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Abstract: We use the Local Analytic Sector Subtraction scheme to construct a completely ana-

lytic set of expressions implementing a fully local infrared subtraction at NNLO for generic coloured

massless final states. The cancellation of all explicit infrared poles appearing in the double-virtual

contribution, in the real-virtual correction and in the integrated local infrared counterterms is

explicitly verified, and all finite contributions arising from integrated local counterterms are analyt-

ically evaluated in terms of ordinary polylogarithms up to weight three. The resulting subtraction

formula can readily be implemented in any numerical framework containing the relevant matrix

elements up to NNLO.
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1 Introduction

The coming decades will see a vast increase in the experimental precision of collider data, as the LHC

experiments move into the high-luminosity era. At the same time, the complexity of the observables

being probed in hadronic collisions is likely to increase as well, as more detailed information becomes

available about multi-particle final states. This future evolution on the experimental side poses a

significant challenge for the theory community, which is called upon to provide increasingly precise

predictions for ever more intricate observables. As a result, a number of innovative theoretical tools

for perturbative calculations have been developed over the last two decades, and continue to be

refined and extended (for a recent review, see Ref. [1]). Predictions at the next-to-next-to-leading

order (NNLO) in the strong coupling are rapidly becoming standard, even for relatively complex

final states (see, for example, Ref. [2–5]), while the frontier has moved to the third perturbative

order in the strong coupling (N3LO) for relatively simple processes [6, 7].

A necessary ingredient for the calculation of differential distributions to the required accuracy

is an efficient and automatic treatment of infrared singularities, which must cancel between virtual

corrections and the phase-space integrals of unresolved final-state radiation, or must be factorised

in a universal manner in the case of collisions involving hadrons in the initial state. The theoretical

foundations of this treatment are well understood (for a recent review, see [8]): the cancellation (or

factorisation) is guaranteed by general theorems valid to all orders in perturbation theory [9–13],

and hinges upon the factorisation properties of virtual corrections to scattering amplitudes [14–25]

and of real-radiation matrix elements [26–28]. The anomalous dimensions required for the infrared

factorisation of virtual corrections are fully known up to three loops [29, 30], while the real-radiation

splitting kernels have been computed at order α2
s [26–28, 31–33], with near-complete information

available also at α3
s [34–47].

Notwithstanding this extensive body of knowledge, the construction of general and efficient

algorithms for infrared subtraction beyond NLO has proved to be a very difficult task. At NLO, the

task of handling infrared singularities was first approached with phase-space slicing methods [48, 49],

by isolating the phase-space regions where real radiation is singular, introducing for those regions

approximate expressions of the relevant matrix elements, and integrating analytically up to the

slicing parameter. To avoid residual dependence on the slicing parameter, subtraction methods [50–

53], see also [54], were later introduced, which work by defining local counterterms in all regions of

phase space affected by singularities, subtracting them from the full real-radiation matrix elements,

and then adding back their exact integrals. Some of these methods have been developed in full

generality, and versions of the corresponding algorithms are implemented in a number of multi-

purpose NLO event generators [55–63], providing a solution of the problem at this accuracy.

Beyond NLO, the handling of infrared singularities becomes significantly more difficult, both

conceptually and practically, due to the rapid increase in the number of overlapping singular regions,

to the need for considering strongly-ordered infrared limits, and to the mixing between virtual poles

and phase-space singularities. As a consequence, efforts to reach the same degree of universality

and efficiency as was achieved at NLO already span almost two decades. Many different approaches

have been proposed and pursued [64–85], as recently reviewed in Ref. [86]. Some of the methods

proposed belong to the slicing family, or define non-local subtractions, as is the case for Ref. [75],

while others adopt the local-subtraction viewpoint (for example [67, 70]); they also range from

predominantly numerical methods, as in [85], to predominantly analytical ones, as for example [73];

finally, they have reached varying degrees of practical implementation, culminating with the first

differential NNLO calculations for 2 Ñ 3 collider processes with at least two QCD particles in the

final state at Born level, in Refs. [2–5, 87, 88].

All approaches to infrared subtraction beyond NLO are affected by considerable computational

complexity, either at the level of the analytic integration of counterterms, or at the level of numerical
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implementation. Even if the underlying physical mechanism for the cancellation is essentially simple

and well understood, concrete technical implementations are intricate, and it is clear that there is

room for improvement in the universality, versatility and efficiency of existing algorithms. With

these goals in mind, we have developed an approach to infrared subtraction, which we call Local

Analytic Sector Subtraction [83, 89]. We attempt to optimise the structure of the calculation at all

stages, while maintaining full locality of the counterterms and complete universality for all hadronic

final states, as well as providing completely analytic expressions for all required counterterms and

their phase-space integrals, including finite contributions. We believe that the completion of this

programme will provide an extremely versatile tool: once fully analytic expressions are available, the

method can in principle be implemented within any existing numerical framework, and applications

to multi-particle final states will be limited only by the available computing power and multi-loop

matrix elements (see for instance Ref. [90]). In parallel, we are studying more formal aspects of

subtraction, from the point of view of factorisation [84], with the hope of further optimising the

structure of local counterterms, taking full advantage of the highly non-trivial structure of infrared

factorisation and exponentiation. In that context, we provided a set of definitions for soft and

collinear local counterterms which apply to all orders in perturbation theory, and we are currently

studying the necessary organisation of strongly-ordered infrared configurations [91].

In the present paper, we complete our subtraction programme for the case of generic massless

coloured final states. All relevant integrals were computed analytically in [92], requiring only

standard techniques. In order to achieve this simplicity, we exploited as much as possible the

existing freedom in the definition of local infrared counterterms. Specifically, a crucial element of

our approach is the smooth partition of phase space in sectors, each of which contains only a minimal

set of soft and collinear singularities, along the lines of Ref. [50]. The next important ingredient

is a flexible family of phase-space parametrisations, which can be applied sector by sector, and

in fact can be varied for each contribution to the local counterterms. This ultimately leads to a

minimal and simple set of phase-space integrals to be performed. Our final result is a completely

analytic subtraction formula, which gives the NNLO contribution to the differential distribution for

any infrared-safe observable built out of massless coloured final states (as well as with an arbitrary

set of massive or massless colourless final-state particles), and requires as input only the relevant

matrix elements: the double-virtual correction to the Born-level process, the one-loop correction to

the single-radiation process, and the tree-level expression for the double-real-emission contribution.

We present the architecture of our method in Section 2, beginning with a quick review of our

approach at NLO, for massless final states, to introduce the relevant notations in a simple con-

text1. The following sections give the details for the construction of all the ingredients entering

the subtracted formula. Section 3 discusses the subtracted double-real contribution, which is inte-

grable over the entire radiative phase space. Explicit expressions for all required counterterms are

included, as well as a detailed analysis of phase-space mappings. Section 4 organises the integration

procedure for all counterterms associated with double-real radiation, expressing the required inte-

grals in terms of a small set of basic integrals, which were discussed in Ref. [92] and are collected

here in Appendix E. Section 5 presents the subtracted real-virtual correction, providing an explicit

expression for the real-virtual counterterm. By combining together the real-virtual correction with

its local counterterm, and the integrals of the single-unresolved and the strongly-ordered countert-

erms, we build an expression that is both free of infrared poles and integrable in the radiative

phase space. The integration of the real-virtual counterterm is discussed in Section 6, and again

can be organised in terms of simple integrals. Finally, Section 7 gives the subtracted double-virtual

contribution, which is free of infrared poles, and Section 8 summarises our results, putting them in

1Our method provides a complete subtraction formalism at NLO, including the case of initial state hadrons, as

discussed in details in Ref. [89].
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perspective. Several appendices collect useful formulas and some technical details of the formalism.

2 Subtraction for massless final states: a framework

We consider a generic process where an electroweak initial state with total momentum q, q2 ” s,

produces n massless final-state coloured particles at Born level, and we denote with Anpkiq, i “

1, . . . , n, the relevant scattering amplitude2. The perturbative expansion of the amplitude reads

Anpkiq “ Ap0qn pkiq ` Ap1qn pkiq ` Ap2qn pkiq ` . . . , (2.1)

where Apkqn is the k-loop correction, and includes the appropriate power of the strong coupling

constant. For such a process, we consider a generic infrared-safe observable X, and we write the

corresponding differential distribution as

dσ

dX
“

dσLO

dX
`
dσNLO

dX
`
dσNNLO

dX
` . . . . (2.2)

Our task is to express such differential distributions in a manifestly finite form, which is free of

infrared poles, and integrable over the appropriate phase spaces. In order to introduce our method

and notations, we begin with a brief review of the NLO calculation for massless final states.

2.1 Local Analytic Sector Subtraction at NLO

The standard expression for the NLO term in the distribution in Eq. (2.2) requires combining virtual

corrections to the Born term, which contain IR poles in ε ” p4 ´ dq{2, where d is the number of

space-time dimensions, and the phase-space integral of unresolved radiation, which is also singular

in d “ 4. One must then compute the combination

dσNLO

dX
“ lim

dÑ4

„
ż

dΦn V δnpXq `

ż

dΦn`1Rδn`1pXq



. (2.3)

Here δmpXq ” δpX´Xmq fixes Xm, the expression for the observable X, computed for an m-particle

configuration, to its prescribed value, dΦm denotes the Lorentz-invariant phase-space measure for

m massless final-state particles, and

R “

ˇ

ˇ

ˇ
Ap0qn`1

ˇ

ˇ

ˇ

2

, V “ 2 Re
”

Ap0q:n Ap1qn
ı

, (2.4)

are the real and the (MS-renormalised) virtual contributions, respectively. To rewrite Eq. (2.3) in

terms of finite quantities we need a sequence of steps. First, we must define a local counterterm,

denoted here by K, which is required to reproduce the singular IR behaviour of the real-radiation

matrix element R locally in phase space. At the same time, it is expected to be simple enough to

be analytically integrated in the phase space of the unresolved radiation. In order to perform this

integration, we need to introduce a parametrisation of the radiative phase space dΦn`1, which must

factorise as

dΦn`1 “
ςn`1

ςn
dΦn dΦrad , (2.5)

where, as before, dΦn is the phase space for n massless particles, while dΦrad is the measure of

integration for the degrees of freedom of the unresolved radiation, and we explicitly extracted the

2The subtraction presented in the following applies with no modifications to the case of an arbitrary number of

colourless particles accompanying the n coloured ones in the final state, so that in general
ř

i ki ‰ q. Just for the

sake of notational simplicity, we will assume n to coincide with the total number of final-state particles and the total

momentum to be q.
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ratio of the relevant symmetry factors ςn`1 and ςn. The factorisation theorems for real radiation

guarantee that the function K will be a combination of products of Born-level squared amplitudes

(to be integrated over dΦn) and infrared kernels, to be integrated in dΦrad. Once a parametrisation

yielding Eq. (2.5) is in place, one can compute the integrated counterterm

I “

ż

dΦradK . (2.6)

Eq. (2.6) will reproduce, by construction, the infrared poles arising from the integration of the real-

radiation squared matrix element. It is now possible to rewrite Eq. (2.3) identically as a combination

of virtual corrections and real contributions that are separately finite, and therefore phase-space

integrals can be performed numerically when needed. Using
ş

dΦn`1K “
ş

dΦn I, we obtain

dσNLO

dX
“

ż

dΦnV subpXq `

ż

dΦn`1R subpXq , (2.7)

with

V subpXq “
`

V ` I
˘

δnpXq , R subpXq “ R δn`1pXq ´K δnpXq . (2.8)

The subtracted real matrix element R subpXq is free of phase-space singularities by construction,

while V subpXq is finite as ε Ñ 0 as a consequence of the KLN theorem, and both contributions

are now suitable for a numerical implementation in four space-time dimensions. Notice that the

IR safety of the observable X is necessary for the cancellation, which requires that δn`1pXq turns

smoothly into δnpXq in all unresolved limits.

