8)). This gives

fd¢n+2K(2) = Jd@n+2 [ Z gij RR + Z Z SHCijk (1 _éijk) RR

i,j>1i z‘,j#i/}::@
J
+ > Y HCjRR+ >, > Y HCyju RR]. (4.17)
i, j>i k>j i, >0 k#j l#j

k>il>k

Each of the four terms in Eq. (4.17) must be written as a sum of contributions, where the double-
radiation kernels have been integrated over the parametrised radiative phase space, and one is left
with a Born-level factor, expressed in terms of mapped momenta. To guide the eye of the reader
through the following rather intricate expressions, we note that, for each one of the limits involved,
the results are of the form

Jd®n+2f(2,) RR = constant Z Jd‘l’ﬁ{‘) Jh B (4.18)

. limit “~colour ’
{u}

where the overall constant is related to multiplicities, the sum is over the set {u} of mappings that
have been employed, the Born factor may have different colour correlations, and J will always denote
the results of the integration of the kernels appropriate to the limit being taken'®. The relevant J’s
will be listed in Appendix E. Beginning with the integrated double-soft limit in Eq. (4.17), we find

10Note that, since the limit L is expressed as a sum of terms that can be mapped differently, several J’s will
contribute to each L.
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the explicit expression

= 1 Sn+2 (icd,jef) zgcdef (icd,jef)
Jd@n-ﬂsinR: S > { > [ 2 Jd‘l’ ! B.ief

c#1,j e#i,j,¢,d - f#i,j,¢c,d,e
7hge d = (icd,jed)
(icd,jed e icd,je
[ |2t B e B } (119)

where we collected colour correlations involving four, three and two partons, and each term has been
mapped differently, to simplify the corresponding integration. The integrals relevant for double-soft
radiation are presented in Eq. (E.3). We now turn to the second term in Eq. (4.17), and we find
(with 7 = ryjk)

f d®, ., SHC,y;, (1 - Cyjy) RR =

§7;+2 { Z qu)(]krzcd) Jsj(g;ZCCdB (jkr,icd) ) Z qu)(]kru‘r J]kTZ(/TB(]kT'L('T)
c#i,7,k,r

s®hc
c#i,7,k,r
d#1,j,k,r,c

(krj,icj) Thkrjic (©) k:r] icj) qq a(krj,icy)
[ 3 o (s - )
c#1,]

O i) [dShrsi iz B o k)] } , (4.20)

where [jk] represents the parent particle of the pair (4, k), the factors p(c> involving combinations
of Casimir eigenvalues, are defined in Eq. (A.8), the flavour factors such as f qu are presented in
Eq. (A.3), and B4 is a colour projection of the Born contribution involving the symmetric tensor
dapc, defined in Eq. (A.6); furthermore, the phase-space integrals Jsgne are presented in Eq. (E.14).
The remaining contributions to Eq. (4.17) are purely hard-collinear. For the integral of the emission
of a cluster of three hard-collinear particles we find

Jd@n+2 TG, RR = 2*2 f ALk gidkr gliskr) =y (4.21)
Sn
while for the emission of two distinct pairs of hard-collinear particles the integral reads
Jd@nﬂ HC,j;, RR = 2 Jd(I) (arkir) uakir BUITRD) = (4.22)
Sn,

where the integrals Jyec and Jheghe are reported in Eq. (E.10) and in Eq. (E.12), respectively.

We finally turn to the integration of the strongly-ordered counterterm K (12, As announced, we
integrate K (12) only in the phase space of the most unresolved radiation, so the integrals involved
will be the same that appeared in the case of K (1), Starting from the expression for K (12) in
Eq. (3.38), we then sum up the NLO sector functions with label a of Egs. (C.96)-(C.97), and we

get

qu’ Lo (2 Jd@m{ 'S [ Y SyRRZ. i+ Y, (SHC;;; + HC, )RR]

1,5 #1 k#i,j k#1
k>j
+ 2 Z mm— |:Szy RRZs,jk + Z @kij RRZS,kl
i, 5>1 k#4,j l#i,k
+HC RR+ Y HC/S) RR]} (4.23)
l#1,j
>k
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where again the mapped sector functions Zs,ab carry the same mapping as the matrix elements
they multiply. No other sector functions appear in Eq. (4.23), since the use of symmetrised sector
functions has allowed to perform the corresponding sector sums, thus replacing sector functions by
unity. Once again, to highlight the general structure of the expressions listed below, we note that
they are all of the form

J 0,2 T RR = constant Y f Aoy gt Ky plee) (4.24)

limit colour
{m1,p2}

In this case, the only integrals required for the most unresolved radiation will again be J#™ and
Jﬁir, given in Eq. (E.1) and in Eq. (E.7) respectively, and we denoted by K a contribution to either
a soft or a collinear kernel, associated with the second radiation, which carries mapping (1), i.e
the first one in the nested mapping (i1, o) of the Born matrix elements. Proceeding in the order
of Eq. (4.23), the integrated strongly-ordered double-soft limit is given by

J d®,42S;S;j RR Z . = (4.25)
n ic 1 c(g)ic H(icd,je ic icd,je
z+z { f plicd) szd[ v <2 S U plickien) | gG)Gied) picds d))
n+1d(,;£z] e#i,j,¢,d f#i,7,¢,d,e

#1,7,

+ g 7)(icd) (B(zcd ,jed) 1O, B(wd ]cd)):lz(igd)

s, jk

(ide) tide (zdc zdc,]ed) (idc)

J o0 Tt Y gtide) gl Z5
e#1i,j,¢c,d

s, jk

—Cy f q0i<l) iei gli)liei) plicijed) glici)

-G [ g 5000 B 20 } ,

and it is entirely expressed in terms of the simple one-loop eikonal kernels given in Eq. (B.3). Next,
we need the integral (with r = r;;x)

f d®,,2S; SHC;;;, RR = (4.26)

1 d
St n+ 7(zcd) pv,c

P(zcd)hc N2
Sn+2 (icd) tied ~ Jk ~(icd,jkr)
Y { S [anted e k" e
c#i,5,k d#i,j,k,c jk‘

d‘I)(UC) Jzyc PJ(’ZCJ(C))hC " © B (ije, km) qq B(wc krj) . k
n+1 25(”0) Pik B [ik]e f uv,[ik]e +(j < k)
ik

w])hc Nz

ic, ic jk(r icy,kr icjy,kr .
[Jd¢;+j1 J J j (Z)Cj) (p;i) Bpujgkkrj +qu B/Suj[]kk]jc)> + (-7 <« k)] } ’

where the hard-collinear kernels are given in Eq. (B.10). We now turn to limits involving triple-
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collinear configurations. First we need

fd@w S, HC,) RR - (4.27)
lj’l‘)hC,/,Ll/

N, :ij fm]{ (0) Jd(bnlirl J;JT Jk?((;;)r) (Béigr’jkr)_é,(gnkrj)> +(j < k)]
(zrg)hc uv

+ l () Jd¢gij1) J;r] ((“«)J) (Béigj,jkr)_glgigj,krj)) + (] PN k)]

*(zjk)hc N

ijk) i ik(r) =(iik ikr .
_pbcli] ljdééil) JsﬂC ](zijk) Bl(uzk’]k ) + (] <~ k)‘| } s T =Tijk -
]k

Next we consider (again with r = r;;i)

Jd(I)n+2HCij S RRZ, jx = — z’”j J (") gy gD plgried) 205 - (4.98)
n+ c#i,j

d+#1,7,¢

where the choice of r different from 4, j, k, analogously to the integral of HC;; RR in Eq. (4.16),
causes a dependence of the integrated kernel Jﬁir on the index k of the sector function Zs(l;;). Next
we have (r = 1)

fd¢n+2 mij @kij RRZS,M _ _N—l%j qu)sirl) J}z‘lgc‘r Z 5(k) er m ked) (4.29)
Sn+1 ctig ke
d+#1,7,k,r,c

) Z géf)(ijr)Béijr,kcr)+2 Z gj(f)(ijr)Bj(ijnkcj) Zq(zgl‘)
c#i,g,k,r c#i,5,k

Finally we need to handle strongly-ordered hard-collinear limits. First, with a collinear cluster of
three particles we find

(ZjT‘)hC Nz

J d%,,» HC;; HC,; RR = N, z’”j qu)s;i? JiT J’“((;)T) Bk = (4.30)
n+
Jk

Then, with two independent pairs of collinear particles, we find

5 (ijr)he,uv
JC@HQHC” chkl RR = N, &2 Jdcbfffl) Jir M) Bk =g (4.31)

i NOR

This concludes the list of all required integrals for double-real radiation.

4.3 Relabelling of momenta and flavour sums

Our next step will be to collect the results of the different sectors and combine them by renaming
the mapped momenta in each sector. More precisely, in all (n + 1)-body phase spaces d@;af?
appearing in the integrals of K (1) and K (*?), we rename the sets of mapped momenta {l_c(“bc)} 11
as a unique set of (n + 1) momenta {k},;1. With this new labelling, the indices of the mapped
momenta refer directly to the particles of the unique (n + 1)-body phase space, and the reference

to the first mapping can be simply removed. The relabelling thus leads to

Aoy — d®, .y, 209z R@ LR, Blebeded) , gl
abc 5(abc)he, pv he,uv S(i)(abe i
’E] ) = Sij P:](r)) g Pij(rl; ’ gl(nz( ) - gl(m), . (432)
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Similarly, in the n-body phase spaces d@%abc’def ) appearing in the integral of K ()| the sets of

mapped momenta {k(**¢4)} are renamed as a unique set of n momenta {k},, which in practice
means performing the substitutions

ddlabedel) _ 4o, | Blabeded) .. gatedel) g (4.33)

In particular, in the integral of SHC; 1 (1 — C;;) RR, which involves a collinear splitting of partons
j and k, the momenta l_f,(fjkr’md)7 l_fl(cjkr’icr), l_f](»krj’icj) and /_cékrj’ijr)
the parent particle of j and k.

At this stage, in all integrated counterterms, the only recollection of the particles of the original
(n + 2)-body phase space is confined to the flavour factors f7, iq , ff. These can be summed up,
and, if needed, translated into flavour factors for the particles of the (n + 1)-body and n-body phase

spaces. We now give the rules to perform these sums.

are all renamed as k,, where p is

Let us begin with the simple case in which only one particle is integrated out, which is what
happens for K (V) and K (12), In this case the following rules apply.

e When going from an (n + 2)-body phase space to an (n + 1)-body phase space by discarding
particle ¢, which happens when particle i is a soft gluon, the sum over flavour factors satisfies

MZL{I -1, (4.34)

Sn+1 p
For example, if all n + 2 particles are gluons, one has ¢,12 = 1/(n + 2)! and ¢, 41 = 1/(n + 1)1,
and the sum yields the missing factor of n + 2.

e When going from an (n + 2)-body phase space to an (n + 1)-body phase space by replacing
two particles 4,7 with their parent particle p, which happens when ¢ and j form a collinear
pair, the sum over the flavour factors of particles 7,7 can be written as a sum over flavour
factors for particle p according to the rules

RN =N YA
i P

9, >1
Sn+42 q q
S D UG = XU D,
Sntl o2 p
Sn+2 99 } g
-~ Z $=3 e (4.35)
+ 1,7>1 p

As an example, consider the production of n gluons and a collinear ¢¢ pair. In this case the
first line of Eq. (4.35) applies, and one must take into account the fact that quark flavours
must be summed, since the quark pair is integrated out. One then has ¢,42 = Ny/n! and
Snt+1 = 1/(n + 1), since the new final state involves (n + 1) gluons. For the same reason, the
r.h.s. yields N¢(n + 1).

Not surprisingly, the flavour sum rules for the integrated K (?) are both more varied and more
intricate, since one is integrating out two particles, either by removing them (when they are soft),
or by replacing them with their (grand)parent particles when they form collinear sets. We consider
the various cases in turn.

e When going from an (n + 2)-body phase space to an n-body phase space by discarding two
particles 4, j, the sum over particles ¢, j satisfies

n 1 n q
YN =5 YA = Ny (1.30)

i j>i Sn 3 j>i
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As before, the first equality is easily verified when all n + 2 particles are gluons, as is the
second one when the final state consists of n gluons and a quark-antiquark pair.

When going from an (n + 2)-body phase space to an n-body phase space by replacing two
particles j, k with their parent particle p, and by discarding particle i, the sum over particles
1,7,k can be written as a sum over p according to the following rules.

g"”Zng L= Ny LS
Sn ’ﬁ“,}jfj p
Sn+2 szg ):Z(fg+fg),
Sn 7]#15;:; p
N S =y S (490
g e '

where it is important to pay attention to the range of the various sums.

When going from an (n + 2)-body phase space to an n-body phase space by replacing three
particles i, j, k with their grandparent particle p, the sum over particles i, j, k can be replaced
by a sum over p according to the following rules.

TN MU T = Ny S A9
p

i, J>1k>j
Sn+2 1 _
z 2 U+ D = 5 U+ 1D,
n i, J>1k>j D
N
on i, 5>i k>j p
Sn+2 G 1 _
o 2 LU TG = s L),
"o i>ik> p
<n+2 999 __ 1
o > = 62 I3 (4.38)
i, > k>j p

where one easily recognises in the five lines the five possible partonic channels involving the
production of a cluster of three collinear particles: in the first line, the final quark-antiquark
pair can have any flavour (including that of the grandparent (anti)quark, which is the same
as that of the final (anti)quark ¢’), while in the second line all three (anti)quarks have the
same flavour.

The most intricate channel for flavour sums arises when going from an (n + 2)-body phase
space to an n-body phase space by replacing two pairs of particles ¢,5 and k,l with their
parent particles, p and t respectively. In this case, the sum over particles ¢, j, k,l can be
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replaced by a sum over p and t according to the following rules.

N2
§n+2 . f 99
D IDIDIG 2/ A D W
i, J>1 1}1#] ;#i p,t#p
>il>
Sn+2 ’ _ _ Nf _
2 S SIS s+ G ] = Y v,
on i, j>1 k#j l#] D,t#p
k>il>k
Sn+2 N
2N N 1D = 5 Y
i, J>1 i#y l#?c Pt#p
>i 1>
S +2 ! 5 1 _ ’ _
SN SN UF DU 4 ) = 5 X U+ DU+ D,
on i, j>i k#j 1#5 p,t#p
k>i >k
S Sn+2 _ _
2N S [ DS S D] = 3 X U g,
Sn i, J>1 k#j l#] pt#£p
k>il>k 1
§n+2 4 99
DNDIDIN NI (4.39)
Ry pit#p
k>il>k

We emphasise that the flavour sum rules listed in this section apply for any final-state multiplicity
and flavour structure. We now have all the tools to assemble the complete integrated counterterms,
which will be naturally organised according to the flavour structures of the (n + 1)-particle and of
the n-particle phase spaces, as needed.

4.4 Assembling the complete integrated counterterms

After summing all contributions that were differently mapped, relabelling momenta, and making
use of the flavour rules listed in Section 4.3, the resulting integrated counterterms do not bear any
remaining trace of the original (n + 2)-body phase space, and we can actually get full results for
ITM 132 1(12) a5 defined in Eq. (2.35). The simplest case is the integral of the single-unresolved
counterterm I (V)| which reads

1 1
O IMwy = 3 Iz, (.40)
1,571 i>i
I’Lgl) = — Z Js(scd) Rcd + 2 Jhk;:<8kr) R’ r = ngk .
c,d#c k

Here R is the full squared matrix element for single real radiation, defined in Eq. (2.4), and R.q4 is its
colour-correlated counterpart, defined in Eq. (A.7). The single-soft integral J is given in Eq. (E.2),
and the collinear integral JhkC is given in Eq. (E.9). Because of the rule r = r;ji, a dependence of
J¥ (sg,) on i and j is left, excluding the possibility to sum over sectors in the hard-collinear part
of T,

The integral of the double-unresolved counterterm, I (?), is more intricate, and we assemble it
according to

1® =12 412+ 13 + 12, (4.41)

distinguishing double-soft, soft-times-hard-collinear and double-hard-collinear contributions, the

2)

last of which may involve three or four Born-level particles. For I S(S we get contributions containing
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Born-level colour correlations involving four, three and two particles, and we write

1
Is(sz) = 1 Z { Z |: Z Js(é)s(scdvsef)Bcdef + 4Js(%)s(scdased)Bcded] (442)
c,d#c e#c,d - f#c,d,e

+2J2) (Sea) Beded + 2 [2 Ny T JE8D (509) — Cp J(EO) (scd)]Bcd} :

where the constituent integrals are given in Eq. (E.4). The soft-times-hard-collinear contribution
yields

E= - { T (skr) Y Js(5ea) Bea + Johe () B + J5i2 (skr) Bir (4.43)
k c,d#c

+ 2 [JS}CHE(S}CT? skC)BkC + Jskﬂ?(sk?”v SCT)BCT]} ’ r=rk,
c#k,r

where the rule r = ry, as defined in Eq. (A.14), prevents r from being equal to k. In Eq. (4.43) we
have introduced the following soft-times-hard-collinear integrals

The(s) = (fi+10) {2Cr 28 () + Ca [ 1251.(5) — 128.(5)]}

[ Ca |2 N7 () + TER(5)]

g C
T (s) = (fE+ 1) {2 T8+ G | T28e() — Tg5) | - 215 s>}

4(1 4(3
2N [T () = T8 s )| + T () = Tais )}
TND (s s) = (41D [2 85086, 8) = 205585, |
3(1 4(1 3(3 4(3
+ F 2N [T, s) = T s )|+ s, 8) — TS s L (4.4)

whose constituent integrals can be found in Eq. (E.15). Next, we turn to the double-hard-collinear
integral involving three Born-level particles, which reads

i 1 ; 1
2 =3 { (FE+ 1) [Nf Tied (sir) + 5 Tt (sir) + 5 Jﬁi?(sw]
k

1
A L R F O | TR

where the relevant constituent integrals are given in Eq. (E.11). Finally, we come to the double-
hard-collinear integral involving four Born-level particles, which reads

1

Iégllc =35 Z { (qu +qu)(fzq +flq )J}?cg(g)ic(sjrslr) (4.45)
Jl#

5 1
2 | N S () + 3 T ()|
1 .
40 | NERE ) + N TS () + 18888 (s ||, =
where the constituent integrals are given in Eq. (E.13). Similarly to I (1) for the integral of

the strongly-ordered counterterm, I(12), we provide expressions with both unsymmetrised and
symmetrised sector functions, so as to make it straightforward to prove that I (12) compensates
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sector by sector the phase-space singularities of 7). Beginning with the expression involving the
original sector functions W;;, we write

12 12 12 12 12
10» = % ", I = I8P W+ 180 - 18 (4.46)
i,j#1

where the soft limit of sector functions Ws;; is given in Eq. (C.4). The soft integral Is(lwz) can
again be organised in terms of quadruple, triple and simple Born-level colour correlations, which in
this case will be multiplied times eikonal kernels for the second radiation, and NLO-type soft and
hard-collinear integrals. We find (r = i, 7’ = ry;)

(12) _ (i) (icd) (icd) (idc)
Ig Jij =M Z 5cd{ Z Js(Ser) Bcdef + Z Js(8de) ( cded Bcded) (4.47)
c#i e#i e#i,d
d+#1i,c f#i,e

—Cy [ (sic) + Js(sia) — Js(scd)] Bl _ J}jc(si,.,)ngcd)}

MY RG] X BT w2 Y QBT v2 3 ) BV
k#1 c#ik,r c#i,k,r c#ik
d;&i,c,k,r
where the component integrals are given in Eq. (E.2) and in Eq. (E.9). We notice that the expression
contains two different reference particles r and r’, both built according to the rule in Eq. (A.14).
In particular ' = r;; introduces a dependence in 18(1”2) on the particle j of the soft sector function
Ws,ij- The collinear integral Iélj) is expressed in terms of spin-correlated Born-level squared
matrix elements, which in this case are multiplied times LO collinear kernels for the least-unresolved
collinear splitting, and times suitable combinations of the same constituent integrals as in Eq. (4.47).

We find (with 7 = r;j, v’ = i)

Iéls) = — ” T){ Z Z Js(Scd) Bl(“f C)d +Crin piicj)] Js(sij)ngT) (4.48)
c#1,5 d#i,j,¢
© B m) (i)
[ Z J Sw (pzf v, Jrqu B;w Z]]C)
c#ij

+Chp pis Is(sir) (B,%”) - Bfflfr)) + (i j)] } We,ij(r)

P P, o,
+N ;](T‘) [Jhc(s’b"“) + JhC(SJT)]Bl(LZgT) Wc,ij(r) + Nl Z 1-7.('7" ) Jhli;(skr’) B;(LZ{ZT ) Wc,ij(T') R
1] k+#i,j )

where the collinear limit of sector functions W, ;; is given in Eq. (C.5), and again two reference
particles have to be introduced. Finally, the soft-collinear integral has a similar structure and reads
(with 7 = rj, ' = 7i1)

I = —2M 5§,’?{ch SN Jul(sea) — C},Ca Jy(sy5) B (4.49)
c#1,5 d#1,5,¢

+CA[ N Ju(sic) B(J”c) +Cy, J (5”)(3(1”)_3(@@)]
c#t,J

+ (2Cy, — [ Z Js(sjc) B(zm +Cyp T (S]T)(B(irj)_ B(ij,.))}}

c#1,]

+2./\/10f] i [ (Sir) + J (sjr)]B(ljr) + QNICfJ jr, Z Jhc Sk )B(wr .
k#1,j
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As already noted, a more compact expression can be obtained using symmetrised sector functions.
We can write
N I8Y = 18V 2,5+ 182 2,5+ IS, (4.50)

{is} > {i7} S,ij S,ji
1, >1

where the soft contributions are given by Eq. (4.47) and the hard-collinear contribution Iélczz j reads
(r=rij, ™" = Tiji)

(2 a2 a2 a2 a2

HC,i5 — “C,ig C,ji SC,ij SC,j1
he,pv
(7“) Jr R (ijr
VL { SN Julsea) BT, + Cpy o) Ju(si) BLEY
c#1,J d#1,j,¢
© gliri) qq 3(iri)
[ Z Js(sic) (p” wv,[ijle f wa U]C)
c#1,)
+ Crp 5 o) (B BUE) 46 )
he,uv 'h'c,,u,u
NG 2 (i) + S sse) |G+ A 3~ g (s B (451)
i ktig W

This concludes the list of integrated counterterms for double-real radiation. We now turn to the
treatment of real-virtual contributions.

5 The subtracted real-virtual contribution RV,

Let us take stock of what we have achieved so far. After subtracting the appropriate combination
of the local counterterms K ), K (2 and K (12 from the double-real squared matrix element RR,
and after adding back the corresponding integrated counterterms, I (1, I ? and I 12) we can write
a partially subtracted expression for the differential distribution in Eq. (2.32). It reads

doxnio

o~ fd(bn [vv ¥ 1<2>] 5 (X) (5.1)

" fdcbm | (RV + 1) 6,11(X) = 102 5,(X) |
+ J\dq)n-k—Q RRsub(X) .

Notice that no approximations have been made in reaching Eq. (5.1), since all local terms that were
subtracted from Eq. (2.32) were added back exactly in integrated form. At this stage, RR b, given
in Eq. (3.24) or in Eq. (3.37), is free of phase-space singularities in ®,, 2, and (evidently) does not
contain explicit poles in €. Therefore it can be directly integrated in four dimensions, as desired.
We now focus on the second line of Eq. (5.1). While the introduction of the integrated counterterm
I (M exactly cancels the e poles of RV (in the same way as, at next-to-leading order, I cancels the
poles of V'), new poles in € are introduced through I (12). on top of this, the combination in square
brackets is still affected by phase-space singularities in ®,,,1. To be more precise, the second line
of Eq. (5.1) verifies now two crucial properties that follow from general cancellation theorems and
from the definitions given so far. Specifically

(1) (RV+IWM)§,41(X) — finite,
2) IWg, (X)-11245,(X) — integrable, (5.2)
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where the integrated couterterms are defined in Eq. (4.40) and Eq. (4.46). The first property is
expected from the KLN theorem: indeed, I (V) is the integral over the most unresolved radiation
of RR, and its IR poles must compensate the virtual poles arising when one of the two unresolved
particles becomes virtual, while the other one is unaffected. These are precisely the poles of RV.
To check this, which provides a test of the results obtained so far, it is sufficient to perform the e
expansion of (1) as given in Eq. (4.40), writing

1= 1O 4104 0. (5.3)

poles

Performing the sum over sectors in Ip(;l)es, we get
1 Qg 1 1
Ip(ol)es = % [62 EC R+ g (E’Y R+ Z Leq Rcd)] = = Rvpoles . (54)

c,d#c

Keeping the complete dependence on sector functions in [ﬁ(i ), we have

1 1 1
Iﬁ(n) = 2 Iﬁ(n,)z'j Wi = 2 Iﬁ(n,)z'j Zij, (5.5)
1,J#1 1,7>1
(1) _ Qs he 1 — .
I, = Gy [( ¢ — Zk:%c Lkr)R +C§chd <2 -3 Lcd> Rcd] ; T = Tijk -

In Eqgs. (5.4)-(5.5), Lap = log(sap/u?), and the numerical coefficients are given in Eqs. (A.8)-(A.11).
One easily verifies that 1
which have the well-known universal NLO structure (see for example [18, 48]), upon replacing the
n-point amplitude with the (n + 1)-point amplitude.

In order to prove the second property in Eq. (5.2), we start from the decompositions of
Eqgs. (4.40)-(4.46) in terms of the sector fuctions W;; and write

matches the explicit poles of the real-virtual matrix element RV g1es,

T06,1(X) = 1025,(X) = 3 {I5Wiy 8nia(X) = |18 Was + 183 = EEL [0 (%)}, (5.6)

1,j#1
where the NLO sector functions W;; and W ;; are defined in Eq. (2.10) and Eq. (C.4) respectively.
The second property in Eq. (5.2) is thus satisfied at the level of single sectors W;; owing to the
relations

S; [Iigl) Wi — Is(ijz) Ws,ij] — integrable, S; [10(715) — Is(ézz)j] — integrable,

Ci; [Ii(jl) Wi — Ié’lé)] — integrable, Ci; [Is()lijz») Wi — Is%i)j] — integrable.  (5.7)
For concreteness, consider the first relation. Under soft limit, the (n + 1)-particle matrix element in
I ig.l) returns a sum of products of eikonal factors and Born-level, colour-correlated matrix elements,
and its sector function W;; becomes equal to W ;;. At the same time, when the operator S; acts
on IS(;J?), it effectively removes the phase-space mappings, so that Eq. (4.47) tends to the S; limit
of the square parenthesis in Eq. (4.40), up to the overall sign. Similar steps show the validity of the
other relations in Eq. (5.7).

At this point, on the one hand we have shown that the combination (RV +1 (1)) In+1(X) is free
of explicit poles, but it still contains phase-space singularities. On the other hand, we have proven
that T §,,1(X) — I (12 §,(X) is integrable in ®,, 1, but may still contain poles in e. In order
to build a fully subtracted real-virtual matrix element RV, free of poles in € and integrable in
the whole (n + 1)-body phase space, we need to define, in each sector ij, a real-virtual counterterm
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K Z-(J-RV) satisfying the two further properties

(RV) (12) .

(3) K +I;7 — finite,

(4) RV W6 (X) — K5V 5,(X) — integrable. (5.8)
With a real-virtual counterterm satisfying the two properties in Eq. (5.8), the subtracted real-virtual

contribution to the cross section, defined in Eq. (2.38), is manifestly finite and integrable in ®,, 1.
To construct RV 5" explicitly, we rewrite it here as a sum over sectors:

1) RV 12

RV (X) = 3 [(RV LD I 80 () = (K + 1512) MX)] .69
i,j71

Thanks to the presence of sector functions, the second condition of Eq. (5.8) actually simplifies to

RV W;; 6ps1(X) — KTY) 5,(X) — integrable in the limits S;, Cy; . (5.10)

¥

In order to find a suitable definition for KZ(JR V), satisfying the required properties, we start by

introducing soft and collinear improved limits, S; and éij, for the real-virtual squared matrix
element. On the one hand, these limits must reproduce the singular behaviour of RV, so that

S; [(1 - §i) RV Wij] — integrable, S; [éij (1 - §i) RV Wij] — integrable,
Cij [ (1 - 613) RV W”] i integrable, Cij |:§1 (1 - 6”) RV W”] i integrable . (511)

On the other hand, the improved limits must feature appropriate mappings, such that they fulfil
momentum conservation and on-shell conditions for the Born-level particles, and, at the same time,
they simplify as much as possible the analytic integration over the radiation phase space. Following
the discussion presented at NLO, and the choices made in Ref. [92], we introduce

SiRVW; = —Ny ), [553'; D (5;3 5“*3“)B<"d>+a > & B‘“””]Ws,ij,

cd cde “cde
c#1 e#i,c,d
d#i,c
= Nl nz (3 r) nz nz ﬁO ijr)
Cij RV Wi] = 5 [sz(r) Vuyj 2 PZ](T) Pl](r) e uyj Wc,ij ,
§i éij RV Wij = 2N1 ij [5( )V(”T) 2 (g(z g(z BO)B(ZJT ] 5 T ="Tij. (512)

The kernels €9 .4 and P" () Are the eikonal and collinear kernels from tree-level factorisation, intro-
duced already at NLO, and given in Eq. (B.3) and in Eq. (B.7), respectively. In addition, & (d , € o(0)

cde
and P“ () re the genuine real-virtual soft and collinear kernels [32, 33], presented here in Eq. (B.5)
and in Eq. (B.24), respectively.
Since the combination (1 —S;)(1 — C;;) RV W;,; is integrable everywhere in ®,,41, one would
expect to define the counterterm KZ-(J-R V) simply as an NLO-like combination of improved limits,
namely

(RV)
1j, expected

- [§i +Cy (1-8)) ] RVW; . (5.13)

Although such a choice preserves the minimal structure of the real-virtual counterterm, and auto-
matically fulfils the condition (4) of Eq. (5.8), explicit computations show that it spoils the condition
(3) of Eq. (5.8). In principle, it would have been natural to expect that the poles of Eq. (5.13) would
cancel those of Ii(jlz). Indeed, the poles of Eq. (5.13) are designed to match the poles of RV that are

— 36 —



(12)
J
strongly-ordered counterterm over the phase space of the most unresolved radiation: thus, it col-

accompanied by phase-space singularities. At the same time, I, is the result of integrating the
lects precisely terms that have phase-space singularities in the remaining radiation, as well as poles
that should match their virtual counterpart, given by RV. On the other hand, there are subtleties
that prevent the poles of Iiglz) from matching exactly those of K g;vxéected. The first subtlety stems
from the specific phase-space mappings one has to adopt in order to define the improved limits
in Eq. (5.12). Since such contributions are affected by both double poles in € and by phase-space
singularities, they feature single poles in € with coefficients depending on kinematic invariants. This
generates a mismatch: in fact, we notice that in Eqs. (4.47)-(4.49) the residues of the poles in Ii(jlz)
that depend on kinematics are proportional to logarithms of Lorentz invariants constructed with
unmapped momenta, i.e. with (n + 1)-body kinematics. In contrast, the residues of the poles in
the real-virtual improved limits of Eq. (5.12) can also depend on logarithms of mapped invariants,
obtained via momentum mappings from the (n + 1)- to the n-particle phase space. This is the case,

for instance, for the virtual component of the soft limit: the pole content of VC(diCd) includes terms

(12)
J
collinear sector, where the kinematics of the poles of I i(jlz) fails to match that of

. More involved mismatches occur in the
K (RV)

ij,expected

of the type log (58; 4 /%), which cannot appear in I,
out of
the collinear region, irrespectively of mappings.

The fact that all discrepancies in the single pole in € disappear in the singular regions of phase
space, as they must, gives us the possibility to refine the definition of K (RV) by adding back

ij,expected’

2)

precisely the mismatched terms, thus obtaining the desired cancellation of the I ig-l poles, without

introducing new phase-space singularities. Schematically, we define
RV RV e S
Kz'(j ) = Ki(j,cx)pcctcd + Aij = [Si + Cij (1 - Si) ]RV Wl‘j + Aij . (5.14)
The extra term A;; appearing in Eq. (5.14) is required not to spoil condition (4) of Eq. (5.8), and
therefore cannot have any phase-space singularity in the limits S; and C;;. Thus we impose that

S;A;; — integrable, C;; A;; — integrable. (5.15)

)

At the same time, A;; has the crucial role of matching the explicit € poles of Iig»lz , implying the

finiteness of the combination Ki(jR V) 4 Ii212)7 in agreement with condition (3) of Eq. (5.8). In
practice, we introduce for A;; a decomposition into soft, collinear and soft-collinear components,

along the lines discussed for [igu) in Eq.(4.46), and we write
Aij = Agi Wsij + Acij — Asc,ij - (5.16)
Using this decomposition, the properties Eq. (5.15) can be better detailed, and read
Si Agi Ws,i; — integrable, S, (Acﬂj — ASC,ij) — integrable,
C,j Aci; — integrable, Cij(As,i Wa,ij — Asc,ij) — integrable. (5.17)

)

Furthermore, we can enforce the desired cancellation between K z(]R V) and I i§12) for each component.