Eqs. (2.3)-(2.7) provide just an outline of NLO subtraction task: the actual definition of the

required local counterterm is in fact not unique, and characterises the subtraction scheme. Fur-

thermore, it is necessary to include a prescription to perform the phase-space mapping implied by

Eq. (2.5). Within the context of Local Analytic Sector Subtraction at NLO, we proceed as follows.

• We define projection operators Si and Cij that extract from the real-radiation squared matrix

element R its singular behaviour in soft and collinear limits. In practice, one must pick specific

phase-space variables in order to perform the projection: one could for example choose a

Lorentz frame and define the soft limit in terms of the energy of particle i in that frame, and

the collinear limit in terms of the angle between i and j, as was done in Ref. [50]. We prefer

to use Lorentz-invariant quantities, as discussed in detail in Refs. [83] and [89]. Concretely,

we introduce the variables

ei ”
sqi
s
, wij ”

ssij
sqisqj

, (2.9)

where sq` “ 2q ¨ k`. We then define Si as extracting the leading power in ei, and Cij “ Cji

as extracting the leading power in wij . It is not difficult to verify that, with this definition,

the two operators commute when acting on the squared matrix element, Si Cij R “ Cij SiR.

• We then partition the radiative phase space into sectors, defined by introducing a set of sector

functions, Wij , along the lines of Ref. [50], which constitute a partition of unity, namely a

set of kinematical weights smoothly dampening all radiative singularities but those due to

particle i becoming soft, or becoming collinear to a second particle j. Our sector functions

are constructed in terms of Lorentz invariants. We indeed define

σij ”
1

eiwij
, Wij ”

σij
ř

k‰l σkl
, (2.10)
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satisfying
ř

i‰jWij “ 1. These sector functions have the further defining property that their

soft and collinear limits still form a partition of unity. Indeed, one easily verifies that

Si
ÿ

k‰i

Wik “ 1 , Cij

”

Wij `Wji

ı

“ 1 . (2.11)

Eq. (2.11) guarantees that, upon summing over sectors, the full soft and collinear singular-

ities will be recovered, and sector functions will not explicitly appear in counterterms to be

integrated.

• The purpose of introducing sector functions is to minimise the number of singular limits of

RWij , so that we can easily identify a combination which is by construction integrable in the

radiative phase space. Indeed, in sector pijq

p1´ Siq p1´Cijq RWij “ RWij ´ L
p1q
ij RWij Ñ integrable , (2.12)

where we introduced L
p1q
ij ” Si ` Cij ´ Si Cij . We stress here that the operators Si and

Cij are defined to act on all elements that lie to their right: therefore, if L denotes a generic

singular limit, the relation LRWij ” pLRq pL Wijq is understood. Summing over sectors we

get the expression
ÿ

i

ÿ

j‰i

L
p1q
ij RWij ”

ÿ

i

ÿ

j‰i

”

Si `Cij

`

1´ Si
˘

ı

RWij , (2.13)

which satisfies the requirement of reproducing the singular behaviour of R in all soft and

collinear regions. Eq. (2.13), however, cannot yet be used directly in Eq. (2.7), since it does

not properly factorise a Born-level squared matrix element involving n on-shell particles.

• For this purpose, we must introduce a set of mappings of the pn` 1q-particle momenta tku

onto the n-particle momenta tk̄u, which must not affect soft and collinear limits at leading

power. We adopt the Catani-Seymour mappings [51]

k̄
pabcq
i “ ki , i ‰ a, b, c ; k̄

pabcq
b “ ka ` kb ´

sab
sac ` sbc

kc ; k̄pabcqc “
sabc

sac ` sbc
kc , (2.14)

where i runs from 1 to n ` 1. The mappings above satisfy the on-shell and momentum-

conservation conditions

`

k̄
pabcq
j

˘2
“ 0 , j “ 1, . . . , n ;

n
ÿ

j“1

k̄
pabcq
j “

n`1
ÿ

i“1

ki . (2.15)

One easily verifies the two sets of momenta coincide when ka becomes soft, and when ka
becomes collinear to kb.

• Finally, we can turn Eq. (2.13) into a local counterterm, by using the factorised expressions

for soft and collinear limits of R, and evaluating the Born-level squared matrix elements with

the mapped momenta defined Eq. (2.14), sector by sector in the radiative phase space. We

do this by introducing improved projection operators Si and Cij , which are defined at NLO

to project on leading-power soft and collinear limits, and at the same time apply the selected

phase-space mappings. For NLO massless final states their action is defined by

SiR ” ´N1

ÿ

c‰i

ÿ

d‰i,c

Epiqcd B̄
picdq
cd , (2.16)

Cij R ” N1

Pµνijprq

sij
B̄pijrqµν ,

Si Cij R ” 2N1 Cfj E
piq
jr B̄

pijrq , r “ rij .
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The quantities entering Eq. (2.17) are defined as follows. We denote by B the Born matrix el-

ement squared, B “ |Ap0qn |2, while Bµν is its spin-correlated counterpart, defined by removing

the gluon polarisation vectors from the matrix element and from its complex conjugate3. Simi-

larly, Bcd is the colour-correlated Born, defined in Eq. (A.5). These three objects are evaluated

in Eq. (2.17) with mapped momenta, and are therefore denoted with a bar and with a label

identifying the specific mapping to be employed. Thus, for example, B̄pilmq ” Bptk̄upilmqq is

the Born squared matrix element with mapped momenta tk̄upilmq. Furthermore, Cfj is the

Casimir eigenvalue of the colour representation of parton j, while the eikonal kernel Epiqcd and

the DGLAP kernels Pµνijprq are presented in Eq. (B.3) and Eq. (B.7) respectively4. The overall

normalisation is given by

N1 “ 8παs

ˆ

µ2eγE

4π

˙ε

. (2.17)

Importantly, the improved operators must preserve the correct soft and collinear limits of R

to ensure the locality of the subtraction procedure: in this case, one must verify that

Si SiR “ SiR , Cij Cij R “ Cij R , (2.18)

as well as

Si Si Cij R “ Si Cij R , Cij Si Cij R “ Cij SiR . (2.19)

These consistency conditions are indeed verified by Eq. (2.17). We also stress that r “ rij
is any particle different from i, j, chosen according to the rule defined in Eq. (A.14) (in this

case it means that the same r must be chosen for the pair ij and for the pair ji). In what

follows, we will describe the action of the improved operators as realising improved limits.

Notice that, at this stage, we have a residual freedom in the definition of improved limits of

sector functions, subject to the preservation of the constraints in Eq. (2.11) and in Eq. (2.12).

• The definition of the improved operators given above contains a subtlety [89], which must be

analysed with care. The DGLAP kernels Pµνijprq reported in Appendix B are written in terms

of the invariants

xi “
sir

sir ` sjr
, xj “

sjr
sir ` sjr

, (2.20)

as opposed to the energy fractions ei{pei ` ejq, ej{pei ` ejq. This is a useful choice in view of

analytical integration, and a legitimate one since xi and xj reduce to ei and ej in the collinear

limit Cij . This choice, however, introduces spurious singularities in the collinear limits Cir

and Cjr in the sectors Wij and Wji, so that the combination p1 ´ Siqp1 ´CijqRWij is not

integrable in the limits Cir and Cjr. This problem can be solved by using our freedom to

define the action of the improved operators Si and Cij on sector functions Wij (r “ rij):

SiWij ” SiWij “

1
wij

ř

l‰i

1
wil

, CijWij ”
ejwjr

eiwir`ejwjr
, Si CijWij ” 1 . (2.21)

The presence of the angular factors wir and wjr, vanishing in the Cir and Cjr limits respec-

tively, allows to verify the following auxiliary consistency conditions

Cir

!

1 , Si , Cij

`

1´ Si
˘

)

RWij Ñ integrable ,

Cjr

!

1 , Si , Cij , Si Cij

)

RWij Ñ integrable , (2.22)

3If the parent parton in the collinear ij splitting is not a gluon, the corresponding kernel is diagonal in spin space

by helicity conservation, and Bµν reduces to B.
4We note that, as seen in Appendix B, these and all other kernels are written in terms of Lorentz invariants and

in a manifestly flavour-symmetric notation.
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on top of the standard ones, corresponding to Eqs. (2.18) and (2.19), which now need to be

written explicitly including the sector functions, as

Si

!

`

1´ Si
˘

, Cij

`

1´ Si
˘

)

RWij Ñ integrable ,

Cij

!

`

1´Cij

˘

, Si
`

1´Cij

˘

)

RWij Ñ integrable . (2.23)

Recall that in Eq. (2.22) the index r labels the reference vector used to define the collinear

kernel Pµνijprq: in fact, all collinear projection operators should properly be labelled with the

index r, which in general we omit for brevity. Notice also that our definition of improved

limits of sector functions, Eq. (2.21), is not symmetric under i Ø j. As a consequence, the

two lines of Eq. (2.22) are not identical: in the first line, only the combination Cijp1 ´ Siq

gives an integrable result in the ir collinear limit, when acting on RWij (which is sufficient for

our purposes), while in the second line Cij and Si Cij give separately integrable contributions

in the same limit.

• With these definitions, our first expressions for the NLO local counterterm is

K “
ÿ

i,j‰i

Kij , Kij “

´

Si `Cij ´ Si Cij

¯

RWij . (2.24)

so that the subtracted squared matrix element is given by

R subpXq “
ÿ

i,j‰i

R sub
ij pXq , R sub

ij pXq “ RWij δn`1pXq ´Kij δnpXq . (2.25)

The counterterm defined in Eq. (2.24) is sufficient to construct a fully functional subtraction

algorithm at NLO. There is however some room for optimisation: for example, we note

that the sector functions Wij are useful to identify the improved limits to be defined, and

the consistency relations they must satisfy, but the stability of numerical integrations will

improve when sectors involving the same parametrisations are combined. To pursue this idea,

we introduce symmetrised sector functions defined by

Zij “ Wij `Wji . (2.26)

The corresponding improved limits read

SiZij “ SiWij “

1
wij

ř

l‰i

1
wil

, CijZij “ 1 , SiCijZij “ SiCijWij “ 1 . (2.27)

This symmetrisation of the sector functions reduces the number of sectors and, to some extent,

simplifies the scheme in view of an efficient numerical performance. In fact, the counterterm

K, with symmetrised sector functions, can be written as

K “
ÿ

i,jąi

Ktiju , Ktiju “
`

Si ` Sj `HCij

˘

RZij , (2.28)

where we have introduced the hard-collinear improved limit

HCij R ” Cij

`

1´ Si ´ Sj
˘

R “ N1

P hc,µν
ijprq

sij
B̄pijrqµν , (2.29)

with the hard-collinear splitting kernel P hc,µν
ijprq defined in Appendix B. The subtracted squared

matrix element is now given by

R subpXq “
ÿ

i,jąi

R sub
tijupXq , R sub

tijupXq “ RZij δn`1pXq ´Ktiju δnpXq . (2.30)
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A third expression for the NLO counterterm, important for analytic integration, is obtained

by summing over all sectors. Using Eq. (2.11), one can then write

R subpXq “ R δn`1pXq ´K δnpXq , K “
ÿ

i

SiR`
ÿ

i,jąi

HCij R . (2.31)

This expression for R subpXq, though very compact, is not the most suited for numerical

implementation: the expression in Eq. (2.30), with symmetrised sector functions, is to be pre-

ferred, since it allows to parallelise the contribution of different sectors, and to independently

optimise their numerical evaluation.