Specifically, we require that

[gi RV W;j + (A&i + 18(12)) Ws,ij]poles =0,

»t]

I:éij RV W;; + (Ac,ij + I(glg))]poles =0,

)

[§i C;j RVW;; + (Asc,ij + IS((ILZ) >]poles =0. (5.18)

ij
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Since the pole parts of both I Z_glz) and K (jRZ()peCte q are explicitly known, the necessary compensating
terms are easily determined. An expression for the three components of A;; can be constructed in
a minimal way by considering all and only the single poles of Iigu) with mismatching kinematics.
Since they consist in differences of logarithms, or differences of Born matrix elements (which vanish
in the soft or collinear limit), we decided to promote the differences of logarithms to ratios of scales,
raised to a power vanishing with e. This non-minimal structure simplifies subsequent integrations,
and it only affects finite parts, without introducing new phase-space singularities. Beginning with

the soft term Ag;, we define

Sef ‘ (icd) 1 Sed e (icd)
AS,i le cd { %€ 5 92 Z [< zcd)> 1] Befcd 2 [<_(icd)> 1] Bedcd

c#i e#i,c e?éi,d Sed
d#i,c f#i,ce
1 2 he (ic ~(idc
o[ (G D)z 2 (o - ))}
o %Nl Z 5(1 'Vk (B(zrc) B&cr)) ) r=ry. (5.19)
27
k#1
c#i,k,r

Thanks to the fact that in the soft limit the mapped momenta coincide with the unmapped ones,
the first Eq. (5.17) is fulfilled in a straightforward way. The first relation in Eq. (5.18) is less evident,

but can be proven by simply performing the € expansion of S; RV, Ag ; and Is(lwz)
nv

Qs Pz j(r) 1 Secd (ijr) g(lc”) —€ — (ij7)
Ac’ij - %Nl s] 62 [( (”7)> 1] b 5Cd 2 [1 (SJ ) ]BWJ Ligle
i c#i,j \ d#1,j,¢ [ig]r ?
©) jm) 527‘8(] TONT B(jm-)
pz] (]TZ) S(»]M)S' uv,ligle
]m g('jri) B (jri) . .
e e

For the collinear
component, we define (r = r;;, ' = ri;i)

Qs gl he P”(’) (ijr) Pilﬁr’) 5 (ijr')
+ % 1 Z ? + Qbk 87 BP'V Wc,ij('r) - 87 B#V Wc,ij('r’) s (520)
k#1,j ) ij
where pi»f), fqu, ’yk , #P° and B are defined in Appendix A, and We,ij(ry is given in Eq. (C.5). The

third Eq. (5.17) can be verified by considering that in the collinear limit C;; we have
7.(igr) 7.re) Cig 7.Gijr) 7.(jri) Cis 7.Gijr) 1.(jri) Cis
KD RO 2 g, R0 RO S g R gl 2 g (5.21)

Again the second Eq. (5.18) can be proven upon expansion in e. Finally for the soft-collinear
component we introduce (with r = r;;, r' = r;ji)

€ —e€ (i) —e
s @ 1 Scd (ij7) Sjr Sje Biir)
se- g £ {3 (G o[ () o

c#i,5 \d#1,j,¢c Sed [ig]r Slig]r
C j’l"l) € s, S(]’I"Z) € 20 C Z’I‘]) s g(irj) —e1
LG o )
Gy, sgf,”) sgfﬂ”) Sic [idle * Cy, SE'ZTM) %7]) Sic Lijle
hc N N
reanicy 3 (2 o) e o - g2 50 (5.2
k#1,j
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With the latter definition we are able to prove the second and the fourth Eq. (5.17), by exploiting
the colour algebra of the colour-connected matrix elements, and the cancellation of the e poles in
the third Eq. (5.18). The explicit expression of the components of A;; in Eq. (5.16) completes the
list of definitions required to implement the subtracted real-virtual squared matrix element RVy,.
Given its finiteness in d = 4, we can now rewrite Eq. (5.9) as
RVap(X) = Y [(Rvﬁn +1ﬁ<§}ij)mj Sns1(X) — (zﬁfj + Iﬁﬂ}j;) 5n(X)], (5.23)
i,j#i

where the subscript emphasises that, at this stage, all the explicit poles have already been cancelled.

The finite component Iﬁ(i’)ij is given in Eq. (5.5), while Iﬁ(;zl; can easily be derived from Egs. (4.47)-
(4.49). Finally, we obtain the finite contribution K &{Yj)
€ of the sum of Egs. (5.12) and (5.19)-(5.22). We refrain from giving here the explicit expression

by computing the expansion in powers of

for the quantities in Eq. (5.23), as we will derive a more compact result for RV, (X), in terms of
symmetrised sector functions in the next section.

5.1 RV, with symmetrised sector functions

In the previous section we presented the construction of the subtracted real-virtual matrix element.
We started by introducing the general properties of RV, and we discussed the main steps nec-
essary to provide an explicit form for all the terms that contribute to its definition, according to
Eq. (5.9). We then proved that RV, is free of both explicit poles and phase-space singularities
in each W;; sector separately. As was mentioned in Section 2.1 and in Section 3.6, however, one
can improve the numerical performance of the scheme by appropriately symmetrising the sector
functions. In this section we present explicit expressions for RV in terms of symmetrised sector
functions.

In analogy to the procedure applied at NLO in Eq. (2.28), and later generalised to RR g1
in Section 3.6, we rewrite the real-virtual counterterm K®Y) in terms the symmetrised sector
counterterms K {(gy), defined as

(RV) _ p(RV) | (RV) (RV) _ (RV) _ (RV)
Ky = Ky + K, K = D K = D KR (5.24)
1,J #1 1,J>1

Starting from Eq.(5.23), it is then straightforward to obtain

1 RV 12

RV (X) = ‘Z‘{[Rvﬁn +Iﬁ(n}ij]zij S (X) + [Kgn’{;} +Iﬁ<n7{1j}] 5n(X)}, (5.25)
9,J>1

with Iéi,)ij given in Eq. (5.5). To present explicitly the other finite terms featuring in Eq. (5.25),

we organise them in terms of soft and hard-collinear components, writing

K (BV)

& 712 (RVi12) o K(RV+12) & K (RV+12)

+ Lgn {ij) S,ij s,ij T 48g 4 sgi T BHo o (5.26)

where the soft limit of the symmetrised sector functions, Z ;;, is defined in Eq. (3.33). The finite soft
counterterm Kg};ﬂrlz) is obtained by combining Eq. (4.47) with Egs. (5.12) and (5.19), dropping
the explicit poles. The result is extremely compact, and, except for the process-dependent finite

part of the single-virtual squared matrix element, it displays only simple logarithmic dependence
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on the kinematics. We find (r = ry, 7’ = 1)

RV+12 i 1 icd) S(icd)  p(ide
KEWA2) o2 3 e;;{ > (Lef—4L§f) B +2 X (L - y12) (B - BUE))

cH#1 e#i e#i,d
d#i,c f#i.e ( (icd)
d 5 ed SidSi d
+ ), In? s BEZZ} - *1 ’ Blgd =27 3 I~ B
Sde Scd ,u Sde
e#i,d e#i,c,d

7 C C C
#](6-5) (r20p-200) + Dot = 3 oLy ot L

k k#i
+CA( SR Ty ML B SwSld)]BS;d)
Sed Sed M Scd
raa? 3 (o) | 3 el (B B9+ ¥ e (B4~ 5|
k+#i c#i,k c#ik,r
+8ma, Y. EQ VD (5.27)
dc;z?c

where Véicfc)l is the finite part of the colour-correlated, single-virtual squared matrix element, ex-

pressed in the mapped kinematics. We notice that, as happened for IS(;?), the presence of the
reference particle r’ = r;; introduces a dependence on the particle j of the soft sector function Z ;;
which multiplies K, éfz;”rlz)

To conclude this section, we also report the finite hard-collinear counterterm K I({%\;;ru), which
is the result of summing Eqgs. (4.48) and (4.49) with Eqgs. (5.12), (5.20), and (5.22). We find (with

/
T =i, = Tijk)

P_h'C’MV _(z]r) 3
e ot ] 3 o B 3 ) ik 12 B2
1] c£i,j [id]r d;éz,] c
9 3 Jr) i ) pu (jri) p(.q) (ir5)
. cr ijr ij . plrd ji . plirg
Z [ BW cr 2 Lijer Bw,[ij]c + 9 Ljicr Blw,[ij]t:]
c;éz,] T
= (jri) ~(irj)
) Z f ( ijer BHV [ijle LJ”T Bw«[m] >
c#m
7 i
- [(6 -5 Cz) (ZC —Cru pif;) + Cp === (4Li— L)
p(c) p(c)
Faig P 2 he | p(igr
(1) 2 Sjr m(ijr . .
— 4a? [Qij £ Cpyln 8[573“ )+ (m])]
Ph'c,py hc,,ul/ o
e l SO (0 Lar + 2y L) BED + ”(T WE Lo BT
SU k+#1,j
Hhe,puv he,uv
. 2 ~finij(r) Hijr) ij(r)  yr(igr)
4a; o5 BWJ 8T g 55 Vﬁn,w , (5.28)

where we introduced the shorthand notation

s ng) ~ Slrd)
Lijer =2In—°|2—L;c+In~. , Lijer = 2Lje |2 — Lie + In = | . (5.29)
50T n
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Notice that also in Eq. (5.28) the kinematic dependence is expressed only in terms of simple loga-
rithms. Our next step is now to integrate the real-virtual counterterm, and add back the result to
complete Eq. (2.37).

6 Integration of the real-virtual counterterm

In Egs. (5.14), (5.24) we have defined the counterterm K V)| that enabled us to build the sub-
tracted real-virtual squared matrix element RV, integrable in the whole (n + 1)-body phase
space, and free of poles in e. The K®Y) counterterm needs to be integrated in d = 4 — 2e di-
mensions in the radiation phase space, and then the result must be added back, according to the
subtraction structure given in Egs. (2.36)-(2.38). In order to compute the integrated counterterm,
IRV "as defined in Eq. (2.35), we proceed by summing over all sectors W;;, so that sector functions
drop out of the calculation, owing to the sum rules they satisfy (like for example those in (2.11)).
We then perform the integration over the radiative phase space, with the measure dp'eed , naturally

rad

induced by the mapping (acd), according to

Javnatm = =2 [aated [ass?, 4B = db, ((R)D),  (6.1)
where d‘bgg is defined in Eq. (4.3). The integration of K®V) is carried out following the methods
described in Ref. [92], and using the fact that the spin-correlated contributions proportional to
the kernels Q"* . and Q" . vanish upon integration, as discussed in Appendix D. The formal

ij(r) ij(r)
expression for the integrated version of K®Y) can be written as

qu)n-kl K(RV) = J-dq)n_;,_l |:Z <§Z RV + AS,i) + Z (TCU RV + AHC,ij)] s (62)
i i j>i

where the integrands are defined in Egs. (5.12) and (5.19)-(5.22) and we use the shorthand notations
(see Eq. (2.29))

HCZ‘]‘ RV = él‘j(l — gi — gj) RV, AHC,ij = AC,ij + AC,ji - ASC,ij — ASC,ji . (63)
Before integrating, we can further simplify the expressions for Ag ; and Ac ;;, given in (5.19)-(5.20).
In fact, since §Sde) = S.f fore, f #1,c,d, and Eildjr) = S¢q for ¢,d # i, j,r, one finds that

1 Sef - zcd Sed > (icd)
5 Z [((zcd)) de + Z l( _(icd) ) -1 Bedcd =
e#i,c S@f e#i,d

f#ice

_ Sed - > (icd)
=2 Z l((wd)) -1 Bedcd +
e#i,c,d Sed

(icd
Bédcd) ) (64)

Sed -~
- -1
(sijfd))

as well as
Sed ) (igr) Ser \ 5 (ijr
Z l((m)) BHV cd = 2 Z ((ijr)) —1 B,L(Ll{,c)r' (6.5)
c#i,j Sed e#i g | \Ser
d#1i,j,c

After integration, the soft contributions to Eq. (6.2) read

Jd¢n+1s RV = 7<7’L+1 Z Jd¢(zcd)[chd V(Lcd) 2; (jSiCd+J7‘Cd ﬂO) EZCd) (66)

n c#1

d+#i,c (icd)
Ticde icd
+oag Y B ]
e#i,c,d
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while (r = r;)

As Sn ic icd(e) p(ic ic ic
Jamnnss =gz faen | 37 0 850 o it @
e e#i,c,d
d+#1i,c

1 2 he N i N ide
e[pen(+3) || Jaotonnniy- j e

hc
. % Sn+1 Z Tk J\dq)(zrc) J’L’I"C (zrc) J\d(p(zcr) chr (zc’r‘)
2T g, =€

c#ik,r

Explicit expressions for the constituent integrals Jied, Jicde, jicd(©) and Jicd are given in Eq. (E.5),
while the NLO integral J ¢ is given in Eq. (E.1). We notice that the soft integrated real-virtual
counterterm in Eq. (6.6) receives contributions from the triple-colour-correlated squared matrix
element B.q.. However, the pole content of such term vanishes upon performing the appropriate
colour sums (see Ref. [92] for further details). This cancellation represents a strong test for the
method: it is protected by the fact that no singular contributions proportional to colour tripoles
can arise from double-virtual nor from double-real corrections. On the other hand, integrating the
tripole contribution to the soft real-virtual kernel requires the non-trivial procedure described in
Ref. [92], which is necessary in order to verify the pole cancellation, and to compute the finite
remainder. To complete the discussion we also report the integrated hard-collinear component,

f a0, G, RV = 11 f 4o [Jggrvwﬂ . ;‘;<j;gr_ J;grgg)gww], r—ri, (6.8)

while the compensating hard-collinear term integrates to (r = 75, ' = riji)

Qs Snyl ijr Jigr gligr ijre (l i)
Jd‘bn-!—l Ancij = 5 - {Jd‘b%”[ D, AT BUT 4 Y g Bl ] (6.9)

c#1,7,T c#1,]

o % | oo sz ngt s [aoi e 5|

CF#LJ,T

+ Z (7k hc) |:J ‘I)(ZJT)JhlgT B(ijr) _ jdq)(zjr )Jz]r D (ijr’ ):|
k#1,j
£qq (gri) ri,c R(3T) (ir irj,c p(ir]
+ ij Z [J\dé 1 JAjhc B[lj] J\d(b JAhcj B[l]]c]}'
c#t1,J

Explicit expressions for the hard-collinear constituent integrals jhigr, J:gf, J:g:a Jy 3” ¢, and jAJ:j’C
are given in Eq. (E.16), while the NLO hard-collinear integral J/7" is given in Eq. (E7)

Having computed all relevant integrals, we now recombine them, following a procedure anal-
ogous to the one described at the end of Section 4.2. We rename the sets of mapped momenta

{k(@)}, to the same set of Born-level momenta {k}, by means of the replacements
Aol s ap, . B@ - B B@d L B, 5™ g, (6.10)

where the ellipsis in the Born-level matrix element stands for a generic colour correlation. In
ir) B0 5D and &9 are renamed as
7 » vy 1) j

kp, where p is the label of the parent particle Sphttmg into 7 and j. As a consequence of this

particular, in the integral of Apc ;;, all momenta k

renaming, the integrals involving B[ij]c can be recombined, and do not contribute to the integrated
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counterterm. Indeed

i ri 1) irj) Firj,e pliry) _
Jdé(”)JA{w CBJ Jdcbgm Jarie B = (6.11)
r (grz) _ J’I"’L (]T’L) T (“‘]) ”’] (”‘.7
qu)(j z)Jc )B qu)(z J)Jc ( HEEN )B

— fd@n J:hc(spr, Spe ) Bpe — fd@n JACM(spT7 spc) Bpe = 0.