As discussed in detail in [83, 89, 92], these definitions enable a straightforward integration of local

counterterms, and yield an implementation of NLO subtraction that can be extended to initial-state

radiation as well. We now turn to the case of NNLO massless final states.

2.2 Local Analytic Sector Subtraction at NNLO

The NNLO contribution to the differential cross section in Eq. (2.2) can be written as

dσNNLO

dX
“ lim
dÑ4

„
ż

dΦn V V δnpXq `

ż

dΦn`1RV δn`1pXq `

ż

dΦn`2RR δn`2pXq



, (2.32)

where

RR “

ˇ

ˇ

ˇ
Ap0qn`2

ˇ

ˇ

ˇ

2

, RV “ 2 Re
”

Ap0q:n`1 A
p1q
n`1

ı

, V V “

ˇ

ˇ

ˇ
Ap1qn

ˇ

ˇ

ˇ

2

` 2 Re
”

Ap0q:n`1 A
p2q
n`1

ı

. (2.33)

In this case, the MS-renormalised double-virtual contribution V V displays IR poles up to ε´4, the

double-real RR contains up to four phase-space singularities, and the MS-renormalised real-virtual

term RV has poles up to ε´2 and up to two phase-space singularities. In order to rewrite Eq. (2.32)

as a sum of finite contributions, we will define four local counterterms, which we label K p1q, K p2q,

K p12q and KpRVq. The counterterm K p1q is designed to reproduce all phase-space singularities of

RR due to a single particle becoming unresolved, while K p2q takes care of situations where two

particles become unresolved at the same rate. The two sets of singularities overlap, and K p12q

is responsible for subtracting the double-counted overlap region. Finally, KpRVq will subtract the

phase-space singularities arising from the single-real radiation in RV .

In order to integrate these counterterms, we will need to introduce phase-space parametrisations

factorising single and double radiation, in analogy with Eq. (2.5). In this case we will need the

factorisations

dΦn`2 “
ςn`2

ςn`1
dΦn`1 dΦrad , dΦn`2 “

ςn`2

ςn
dΦn dΦrad,2 , dΦn`1 “

ςn`1

ςn
dΦn dΦrad . (2.34)

Once a parametrisation yielding Eq. (2.34) is in place, one can define integrated counterterms as

I p1q ”

ż

dΦradK
p1q , I p2q ”

ż

dΦrad,2K
p2q ,

I p12q ”

ż

dΦradK
p12q , IpRVq ”

ż

dΦradK
pRVq . (2.35)

We are now ready to write down the master formula for our subtraction at NNLO: in the rest

of the paper we will precisely define and construct all the necessary ingredients, generalising the

discussion summarised in Section 2.1. We aim to construct an expression of the form

dσNNLO

dX
“

ż

dΦn V V subpXq `

ż

dΦn`1RV subpXq `

ż

dΦn`2RR subpXq , (2.36)
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where each one of the three contributions is finite in ε and is free of phase-space singularities.

Using the local counterterms introduced above, and their integrals over the radiative degrees

of freedom, the subtracted matrix elements V V sub, RV sub and RR sub are given by

V V subpXq ”
´

V V ` I p2q ` IpRVq
¯

δnpXq , (2.37)

RV subpXq ”
´

RV ` I p1q
¯

δn`1pXq ´
´

KpRVq ` I p12q
¯

δnpXq , (2.38)

RR subpXq ” RRδn`2pXq ´K
p1q δn`1pXq ´

´

K p2q ´K p12q
¯

δnpXq . (2.39)

Once again, Eqs. (2.36) and (2.37)-(2.39) provide an identical rewriting of Eq. (2.32): their logic is

as follows:

• in Eq. (2.39), RR subpXq must be integrated in the full phase space Φn`2, and it is built out

of tree-level quantities5, therefore has no explicit IR poles. It has no phase-space singularities

either, since single-unresolved contributions are subtracted by K p1q, double-unresolved con-

tributions are subtracted by K p2q, and their double-counted overlap is reinstated by adding

back K p12q.

• in Eq. (2.38), RV must be integrated in Φn`1, and is affected by both explicit IR poles and

phase-space singularities. The IR poles arising from the loop integration in RV are cancelled

by the integral I p1q, by virtue of general cancellation theorems; the first parenthesis is thus

finite, but both terms are singular in the phase space of the radiated particle. By construction,

the phase-space singularities of I p1q are cancelled by I p12q, and KpRVq is designed to cancel

the phase-space singularities of RV . This however does not guarantee that explicit IR poles

will cancel in the second parenthesis. Anyway, one can fine-tune the definition of KpRVq, by

including explicit IR poles not associated with the phase-space singularities of RV , in order

to make the second parenthesis finite as well. At this point, Eq. (2.38) is both finite and

integrable.

• The complete cancellation of real and virtual singularities in Eq. (2.38) and Eq. (2.39) guar-

antees then, as a consequence of the KLN theorem, that Eq. (2.37), to be integrated in the

Born-level phase space Φn, will be free of IR poles.

In the next sections we will construct explicit expressions for all counterterms, compute their

integrals analytically, and finally obtain RR subpXq, RV subpXq and V V subpXq. As was the case

at NLO, this will require identifying the relevant single- and double-unresolved limits, introducing

an appropriate set of NNLO sector functions, and defining flexible and consistent phase-space

mappings. Needless to say, the multiplicity of singular configurations and of their overlaps will lead

to long and intricate expressions: therefore, detailed formulas for NNLO soft and collinear kernels,

for the relevant mapped limits, and for the required integrals, as well as a number of notational

shortcuts, will be presented in the Appendices.

3 The subtracted double-real contribution RR sub

In this section we provide a detailed construction of the subtracted squared matrix element for

double-real radiation, RR sub. As noted in Eq. (2.39), this will require the definition of three separate

local counterterms. From a combinatorial viewpoint, this task represents the most intricate part of

the NNLO-subtraction programme, due to the large number of overlapping singular limits affecting

5We have implicitly understood the underlying Born reaction to be associated with tree-level diagrams; however,

in case of loop-induced processes, all arguments and techniques presented in this article carry over.
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double-real radiation. In analogy to Section 2.1, we will proceed as follows: first, in Section 3.1, we

will list and briefly discuss the relevant singular limits, which can be single- or double-unresolved;

next, in Section 3.2, we will introduce a set of sector functions, smoothly partitioning the pn` 2q-

particle phase space so as to minimise the number of singular configurations to be considered in any

given sector. These sectors will naturally be grouped into three different topologies, corresponding

to the structure of the limits relevant to each sector. Next, in Section 3.3, we will identify specific

combinations of limits that yield integrable contributions in each topology, in the spirit of Eq. (2.12);

we will then construct, in Section 3.4, a family of phase-space mappings in order to properly

factorise the double-radiative phase space in all relevant configurations. Finally, in Section 3.5,

we will introduce improved limits appropriate for each topology, discuss the required consistency

conditions, and then use the improved limits to compose an expression for the subtracted double-

real contribution RR sub. As was the case at NLO for single-real radiation, it is possible to improve

upon the resulting expression for RR sub by introducing symmetrised sector functions in order to

optimise the subsequent numerical integration. This construction is discussed in Section 3.6. We

note that the construction presented in this paper differs slightly in some technical choices from the

one given in Ref. [83]: we will note the differences as we go along.

3.1 Singular limits for double-real radiation

Double-real radiation matrix elements are characterised by a variety of overlapping singular limits.

It is important, from the outset, to pick a complete set of limits, in order to then study (and

subtract) their overlaps, to avoid double counting. Clearly, single-unresolved soft and collinear

limits are relevant also for double radiation, so our list must include the limits Si and Cij introduced

in Section 2.1. Next, we need to collect all possible double-unresolved limits. Importantly, when two

particles become unresolved, one needs to distinguish uniform limits, where the rate at which the two

particles become unresolved is the same, and strongly-ordered limits, where one particle becomes

unresolved at a higher rate with respect to the second one. Obviously, this distinction becomes

relevant starting at NNLO. Our set of fundamental uniform limits consists of four independent

configurations. First, two particles i and j can become soft at the same rate, a limit which we

denote by Sij ; second, a single hard particle can branch into three collinear ones, i, j and k, a

limit which we denote by Cijk; third, two hard partons can independently branch into two collinear

pairs, which we denote by Cijkl, with pi, jq and pk, lq labelling the two independent pairs; finally,

a particle i can become soft while another pair of particles, j and k, become collinear at the same

rate6, which we denote by SCijk. In these four limits, the double-real-radiation squared matrix

element factorises, with the relevant kernels derived and presented in Ref. [27]. Given these uniform

limits, the strongly-ordered ones can be reached by acting iteratively: for example, the strongly-

ordered double-soft limit, with particle i becoming soft faster than particle j, can be reached by

computing Si Sij ,while the strongly-ordered double-collinear limit, with particles i and j becoming

collinear faster than the third particle k, will be given by the combination Cij Cijk. All singular

configurations can be reached in this way.

In order to proceed, we need to characterise the limits more precisely, in terms of phase-space

variables. As was the case at NLO, we choose to define the limits in terms of Mandelstam invariants,

and we pay attention to the fact that all limits must commute when acting on the double-real

radiation squared matrix element. Using the variables ei and wij given in Eq. (2.9), the definitions

of the independent limits, both single-and double-unresolved, are specified in Table 1. Importantly,

our choice of independent limits is related to our choice of sector functions, which will be tuned so

that only a minimal pre-defined set of the chosen limits will contribute in each sector.

6In Ref. [83], two strongly-ordered soft-collinear limits were considered, instead of the uniform one chosen here.
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Si ei Ñ 0 (soft configuration of parton i)

Cij wij Ñ 0 (collinear configuration of partons pi, jq)

Sij ei, ej Ñ 0 and ei{ej Ñ constant

(uniform double-soft configuration of partons pi, jq)

Cijk wij , wik, wjk Ñ 0 and wij{wik, wij{wjk, wik{wjk Ñ constant

(uniform double-collinear configuration of partons pi, j, kq)

Cijkl wij , wkl Ñ 0 and wij{wkl Ñ constant

(uniform double-collinear configuration of partons pi, jq and pk, lq)

SCijk ei, wjk Ñ 0 and ei{wjk Ñ constant

(uniform soft and collinear configuration for partons i and pj, kq)

Table 1. Definitions of the single-unresolved singular limits Si, Cij and of our set of basic independent

double-unresolved singular limits Sij , Cijk, Cijkl, SCijk.

3.2 Sector functions and topologies for double-real radiation

We now introduce a smooth unitary partition of the double-real-radiation phase space, in the spirit

of Ref. [50]. Since at most four particles can be involved in singular infrared limits at NNLO,

we label the sector functions with four indices, and denote them by Wijkl. We pick the first two

indices to label the single-unresolved configurations assigned to the chosen sector. In particular,

we will design the sector pijklq to contain the limits Si and Cij (thus we take j ‰ i). We then

need to distinguish sectors involving only three distinct particles from sectors involving four distinct

particles. In sectors where only three particles are involved, the double-unresolved limit Cijk will

be relevant; furthermore, a second particle (besides i) may become soft, and it can be particle j or

particle k. Correspondingly, we will have distinct sector functions Wijjk and Wijkj , where we take

the third index to indicate the second particle that can become soft. Similarly, if all four indices

are distinct, we take Wijkl to select the sector where particles i and k can become soft, while the

possible collinear pairs are pi, jq and pk, lq. Notice that in all cases the last three indices j, k and l are

distinct from i, and k ‰ l. We will refer to the three allowed combinations of sector indices, pijjkq,

pijkjq and pijklq as topologies, and we will denote them collectively by τ ” abcd P tijjk, ijkj, ijklu.

We now need to introduce a precise definition of NNLO sector functions, which will enable us to

list all the fundamental limits contributing to each topology. As was done at NLO (see Eq. (2.10)),

we will define NNLO sector functions as ratios of the type

Wabcd “
σabcd
σ

, σ “
ÿ

a,b‰a

ÿ

c‰a
d‰a,c

σabcd , (3.1)

so that
ÿ

a,b‰a

ÿ

c‰a
d‰a,c

Wabcd “ 1 . (3.2)

Such a partition allows us to rewrite the double-real squared matrix element RR as

RR “
ÿ

i, j‰i

ÿ

k‰i

ÿ

l‰i,k

RRWijkl “
ÿ

i, j‰i

ÿ

k‰i,j

„

RRWijjk `RRWijkj `
ÿ

l‰i,j,k

RRWijkl



. (3.3)

Our choice for the functions σabcd
7 is given by

σabcd “
1

pea wabqα
1

pec ` δbc eaqwcd
, α ą 1 . (3.4)

7This choice corresponds to setting α “ β in the NNLO sector functions introduced in Ref. [83].
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Given Eq. (3.4), we can list which of the fundamental limits discussed in Section 3.1 will affect each

topology. One finds that the combination RRWτ will be singular in the limits listed below.

RRWijjk : Si , Cij , Sij , Cijk , SCijk ;

RRWijkj : Si , Cij , Sik , Cijk , SCijk , SCkij ; (3.5)

RRWijkl : Si , Cij , Sik , Cijkl , SCikl , SCkij .

In analogy with the NLO sum-rule requirements in Eq. (2.11), also NNLO sector functions which

share a given singular configuration must form a unitary partition. This is a crucial feature in order

to minimise the complexity of the counterterm structure in view of analytic integration. The choice

of the functions σabcd in Eq. (3.4) guarantees that the required partial sums reduce to unity. For

example, we report the sum rules for the double-unresolved limits in Table 1, which read

Sik

˜

ÿ

b‰i

ÿ

d‰i,k

Wibkd `
ÿ

b‰k

ÿ

d‰k,i

Wkbid

¸

“ 1 , (3.6)

Cijk

ÿ

abc Pπpijkq

`

Wabbc `Wabcb

˘

“ 1 , Cijkl

ÿ

ab Pπpijq
cd Pπpklq

`

Wabcd `Wcdab

˘

“ 1 , (3.7)

SCijk

ˆ

ÿ

d‰i
ab Pπpjkq

Widab `
ÿ

d‰i,a
ab Pπpjkq

Wabid

˙

“ 1 , (3.8)

where by πpijq and πpijkq we denote respectively the sets tij, jiu and tijk, ikj, jik, jki, kij, kjiu.

In order for the double-real contribution to properly combine with the real-virtual correction,

we require NNLO sector functions to factorise into NLO-like sector functions under the action of

single-unresolved limits. As discussed in Ref. [83], and below in Section 5, this ensures the local

cancellation of integrated phase-space singularities with the poles of the real-virtual correction,

sector by sector in the single-radiative phase space: indeed RV needs to be partitioned with NLO-

like sector functions, since it involves a single-real radiation. As an example, one may verify that

the sector functions for the topology pijjkq satisfy

SiWijjk “Wjk SiWpαq
ij , CijWijjk “Wrijsk CijWpαq

ij , Si CijWijjk “Wjk Si CijWpαq
ij , (3.9)

where Wrijsk is the NLO sector function defined in the pn` 1q-particle phase space including the

parent parton rijs of the collinear pair pi, jq, and we introduced the NLO-like, α-dependent sector

functions

Wpαq
ij ”

σ
pαq
ij

ř

k‰l σ
pαq
kl

, σ
pαq
ij ”

1

pei wijqα
, α ą 1 , (3.10)

so that ordinary NLO sector functions are given by Wij “ Wp1q
ij . Similar relations hold for the

other two topologies.

3.3 Combining singular limits of topologies

As listed in Eq. (3.5), a limited number of products of IR projectors is sufficient to collect all singular

configurations of the double-real squared matrix element in each topology. Since the action of the

relevant limits on both RR and on the sector functions does not depend on the order they are

applied, the following combinations are by construction integrable in the whole phase space

p1´ Siq p1´Cijq p1´ Sijq p1´Cijkq p1´ SCijkq RRWijjk Ñ integrable ,

p1´ Siq p1´Cijq p1´ Sikq p1´Cijkq p1´ SCijkq p1´ SCkijq RRWijkj Ñ integrable , (3.11)

p1´ Siq p1´Cijq p1´ Sikq p1´Cijklq p1´ SCiklq p1´ SCkijq RRWijkl Ñ integrable .

– 13 –



Note that, in analogy to the definition used for NLO projection operators, if we take L to be any

one of the singular limits in Table 1, the action LRRWabcd ” pLRRq pL Wabcdq is understood for

all topologies.

Applying directly Eq. (3.11) would be quite cumbersome, as the three lines generate a total of

160 terms. Fortunately, the resulting combinations of limits are not all independent, and several

non-trivial relations can be obtained exploiting the symmetries of the limits under exchanges of

indices, as well as the definitions of the various limits involved as projection operators on singular

terms of RR. Consider for example, in four-particle sector Wijkl, the projection p1´SikqRRWijkl.

This will contain only terms in RR that are not singular in sector pijklq when the uniform soft

limit is taken for particles i and k. As a consequence, if further projections involving both the i and

k soft limits are taken, the result will be integrable. We conclude, for example, that

SCikl SCkijp1´ SikqRRWijkl Ñ integrable . (3.12)

Working in this way, topology by topology, we can write a set of finite relations, which help us

remove redundant configurations contributing to Eq. (3.11). They read

Cij SCijkp1´ Siqp1´ Sijqp1´CijkqRRWijjk Ñ integrable ,

Si SCkijp1´ Sikqp1´CijkqRRWijkj Ñ integrable ,

Cij SCijkp1´ Siqp1´ Sikqp1´CijkqRRWijkj Ñ integrable ,

Cij Sikp1´ Siqp1´ SCkijqp1´CijkqRRWijkj Ñ integrable ,

SCijk SCkijp1´ SikqRRWijkj Ñ integrable ,

Si SCkijp1´ Sikqp1´CijklqRRWijkl Ñ integrable ,

Si Cijklp1´ Sikqp1´ SCiklqRRWijkl Ñ integrable , (3.13)

Cij SCiklp1´ Siqp1´ Sikqp1´CijklqRRWijkl Ñ integrable ,

Cij Sikp1´ Siqp1´ SCkijqp1´CijklqRRWijkl Ñ integrable ,

SCikl SCkijp1´ SikqRRWijkl Ñ integrable ,

Cijkl Sikp1´ SCiklqRRWijkl Ñ integrable ,

Cijkl Sikp1´ SCkijqRRWijkl Ñ integrable .

These finite relations allow us to simplify considerably Eq. (3.11), leading to the integrable expres-

sion

RRWτ ´

´

L
p1q
ij ` Lp2qτ ´ Lp12qτ

¯

RRWτ Ñ integrable , (3.14)

which is the NNLO equivalent of Eq. (2.12) for double-real radiation8. In Eq. (3.14) we distin-

guished, for each topology τ , the single-unresolved limit L
p1q
ij , the uniform double-unresolved limit

L
p2q
τ , and the strongly-ordered double-unresolved limit L

p12q
τ . Their explicit expressions for each

8Note that there is no ambiguity in the notation: we denote by pijq the first two indices of the sector, which are

common to all three topologies.
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topology, in terms of the projectors discussed in Section 3.1, are

L
p1q
ij “ Si `Cij p1´ Siq ,

L
p2q
ijjk “ Sij ` SCijk p1´ Sijq `Cijk p1´ Sijq p1´ SCijkq ,

L
p2q
ijkj “ Sik ` pSCijk ` SCkijq p1´ Sikq `Cijk p1´ Sikq p1´ SCijk ´ SCkijq ,

L
p2q
ijkl “ Sik ` pSCikl ` SCkijq p1´ Sikq `Cijkl p1` Sik ´ SCikl ´ SCkijq ,

L
p12q
ijjk “ Si

”

Sij ` SCijk p1´ Sijq `Cijk p1´ Sijq p1´ SCijkq

ı

(3.15)

´Cij p1´ Siq
”

Sij `Cijk p1´ Sijq
ı

,

L
p12q
ijkj “ Si

”

Sik ` SCijk p1´ Sikq `Cijk p1´ Sikq p1´ SCijkq

ı

´Cij p1´ Siq
”

SCkij `Cijk p1´ SCkijq

ı

,

L
p12q
ijkl “ Si

”

Sik ` SCikl p1´ Sikq
ı

´Cij p1´ Siq
”

SCkij `Cijkl p1´ SCkijq

ı

.

The projection operators appearing in Eq. (3.15) are organised so as to display, in order, the soft (S),

the uniform soft and collinear (SC) and the collinear (C) singular contributions. Upon summing

over sectors, Eq. (3.14) and Eq. (3.15) build up the equivalent at NNLO of Eq. (2.12) and Eq. (2.13),

for double-real radiation: indeed, applying the limits defined in Eq. (3.15) on RR and on the sector

functions gives the starting point to determine the form of the counterterms for each sector, since

the limits contain all phase-space singularities of RR in a given sector, without double counting.

In order to promote them to actual counterterms, it is now necessary to introduce phase-space

mappings, allowing to properly factorise the pn` 2q-body phase space into an pn` 1q-body phase

space times a single-radiation phase space for Lp1q and Lp12q, and into an n-body phase space times

a double-radiation phase space for Lp2q, as shown in Eq. (2.34). We now turn to the discussion of

these mappings.

3.4 Phase-space mappings for double-real radiation

There is considerable freedom to define phase-space mappings for double-real radiation (see for

example [93]). We have chosen to use nested Catani-Seymour final-state mappings, which involve a

minimal set of the pn` 2q momenta, and are built in terms of Mandelstam invariants, simplifying

both the factorised expression for the pn` 2q-body phase space and the dependence of the coun-

terterms on the integration variables of the radiative phase spaces. In this framework, the mappings

to factorise the pn` 2q-body phase space into an pn` 1q-body phase space times a single-radiation

phase space, necessary for Lp1q and Lp12q, can be constructed with the same procedure followed at

NLO, and one is lead to Eq. (2.14) and Eq. (2.15), with i running from 1 to n` 2, and j running

from 1 to n` 1.