The dependence on the (n + 1)-body phase-space particles is now limited to the flavour factors f{,
fi'j and f{, which can be translated into flavour factors for the n-body-phase-space particles, as was
done in Section 4.3 for the double-real contribution. In particular, when going from an (n + 1)-body
phase space to an n-body phase space the relations in Eq. (4.34) and Eq. (4.35) apply, with the
formal replacement n — n — 1. After performing the flavour sums, no dependence on the original
(n + 1)-body phase space remains. Simplifying the colour correlations where possible, we finally

get
I(RV) = - 2 [Js(scd) Vea + JsR,V(SCd) cd T JRV Scd Beged + Z JfR\f Bcde:|
c,d#c e#c,d
+ Z{ he(sir) V + JthV(sJT) B+ Jh Rv(sjr Bj, + Z [ v (Sje) Bie + Jh]:gv(sj"") Bcr}
c#j,r
Qs ,
-5WZ(€+¢)hmm—MQmﬁ, (6.12)
k#j
where we introduced the following combinations of constituent integrals:
Ja(s) = = 25| di(s) + 20 1) + 20 IO (s) (6.13)
o 27 2¢ e “as ’
@ Qg
o) = 32| 12() — ID ()] (6.14)
2
cde a 1 Sce 1 2 Scd 1 3 Sce . Sce
=—=|-In—In"— + =In> — - .
I 5 [ iy R S s L13< Sde) +(9(6)], (6.15)

i) = 5§ 79 [ A0 A0~ o000 - Cr 0 Cr 2 0)
#17] 5 (78906 = 22 A2 0) — a0, () - 20005 9))

Ny <j}§2g>(s)—§2J}§2g () = Ca J9) (5) —2C4 J30 (s ))]} (6.16)

th$<>=;j{(f§+f§> CARRORERANORF/WNC)

+f]f’[ (729, () =225 (5)) + Ny (08, (5) = 2732 (s ))]} (6.17)
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5 Qg g
B (s) = o2 { (77 1) (TS50 (5) + 38 () + 5L (9)

+ff [; (Jﬁf}B(s) +2 JEEC,B(S)) + Ny (J/fgf)s (s) +2 Jfﬁ,B(s))] } , (6.18)

i) = 52 { (F] + £7) TL2(s) + £ [ S IC0(s) + N Jiﬂf’(s)] } : (6.19)

All new constituent integrals appearing in the above results are listed in Appendix E: the soft
integrals are presented in Eq. (E.6), the hard-collinear integrals in Eq. (E.17), and the integrals
arising from the compensating A;; terms in Egs. (E.18)-(E.20). We note once again that all integrals
involved are single-scale, and thus involve only simple logarithms. Interestingly, the only exception
is Eq. (6.15), a uniform-weight-three function featuring three scales and a single trilogarithm: this
integral arises as a finite remainder of the non-trivial integration of the tripole term.

The integrated counterterm I®V) given in Eq. (6.12), which features Born-level kinematics,
contains explicit poles in €, that must be combined with those of the integrated counterterm I (2,
and must, together, cancel the singularities of the double-virtual squared matrix element. In the
next section we turn to the proof of this statement, which provides a highly non-trivial test of all
our calculations, and completes the subtraction programme for generic massless final states.

7 The subtracted double-virtual contribution V'V,

Finally, we turn our attention to the first line in Eq. (2.37), which we rewrite here as
V Vo (X) = [VV L 1@ I<RV>] G(X). (7.1)

It is our task to show that the equation above is free of € poles. To verify this, we first explicitly
derive the € poles of V'V, and then we provide the complete € expansion of I (?) + I®V) including
O(€%) terms, obtained by combining Eq. (4.41) and Eq. (6.12).

7.1 The pole part of the double-virtual matrix element V'V

All infrared poles of gauge-theory scattering amplitudes can be expressed in a factorised form
through the formula [18, 19, 21, 24, 25]

AR ate) = 2 (Eate) 1 (Eanne) (72)

where H is finite as € — 0, and Z is a colour operator with a universal form, to be discussed below.
The infrared operator Z obeys a (matrix) renormalisation-group equation, which can be solved in
exponential form, with a trivial initial condition, in terms of an anomalous-dimension matrix T.

2 (5 i) - P [ 21 (B, -

0

One may write

where the integral converges at A = 0 in dimensional regularisation thanks to the behaviour of the
B function in d = 4 — 2¢, for € < 0 (d > 4). Indeed, in dimensional regularisation one has

2

das = fB(e,a5) = —2eas — ;—;ﬁo + O(az’) , (7.4)
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whose solution implies [16] that the d-dimensional running coupling a;(u, €) vanishes at p = 0 for
€ < 0, so that the corresponding initial condition is Z(u = 0) = 1, leading to Eq. (7.3). For the
purposes of NNLO subtraction (and thus at two loops for virtual amplitudes), I" is given by the
dipole formula [21, 24]

r (%,QSO\),E) = %% (as(A€)) Y In <SJ§;W) Ti-T; + 2 vilas(he) . (75)

In Eq. (7.5), the phases o;; are given by o,;; = +1 if partons ¢ and j are either both in the initial
state or both in the final state, while o;; = 0 otherwise. For our present final-state application, we
can thus henceforth replace all phase factors using el = —1, with the understanding that the
logarithm is taken above the cut.

The anomalous dimensions appearing in Eq. (7.5) are the cusp anomalous dimension Yk (as)
and the collinear anomalous dimensions 7; (a). More precisely, in the derivation of Eq. (7.5) it has
been assumed that the (light-like) cusp anomalous dimension 'yg) (as), in colour representation r,
obeys ‘Casimir scaling’, i.e. it can be written as

Y (as) = Cp Ak (), (7.6)

where C,. is the quadratic Casimir eigenvalue for colour representation r, while Y (s) is a universal
(representation-independent) function. This assumption is known to fail at four loops [96, 97]. The
collinear anomalous dimensions +;(«;) are related to the anomalous dimensions of quark and gluon
fields, and can be derived from essentially colour-singlet calculations such as those of form factors.

One important consequence of the dipole formula is that the scale integration in Eq. (7.3) can
be performed without affecting the colour structure (which is scale-independent): one may therefore
omit the path-ordering in Eq. (7.3), simplifying considerably the necessary calculations. Expanding
the various ingredients perturbatively as

o0 0 0
= 2 (E) L e = XA (2)" Tlaw) = Y00 (&)
A (@s) pa Tk om o vilas) 7;1 i o ) (avs) 7;1 o . (7.7)
one gets at NLO
1 —sij +1 1 2
W = ZaM TS5 T M) _ L amg, (A
= 4 Tk 7%;1 In ( 12 ) T;-T; + Zi:’Yi 4 YK In ()\2 ;Cﬂ ) (7.8)
and consequently
~(1) ~(1) (1)
m (PN 1y 1[0k T ix K
Z <u,e) =55 %< i;&iLlel Tj+ 5% | +im =%, (7.9)

where L;; = In(s;;/p?). Eq. (7.9) is in agreement with [18, 24], with the one-loop anomalous-
dimension coefficients given by

~ 3 7 1
W =4 W == SO U 4 56 T =20, Ty =Y, (110)
i %

where we noted that in the text we have sometimes used the notation ~; for the one-loop coefficient
denoted here by %(1)’ Expanding the anomalous dimensions to two loops and performing the
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relevant integrals, the NNLO result for the Z factor is

(1)
7z _ LUK 5o

et 128 ¢
+l§(1) o360 + 4%, + >l S”Hn
S 64 0 i 12
1,7 #1
(
+ = BMK 3 < 3”+1”>T Ty 4 BN, —
1, #1 4

~(1) .
+23+%2W§ ln<J277>Ti~Tj
1,571 H

( (1)) ,
Zl ( Szj+l7])ln(Si;;ln)Ti_Tka_Tl

1,]F#1T
k,l#k
1 +
4[ Y In < %ij ”7) T, T, +2g2>], (7.11)
1,]F1

which agrees with [24] with the anomalous dimension coefficients given in Eq. (A.13), and where we
defined E =2y 71 . Having deduced the Z elements up to the needed order, we can now interfere
the double-virtual amplitude with the Born, and extract the poles. The perturbative expansion of
(7.2) yields

A0 — 5O

AL — ;‘7 [Hu) +z<1>H<0>] — ;L;A(l)?

A@ <;‘;)2[H<2) +ZOHO + 23O = (%) A (7.12)
implying
AP = )7{(0)‘2 + 52 2Re [(7—[(0)>TH(1) + (H@))T z<1>’H<°>] (7.13)

N (;)2 [gRe <(H<o>>TH(2> N (Hm))T 7Oy (Hw))* z<2>H<°>>
+ ‘H“)]Q + (H(O))T (z“))T ZOH© 4 2Re ((H(l))T Z(l)H(O))] +0(a?).

We are interested in the divergent contributions to Eq. (7.13) at O(a?): we extract them in turn.
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First, the direct contribution of the two-loop Z matrix is given by

2Re< (H(m)T z<2>7-z<0>> — 1O (2@ 4 20T

11 11
- 5B+ 55 c[( Bo + ) B+ ZLWB,J]

1,] #1

+
—
—
—
—~
)
S
™
2
\
-2
|5
QM
+
™
[\

2YB + (B +2%,) Y, Lij By
4,J7#1

11
- == l42(2)B + ag) Z Lij Bij s (714)

1,571

where again L;; = In(s;;/u?), and the colour-correlated Born amplitudes B;; and Bjjx; are defined
in Eq. (A.5). The square of the one-loop Z matrix contributes

+ t 11 11
HO 'z ZzW3 ) — 6—412§B+ 55 % |5 B+ > Lij Bjj

6,JF#1

1 1
+ 57 l22 B+2%, > LijBij + 5 5 > (Lij Ly + Wz) Bz‘jkl} - (7.15)
1,] 710 ©,J#1
kltk

Note that in Eq. (7.14) and in Eq. (7.15), for simplicity, we already substituted 'y(l) = 4. Finally,
terms involving the product of the one-loop hard part and the one-loop Z matrix give

2Re (HO ZOH® + HO'ZOHO) = 1O (20 4 207 ) 3
+’H(1)T(Z(1) + Z(m)H(o) , (7.16)

In order to make use in practice of Eq. (7.16), it is useful to rewrite HW in terms of the full virtual
amplitude A1), using

HO = AW _zOyO) (7.17)
Eq. (7.16) then becomes
2Re (%mﬁZ(l)H(l) +H(1)TZ(1)H(O)) _ H(oﬂ(zm " Z(l)*)Au) +,4(1)*( 71 4 7O )H(m
ON (207 +2 zW'z Z<1)T2>H(°) . (718)

The term on the second line of Eq. (7.18) is easily computed using Eq. (7.9) and yields

C O (0% 4 9z0170 4z g0 _ Lo 22 S, B+ Y Li By
64 e} J J
1,J#1
- lZQB +2%, Y Ly By + 5 Z Lij Ly Bwkl1 (7.19)
0, J#0 ,]z:z
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The first two terms on the r.h.s. of Eq. (7.18) can be expressed in terms of the one-loop virtual
correction to the cross section. One finds

[Hm)* (z(l) n Z(1>T)A<1> n A(M(Zu) n Z(l)T)Hm)]
o

~(1) ~1)

1 1y L(y

=HO [— ?%EC - (Z > L Ti T+ 3%, | [AY + h.e.
ij#i

1 Iy
==y V- V—f > Lij Vi, (7.20)

2 C
€
4,J#1

where the colour-correlated virtual correction Vj; is defined in Eq. (A.7). Combining Eq. (7.14)
with Eq. (7.15) and Eq. (7.20), we get a complete and explicit expression for the pole part of the
double-virtual contribution to the cross section,

as )2 11 1 3
_ S 2 .. L.
174% e T (ﬁ) {— Ty% B+ 5% [(850 - 27> B - i;éiL” B”]
~(2)
1 1 5
[(50 - %zc — 223) B
+ (ﬁo - 427> Z L;; Bij — Z Lij Ly Bijkl]
VR ©,J#1
kl#k
- -3 4P B + 7 ZL”BH
NV E
Qg
-5 L SV + 2 V+Z§levw] (7.21)

Eq. (7.21) can now be combined with the integrals of the double-radiative and the real-virtual
counterterms to form the subtracted double-virtual contribution to the cross section, V'V, given
in Eq. (7.1).

7.2 Integrated counterterms for double-virtual poles

The expressions for the relevant integrated counterterms, I (2 and I®V) | were given in Eq. (4.41)
and in Eq. (6.12), respectively. We only need to expand these expressions in powers of €, including
terms up to O(e). We define

2+RV 24+RV
1@ 4 [®V) = JEFRV) | BV 4 O(e). (7.22)
As expected, the pole part II()OIZS V) exactly cancels Eq. (7.21):
2+RV
GV — vy i (7.23)

We note in particular that it is not necessary to compute NLO virtual corrections up to O(e?),
since the last term in Eq. (7.21), containing virtual corrections multiplied times explicit poles up to
€72, is exactly reproduced by I (ilgw), so that O(e) contributions to NLO corrections never appear

in our subtraction formula'!. This was anticipated in Ref. [98] and emerges clearly in our approach

1 This understands the technical capability by a two-loop provider to turn off the O(e) NLO virtual contribution
in the computation of VV. Were this is not the case, the evaluation of I (2) as well would have to be performed with
such a contribution turned on.

— 48 —



thanks to the factorisation properties of the one-loop amplitude, and the minimal scheme we adopt
for the factorisation of virtual corrections. The finite part of the integrated counterterms can be
written as (r = r;, r' = ;)

2
24+RV Q. (1 c . hc
[EHRY) _ (2;> { [ 0)+ZI 'L, +ZI S ny]h LJT/LM]B (7.24)

J l#j
+Z[ <0)+11>L ]B ~2(1-G) Y (2~ Lo) Ba
j,c;&j,r
+ 3 Lea [152) + 10 Lo + @ L2, (4 — Leq) Y ke Ljr] Bed
c,d#c J

+ Z [_2+<2—|—2C3—ZC4+2(1—<3)Lcd]Bcdcd

c,d#c

1 1
+ (1 - <2) Z Leg Led Beded + 2 Leg Lef [1 - 5 Leq (1_8Le >:| Bcdef

c,d#c c,d#c
e#d e, f#e
S S
e [t e 2 ()
c,d#c Sde Sde
e#c,d

e hc fin 1 fin
+ 5 [<Z¢Z% LJT)V + ] Lcd< 2Lcd) Vcd],

c,d#c

where Vin and VP are the O(€®) terms in the virtual and colour-correlated virtual contributions,
which are obtained from the full virtual contributions V' and V.4 by subtracting the IR poles given
explicitly by Eq. (7.9). We emphasise that the kinematic dependence of Eq. (7.24) is only through
simple logarithms of kinematic invariants, with the single exception of the trilogarithm multiplying
the tripole Born-level colour correlation B4 on the one-but-last line of Eq. (7.9). All the integral
coefficients appearing in Eq. (7.9) are pure numbers, and they are given by

101 141 245 13 125 245 77 53
10 = N2C2[—<2 44}+NquCF [c:(S Gt <4> /3o<— 42)]

20 13 245 1 1
+N2[C2< §42+ 16C> ﬂo( 8<2>+Q“60<93C2>]
NG, [CF (53 Tttt <4) (Z;}gcg <3+487<4)

+,5’0<586665—85C2—11C3>]

v N |G (- T na) (5 - 3a) + 85 - 2a)

4289 15 647 53 11
2 S — — R — P —
+C; < o1 T g %2~ 4G+ 8C4> [30( g 12C3)]7
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- 1+ NG| M (- 1a) + 3G (5 - 56 + 3N

+CF(— e +2<3) (f; - 3G +3<3> +ﬁo<214 +<2>]
i [ G (10-76) = NGy fio (5_C2> + Ny C? (4—7C2> + NyC, Bo <;+ZC2)

Jr

(Ny + D + GG, - 05o+02(28—23<2+5<3)—cwo(i—gcz)],

Wl N

2(15@, —7B0)Cy, — 7(5CA 260)7; + 7(16@ —15)C%,,
19 = (143G~ 2C3)CA - 5(13 +106 + 263)Cy, + (54 2G3);
(1-G)Ca+ 5 5 (4 +76)Cr, — (24 &),

20 31
Iy = <9 2<z—<3>CA+5o+22¢+8(1—¢2)cfd,

m_ (1 _1 Su, 1
9 - <3 @)cA 1 - 5% (7.25)

(24+RV)

poles does not depend on reference momenta r, r’;

conversely, the dependence on r, r’ arising in the finite part If(ii+RV)

explicit in the counterterms K (3) and K®V),

We stress that, as expected, the pole part I

is necessary to cancel the one

8 Status and perspective

We have presented a complete analytic solution to the NNLO subtraction problem for general
massless coloured final states, within the framework of Local Analytic Sector Subtraction, which
can be implemented in conjunction with any numerical code providing the appropriate one- and
two-loop matrix elements, and an efficient phase-space integrator.