For the construction of an on-shell, momentum conserving n-tuple of massless momenta in the

pn` 2q-particle phase space, necessary for Lp2q, we distinguish the following three possibilities.

• We choose six final-state massless momenta ka, kb, kc, kd, ke, kf (all different) and construct

the n-tuple (without ka and kb)

tk̄upacd,befq “
!

tku{a{b{c{d{e­f , k̄
pacd,befq
c , k̄

pacd,befq
d , k̄pacd,befqe , k̄

pacd,befq
f

)

, (3.16)

with

k̄pacd,befqc “ ka ` kc ´
sac
sracsd

kd , k̄
pacd,befq
d “

sacd
sracsd

kd ,

k̄pacd,befqe “ kb ` ke ´
sbe
srbesf

kf , k̄
pacd,befq
f “

sbef
srbesf

kf , (3.17)
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while all other momenta are left unchanged (k̄
pacd,befq
n “ kn , n ‰ a, b, c, d, e, f). Here and in

the following srabsc “ sac ` sbc.

• We choose five final-state massless momenta ka, kb, kc, kd, ke (all different) and construct the

n-tuple (without ka and kb)

tk̄upacd,bedq “
!

tku{a{b{c{d{e, k̄
pacd,bedq
c , k̄

pacd,bedq
d , k̄pacd,bedqe

)

, (3.18)

with

k̄pacd,bedqc “ ka ` kc ´
sac
sracsd

kd , k̄
pacd,bedq
d “

ˆ

1`
sac
sracsd

`
sbe
srbesd

˙

kd ,

k̄pacd,bedqe “ kb ` ke ´
sbe
srbesd

kd , (3.19)

while all other momenta are left unchanged (k̄
pacd,bedq
n “ kn , n ‰ a, b, c, d, e).

• We choose four final-state massless momenta ka, kb, kc, kd (all different) and construct the

n-tuple (without ka and kb)

tk̄upacd,bcdq “ tk̄upabc,bcdq “ tk̄upabcdq “
!

tku{a{b{c{d, k̄
pabcdq
c , k̄

pabcdq
d

)

, (3.20)

with

k̄pabcdqc “ ka ` kb ` kc ´
sabc

sad ` sbd ` scd
kd , k̄

pabcdq
d “

sabcd
sad ` sbd ` scd

kd , (3.21)

while all other momenta are left unchanged (k̄
pabcdq
n “ kn , n ‰ a, b, c, d).

With these tools, we are now ready to construct improved infrared projectors, with a proper fac-

torised structure, and we can use them to define our counterterms.

3.5 Building RR sub with improved singular limits

To write explicitly the counterterms we introduce improved versions of the limits in Table 1

Sa, Cab, Sab, Cabc, Cabcd, SCabc .

They are to be interpreted as operators which, on top of extracting the corresponding singular limit

on the objects they act on, convey a specific mapping of momenta, to be defined case by case, and

may be further refined (for example by tuning their action on sector functions) in order to ensure

the local cancellation of singularities after the implementation of phase-space mappings.

Given the definitions of the improved limits (to be discussed below) we can construct the

expression for RR sub in the following way. First, we define the improved version of the various

L operators corresponding to the limits in Eq. (3.15), for each topology, denoting the improved

operators by L. Next, we define our local counterterms, for each topology τ “ ijjk, ijkj, ijkl, as

K p1q
τ “ L

p1q

ij RRWτ , K p2q
τ “ L

p2q

τ RRWτ , K p12q
τ “ L

p12q

τ RRWτ , (3.22)

The subtracted double-real squared matrix element for topology τ is then given by

RR sub
τ pXq “ RRWτ δn`2pXq ´K

p1q
τ δn`1pXq ´

´

K p2q
τ ´K p12q

τ

¯

δnpXq . (3.23)
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This allows to build the complete RR subpXq of Eq. (2.36) by summing the contributions from all

sectors according to

RR subpXq “
ÿ

i, j‰i

ÿ

k‰i,j

„

RR sub
ijjkpXq `RR

sub
ijkjpXq `

ÿ

l‰i,j,k

RR sub
ijklpXq



. (3.24)

The structure of Eq. (2.39) is then recovered by using Eq. (3.3), and by defining

K p1q “
ÿ

i, j‰i

ÿ

k‰i,j

„

K
p1q
ijjk `K

p1q
ijkj `

ÿ

l‰i,j,k

K
p1q
ijkl



,

K p2q “
ÿ

i, j‰i

ÿ

k‰i,j

„

K
p2q
ijjk `K

p2q
ijkj `

ÿ

l‰i,j,k

K
p2q
ijkl



,

K p12q “
ÿ

i, j‰i

ÿ

k‰i,j

„

K
p12q
ijjk `K

p12q
ijkj `

ÿ

l‰i,j,k

K
p12q
ijkl



. (3.25)

We emphasise that the definitions of the counterterms are actually complete only after specifying

both the action LRR of improved limits on the double-real matrix element, as well as the action

L Wτ on sector functions. All the improved limits are reported in Appendix C, and are written in

terms of the soft and collinear kernels listed in Appendix B, multiplying appropriate versions of the

Born-level probabilities, expressed in terms of mapped momenta.

In order to give the reader a feeling for the kind of expressions that emerge from this procedure,

we reproduce here two representative examples. First, the uniform double-unresolved double-soft

improved limit Sik (i ‰ k) can be written as

Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

Epiqcd
ÿ

e‰i,k,c,d

„

ÿ

f‰i,k,c,d,e

Epkqef B̄
picd,kefq
cdef ` 4 Epkqed B̄

picd,kedq
cded



` 2 Epiqcd E
pkq
cd B̄

picd,kcdq
cdcd ` Epikqcd B̄

pikcdq
cd

*

, (3.26)

where the NLO eikonal kernel Epiqcd and the NNLO eikonal kernel Epikqcd are presented in Eqs. (B.3)

and (B.4), and we employed six-, five- and four-particle mappings for the colour-correlated Born

terms, according to the numbers of particles involved. Note in particular that all eikonal dipoles

are mapped differently, which is essential for the analytic integration, as discussed in Ref. [92] and

in Section 4 below.

For the strongly-ordered double-unresolved double-soft improved limit Si Sik (i ‰ k), on the

other hand, we write

Si Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

#

Epiqcd

«

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ēpkqpicdqef B̄
picd,kefq
cdef ` 2 Ēpkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ēpkqpidcqed B̄
pidc,kedq
cded ` 2 Ēpkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯

ff

´ 2CA

„

Epiqkc Ēpkqpickqcd B̄
pick,kcdq
cd ` Epiqkd Ēpkqpikdqcd B̄

pikd,kcdq
cd



+

. (3.27)

As might be expected, the complexity of the kernels has diminished with respect to Eq. (3.26)

(indeed the expression solely features NLO eikonal factors), but the combinatorics has become

more intricate. Notice that we used mapped momenta also in the eikonal kernels corresponding to

the least-unresolved particle k.
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It is important to stress that, while there appears to be considerable freedom in the choice

of the improved limits, there are also stringent constraints that must be satisfied. In particular,

the improved limits LRR must carry the same symmetries under index exchange as the respective

unimproved countertparts, so that the improved collections L
p1q
,L

p2q
,L

p12q
are still consistent with

Eq. (3.15), whose content is based on the validity of the integrable relations listed in Eq. (3.13).

Within the limitations of this requirement, there is still a residual freedom to modify the action

of the improved limits acting on both RR and sector functions, with respect to the bare result

extracted by their unimproved version. However, we must make sure that this procedure does

preserve the locality of the cancellation of singularities, or, analogously, the finiteness of RR sub
ijjk,

RR sub
ijkj and RR sub

ijkl, defined in Eq. (3.23). To this end, we checked the consistency of the improved

limits listed in Appendix C by analytically verifying that, for any topology τ , the corresponding

RR sub
τ is in fact integrable in all singular limits of that tolopogy. Specifically, we verified analytically

that

 

Si, Cij , Sij , Cijk, SCijk

(

RR sub
ijjk Ñ integrable ,

 

Si, Cij , Sik, Cijk, SCijk, SCkij

(

RR sub
ijkj Ñ integrable ,

 

Si, Cij , Sik, Cijkl, SCikl, SCkij

(

RR sub
ijkl Ñ integrable . (3.28)

Furthermore, since the collinear kernels of Appendix B display spurious collinear singularities in-

volving the reference momentum kr, which are not always screened by the sector functions, we

verified explicitly that also the following relations hold

 

Cir, Cjr, Cijr

(

RR sub
ijjk Ñ integrable ,

 

Cir, Ckr, Cikr

(

RR sub
ijkj Ñ integrable ,

 

Cir, Ckr

(

RR sub
ijkl Ñ integrable . (3.29)

Having passed these tests, the improved limits listed in Appendix C, when assembled according to

Eqs. (3.22)-(3.24), provide a fully local subtraction of phase-space singularities for the double-real-

emission contribution to the cross section, and Eq. (3.24) is indeed integrable in the pn` 2q-particle

phase space. We now go on to illustrate a different construction for RR sub based on symmetrised

sector functions, similarly to what was done in Section 2.1 at NLO.

3.6 RR sub with symmetrised sector functions

The partition of the pn` 2q-particle phase space by means of the sector functions Wabcd that

we introduced in Section 3.2 is not the only possible way forward. Analogously to what we did

at NLO (see Eqs. (2.29) and (2.31)), this sector structure can be adapted to meet certain sym-

metry conditions that reduce the actual number of sectors: in particular, sectors sharing the same

double-collinear singularities would naturally be parametrised in the same way in a numerical imple-

mentation, whence grouping such sectors in a single contribution is expected to improve numerical

stability. Exploiting the symmetries of the improved limit Cijk, we thus sum up the 6 permutations

of i, j, k in sectors Wijjk,Wijkj introducing the symmetrised sector functions

Zijk “ Wijjk `Wikkj `Wjiik `Wjkki `Wkiij `Wkjji

` Wijkj `Wikjk `Wjiki `Wjkik `Wkiji `Wkjij . (3.30)

Similarly, in the four-particle sectors Wijkl, we can exploit the symmetries of the improved limit

Cijkl to sum up the 8 permutations ijkl, ijlk, jikl, jilk, klij, klji, lkij, lkji, and define

Zijkl “ Wijkl `Wijlk `Wjikl `Wjilk `Wklij `Wklji `Wlkij `Wlkji . (3.31)
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We also introduce the NLO-type symmetric sector functions

Zpαqij ” Wpαq
ij `Wpαq

ji , Zij ” Zp1qij , (3.32)

where Wpαq
ij was defined in Eq. (3.10). We will also find it useful to introduce a notation for the

soft limit of the symmetric sector functions

Zpαqs,ij ” SiZpαqij “ SiWpαq
ij “

1
wαij

ř

l‰i

1
wαil

, Zs,ij ” Zp1qs,ij . (3.33)

The use of Zijk and Zijkl, upon reducing the number of sectors, simplifies the expression of the

counterterms. In fact, deriving the action of the generic improved limit L on the new sector

functions (which can be directly obtained from the L Wabcd definitions in Appendix C), we verify

that, thanks to their symmetries, any improved limit involving either the operator Cijk, or the

operator Cijkl, when acting on Zijk and Zijkl respectively, reduces them to unity, according to

Cijk

`

. . .
˘

RRZijk “ Cijk

`

. . .
˘

RR , Cijkl

`

. . .
˘

RRZijkl “ Cijkl

`

. . .
˘

RR , (3.34)

where the ellipsis denotes a generic sequence of improved limits.