The main ingredients for our construction are the following. Beginning with the double-radiative
contribution, we introduce a smooth partition of the radiative phase space into sectors, each con-
taining a minimal number of soft and collinear singularities, following the basic logic of Ref. [50].
Next, we list all uniform soft and collinear limits, with up to two particles becoming unresolved,
that contribute to each sector. Denoting these limits by fsect, i, We then follow the strategy of
Ref. [64], and construct combinations of the form [[,(1 — fsect, ), which are guaranteed to be inte-
grable in the relevant phase spaces, and for which double-counted nested limits have been properly
subtracted. Crucially, in all cases we define commuting limits, which significantly simplify subse-
quent manipulations. Exploiting the soft- and collinear-factorisation properties of matrix elements,
all relevant limits can be expressed as products of known splitting kernels times lower-multiplicity
matrix elements. In order to properly exploit this factorised structure for matrix elements, we then
introduce a flexible set of phase-space mappings, which lead to the complete factorisation of the
phase-space integration, separating the on-shell Born-level configuration from radiative factors. Us-
ing these mappings, we construct improved limits Esecn i, which are highly optimised, with different
choices of mappings for different limits, different sectors and different terms in each sector; further-
more, the action of the improved limits on sector functions is tuned, when needed. Importantly,
these optimisations must pass stringent consistency conditions, ensuring that nested improved limits
with different mappings remain aligned with the underlying physical soft and collinear limits. An
analogous procedure is followed for the real-virtual contribution, where the radiative phase-space
structure is much simpler, but splitting kernels (and thus improved limits) are more intricate.
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This lengthy optimisation work pays off when the local counterterms, thus obtained, are inte-
grated over the radiative degrees of freedom. All counterterms can be analytically integrated, and
all singular contributions to the integrated counterterms are given by single-scale integrals, with
trivial logarithmic dependence on Born-level kinematic invariants. When integrated counterterms
are properly combined with the singular part of the double-virtual contribution to the cross section,
all poles are analytically shown to cancel. All finite contributions can also be obtained analytically,
and they are of similar simplicity, with just a single contribution (proportional to a colour tripole)
displaying a weight-three polylogarithm depending on two physical scales. In a sense, the exist-
ing tension between the remarkable simplicity of double-virtual singularities and the increasing
intricacy of real-virtual and double-real radiative contributions is resolved by a judicious choice of
sectors and mappings. Indeed, the simplicity of the integrals associated with both double-real and
real-virtual counterterms kindles hopes that a generalisation to N3LO subtraction with the same
degree of generality might be achievable. On the other hand, our approach is undeniably costly
from the combinatorial viewpoint, and requires a fast-growing number of consistency checks, which
would be challenging to tackle at higher orders.

The future developments of our work are clearly outlined. First of all, the formalism must be
numerically implemented and tested for efficiency. This work is under way, and was completed at
NLO in Ref. [89]. In that paper, the NLO formalism was also extended to initial-state coloured
particles, without significantly raising the technical difficulties. Obviously, the inclusion of non-
trivial initial states is a high-priority goal at NNLO as well, in view of LHC applications. Also in
this case, this generalisation is not expected to involve new major technical obstacles: as observed
at NLO, new classes of mappings are needed, and collinear factorisation must be consistently
implemented, but all of these developments are expected to be comparatively straightforward.
Importantly, new phase-space integrals are expected to be of the same level of complexity as those
presented here, so that a completely analytic result is expected to be within reach. Work is in
progress also on this front. In the longer run, an important further ingredient to achieve complete
generality for NNLO subtraction is the inclusion of massive particles in the final state. This task
is going to be simplified by the fact that the number and type of singular limits associated with
massive coloured particles are limited, since collinear limits for real radiation are non-singular in this
case. Since our approach is combinatorially intensive, this is expected to be a significant advantage.
On the other hand, massive particles will require adjustments in phase-space mappings, and will
likely involve new classes of integrals, with a more intricate scale dependence. We are, nonetheless,
confident that a complete analytic expression can be derived also in that case.

Finally, we believe that, notwithstanding the simplicity of our analytic results, there is further
room for optimisation, which would be very important in view of a future generalisation of our
approach to N3LO. We note for example that the minimal interference between soft and collinear
singularities which is suggested by factorisation at amplitude level still emerges in our formalism
as an output rather than being introduced from the outset. We hope that a more detailed under-
standing of the factorisation structure for real radiation, in particular for strongly-ordered limits,
along the lines of Refs. [84, 91] will provide further insights in this direction. Simplifications in the
structure of nested infrared limits would likely improve significantly the combinatorial challenges
of our approach, and open the way to higher orders.

In summary, we believe that our results bring the goal of establishing a completely general,
local, analytic and efficient NNLO-subtraction formalism one step closer.
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A General notation

We denote by s the squared centre-of-mass energy and by ¢* = (/s 0 ) the centre-of-mass four-
momentum. Given two final-state momenta k! and k;‘, we define

Sij
Sqi:2q'ki7 Sij = 2ki-1€j7 Lij = 111*27
1%
Sqi S8iq
_ oqi o i)
e = —, wij = ——. (A1)
s Sqi Sqj

In addition, given four final-state momenta k%, ki', k% and k;, we define

_ _ K — H
Sabc = Sab T Sbe T Sac S[able = Sac T Sbe k[ab] = kff + kb >

Sabed = Sab Tt Sac T Sad T Svbe t Sbd + Scd » S[abcld = Sad + Sbd + Scd - (A.2)

For the sake of compactness, we define the following flavour structures:

= 1 if i is a quark . 1 if ¢ is an antiquark 9= 1 if ¢ is a gluon
' 0 if 7 is not a quark ’ 0 if 4 is not an antiquark ' 0 if 4 is not a gluon
=+ g, =1 K= ferr, f =1 - (A3)
which are special cases of the general rule
= X 1Al flrile= X sien(P)fI g, (A4
g15--9n= g15--,gn=
P(fi,eesfn) P(fi,eesfn)
where P(f1,..., fn) is a generic permutation of indices f1,..., fn.
We introduce a compact notation for Born-level colour correlations:
Bcd = AS}O)T Tc : Td -ASLO) y Bcdef = A%O)T {Tc . Tda Te : Tf} A'ELO) ’ (A5)
By = ff A%O)T T. Ty .A%O) , (7?4)3() = dapc . (AG)

Analogously, the colour-correlated real and virtual matrix elements are defined as

Voo = 2Re [A T DAL | Rea = AP T T AT, (A7)
which are of relative order as with respect to the corresponding Born-level terms.
We define the following combinations of Casimir operators,

©) Cf[ab] + Cfa - Cfb ©) Cf[ab] - Cfa - Cfb

a = ) P a = 5 >, = Cfa s (AS)
b Cf[ab] [a?] Cf[ab] ‘ Za:
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and

3 _ 1 1c
Yo = 5Cr(fi+fD+55 08, By = Ea Yar  Tat = Y%a—2Cs,, (A.9)
13 R 2 7
Pa = 3 Cr (f§+f§)+gﬂof3+ (3_2C2>Cfa’ Yy = E Pas (A.10)
e 13 4 16 he he
0 = 3 Or I+ + 50l 5 Cr. B = Y00, (A-11)

a
where the sums run over all final-state QCD partons and

_ 11C4 — 4Tg Ny

Bo 3

(A.12)

The two-loop anomalous dimensions are given by

67 10 8 10
4{ (18_C2> Ca — 9TRNf} = (3 —4C2>CA+3307

o = e e 3 (5 -@r2a) o (55 - Ha) e+ (B +3a) a)

>
P

®
N/
Il

36 724
+f§{CA { % Cr + <*; — ;@) CA} + fo B Cr + (196 - iéz) CA]}~ (A.13)

As for the labelling of particles we introduce the notation
Tiy.in =Rn(i1,...,in) K ST (A14)

to indicate a generic particle label different from iy,...,14,, defined following a specific rule R,.
Such a rule is arbitrary to some extent, and could for instance assign 7;,..;, as the smallest label
different from all iy,...,4,, or the largest, and so on. A crucial feature, however, is that R,, must
be symmetric under permutations of all indices i1, ..., i,, and must be the same for all r;, ; with

the same n. As a consequence, the notation r;, ;. always refers to the rule R, (i1,...,4,), which
is a symmetric function of its indices i1, ..., 4,, and just depends on n.

B Infrared kernels

B.1 Soft kernels at tree level

We introduce the kernels associated with the real emission of one or two soft partons, as given in
Ref. [92], relevant for both NLO (with the emission of just one parton) and NNLO corrections (with
the emission of either one or two partons). We express all kernels in terms of Lorentz-invariant
quantities, and using the flavour structures defined in Appendix A. The resulting expressions are

i Scd ij g 7)(ij ij
Ic(d) = f9 ot Iidj) _ f{]jg 27w Ic(glq)( J) _ ffjg 20,4 I(Egg)( ) , (B.1)

where
Zlan)(ig) _ SicSjd ¥ SidSje = SijScd

. = , (B.2)
¢ 83 S[ijle Slijld

7(99)(i) _ (1 — €)(SicSja + siaSje) — 25ij5cd + 5ug SicSjd T SidSjc — SijScd [1 1 sicsja+ Sidsjc:|

Cd 2 ¢ y 7 ; y y N . ..
837 Sligle S[ijld SijSicSjdSidSjc 2 S[iz)e S[ijld
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We also define the combinations of eikonal kernels

£ =19 - o2

Sic Szd
ij ijy 1 ij i ij
=2 - La - LA - e e - ppac, e, ma
with
gDt _ L | SicSja + SidSjc  SicSje  SidSjd | Sed
c 2 2 2
Sij S[if)eSis]d Slijle Slijld 845 8[ig)cS[ij]d
glag)i) _ 1 — €] 8icSjd + SidSjc  SicSjc  SidSjd 9 Scd
cd - - - -
5% S[ijleS[if]d Sﬁj]c S%ij]d 8ij S[ijleS[if]d
45,y SicSid T SidSje = SijSed [1 1 sicsja + Sidsjc:| . (B.4)
8ijSicSjdSidSjc 2 S[if1eS[ijld

B.2 Soft kernels at one loop

We introduce kernels associated to the emission of a single-soft gluon at one-loop level, relevant for
the soft part of the real-virtual counterterm at NNLO,

~(i T 1+€F417€ Sced E Se
£ = ro, L0 -0 < Y

(14 26)T2(1 — 2¢) SicSia \ SicSid
1 1 SicSid 5 2 SicSid

=04 & | —In @)

Acd[e En/JSd 242-&-2 /ﬂscd+ ()]
g(z) _ f F(l + 6)F2 1-— E E//f Sde
ede — Ji GF(I - 26 SicSid SidSie
o) SidSie
=&l L —lnos (9(6)] : (B.5)

where € is the dimensional regulator (d = 4 — 2e).

B.3 Collinear and hard-collinear kernels at tree level

In order to define the kernel associated to the tree-level emission of two collinear final-state particles
i and j (labelled single-collinear), we choose a reference momentum k,., with r # 4, j, and introduce
the following kinematic structures:

Z‘i:i, l‘j:l, ]%i:$ikj—$k (1 2x ) kir. (Bﬁ)
S[ij]r S[ij]r S[za]
Then, the collinear (Altarelli-Parisi) kernels Pi“,'(jr) are defined as
Pliy = =P 9" + Qi » e = Quemdl”, (B.7)
where the azimuthal tensor reads
v k“k”
A = —g" +(d-2) (B.8)
and
(0g) (1 ¢! (2g)
Pij('r‘) = Pz_](%‘) qq+P 5 fg(fq+fq)+P71(%‘) (fq+fq)fg+13”(gr) ng (Bg)
22,5
Qij(r) =Tg 1 _; ij _QCAJ; Zj figjga
0 2x;x; 1 Z; 2
P = Ty (1 - 1_2) . P =Cp [2 - e)xi] , P = 20,4( . + =L + mj)
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The hard-collinear kernels I;C(T’;" are defined as

he,uv v c v
Pich = Pl 4 sy[20y, e 1205, 6Q g = - Pl 0+ QL) (B.10)
where
he, (0 hc, 1 ,(1 he,(2
P”(T) _ Pij(r() g) qq +P (g fg(fq+fq) ﬂ(r (1g) (fq+fq)fg +Pz](r) g) ” , (B.11)
he,(0g) _ p(0g) 2%% he,(1g) _ . he,(2g) _ .
Fiey. =Bty = TR( - e) o Py = Cr(=am, Py =2Ca ;.

The kernel associated to the emission of three collinear final-state partons i, j and k (labelled
double-collinear) relies on the choice of a reference momentum k,, with r # 4,7, &k, and on the
following kinematic structures,

= Zab = Za+ 2, ab =i,k (B.12)
Slijk]r
- "
kly = ki — za (k' + K5 + ki) — (S[iji1a — 2 2453;,) —— a,b,c=1,j,k,
Slijk]r
ke = Za(zaszzjk = Slijkla) = Za(Sbc — ZbcSijk) -
The double-collinear kernels PZZ(T) are defined as
Pl = —Purn 9" + Qs Qiry = 2 Qe 4 (B.13)
a=1t,j,k

The Pjji(r) kernels, organised by flavour structures, are given by
Pijir) = PJE’ LT+ PSS PR T + POEL £+ £T)
+ P (LA +quqfk> + Pj,‘if SLFLFHLLILED) + PSS P+ PR
+ P 1g) fk kl(r) fg + P 1g) fg

igk(r kij(r
2 (2 (2
+Rﬁ’ (ﬁ+nﬂ4%ﬂ) Uﬂfﬂ+&jﬂ I (fI+£])
(3
+ Pl 5 (B.14)

where ¢’ is a quark of flavour equal to or different from that of ¢; similarly, the azimuthal tensor
kernel can be written as

1lg), (1g),a 1 q 3g),
Qz]k(r) QE]I%) fk + Q]k%gr) fg + Ql(czf qkq fg QE]}%) lgﬂcg : (B15)

The expressions for PZ(JOE()T), PZ(]O,f( “)i), Pl.(jlkg()r), Pz(fkg) and Pl k(r) read:

2 2
(0g) _ Sijk ( Sjk Sik | Zi—Z%j Sijk | o 26— ZiZj 1
szk(r - CFTR{Zg?.( +Zij> +[2%+(1€)Zij]2+6},(B.16)

Sijk  Sijk Sij ij

2 2

i Sijk %k |1+ 2 2 Zj Sij  Sij

PUEYY) = Cp(2Cp—Ca){ - ;L [’“ —c (”“ e LA e)] + (- e)[” + 24 e]
SikSik | ZjkZik Zjk  Zik Sik  Sik

2 2
Sijk [1 + 2z, — €2y,

28k

L
— 21— —e(1+2,) — €22 ]
21— g el ) -
21— ) E — (1 2p) — € zik] } . (B.17)

Sijk [1 + 2 — ez

28,5, Zjk Zik
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252, + 2225 ij ij
Pi(jlkg()r) = CFTR{{ A [14-31%_%126%] _(1_6)[%"‘8]] -2

SikSjk Sjik Sik
Siik 2Z‘k Siik 22‘k
- [1+22k+6—J] — 21+ 22 +e— —
Sjk 1—¢ Sik 1-—
2 2 2
+ CaTr | — Zih ( Sik Sk | E T Zj> T [1 + 2 — T QZiZj]
2
2s7; \Sijk Sijk Zij SikSjk 1—e
2
Sk Z s s 22 (2K — 22j21)
2siSik 2uzij | k 1—¢
2
Sk % | s e 2%(E — 22)
2sijsk 2wz | 0 l—e
Siik  Zik 22: 2k Siik Zik 222k
LA L 1+zkzij— s Y J 1+Zkzij_#
28k 2K Zij 1—e¢ 28k 2KZij 1—e€

e 1 i — 2)? = 2zi2(1 1
Sij RkZij 1—c¢€ 2

$20 2 14 22 — €22 S
P(Qg) _ 2 ijk k ij 1 _ —(1— 2 95k 1—
ik(ry = CF Dsiwoin a7 +e(l—e€)|—(1—¢) . +e(l—e¢)

3 2
N Sijk [zkzjk + 25, — €zikzy;

Yopez + (1 +zk)}}

$2 . . 2N\ 2 [22(1—€) +22
+ CFCA {(1—6) ijk <8Jk . Szik n Zzz Zj> _ igk [ z]( ) k +6(1—€):|
ij