In analogy with Eq. (3.22), we now define our local counterterms with symmetrised sector

functions by

K
p1q
tσu “ L

p1q

tσu RRZσ , K
p2q
tσu “ L

p2q

tσu RRZσ , K
p12q
tσu “ L

p12q

tσu RRZσ , (3.35)

where we denote the symmetrised topologies by σ P tijk, ijklu, and the limits Ltσu are symmetrised

versions of the limits in Eq. (3.15), to be presented below. The subtracted double-real contribution

for a given symmetrised sector, in analogy with Eq. (3.23), is then given by

RR sub
tσu pXq ” RR Zσ δn`2pXq ´K

p1q
tσu δn`1pXq ´

´

K
p2q
tσu ´K

p12q
tσu

¯

δnpXq , (3.36)

and finally the full expression for RR subpXq of Eq. (2.36) is obtained by summing the contributions

from the symmetrised sectors Zijk, Zijkl. It reads

RR subpXq “
ÿ

i, jąi

„

ÿ

kąj

RR sub
tijkupXq `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

RR sub
tijklupXq



. (3.37)

This expression can be written in the form of Eq. (2.39) by building the complete counterterms

K p1q, K p2q and K p12q in terms of symmetrised sector functions, as

K p1q “
ÿ

i, jąi

„

ÿ

kąj

K
p1q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p1q
tijklu



,

K p2q “
ÿ

i, jąi

„

ÿ

kąj

K
p2q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p2q
tijklu



,

K p12q “
ÿ

i, jąi

„

ÿ

kąj

K
p12q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p12q
tijklu



. (3.38)

The symmetrised improved limits required to compute the symmetrised counterterms defined in

Eq. (3.35) can be derived from the limits designed for the Wabcd sector functions, which were

presented in Eq. (3.15) before improvement. The symmetrisation must be done carefully, in order
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not to overcount singular configurations. We adopt the following procedure. First, we expand all

products in Eq. (3.15), and we express the corresponding improved limits as flat sums running over

the respective sets of relevant singular limits. For example, we write

L
p1q

ab “
ÿ

¯̀PL p1q

ab

¯̀, where L p1qab “

!

Sa, Cab, ´Sa Cab

)

,

L
p2q

abbc “
ÿ

¯̀PL p2q

abbc

¯̀, where L p2qabbc “

!

Sab, SCabc, ´SCabc Sab, Cabc, ´Sab Cabc,

´SCabc Cabc, SCabc Sab Cabc

)

, (3.39)

and similarly for the remaining limits given in Eq. (3.15). Next, we introduce the index sets

α “ tij, ji, ik, ki, jk, kju , β “ tij, ji, kl, lku ,

γ1 “ tijjk, ikkj, jkki, jiik, kiij, kjjiu , γ2 “ tijkj, ikjk, jkik, jiki, kiji, kjiju ,

δ “ tijkl, ijlk, jikl, jilk, klij, klji, lkij, lkjiu , (3.40)

which enumerate the permutations that will need to be summed in order to perform the required

symmetrisations. The limits L
p1q

tσu, L
p2q

tσu and L
p12q

tσu can now be defined by sums running over unions

of the sets L. Specifically, we define

L
p1q

tijku “
ÿ

¯̀PL p1q
α

¯̀, where L p1qα “
ď

ab Pα

L p1qab ,

L
p1q

tijklu “
ÿ

¯̀PL p1q

β

¯̀, where L p1qβ “
ď

ab P β

L p1qab ,

L
p2q

tijku “
ÿ

¯̀PL p2q
γ

¯̀, where L p2qγ “

«

ď

abbc P γ1

L p2qabbc

ff

Y

«

ď

abcb P γ2

L p2qabcb

ff

,

L
p2q

tijklu “
ÿ

¯̀PL p2q

δ

¯̀, where L p2qδ “
ď

abcd P δ

L p2qabcd . (3.41)

Similarly, the strongly-ordered double-unresolved limits L
p12q

tσu are given by analogous sums, where

for σ “ ijk the sum runs over the collection L p12qγ , and, for σ “ ijkl, the sum runs over the

collection L p12qδ , defined as in the last two lines of Eq. (3.41), with the replacement p2q Ñ p12q.

While assembling the set unions introduced in Eq. (3.41), one must take care to count only once

all limits that coincide by symmetry: thus, for example, one should use the fact that Cij “ Cji,

and SCijk “ SCikj . To further illustrate the procedure, we note that the first line of Eq. (3.41)

becomes

L
p1q

tijku “ Si ` Sj ` Sk `Cij `Cik `Cjk

´Si Cij ´ Sj Cij ´ Si Cik ´ Sk Cik ´ Sj Cjk ´ Sk Cjk

“ Si ` Sj ` Sk `HCij `HCik `HCjk , (3.42)

properly including all relevant singular regions without double counting.

The explicit results for the sums in Eq. (3.41) appear rather cumbersome at first sight, but in

fact they result in relatively compact expressions when the limits are evaluated. Indeed, thanks

to the symmetry properties of Zijk and Zijkl, it is possible to merge subsets of singular limits

which factor identical combinations of symmetrised sector functions. One finds then that only

certain combinations of singular limits survive in the result. In detail, all single-unresolved limits
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can be written explicitly as sums of single-soft limits Sa plus hard-collinear combinations HCab,

defined in Eq. (2.29). Furthermore, it is useful to introduce a soft-subtracted version of the uniform

double-unresolved limit SCabc, which is given by

SHCabc ” SCabc

`

1´ Sab ´ Sac
˘

. (3.43)

This combination can appear only when attached to either the Sa or Cabc limits: indeed, in any

other case, the operators SCabc and Sab SCabc do not share the same sector functions in the limit.

Similarly, considering the double-unresolved improved collinear limit Cabc, we can distinguish three

useful combinations, defined by

HCabc ” Cabc

`

1´ Sab ´ Sbc ´ Sac
˘

,

HC
psq

abc ” Cabc

`

1´ Sab ´ Sac
˘ `

1´ SCabc

˘

,

HC
pcq

abc ” Cabc

`

1´ Sab ´ SCcab

˘

, (3.44)

which reflect three different possible strategies for removing soft singularities from the collinear

kernel. The superscripts psq and pcq in the second and third line of Eq. (3.44) refer to the fact that the

psq combination can appear only in association with a single-soft limit Sd (with d P ta, b, cu), while

the pcq combination can appear only in association with single hard-collinear limits HCde, with

de P tab, ac, bcu. Finally, for the four-particle double-collinear improved limit Cijkl we introduce

HCabcd ” Cabcd

`

1` Sac ` Sbc ` Sad ` Sbd ´ SCacd ´ SCbcd ´ SCcab ´ SCdab

˘

,

HC
pcq

abcd ” Cabcd

`

1´ SCcab ´ SCdab

˘

, (3.45)

where again the notation pcq refers to the fact that the combined limit in the second line of Eq. (3.45)

can only appear in association with the hard-collinear single-unresolved limits HCab and HCcd.

Using these preliminary definitions, we can write down explicit expressions for the symmetrised

improved limits defined in Eq. (3.41). They are

L
p1q

tijku “ Si ` Sj ` Sk `HCij `HCjk `HCik ,

L
p1q

tijklu “ Si ` Sj ` Sk ` Sl `HCij `HCkl ,

L
p2q

tijku “ Sij ` Sjk ` Sik ` SCijkp1´Sij´Sikq ` SCjikp1´Sij´Sjkq ` SCkijp1´Sik´Sjkq

`HCijk ´CijkpSHCijk`SHCjik`SHCkij q ,

L
p2q

tijklu “ Sik ` Sjk ` Sil ` Sjl ` SCikl

`

1´Sik´Sil
˘

` SCjkl

`

1´Sjk´Sjl
˘

`SCkij

`

1´Sik´Sjk
˘

` SClij

`

1´Sil´Sjl
˘

`HCijkl ,

L
p12q

tijku “ Si
`

Sij`Sik`SHCijk

˘

` Sj
`

Sij`Sjk`SHCjik

˘

` Sk
`

Sik`Sjk`SHCkij

˘

`
`

Si`Sj`Sk
˘

HC
psq

ijk `HCij

´

Sij`SCkij`HC
pcq

ijk

¯

`HCjk

´

Sjk`SCijk`HC
pcq

ijk

¯

`HCik

´

Sik`SCjik`HC
pcq

ijk

¯

;

L
p12q

tijklu “ Si
`

Sik ` Sil
˘

` Sj
`

Sjk ` Sjl
˘

` Sk
`

Sik ` Sjk
˘

` Sl
`

Sil ` Sjl
˘

`Si SHCikl ` Sj SHCjkl ` Sk SHCkij ` Sl SHClij

`HCij

`

SCkij ` SClij

˘

`HCkl

`

SCikl ` SCjkl

˘

`
`

HCij `HCkl

˘

HC
pcq

ijkl . (3.46)

The actions of all these improved limits on RR and on the symmetrised sector functions Zijk, Zijkl
are reported in Appendix C.
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Comparing the collections of singular projectors relevant to Wabcd sector functions in Eq. (3.15)

with the ones reported in Eq. (3.46) for the symmetrised case, it is immediate to notice that the

number of different non-trivial singular limits contributing to a given sector changes, depending on

the type of partition we introduce. In particular, this number increases for our choice of Zijk and

Zijkl. Despite this, though, the ordered sums in Eq. (3.37), building up the relevant integrable

contributions, lead to a significantly more compact final expression (in terms of the number of

different objects one needs to define and evaluate). This is a feature that will translate into a gain

in computational time and resources in the final numerical implementation.

4 Integration of the double-real-radiation counterterms

In the previous section we constructed RR sub of Eq. (2.39), a combination which is integrable

everywhere in the double-radiative phase space, by subtracting the local counterterms K p1q, K p2q

and K p12q (given in Eq. (3.25), or equivalently in Eq. (3.38)) from the double-real squared ma-

trix element RR. These counterterms must now be added back, after integrating out one or two

emissions, yielding the integrated counterterms I p1q, I p2q, I p12q. The integration procedure in the

presence of sectors involves rather intricate combinatorics, and generates lengthy expressions in the

intermediate stages. However, all integrals that need to be computed are remarkably simple, and

in almost all cases have trivial (logarithmic) dependence on the Mandelstam invariants [92].

We will begin, in Section 4.1, by introducing the relevant phase-space factorisations and param-

eterisations, derived from the nested Catani-Seymour mappings introduced in Section 3.4. Then, in

Section 4.2, we will report the integration of the counterterms K p1q, K p2q, K p12q, specifying how

each singular contribution is treated. The resulting expressions can be simplified, by relabelling the

momenta and rewriting the flavour sums of the original pn` 2q-body phase space, as explained in

Section 4.3. It is then possible to recombine the contributions carrying different mappings, resulting

in relatively compact collections of integrals for I p1q, I p2q, I p12q, presented in Section 4.4. At this

stage, the results can be directly employed in the subtraction formula, Eq. (2.36).

It is natural to define I p1q as the integral of K p1q in the single-unresolved radiation, and I p2q as

the integral of K p2q in both unresolved emissions. For the strongly-ordered counterterm K p12q both

possibilities are in principle viable. In our framework, we define I p12q as the integral of K p12q in

a single radiation9, corresponding to the ‘most unresolved’ radiated particle, as explicitly noted in

Eq. (2.35). As a consequence, before performing the integrations, we rewrite both K p1q and K p12q

by summing up the sector functions related to the most unresolved radiation (the ones carrying the

suffix α), while keeping the sector functions for the second (least-unresolved) radiation untouched.

Note however that these remaining sector functions carry mapped kinematics. In this way, it will

be possible to combine directly the integrated counterterms I p1q and I p12q with the real-virtual

contribution RV , and with the real-virtual counterterm KpRVq, in Eq. (2.38), sector by sector in

Φn`1. For the sake of simplicity, in the following all integrations are described using the expressions

for K p1q, K p2q and K p12q in terms of symmetrised sector functions, as given in Eq. (3.38), but the

resulting expressions for I p1q, I p2q and I p12q will be given also in terms of the W sector functions.

4.1 Phase-space parametrisations

We start by giving precise definitions for the measures of integration in the radiative phase spaces

dΦrad and dΦrad,2, according to Eq. (2.5), but now highlighting the dependence on the chosen

mappings (discussed in Section 3.4), and making specific choices of integration variables.

The single-unresolved counterterm K p1q contains just single mappings of the type tk̄upacdq

(a, c, d all different) and is going to be integrated in the corresponding single-radiation phase space.

9We note that in the context of the CoLoRFul approach to subtraction [94, 95], the strongly-ordered counterterm

is integrated directly in both unresolved radiations.

– 22 –



On the contrary, K p12q and K p2q are built by means of iterated mappings of the type tk̄upacd,befq

(a, c, d all different and b, e, f all different). However, while K p12q needs to be integrated just in the

phase space of the single radiation corresponding to the first mapping, K p2q must be integrated in

the whole double-radiation phase space.

We start specifying Eq. (2.34), needed for the integration of K p1q and K p12q. We write

ż

dΦn`2ptkuq “
ςn`2

ςn`1

ż

dΦ
pacdq
n`1

ż

dΦ
pacdq
rad , (4.1)

where we defined

dΦ
pacdq
n`1 ” dΦn`1ptk̄u

pacdqq . (4.2)

The explicit expression for the radiative measure is

ż

dΦ
pacdq
rad “ Npεq

´

s̄
pacdq
cd

¯1´ε
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ż 1

0

dz
”

yp1´ yq2zp1´ zq
ı´ε

p1´ yq , (4.3)

where

Npεq ”
p4πqε´2

?
π Γ

`

1
2 ´ ε

˘ . (4.4)

The invariants composed by the momenta ka, kc, kd are related to the integration variables y and

z by

sac “ y s̄
pacdq
cd , sad “ zp1´ yq s̄

pacdq
cd , scd “ p1´ zqp1´ yq s̄

pacdq
cd , (4.5)

so that sacd “ sac ` sad ` scd “ s̄
pacdq
cd .

To parametrise the double-radiative phase space, needed for K p2q, we employ double mappings

of three different types, as discussed in Section 3.4. We examine them in turn.

The six-particle mapping tk̄upacd,befq (a, b, c, d, e, f all different) presented in Eqs. (3.16) and

(3.17) induces the factorization

ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpacd,befqn

ż

dΦ
pacd,befq
rad,2 , dΦpacd,befqn ” dΦnptk̄u

pacd,befqq , (4.6)

and the radiative measure of integration is

ż

dΦ
pacd,befq
rad,2 “ N2pεq

´

s̄
pacd,befq
cd s̄

pacd,befq
ef

¯1´ε
ż π

0

dφ1 psinφ1q´2ε

ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ˆ

ż 1

0

dy

ż 1

0

dz
”

y1p1´ y1q2 z1p1´ z1q yp1´ yq2 zp1´ zq
ı´ε

p1´ y1qp1´ yq , (4.7)

where the expressions for relevant invariants in terms of the integration variables are

sac “ y1 s̄
pacd,befq
cd , sad “ z1 p1´ y1q s̄

pacd,befq
cd , scd “ p1´ z1qp1´ y1q s̄

pacd,befq
cd ,

sbe “ y s̄
pacd,befq
ef , sbf “ z p1´ yq s̄

pacd,befq
ef , sef “ p1´ zqp1´ yq s̄

pacd,befq
ef , (4.8)

so that sacd “ sac` sad` scd “ s̄
pacd,befq
cd “ s̄

pacdq
cd , and sbef “ sbe` sbf ` sef “ s̄

pacd,befq
ef “ s̄

pbefq
ef .

The five-particle mapping tk̄upacd,bedq (a, b, c, d, e all different) presented in Eqs. (3.18) and

(3.19) induces the factorization

ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpacd,bedqn

ż

dΦ
pacd,bedq
rad,2 , dΦpacd,bedqn ” dΦnptk̄u

pacd,bedqq , (4.9)
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and we write
ż

dΦ
pacd,bedq
rad,2 “ N2pεq

´

s̄
pacd,bedq
cd s̄

pacd,bedq
ed

¯1´ε
ż π

0

dφ1 psinφ1q´2ε

ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ˆ

ż 1

0

dz
”

y1p1´ y1q2 z1p1´ z1q yp1´ yq3 zp1´ zq
ı´ε

p1´ y1qp1´ yq2 , (4.10)

with

sac “ y1 p1´ yq s̄
pacd,bedq
cd , sad “ z1 p1´ y1qp1´ yq s̄

pacd,bedq
cd ,

sbe “ y s̄
pacd,bedq
ed , sbd “ p1´ y1q z p1´ yq s̄

pacd,bedq
ed ,

scd “ p1´ y1qp1´ z1qp1´ yq s̄
pacd,bedq
cd , sed “ p1´ y1qp1´ zqp1´ yq s̄

pacd,bedq
ed , (4.11)

so that the five-parton invariant sabcde “ sab ` sac ` sad ` sae ` sbc ` sbd ` sbe ` scd ` sce ` sde is

equal to s̄
pacd,bedq
cde “ s̄

pacd,bedq
cd ` s̄

pacd,bedq
ce ` s̄

pacd,bedq
de .

Finally, we have the four-particle mapping, tk̄upacd,bcdq “ tk̄upabcdq, (a, b, c, d all different),

presented in Eqs. (3.20) and (3.21). This is the most intricate mapping, inducing the factorization

ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpabcdqn

ż

dΦ
pabcdq
rad,2 , dΦpabcdqn ” dΦnptk̄u

pabcdqq , (4.12)

where we write
ż

dΦ
pabcdq
rad,2 “ 2´2εN2pεq

´

s̄
pabcdq
cd

¯2´2ε
ż 1

0

dw1
ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ż 1

0

dz

ˆ

”

w1p1´w1q
ı´1{2´ε”

y1p1´y1q2 z1p1´z1q y2p1´yq2 zp1´zq
ı´ε

p1´y1q y p1´yq ,

with

sab “ y1 y s̄
pabcdq
cd , sac “ z1p1´ y1q y s̄

pabcdq
cd , sbc “ p1´ y1qp1´ z1q y s̄

pabcdq
cd ,

scd “ p1´ y1qp1´ yqp1´ zq s̄
pabcdq
cd ,

sad “ p1´ yq
”

y1p1´ z1qp1´ zq ` z1z ´ 2p1´ 2w1q
a

y1z1p1´ z1qzp1´ zq
ı

s̄
pabcdq
cd ,

sbd “ p1´ yq
”

y1z1p1´ zq ` p1´ z1qz ` 2p1´ 2w1q
a

y1z1p1´ z1qzp1´ zq
ı

s̄
pabcdq
cd , (4.13)

so that sabcd “ sab ` sac ` sad ` sbc ` sbd ` scd “ s̄
pabcdq
cd .

4.2 Integration of K p1q, K p2q and K p12q

We now have all the ingredients to actually perform the required integrations. Our task is simpli-

fied by the fact that the integrals of the azimuthal parts of the collinear kernels (see (B.7)) vanish,

as shown in Appendix D. All remaining integrals are then computed following the techniques ex-

plained in [92]. We will later recombine the components that were differently mapped by relabelling

momenta, in order to compose the complete results, which will be considerably simpler.

For the single-unresolved counterterm K p1q the required integral is

ż

dΦn`2K
p1q “

ż

dΦn`2

"

ÿ

i,j‰i

ÿ

k‰i
kąj

SiRR Z̄jk `
ÿ

i, jąi

ÿ

k‰i

ÿ

l‰i
ląk

HCij RR Z̄kl
*

. (4.14)

The integrand on the right-hand side has been obtained from K p1q of Eq. (3.38) by summing

up the NLO sector functions with label α of Eqs. (C.92)-(C.93). As explained in Appendix C, the
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mapped sector functions Z̄ij are understood to carry the same mapping as the matrix elements they

multiply. Since Eq. (4.14) will have to be combined with the real-virtual contribution RV , as part

of Eq. (2.38), we need to express the integral in Eq. (4.14) as a sum of terms in which the integration

over the single-particle radiative phase space has been performed, a specific parametrisation for the

pn` 1q-particle phase space has been identified, and the full single-real-radiation squared matrix

element R has been factored, and computed in the chosen variables. The results for the summands

of the two terms in Eq. (4.14) take the form

ż

dΦn`2 SiRR Z̄jk “ ´
ςn`2

ςn`1

ÿ

c‰i

ÿ

d‰i,c

ż

dΦ
picdq
n`1 J

icd
s R̄

picdq
cd Z̄picdqjk , (4.15)

ż

dΦn`2 HCij RR Z̄kl “
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc R̄pijrq Z̄pijrqkl , r “ rijkl , (4.16)

where the measure of integration dΦ
pacdq
n`1 was defined in Eq. (4.2). The integration over the appro-

priate dΦrad has been performed, yielding the integrals J icds and J ijrhc , whose explicit expressions are

given in Eq. (E.1) and in Eq. (E.7), respectively. The choice of r “ rijkl ‰ i, j, k, l, according to the

rule of Eq. (A.14), which reflects the choice made for HCij RR in Eq. (C.11), causes a dependence

of the integrated kernel J ijrhc on the indices k and l of the sector function Z̄pijrqkl . Notice that the

choice r “ rijkl implies the need for at least five massless partons in Φn`2, namely three massless

final-state partons at Born level. A solution for the case of two massless final-state partons in the

Born phase space requires minor technical modifications, which have been developed, and will be

presented elsewhere.

We now turn to the integration of K p2q, which is the most involved part of the calculation.