2
451‘3‘ Sijk Sijk 43ik3jk ZiZj

Sik ZiZj

53k [z?j(le)+22k N Z?(16)+22’ik:| 1

+—(1—¢)(1—2¢
25i55ik 2 Zij 4( ) )
| Sijk [(1 _ 2 42—z _ g Zik(2j — k)
QSik ZjZij ZjZij
2
ZkEjk “ik + €zZik Yo 6(1 + Zk) - 62Zik:|
ZiZj ZiZj
o Sigk [<1 —e) 2i(22k + 27) — 2;(62ik + 2) 2% zk(zi — 225) — zj]
QSij ZjZij ZjZij
+ (i), (B.19)

s i zi—2\> 3
pBe) o2 )1 ) Juk 2k Sk ZiT AL 0
ijh(r) ay(1=e 453 \ sijr Sijh - 2 4( )

7 [2z22i(1—2 1422;+222  1-2z;2;
ik [ Zi2j %k 2k) + tezitoy + FiZjk +2zjzk+zi(1+22¢)—4]

2558k 2k Zij ZikZij 252
2
+5ijk |:4Zi2j_]-+zi2j_2+(1_Zkzij) —|—5Zk—|—3:|
Sij Zij 2k ZiZk 25k 2 2
+ ( 5 permutations ). (B.20)
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The azimuthal kernels Q(lg)’ and Q(?’g)’ are defined according to the following expressions:

igk(r) igk(
= _
(1g),i ki Sijk 2Zj 5ij+25jk- 2iSjk+2jSik Zi%j 1—¢ Sik —Sjk
ngk =Tpr————{Ca|l-—— 7 Sik T + - —2Cpy,
1—e SikSjk Zk Sij ZijSij ZkZij 2 Sij
k2 sy [ 22 8;5+2s; 28k + 255 zizj  1—€\ Sjk—5i
1 k k k k €\ Sjk—Sik
Qf]iz;‘j = Tx J ij C 1 2% k. i Skt i9j 7ok | (255 J i —20p",
1—e SikSjk Zk Sz’j ZijSij ZkRij 2 Sij
7.2 r 48:1.5: g ) G ) . .
1 ki Sijk 2125 45ikSiktSiiS[iflk  Zi—2j Sik—Sik  Sijk+S
QE;EES Tr k ij {CA <] J : J°[ig] I Rl ik 2i Ul 4 oCke ’
1—e SikSjk | Rk Zij Sij QZij Sij QSij
Sii [22: 1 Zizik 3
2 Qi =GR | T <J = - k7 (B.21)
asigk Sij | 2k Sij 2k 24 2) sik

+ %i, ijlk7§,ﬁ+ﬁ k2dl“’
| 2k Sij ZKZij 2 Zk Zij) Sik

zizj L n (ZJ fik 9 i + Z’) ] k;k d‘“’} (5 permutations) .
Sik

| Zij Rk Sij ZkZij 2 Z4 Zik

The hard-double-collinear kernels PZ ; k’é‘ '; are defined as

he,uv  __ he v y13%
Pk = — Pijiery 9"+ @iy » (B.22)

where ka is given in Eq. (B.13) and
Pz}ﬁ@(r) = LFijk(r) — Sfjk [ka (40 gkr)gkjr) £ 2«])) +({@eok)+ (e k?)] : (B.23)

B.4 Collinear and hard-collinear kernels at one loop

The collinear contribution to the real-virtual counterterm at NNLO depends on the one-loop, single-
collinear kernel which reads (r # i, j):

= M2(1+e)3(1—¢) [(ep?\ ( Cr,
p Lal| ) 4 (©p(,. Op (]| P v
i) = Tar20r2(1-20 \ sy & [p[iﬂ oy Flwa) + F(xf)]Pw‘(’ + B (B24)

si]

where the function F(x) is defined by

r—1 iy N r—1
1—-9F(1,—1—¢——) =¢e¢lnx + Z €" Liy, , (B.25)
x = x

F(z)

and Pi‘;l('r) reads

1%;‘1%;} Tr

prv | e
Biitr) —[ Guo + AT k2| 1-2¢

1 Ca+ AT Nt oo
[6(50—3CF)+C’A—2CF+A+Rf] a

3(3 —2¢)
CAZERT (0 ) (24 1) + (L= ea) (124 1D

kY 2Tr Ny — Cx(1 —¢)
+ P 40y (1 —2€)(2—2¢)(3—2¢

—Guv CF

)

) (1 — 2exiz;) [ . (B.26)
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v

The expansion of ﬁi’; ") in the dimensional regulator e gives

1 1. s 1 Sii
v () vj 2 21
i) = Piio Cf[m{ Plij) [62 L lnﬁ - 2<7C2 —In NQ)]

P"
+ 1o n Sﬂ (p Dnw; + pl lnxj) + pSLig ( —2 | + p'TLia il
€ /J/ ’L] Jt ’Lj x Je €T

J
kiEy 1 ;
+ [—gw—i—élxixj l;'l:|flq]q |:<€— Z]>(BO_3CF)+ —C4 + 50—8017]
_ ' k.l/« v
= G (FF+ 1) Cp(Ca—Cr) + Zk L 2 Ca (3Ca — Bo) + Ole) . (B.27)

7

The one-loop collinear kernel P“ () CAN be rewritten according to the same structure as in Eq. (B.7),

PIL” = 7‘](7”) g + Qz](r) ’ fjlzr) = Qij(r) dzflw ’ (B28)

ij(r)

where we have introduced

: T 2z |[ 1 Ca+4Ta N oo
ij(r) = 1_RQ€ [1—5_?][6(60—301:)—1—0,4—26'1; M] iqjq
+Cp QL%EUfoﬁaﬂ+ﬁ) (L) (1 ]

a0, AU _)_2TRNS( — 2ewia;) £

(1 —2¢)(2—2€)2(3—2¢
Qij(r) = 2$il‘] (12T7 |: (ﬁo - 30}?) +Cy—2CF

2Tgr Ny —Ca(l—c¢)
(1 —2¢)(2—2¢)2(3—2¢

CA+4TRNf qq
3(3 — 2¢) i

+4CH ) (1 - 2emixj) 99 (B.29)

ij
Analogously, the e expansion pr () €N be recast in the same form, as
‘PZ;I(T’) - Pij(r) gNV + QZV(T) ’ Q” Qz]('r) d (B?)O)

where 15“(7,) and Qij(r) are given by (F = P,Q)

= P21+ (1—e€) (e"=p®Y [ Chy © © o) 7
‘Fij(T) - F<1—|—26)F2(1—26) < Sij ) { 2 [p[ij] + pij F(x;) + p]l F(IJ):I‘Fij(T) + ‘Fij(T)} -(B.31)

The hard-collinear real-virtual kernel, expanded in the regulator €, reads

phe,uv _ puv 5(i) 5 | v
Pt = Pl —si[205, &0 4204, ED g (B.32)
. 11 sy 1
_ phe,uv © ij ) © he,pv
= Phnijir) + Cian [p[ij] (62 e uz) T (pw Inz; +pj;" In IJ)] Pijtr)

T . krEY
_= [fng xj -Inz; + fng lnx ] g — ?3(50—36'}:) fiqjq [guv — 4xixj’l~€2’] + O(e),

i
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where

. 1 Sij 7
he,pv _ hc,p,l/ () i e
Paniiry = Lisry Chen {%]K n 12 2@)]

+plS) [Lig(_;j) —lnzglnxi] + 5 [L12<_;i> —lnfglnxj]}
4 J

— g2 f! Cy, i—J { CA[IHij + 2Lig(1‘i):| +2CY, [ng( xi) — ln% lnxj]}
3

Lj

<)

_ gll«”2f]‘g Cfi % { CA|:1n2£L’i + 2L12(£L'J):| + QCfi [ng(_xx3> — lnzglnl'l]}
J 7

k“k‘” ij 7 5
[gu,,—élximj = ] qu TR[ln;(ch—ﬁo) +3CA+3ﬁ0—8CF:|

’L

k“k”
— g (FF+157) Cp (Ca=Cp) + =5+

) ij

[ Ca(3Ca — Bo), (B.33)

and

i . 1 . 1
Liy (_x) = — Lis(a;) — 3 In*2; = Lig(z;) + Inz; Inz; — 3 In*z; —

Lj
. o . 1 5 . 1. 5
Lip(——| = —Lia(z;) — 5 In®2; = Lis(2;) + Ina; Inz; — 3 In“z; — (o (B.34)
x
Equivalently we can write P;(r) in the form
Hhe,puv c v
Pty = = Pijin 9 + Qi (B-35)
with
Pl = Py + i3 2Cy, £ +20ﬂé”] (B.36)

F2(1+6)F3( —€) (e EN Cf["] ©) ©) (c =
= - F(x; P P+ P
[(142¢)I2(1—2€) \ siy €2 [p[”] +pig F@i) + pJ (2 )] w(r) T L)

1+e 1+e¢
+20AW[ffcfj<§> +ffcfi<?> ]}
{ J

C Improved limits

In this Appendix we provide three Sections collecting the building blocks for the construction of
our local counterterms, namely we explicitly define the action of

e improved limits on the double-real matrix element RR (Section C.1);
e improved limits on sector functions W;jjx, Wijk;, Wijr (Section C.2);
e improved limits on symmetrised sector functions Z;;z, Zijr (Section C.3).

The content of each section is organised according to the nature of the singular limits involved, which
can be single-unresolved, uniform double-unresolved, and strongly-ordered double-unresolved. The
action of improved limits L on matrix elements times sector functions is specified by L RR W,peq =
(f RR) (f Wabcd), and similarly for Z functions. When acting on sector functions, single-unresolved
and strongly-ordered improved limits imply the latter to be evaluated with mapped kinematics.
Mapped sector functions are indicated generically as W or Z with no mapping labels in Sections
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C.2, C.3, understanding that the actual mapping to be used must be adapted to the one of the ma-
trix elements the sector function is associated to. To be more precise, for each term of an improved
limit, the mapping of W or Z is always the same as the first mapping of matrix elements in that
term.

To give an explicit example, let us apply this rule to the S; S;, RR Wikt contribution to Kl(j kl)
counterterm. Starting with the definitions

S;Si RR =
N12 % &(k)(icd) p(icd,kef &(k)(icd icd,ked
S| B (X e B+ 2glee Bt
c#i,k e#i,k,c,d N f#i,k,c,d,e
d#i,k,c (s
+2 Z g(k: zdc)B(zdc ked) +9 E k) (icd) (B(zcd ,ked) 10, Bi;cd,kcd)):|
e#i,k,c,d
Yo [g’ii) E(E(I;)(ick) Bézck,kcd) n 5&) gc(s)(ikd) Bg'ikd,kcd)]} : (C.1)
and
Si Sk Wijki = Ws wi Wb(czj) , (C.2)

according to the procedure detailed above, the explicit expression for S; S;x RR Wik Tesults in

S;Sik RRWjr =
N2 i (k) (icd) 5 (icdkef) s(k)(icd) p(icd,ked) \ v5(icd)
21 Z {@Sd) [ Z < Z 5e(f) )Bgdef + 2ge(d) Bgded )>Ws,kl
c;é'i,k e#i,k,c,d ™ f#i,k,c,d,e

d#i,k,c ; —(ic
+9 Z 5 ) (idc) B(zdc ked) 755 W ’LdC +92 g(k:) icd) (Bizlcd Jked) +Cy B((:'Zlcd,k:cd))VVS(7 k‘;)]
e#i,k,c,d

k) 7 (ick,ked) 35(ick) ) g(k)(ikd) 5 (ikd,ked) ya5(ikd)
~2Ca [ €0 B + e €500 BEH W . (ea)
where it is evident that each WW,;, contribution is mapped according to the first mapping of the
Born matrix element it accompanies.

Finally, we introduce a shorthand notation to simplify the treatment in section C.2: we define
single-unresolved improved limits on NLO sector functions as

(@) _ gyl W3 (D)
Vvs,ij =S, Wz‘j = Z 31 ) Vvs,ij = VVS71‘]‘7 (04)
- wg
1#1
@ _Gow@ = G W
W ij(r) = CyWi~ = efwil + efws, J We,ij(r) = ch ij(r) (C.5)

depending on a reference particle r # i, j, whose choice will be specified case by case; as for NNLO
sector functions, we introduce

1 1
&abcd(r) = ) (06)
(ea Wab war)a (ec Wer + 5bc €aq war) Wed
and
OLijk}(r) = Oijjk(r) T Oikjk(r) T 0jiik(r) t Ojkik(r) T Oijkj(r) T Tikkj(r)
+ Okiij(r) T Okjij(r) T Ojiki(r) T Ojkki(r) T Okiji(r) T Okjzi(r) - (C.7)
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C.1 Improved limits of RR
Single-unresolved improved limits

For the single-unresolved improved limits we have (j # )

SiRR=-MNy > 9 RUY, (C.8)
c#1
d+#1i,c
_ Pl
SiCi; RR = S,C;; RR = N, 2Cy, £ R ; (C.10)
‘h‘C,;u/
HC,; RR=C,;; (1-5,-S,)RR = \; ;72) RGN, (C.11)

In these equations r must be chosen according to the rule of Eq. (A.14) as r = 7yp # 4, j, k, [, where
i, ], k,l are the indices appearing in the NNLO sector functions multiplying the improved limits va
S, C”, HC” This means that in the topologies Wijk, Wijk; the index r = r;j;, is different from
the three indices of the sector, while for the topology Wijui (4, j, k, 1 all different) the index r = r;jm.
is different from the four indices of the sector. We stress that, having defined r = 741, one needs
at least five massless partons in ®,,, 5, namely three massless final-state partons at Born level. We
work under this assumption throughout the paper.

Uniform double-unresolved improved limits
The double-soft improved limit is given by (k # 7)
g'k RR = /\ﬁ Z 5(7,) Z Z g(k > (icd,kef) + 45 zcd Jked)
? 2 cd cdef cded

c#i,k e#i,k,c,d & f#i,k,c,d,e
d+#i,k,c

+28 gk plicdhed) | g(ik) pliked) } (C.12)

The soft-collinear improved limits SC;;; and its double-soft version S;; SCy; read (k # i, | # i, k,
and r = r; # i, k, [ defined with the rule of Eq. (A.14))

_ P
SCiklRRz—Nf’”(’"){ 3 [ S gl plkinied) o gl B(klrw)]

Skl c#ik,l,r - d#i,k,lr.c e
Irk,ick lrk,ick
+ 2 [E (A B + B 7 )+(k<—>l)]}, (C.13)
c#i,k,l
Sik SCix RR = Sy; SCijy RR = S;,SCix RR
el e S [ S e s o s

c#ik,l,r - d#i,k,lr.c

Irk,ick) i) p(krlicl
+ [CAg”B[(M + (20, —Ca) EY B >]} (C.14)
c#i,k,l

The improved limits @Z—jk, @kij, §ij @ijk’ Sik @ijk, Sik @kij can be obtained from these
limits with a renaming of indices. For the uniform double-unresolved limits involving éijk, we have
(J#4, k#14,jand r =1y, #4,7, k)

Cijx RR = Ny = Pl B (C.15)
1]
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S,;Cijs RR = S;; Cy; RR = S;; Cri; RR = N2Cy, [4% gl gl) sgjj)]BW“), (C.16)

FsTal ral Q Q N2 he,uv p(ijkr
HC;jx RR = Cyji (1 — Sy — Sir. — S;) RR = ﬁ Pty Bk (C.17)

éijk @ijk RR = éjki @ijk RR

pPLY L
= N12 Cf[jk] ;k(r) [p;i)gj(:’)B;(jf/”Jﬁ) + p(C)g(l _]7k: sz):| : (C.lS)
7k

§ij éijk @ijk RR = gij éikj @ikj RR = §ji éjki @ijk RR
— 2./\/12 ka [CA 5(1 (krj,ijr) (2ka —Cy) glgir) B(ka,ikr)] , (C.19)

éijk WW RR = ngk SCz]k (1 -5, _§ik) RR

hc SV

= 12 ijk] ]k(?") [ ;i)g_j(T)B(ij ,igT) (C)g(l ]rk Zk}T):| , (020)
(1-Cijr) SHC;jx RR = (1 — Cyjy,) C k (1—Si —Sit) RR (C.21)
Phc,,u,u ‘ o
= _ ]k(T) Z [ Z gc(; ujykzdzcd) + 25{571“) Bﬁjylfz;zcr)]
c#i,5,k,r - d#1,7,k,r,c

i krj,ic (krjyic) ~

+ 2 [5()( B + Buunline £ )+ (Jﬁk)]
c#1,j5,k

50 B+ 0 i)

Finally, the limits involving C;;x; are given by (j # i, k # i, 4, | # 4,7,k and r = 145, # 4,75, k, 1)

= Piitry Pt
Cijii RR = N2 s;- ” Blrk) (C.22)
Sik Cijet RR = Si;; Cjiy RR = S;;, Cijik RR = Si; Cjuk RR
= AN2 Cy, Oy, ED () BTkin) (C.23)

SCiki Cijit RR = SCijy Criij RR = SCii Cjiry RR = SCii Cryji RR

PR
_ 2 (1) " kUr) H(ijrklr) .

ﬁijkl RR = éijkl (1 + gzk + §jk + §z’l + §jl — @ikl — %jkl — %kij — @lij) RR
hc,uu Phc,po
_ N2 ij(r ki(r) B(zgr klr) ) (025)

Sij Skl it
Strongly-ordered double-unresolved improved limits
The improved limit S; S is given by (k # i)
g‘gk RR = -/\/‘712 Z 5(1) Z Z g )(icd) B(zcd kef) + 25 ) (icd) B(zcd ked)
7 9 2 cd cded

c#i,k e#i,k,c,d f;é’Lk(’dP
d#i,k,c

+2 Z g (zdc zdc ked) + 25 k)(icd) (B(zcd ,ked) N BchCd k:cd)):|
e#i,k,c,d

—20, [5182 gc(g)(ick) Bglck,kcd) n 5152 gc(s)(z’kd) Biz‘ikd,kcd)]} . (C.26)

—62 —



For S; SC;x; and S; S;x SCix we have (k # i, 1 # i, k, and r = 7y # i, k,1)

(zcd);ux
SiSCiu RR = = N2 ), { P ’“l(lji B (C.27)
Sk

c#i,k,l d#1i,k,l,c

P(?k('))w/
T ike,lrk ike,lrk
[51&0 5(0k) (”55)3( e+ B 1 )+ (kel)]

( P(z(’k))/uz ( ) - L

i ick,lrk ick,lrk

lgkc i) (p}fl”B Tk]e +B0 (hile 4k ) + (k< l)] } ;
it SCirt RR = S; S;x SCiie RR

SNE Y20 X EP Bt (C.28)
c#i k1 d#i,k,l,c

+ CA Elgzc) (gl(f)(zkc) Bl(zkc,lrk) + gl(f)(ick)Bl(zck,lrk))

o2l
7]

+ (2sz _CA) gl(cl) (6( )(’LlC)B(’LlC krl) + 5 (wl)B(zcl krl)):|

Combining the previous definitions we have (j # i, k # ¢,j, and r = Tijk # 1 ], k)

§i SHCijk RR = gi S ijk (1 — §ij — gm) RR (029)
o Pikin " ea i)
_ 2 i)~ jk(r = (icd,jkr
= 7'/\/'1 Z { Z 5cd WBMV,cd
c#i,5,k d#1,j,k,c ]k
(l]([‘))hc SV
(i) __gk(r © gligekry)  plije.kri) :
+ lgjc NG (p]k B likle + B ke ) +( e k>]
ik

*(zc(]))hc,uu
() __gk(r (©©) plici,krj) | plicjkri) 7 ;
leﬂ o (p]k Bt 4 plictbn) fa ) (o k)} }
For the strongly-ordered double-unresolved limits involving S; éijk, we have (j # i, k # 1,7,
r="Tijk #1,7,k)

gzéwk(l—@”k)RR =

C '(ZJT)IU/ P(iTj)uu
N2 um pY g |3k (Birike) _ glirkri)) 1 ZIR0)_ (Blrs.jkr) _ glirikri)
1 Jr 5(.Zlgr) g pnv 5(.2”) g g

J J

p'(ikr);u/ PQTIC)NV
C) Jk(r) n(itkr,jkr R(ikr,jrk Jk(r) irk,jkr irk,jrk
+ Ol lg(ikr)(Bl(“’ k) gikrs D*W(Bfw 3hr)_ Blirk.d ))
Jk ik

P(lﬂ(k;lﬂf p(zlz:g));w

_ po gl | Zikr (ijksjhr) | 30D pikj.jkr)

p[J]C] gjk? [ _(igk) B 7 + _(ikj) Buuj ! 1 } s (C?)O)
]k Sjk

S:S;; Cijr(1-SCijx)RR = S;S;; Cir;(1-SCy1;)RR
EN Cy {CAg( [5 (gr) ( gligr.jkr) _ B(ij?ﬁkﬁ))_i_g "J)( Blird.gkr) _ B(irj,krj))]

+(2C),—Cy) EL (4) [g(a (zkr)( RBlikr.gkr) _ (zkrjrk))+5 (m)( Blirk.jkr) _ B“’”’”’”“)]

+ Oy 53('? [g}iz‘)(ijk)g(ijk,jkr) I glg)(ikj)B(ikj,jkr)]}’ (C.31)
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S, HC,) RR = S,Cyy, (1—Si; —Si) (1 - SCyjs) RR (C.32)

(ijr)hc,puv (irj)hc,pv
_ N12 Cf[jk] { © 5(r lpyk r) (Béigr,jkr)_ééigr,krj))+ ij(f)_) (B(irj,jkr)_B/(j:j,krj))}

2 (ig7) g‘gzkrj uv
(ikr)hc,pv p(irk)hc,py
©) o) |~ Jk(r) n(ikr,jkr n(ikr,jrk Jk(r) R (irk,jkr R (irk,jrk
P Ex lm (Bfw 0—Bm )> T (Bw - Bk ))1

Sk Sk
P(ijk)hc,uu P(ikj)hc,uy

<C> (1) | ~gk(r) R (ijk,jkr) Jk(r) P (ikj,jkr)

Pum i | = amy Bt = Gy Baw :

Sik jk

For éij @kij and gi 62‘]‘ Sclﬂj we have (j #i, k#1,5,r= Tijk 7 .7, k)

R — PNV
Cy; S kinRI—Nf”.(.r){ 2 [ > EdBI Y ¢ 2 W’“)B“Z,'cfcr)]
Sij c#1,5,k,r - d#i,5,k,r,c
r2Y) g0 ,(ﬁ';f”)}, (C.33)

c#i,5,k
S;C;;jSCkij RR = S, C;; SCyj; RR

. 2/\/12 ij 5}(?{ Z [ Z gc(s)(ijr) Béfijr,kcd) + 28_(571?)(1‘]'7') ngr,kcr)]

c#i,5,k,r - d#1,5,k,r,c
b2 3] gn i), (C.34)
c#1,7,k
he,pv
_ _N12 ;](T){ Z [ Z gés)(zJT)B,(jj’rcfcd) + 2855)(1]7‘)3;13;,7]667“)]
v c#i,5,k,r - d#1,5,k,r,c
+2 3 EPUIp ;3;56”} . (C.35)
c#i,5,k

The improved limits él-j §ij RR, S, éij §Z-j RR and their combination HC;; §Z-j RR appear in the
sector topology Wi;ji only, and are given by (j # ¢ and r = ry5, # 4, J, k)

C;; S 'Pi'T &) (gr iwr I_C(ijT) ]g(ijr) ]_ﬁgizj;r) k(ljr) ijr,je
Cij Sy RE = *NQZ {]() g 4 2 )l dp_| | Fev _ Fdw | | pliaried) (¢ g

. jr) _(igr) _(egr _(lr
AR T C il | R
gi éij gij RR = gz éji gji RR = — 2./\/12 ij 5(1 Z 5(J wr) C”T ed) s (037)
CcFi,j
d#i,j,¢
H ij §1] RR = C” (1 - § — §]) §i]‘RR (C?)S)
hc nv jr (ijr) 7.(igr 7.(ij7)
— A2 Bitr) gy | @i Re Ry N (R R | sonien
DI Rt sy \gn g |\ e T San || Ped T
difii}jc ij i 55 5id 55c 854
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For the strongly-ordered double-unresolved limits involving C;; C;jx, we have (j # i, k # i,
T = Tijk # 1,75, k)

o p. . Pl A
Cij Cign RR = N?{ =20 ZH_ Blimik) 4 9 0y €009 =20 plirakn)—(C.30)
Sij 5y Sij

z r)7.(ijr)
—-2C5 gﬂmﬂr) QZJ J ko Bliirikr) )
" Sij (k(wr )2

pigr)
S 0.0 _S.C.C ) k() A(igrgkr
S;Cij Ciji RR = S;C;; Cji RR = 2N2Cy, £ - (Jr) Bk (C.40)
]k
_ avciim | Pricr QLY. ];(Lijr)]zyjr) o
CZJ Sij CiijR = 2/\/12 ka (c/’]gn)(ljr) j(r) _ j(r) l: 5 B(z]r,]kr), (041)
Sij Sij (k;(ijr))
SiCi;Si; Cij RR = S;C;;S;; Cji RR = 4NV Cy, Cy, 5}? gD pliarakr) (C.42)
. o PR )
Ci; Ciji SCrij RR = 2N Cy,,, EVWT :(” Bk (C.43)
ij

SiC;j Cij. SCrij RR = 8;C;; C;i4 SCrji RR = AN €3 &5 EWWD plarkin) - (C.44)

HCZJ Hcmk RRZ”k = Cij (1 - gl - gj) éijk (1 - §ij - @jﬂj) RR (045)
phe —'(ij'r')hc,;tu
_ N2 ij(r) ~ gk(r) B(l]T‘ Jkr)
1 Sij g(ijT) i
ik

Finally the limits involving C;; C;;. are given by (j # i, k # i,j, | # 4,7,k and 7 = rijp # 4,4, k, 1)

- i) Pty
Cij Cijra RR = N sj-- i Bl (C.46)
Y Sk
—(igr))pa
o~ 7~ riral 7 kl(r S(iirklr
S;Cij Cijra RR = S, C;; Cj RR = 2N 20y, £V g B (C.47)
kl
o o pro
C.; SChij Cijui RR = C;;SChi; Ciji RR = 2N 20y, %5},{“““” BT (C.48)
ij
gi éij Sikij éijkl RR = 71‘ éji @kﬂ Cjzkl RR = S ng SC]C” Cijlk RR = gzé Si é]llk RR
= AN2 Cy,Cp 8D € Bliamkin) (C.49)
— =——(c) = — — = N N
HCij HCijkl RR = Clj (1 — Sz — S]) Cijkl (1 — SCkZ‘j — SCli]‘) RR (050)

he,uv  p(ijr)he,po
_ar2 () ki(r) P (igr,klr)
- Nl _(igm) BHVPU
Ski

Sij
C.2 Improved limits of W;j i, Wijkj, Wijki
Single-unresolved improved limits

For the single-unresolved improved limits we have (j # ¢, k # 4, [ # i,k and r = ryj, # 4, ], k)

SiWijki = Wi Wb( 13)7 (C.51)
Cij Wijki = Wi Wéim) ; (C.52)
SiCij Wijki = Wi . (C.53)
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Uniform double-unresolved improved limits

The double-soft improved limit is given by (j # 4, k # 4, | # i, k)

= . Oijkl
Sik Wiik = . C.54
' Y Zb;ﬁi Zd#)]f Oibkd + Zb;gk Zd;gk,i Okbid ( )

The soft-collinear improved limits SC;j; and @kij as well as their double-soft versions S;; SC;x:
and S;, SCy;j read (j # i, k # i, | # i, k)

(@) opy
el _ ij Wi
SCir Wijr = o R o) . r=rir, (C.55)
@) [ orL Ik Tkl . Oy .
Dbzi Tib (wkr + wlr) B Y Oid T =Yg Oid
)

iJ

Okl
Wir
SCrij Wiji = o e = . 1T =ryk, (C.56)
a) (o i i i
bk Okt (wJ + uﬁ) i ik Okd T g Dgerj Okd
()
= o~ 05 Okl
Sik SCiri Wijri = ) &) . T =Tkl (C.57)
boi Tib, Okl + Oy Digsi o Oid
— Uz(;‘)o'kl
Sik SCrij Wijn = . T =Tk (C.58)

(a) (o)
btk Okt Oij + 03 Dasik Okd

For the uniform double-unresolved limits involving éijk” we have (j # i, k # 4,j and r = rij, #
i,j,k)

= Tijjk(r) = Tijhj(r)
Cijr Wijjk = ———, Cij Wijks = ————; (C.59)
O{ijk}(r) O{ijk}(r)
5. G Tijjk(r)
Sij Cijk Wijjx = = - ; - , (C.60)
Oijik(r) T Oikjk(r) T Ojiik(r) t 0 jkik(r)
S @ Tijkj(r)
Sik Cijk Wijk; = = ~ . - : (C.61)
Oijkj(r) t Oikkj(r) T Okiij(r) T Okjij(r)
‘757) Tjk
~ r<ral _ W Wip
Cijk SCijk Wijjk = ——= = ) CORE (C.62)
o +o o o
Zig T%k %k 4 Ok ik ok 4 ki Tij
w"ilr Wjr Wy 'UJ‘?T Wir wgr Wip
UE?) Okj
ali<Tal _ W Wiy
Cijk SCijk Wijkj = T, (@ (@) (@) ’ (0-63)
o “+o o o
Z4j T Tik er Tkj ik Oik 4 Tkj Oij
W Wir | W W Wiy | WE, Wir
UE;) Okj
I'e) — Wi Wi .
Cijk SCrij Wijhj = —o—m = = (C.64)
Ok T Tji + Oij + 9ji Ok + Tij Okj
W, Wir | Wir W Wer | W W
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9ij  Ojk
el <Tal _ Wi Wi
Sij Cijk SC”k Wijjk = ) ) L @ s (065)
04 T ojk 9k ok
w?T W w;"r Wi
()
Ti; Okj
S ~ @~ _ W Wy
Sik Cijk SCijk Wijk; = o o) , (C.66)
04 1o owj Tkj Oij
w?r W w;:r Wir
(o)
Uz‘? Okj
g ~ _a—~ W Wi
Sik Cijk SCrij Wijkj = —o—= ) . (C.67)
O tO oij Tij Okj
Wi Wir | WE Wk

Finally the limits involving C;;j; are given by (j # i, k # i,j, | # i,j,k and 7 = riji # i, j, k,1)

Tijkl
C — Wir Wi
Cijkl Wijkl = oijkitOklis _"_”'ijlk"'ﬂ'lkij +(7j'ikl+(7klji OjilktOikji (0'68)
WirWhr Wir Wiy Wjr Whr W Wiy
()
- — Uz’j Okl
Sik Cijrt Wijri = ; (C.69)
e @g 4 @
ij Okl T O Oij
o (@) opy
SCiki Cijrt Wijr = o w’”(a) = , (C.70)
Uz(?)<M+ M) 4 <‘7kl+ Tk )Uij
Wiy Wiy Wi Wiy
()
. Okl
SChij Cijit Wijk = s . (C.71)
o+ 2)+ (3420 o
Strongly-ordered double-unresolved improved limits
The improved limit S; S is given by (j # i, k # i, [ # i, k)
Si Sik Wijkt = W i WS(CZJ) : (C.72)
For S; SC;z; and S; S;x SCix we have (j # 4, k # i, | # i, k, and r = ryy # i, k, 1)
§i @ikl Wijkl = WC, kl(r) VVS(’(;) B (073)
gi gik @ikl Wijkl = V\}SE?]) . (0.74)

For the strongly-ordered double-unresolved limits involving S; éijk, we have (j # i, k # 1,7,
r=rijk # 1,7,k and 7 = jk, kj)

(@)
- _ _ Ui'
Si Cijk(lfSCijk)WijT = Wc,‘r(r) —L (075)

o)

()
_ _ oy
S; Sij Cijk(l—s ijk)Wijjk = ﬁ , (0.76)

G5 o
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e

iik(1=SCiju)Wijk; = W (C.77)
ik

Ql

S Sik

For C;; SCy;; and S; C;; SCy;; we have (j # i, k # i, | #i,k, and 7 = rij, # 14,75, k)

Cij SCrij Wiji = V\{:(yczj)-(r) Wi, kil s (C.78)
§i éij @kij Wijkl = Ws, Kl - (079)

The improved limits C;; S;; RRW,;jr and S; C;; Sij RRW;jjk vead (j # i, k # i, and r = r;j), #
i,7,k)

Cij Sij Wigje = W%y Wa i (C.80)
gi éij glJ Wijjk = W&jk . (CSI)

For the strongly-ordered double-unresolved limits involving éij éijk7 we have (j # i, k # 1,7,
T =ik # 1,7, k, and 7 = jk, kj)

Cij Cij Wijr = WD 0 W ry (C.82)

S; Cij Cijk Wijr = We 7(r) (C.83)
C;;Si; Cije Wijjk = V\{:()O;;.(T); (C.84)
gi éij §1 Cijk Wijjk = 1; (C85)
Ci; Ciji SChij Wijkj = VVCS(E;(T); (C.86)
S;Cij Cijr SCrij Wijrj = 1. (C.87)

Finally the limits involving C;; C; . are given by (j # i, k # i,j, | # 4,7,k and 7 = riji # 4,4, k, 1)

Cij Cijru Wiji = Wc(og(,,) Wc,kl(r); (C.88)
Si Cz ngkl szkl c, kl(r (089)
C;j SChij Cijiu Wiji = VVC i) (C.90)
gzéu @]ﬂ'j éijkl Wijkl =1. (Cgl)
C.3 Improved limits of Z;;, 21
Single-unresolved improved limits
For the single-unresolved improved limits in Kmk} we have (j # 1, k #1,7)
§i Zijk = Z (ZS(O;)] + Zb(i)k) R ﬁij Zijk = ij; (092)
while for K1)\ we have (j # i, k # i, )
Si Zij = Z Z: z)w HC,; Zijii = Z- (C.93)
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Uniform double-unresolved improved limits

For K{(Z;@} we have (j # 4, k # 4,7, and r = ryj, # 4, j, k)

S Tikkj + Oijkj + Okiij + Okjij
Sz'k- Zijk = s (094)
Db Dadoi ke Tibkd T sk Didoek i Thbid

(a) (@
( (o) | O'Z(](:)) (M + m) + U]‘i‘ ok + —U"jr 0ij

Wi Wy w; W

@ (oo . o o o
Zb#i Tip Wiy + W + wjr stﬁzg Tid + 5o wk Zd#z K Oid

« «
B (Ugj ) + afk)) Ojk + aj(-k)aik
Sij SCijk Zij = ) ) ;
Dbzi Oip Ok + 051 Dasij Tid

HC;j, Zijr = 1,

Cijk SHC”k Zijk =1.

SCiji Ziji =

)

For K{(ngcl} one has (j # i, k #4,5, 1 # 1,5, k, and r = 5y # 0, k, 1)
S Oijkl + Oklij
Sik Zij = - Y , (C.95)
Dibi 2k Tibkd + Dipspe Dadoekei Ohbid
@ @
_ o (o) 4 (2 4+ o )
SCiri Zijr = (a) J ;
g g
22 Tib (ﬁ + ﬁ) wk,f, Didwi ) Oid + Zd;u 10id
( ) (o)
_ Okl + 0y Oij
Sit SCint Zijm = i ;

Dpri Ugb Jow + Ul(c?) Diazik Oid
HC;j1 Zijp = 1.

Strongly-ordered double-unresolved improved limits

For K*2) one has (j#i, k+#1d,79)

{ijk}
1945 “ijk s, jk s, zg s, ik ) ( . )
SiSHC,j1 Zij, = 2% + 2,
S HCljk szk - 1,

HC,;Sij Zijk = 25 jk s
HC,;SCyij Zijk = Zs,1j

HC;, HC, 2,5 = 1.
For K(\%) one has (j # i, k # i, 1 # i, j,k)
SiSik Zijli = Zs ki Zs(oi)], (C.97)
S;SHC iy Ziji = Zs(az)w
HC;; SCrij Zijii = Zs,kt

HC,, HC,') Zijw = 1.
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D Integration of azimuthal contributions

and szk(r), defined in Appendix B,

In all counterterms, QZ.V(T)

The azimuthal parts of the collinear kernels Qé‘jy(r), QM

N ij(r)
contain k”kg, where a = ¢ for Pi’;l(’r), PY o and a = 4,7,k for PXY

ij(r) ijk(r)”

has to be integrated in the single-radiative phase space d® " dtﬁ(w ) or d@f’ Zf), while Q"

rad s and
)

ij(r)
Q%c(r) are always integrated in d@g;{f) and dq)ilajdk; , respectively. In all cases, when integrating
ij”(r) and ijy(r) in their single-radiative phase space, or Q%C(T) in its double-radiative phase space,
the integral of the tensor structure %k, must be a symmetric rank-2 tensor constructed combining
g"" and mapped momenta, see [99]. Thus

Jd@(z F({k) k”k” Ag™ + B EMepmv C(E(T)ME(ST)V + ];71(;)“'[2(7)”> +D ];Z((ZT)“Z:Z(IT)V ,(D.1)
where T = ijr,iryj, jri,ijkr, g = r if T = ijr,irj, jri, ¢ = r if 7 = ijkr, and
Lar) — EJ(z‘jr) ’ Elirg) — %m‘) ’ LU _ El(jm‘) ’ pligkr) _ ]—gl(ﬂijkr) ' (D.2)

Since k, is orthogonal to k(M* and I@(IT)” , so must be also its integrals. This leads to the conditions
D=0and A+ CE™.E) = 0. We have

o 7(7’);1,7(7')” 7("')#‘7(7)” _ _

f d®") F({k}) kPR = A | g — W lkq ~ F kg Tk + BEMrEOY (D.3)
rad a™a (1)
FONS
In all counterterms this tensor is contracted with either

B B B E(T) k(T) k(‘l’) ];(T)

() () (7y0) Gl i d,v
Ry,y K Bl“’ ) B/U'l/ ) or lg(T) _(7_) (7_) _(T) (D.4)

jc ]d ]C ]d

As a consequence, the terms proportional to k(™" or to k(7" vanish, and just A ¢** contributes.
On the other hand, since k(") is on shell, A can be obtained as follows:

oo [T SRR = Aa-2) — a4 = s [aDniz. ©9)
Thus in all counterterms we can subtitute
[avy s i — age = [ae) s L5 02, 0.6)
and the integrals of QZ.ZET), Né‘j”(r) and Q” 1(ry vanish in all counterterms:
QL ki kY
qu’g?i CRA qu)i:()i Qistr) [— +(d—2) = ] — 0, T = ijr,arg, jri;
Sij Sij kl
Q i k’uk”
fdcpr;g _JC@gQQﬁ [— +(d—2) 2t ] -0, T=ijr;
Sij k2
o Qi) (n @ik v ki ky N
Jd(prad2 2 = Z Jd(liradQSQ[gﬂ +(d—2) T2 ] — 0, 7 =1ijkr. (D.7)
ijk a=1i,j,k ijk a

E Constituent integrals

In the following we report the constituent integrals relevant for the analytic integration of all
counterterms at NNLO. Such integrals are schematically denoted as J{, where ¢ indicates the type
of integral, while / is a set of labels whose different indices denote distinguished particles.
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The soft integrated kernel is
g = N [del el = 65, L), (E1)

with

Qs s\ ‘T(1—el(2—¢)
T = 5 (e /12) e2T'(2 — 3e)

2 T 7, 25
- 18 — — 2 - 22
R RTU (8 6 C‘”’)

+ (54 - g 2 - fg - ﬁ 4) €+ O(é”)] : (E.2)

|

[\
¥2
Y
I:M w
~
[0}
| —
0| =

The double-soft integrated kernels read

d, icd,je i j 4 icd,je _(zcd,je
Jisedel lefd¢§ad; D gD el Js<®>s< slicdef) glicd.d f)) 99

zcde icd,jed) o(7) ) (3) [ -(icd,jed) _(icd,jed
Jidcte _ pr2 qu,iad; gD gl J§®>q( jed)  glied,s ))

i
Jid — AR J oI g0 g0) = s ( (z]cd)) 99

Jied = A2 f a0y 5 = 2Tp 76 (55 fi7 — 20 0 (550) 50, (B3)

1)

with
2 N—€E
@) (g NCAWES 1 4 7 9\ 1 14 5, 50 1
56 2 200 29
+21 —E —7C3+ﬁo +O(6):|7

2 N—€E
(3) , Qg sS 1 4 4 1 16 2 68 \1
@s(5:5') (27T> (u4) [ e < 7 3 70 3" 3 G €

68 272 13
W4 — = - 20+ 2t 0
+ 3 C3+90 + ()]
2 —2€
2) [« S 1 4 3 1 74 1
Js@s(s) = <2;> (/},2> |: g‘Fg‘i‘ <18—27T2 3+ 76—6772—§<3 E
308 49
+312 — 277 2——@, 507 4+ O(e )]

2 —2€
i 11 171 (116 7 ,\1 1474 131 , 19
Jad(g) — (L) (2 T AN (Rt BT At it )
=) <27r> (;ﬂ s tmet o % )t s TsT 9 etol)

2 —2€
(88) (5) — (=) (2 11 351 (487 2 ,\1 (1562 269 , 77 \1
T (s) <27r>(,u2> [264+12€3+ 36 3" Je T\ T ™ 6 %)
19351 3820 , 1025 23

_ _ /Y 4
ST 216" 18 % 20" +O(€)]'
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The soft real-virtual integrated kernels are

jSiCd = led‘?izd) gc(;) = 0f,4Ca js (EE:ZCd)) ,
; 2 icd) o(i Sed \ 3) ( (ic
g0 = i g [anle eQ | (o)~ 1] = a9 (s4).
ed
, 1 ) ) s —€ .
icd __ (icd) o(i) cd — _(icd)
gt = [aolid el () -] = a (s).
cd
Jiede = pf f dplied g) (E.5)
with
—2e¢ 3 3
= Qs s (1 +eI*(1—¢)
Ji(s) = —= | 5= 1 — (E.6)
2r \e'sp 4e4T(1 4 26)1(2 — 4e)

—2e¢
o s 1 1 7 1 7 14 \1
= == a4 - )= 4 (16— =2 = 2=
o (;ﬂ) [4e4+63+( 247T>e2+< 6" 34“)6
7

56
g 222 0. L 4
+6 37 3 (s 150" -I-O(e)],

2

@y 2 (S [(h_™\1 25 N o T e T
13 (s) 27r(u2) [( 3>€2+ 16— om? =123 ) - + 92— om® =24 — o' + 0(e) |,

s\ ° 2\ 1 2, 1 23 4 7T 4
2> |:< —3>2+<14—37T —10C3)6+74—67T —20(3—%7'(' +O(6)],

.. a 1. 3 Sog 1. .3 [ s
Z Ji B e = — f7 f 2 Bcde[2 In=<¢ 1112i2 + G 32 4+ Lig <Ce> + O(e)] .
c#1,d#1,c 0 c#i,d#1,c Sde H Sde Sde

e#i,c,d e#i,c,d

The hard-collinear integrated kernels are given by

) e
JT = A, f dain “u)

rad Sij
0 _(igr q 1 _(ig7r q 2 _(ig7r
= IR (SS7) i+ a2 (5597 ) (g g5 + I3 (550 g (E7)
where
J(Og)(S) o s —€ I‘(l —G)F(Q—e) -2
he T om \ elep2 eT(2—3¢) "3-2¢
as [(s\°° 21 16 (140 7 1252 28 , 50
s (S5 pl 22 10 14V o) [1a0a a0 5 OV 2 3
o <u2) R[ 3¢ 9 <27 187T>6 < s1  o7" 9<‘°’)6 0|
(1), .y _ Qs s\ ‘T(1—-el(2—e¢) 1
o (5) 27 (e’YE,u2> e (2 — 3e) Cr 2
« s\ ¢ 11 7 2
_ Qs (5 il (3 L2y (g L 222 2 3
5 (,u2> CF[ 5 (3 247r>e (9 TH 6C3>€ + O(e )],
T(1—-el(2—¢) 1
g2 ) — % s cal - E.8
he 8 = o0 \ 2 T(2—30) "\ 372 (E8)
_as s\ o [l 8 (70 7 5\ (626 14 , 25 1, 3
- 277(u2> CA[ 3¢ 9 (27 36”)6 (81 27" 9C‘°’>E +0E)]-
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A useful combination of these constituent integrals is

R(s) = (LD 12 () + £ [Nf e (s) + §J£§g><s>]

= ‘;—; <;2)_€ [VEC + i+ O(e)] : (E.9)

The hard double-collinear integrated kernels are given by

rad,2 2
Sijk

phe
J}zilzr _ N12Jd®(zjk7 M

0 ijkr) qq 0g,id ijkr) qq
— Jlgcf)((J )(lq]qkq ggq)JrJ}Eg )((] )( 99q | f4d9)

ijk iik T Jijk
IS (SWM) g a2 (S (rn 2 + 289 (SF0) g (BA0)
with
(0g) as\ [ s\ 11 /13 1,\1 119 17
Jhee (8) = (27T> (M2> CFTR[G -+ (36+97T>e_ %4_ 108" +—C3+(9( )]
2 —2e
JieiD () = (;;) <M82> Cr (2Cp — Ca)

131 127, no,
X[ <8 <3>e 6 7 C‘”’ 1207 +O(e)]’

21 311 (889 1 23833 31 160
CplTp| - - o (g - 22 o2 221 0
X{FR[ 368 9 e (54 77>e 524 6" T g @ U]
1891 (1211 3 ,\1 2620 89,
+CATR[ S 18 (54 2”)6 37 12" +7C Ol )]}

2 —2¢
NN CAYE. ) 2 371 (307 1
520 = () () {CF[ Ta s re s e

B0, 136437;4+o<>]
,%+% 2_ 47 Cg+% 4+O(e)]},
- @) ] 3 Th- (o Beesc)
_%Jr%ﬂz 7@_%7T +@()] (E.11)
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For the hard-collinear times hard-collinear integrated kernels we have

hc hc
JUklr a2 | g liarkin) iy (sirs sir) Pty (81, s1r)
hc®hc = 1 rad,2 S s
ij kl
- J}?g(%(}llc(s(”rklr) 'L]rklr))
Jﬁg(%%C(S(”THT (ZJTle‘)) [fqu ) (flgjq f%q) glzj]
% rklr z jr,klr
T (S ) ,zw
ijr, klr (ijr,klr
+ T (S AR
rklr) _(ijrklr q
+ g (s >)[ (55 + 871 ,fﬁ+ S+ D)
B rk:lr z jr,klr
IR (S ) g
with
2 /
qqqq ¢ as\ [ss 41 641 284 16 2
=(=2) (=) T3 e
Thcnc(s) (%) (u‘*) [9 atymctar 7t o9,
2 IN\N—€
11 14 1 181 4
gaaas ooy — (Y (55 oo |2 L b S|
he@he (55) (27r> <M4 rRCp|g g+t tor—gm + ()],
2 N—€
21 321 142 8
gaass ooy — (25 (55 oo, |21 22l 122 2
hehe (55) (%) <M4 rRCAlgG o ot o —n™ (€)
2 IN— €
as\ [ss o |11 1 17 1 ,
Tnegne(ss) = (%) <M4> Cr [462 cty 3”7 +0(9) |,
2 IN\N—€
- N [as) [sS 11 71 181 2 ,
J}?§®hc(88) = (27r> <M4> CaCF [6 9 5—4—§7r +0(e) |,
2 IN—E
1 1 61 71 4
jeess no— (2 (55 2l =24 = O
heghe (55) (277 a) Cilsetmety gt tO0
The soft-times-hard-collinear integrated kernels read
kricd hriea) Diktn) (0
Js]®£Z,C = N12 jdq)r;c;;c ; Ecji
ik
= 7] (s,ir,sﬁx) 7 T (s s ) (504 190 + T (s 5
s = a2 [aolgin o g
ik
3(1 _ 3(2 _ 3(3
= 7 [ (50050 ) £+ T8 (510590 ) g+ 50 + T (.5
. phe
T = A [aoliy ) 20 gf)
(1 _ 3(2 _ 3 _
o () s 250 (2 2+ S (s
) phe .
rjir k(r
Tl e
J

ngq

999
s®hc J,

s®hc

HEENCRNE

< (H)) (fq+fq)f;€

999
Js@hc

999
‘]s®hc

— 74 —

(%) 2+ 1)

S(u) 99
ik L RN
p={krjirg; krj,ijr}
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)

99
ik
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(E.12)

(E.13)

]u=jkr,icd ’
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]u:km',z‘cj ’
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2 N—€E
21 281 (344 7 ,\1 3928 98 , 100

J4(1g) no_ (@[5S _Eo 2o (22 _Lf2) 2 iy
sane (55) = {57 ) RT3 T e \r o) T Tm T — B+ 0],
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