In this case, since I p2q enters Eq. (2.37), which lives in Φn, we start from K p2q in Eq. (3.38)

and perform the complete sum over sector functions, exploiting their sum rules (see for example

Eqs. (3.6)-(3.8)). This gives

ż

dΦn`2K
p2q “

ż

dΦn`2

„

ÿ

i,jąi

Sij RR`
ÿ

i,j‰i

ÿ

k‰i
kąj

SHCijk

`

1´Cijk

˘

RR

`
ÿ

i, jąi

ÿ

kąj

HCijkRR`
ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

HCijklRR



. (4.17)

Each of the four terms in Eq. (4.17) must be written as a sum of contributions, where the double-

radiation kernels have been integrated over the parametrised radiative phase space, and one is left

with a Born-level factor, expressed in terms of mapped momenta. To guide the eye of the reader

through the following rather intricate expressions, we note that, for each one of the limits involved,

the results are of the form
ż

dΦn`2 L
p2q

¨¨¨ RR “ constant
ÿ

tµu

ż

dΦpµqn Jµlimit B̄
pµq
colour , (4.18)

where the overall constant is related to multiplicities, the sum is over the set tµu of mappings that

have been employed, the Born factor may have different colour correlations, and J will always denote

the results of the integration of the kernels appropriate to the limit being taken10. The relevant J ’s

will be listed in Appendix E. Beginning with the integrated double-soft limit in Eq. (4.17), we find

10Note that, since the limit L is expressed as a sum of terms that can be mapped differently, several J ’s will

contribute to each L.
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the explicit expression
ż

dΦn`2 Sij RR “
1

2

ςn`2

ςn

ÿ

c‰i,j
d‰i,j,c

#

ÿ

e‰i,j,c,d

„

ÿ

f‰i,j,c,d,e

ż

dΦpicd,jefqn J ijcdefsbs B̄
picd,jefq
cdef

` 4

ż

dΦpicd,jedqn J ijcdesbs B̄
picd,jedq
cded



`

ż

dΦpijcdqn

„

2 J ijcdsbs B̄
pijcdq
cdcd ` J ijcdss B̄

pijcdq
cd



+

, (4.19)

where we collected colour correlations involving four, three and two partons, and each term has been

mapped differently, to simplify the corresponding integration. The integrals relevant for double-soft

radiation are presented in Eq. (E.3). We now turn to the second term in Eq. (4.17), and we find

(with r “ rijk)
ż

dΦn`2 SHCijk

`

1´Cijk

˘

RR “

´
ςn`2

ςn

#

ÿ

c‰i,j,k,r
d‰i,j,k,r,c

ż

dΦpjkr,icdqn Jjkricdsbhc B̄
pjkr,icdq
cd ` 2

ÿ

c‰i,j,k,r

ż

dΦpjkr,icrqn Jjkricrsbhc B̄pjkr,icrqcr

`

«

ÿ

c‰i,j,k

ż

dΦpkrj,icjqn Jkrjicsbhc

ˆ

ρpCq

jk B̄
pkrj,icjq
rjksc ` f̃ qq̄jk B̄

pkrj,icjq
rjksc

˙

`Cfrjks
ρpCq

jk

ż

dΦpkrj,ijrqn Jkrjirsbhc B̄
pkrj,ijrq ` pj Ø kq

ff+

, (4.20)

where rjks represents the parent particle of the pair pj, kq, the factors ρpCq

jk , involving combinations

of Casimir eigenvalues, are defined in Eq. (A.8), the flavour factors such as f̃ qq̄jk are presented in

Eq. (A.3), and Bcd is a colour projection of the Born contribution involving the symmetric tensor

dABC , defined in Eq. (A.6); furthermore, the phase-space integrals Jsbhc are presented in Eq. (E.14).

The remaining contributions to Eq. (4.17) are purely hard-collinear. For the integral of the emission

of a cluster of three hard-collinear particles we find
ż

dΦn`2 HCijkRR “
ςn`2

ςn

ż

dΦpijkrqn J ijkrhcc B̄pijkrq , r “ rijk , (4.21)

while for the emission of two distinct pairs of hard-collinear particles the integral reads
ż

dΦn`2 HCijklRR “
ςn`2

ςn

ż

dΦpijr,klrqn J ijklrhcbhc B̄
pijr,klrq , r “ rijkl , (4.22)

where the integrals Jhcc and Jhcbhc are reported in Eq. (E.10) and in Eq. (E.12), respectively.

We finally turn to the integration of the strongly-ordered counterterm K p12q. As announced, we

integrate K p12q only in the phase space of the most unresolved radiation, so the integrals involved

will be the same that appeared in the case of K p1q. Starting from the expression for K p12q in

Eq. (3.38), we then sum up the NLO sector functions with label α of Eqs. (C.96)-(C.97), and we

get
ż

dΦn`2K
p12q “

ż

dΦn`2

#

ÿ

i,j‰i

Si

„

ÿ

k‰i,j

Sij RR Z̄s,jk `
ÿ

k‰i
kąj

`

SHCijk `HC
psq

ijk

˘

RR



`
ÿ

i, jąi

ÿ

k‰i,j

HCij

„

Sij RR Z̄s,jk `
ÿ

l‰i,k

SCkij RR Z̄s,kl

` HC
pcq

ijk RR`
ÿ

l‰i,j
ląk

HC
pcq

ijklRR



+

, (4.23)
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where again the mapped sector functions Z̄s,ab carry the same mapping as the matrix elements

they multiply. No other sector functions appear in Eq. (4.23), since the use of symmetrised sector

functions has allowed to perform the corresponding sector sums, thus replacing sector functions by

unity. Once again, to highlight the general structure of the expressions listed below, we note that

they are all of the form

ż

dΦn`2 L
p12q

¨¨¨ RR “ constant
ÿ

tµ1,µ2u

ż

dΦ
pµ1q

n`1 J
µ1

limit K̄pµ1q
µ2

B̄
pµ1,µ2q

colour . (4.24)

In this case, the only integrals required for the most unresolved radiation will again be J ilms and

J ijrhc , given in Eq. (E.1) and in Eq. (E.7) respectively, and we denoted by K̄ a contribution to either

a soft or a collinear kernel, associated with the second radiation, which carries mapping pµ1q, i.e.

the first one in the nested mapping pµ1, µ2q of the Born matrix elements. Proceeding in the order

of Eq. (4.23), the integrated strongly-ordered double-soft limit is given by

ż

dΦn`2 Si Sij RR Z̄s,jk “ (4.25)

N1
ςn`2

ςn`1

ÿ

c‰i,j
d‰i,j,c

#

ż

dΦ
picdq
n`1 J

icd
s

„

ÿ

e‰i,j,c,d

ˆ

1

2

ÿ

f‰i,j,c,d,e

Ēpjqpicdqef B̄
picd,jefq
cdef ` Ēpjqpicdqed B̄

picd,jedq
cded

˙

` Ēpjqpicdqcd

´

B̄
picd,jcdq
cdcd ` CAB̄

picd,jcdq
cd

¯



Z̄picdqs, jk

`

ż

dΦ
pidcq
n`1 J

idc
s

ÿ

e‰i,j,c,d

Ēpjqpidcqed B̄
pidc,jedq
cded Z̄pidcqs, jk

´CA

ż

dΦ
picjq
n`1 J

icj
s Ēpjqpicjqcd B̄

picj,jcdq
cd Z̄picjqs, jk

´CA

ż

dΦ
pijdq
n`1 J

ijd
s Ēpjqpijdqcd B̄

pijd,jcdq
cd Z̄pijdqs, jk

+

,

and it is entirely expressed in terms of the simple one-loop eikonal kernels given in Eq. (B.3). Next,

we need the integral (with r “ rijk)

ż

dΦn`2 Si SHCijk RR “ (4.26)

´N1
ςn`2

ςn`1

ÿ

c‰i,j,k

#

ÿ

d‰i,j,k,c

ż

dΦ
picdq
n`1 J

icd
s

P̄
picdqhc,µν
jk

s̄
picdq
jk

B̄
picd,jkrq
µν,cd

`

«

ż

dΦ
pijcq
n`1 J

ijc
s

P̄
pijcqhc,µν
jkprq

2s̄
pijcq
jk

ˆ

ρpCq

jk B̄
pijc,krjq
µν,rjksc `f̃

qq̄
jk B̄

pijc,krjq
µν,rjksc

˙

` pj Ø kq

ff

`

«

ż

dΦ
picjq
n`1 J

icj
s

P̄
picjqhc,µν
jkprq

2s̄
picjq
jk

ˆ

ρpCq

jk B̄
picj,krjq
µν,rjksc `f̃

qq̄
jk B̄

picj,krjq
µν,rjksc

˙

` pj Ø kq

ff+

,

where the hard-collinear kernels are given in Eq. (B.10). We now turn to limits involving triple-
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collinear configurations. First we need
ż

dΦn`2 Si HC
psq

ijk RR “ (4.27)

N1
ςn`2

ςn`1

Cfrjks

2

# «

ρpCq

jk

ż

dΦ
pijrq
n`1 J

ijr
s

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

´

B̄pijr,jkrqµν ´B̄pijr,krjqµν

¯

` pj Ø kq

ff

`

«

ρpCq

jk

ż

dΦ
pirjq
n`1 J

irj
s

P̄
pirjqhc,µν
jkprq

s̄
pirjq
jk

´

B̄pirj,jkrqµν ´B̄pirj,krjqµν

¯

` pj Ø kq

ff

´ ρpCq

rjks

«

ż

dΦ
pijkq
n`1 J

ijk
s

P̄
pijkqhc,µν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν ` pj Ø kq

ff+

, r “ rijk .

Next we consider (again with r “ rijk)
ż

dΦn`2 HCij Sij RR Z̄s, jk “ ´N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

ÿ

c‰i,j
d‰i,j,c

Ēpjqpijrqcd B̄
pijr,jcdq
cd Z̄pijrqs, jk , (4.28)

where the choice of r different from i, j, k, analogously to the integral of HCij RR in Eq. (4.16),

causes a dependence of the integrated kernel J ijrhc on the index k of the sector function Z̄pijrqs, jk . Next

we have (r “ rijk)

ż

dΦn`2 HCij SCkij RR Z̄s, kl “ ´N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

«

ÿ

c‰i,j,k,r
d‰i,j,k,r,c

Ēpkqpijrqcd B̄
pijr,kcdq
cd (4.29)

` 2
ÿ

c‰i,j,k,r

Ēpkqpijrqcr B̄pijr,kcrqcr ` 2
ÿ

c‰i,j,k

Ēpkqpijrqjc B̄
pijr,kcjq
jc

ff

Z̄pijrqs, kl .

Finally we need to handle strongly-ordered hard-collinear limits. First, with a collinear cluster of

three particles we find

ż

dΦn`2 HCij HC
pcq

ijk RR “ N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν , r “ rijk . (4.30)

Then, with two independent pairs of collinear particles, we find

ż

dΦn`2 HCij HC
pcq

ijklRR “ N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

P̄
pijrqhc,µν
klprq

s̄
pijrq
kl

B̄pijr,klrqµν , r “ rijkl . (4.31)

This concludes the list of all required integrals for double-real radiation.

4.3 Relabelling of momenta and flavour sums

Our next step will be to collect the results of the different sectors and combine them by renaming

the mapped momenta in each sector. More precisely, in all pn` 1q-body phase spaces dΦ
pabcq
n`1

appearing in the integrals of K p1q and K p12q, we rename the sets of mapped momenta tk̄pabcqun`1

as a unique set of pn ` 1q momenta tkun`1. With this new labelling, the indices of the mapped

momenta refer directly to the particles of the unique pn` 1q-body phase space, and the reference

to the first mapping can be simply removed. The relabelling thus leads to

dΦ
pabcq
n`1 Ñ dΦn`1 , Z̄pabcq¨¨¨ Ñ Z ¨¨¨ , R̄pabcq¨¨¨ Ñ R ¨¨¨ , B̄pabc,defq¨¨¨ Ñ B̄pdefq¨¨¨ ,

s̄
pabcq
ij Ñ sij , P̄

pabcqhc,µν
ijprq Ñ P hc,µν

ijprq , Ēpiqpabcqlm Ñ Epiqlm . (4.32)
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Similarly, in the n-body phase spaces dΦ
pabc,defq
n appearing in the integral of K p2q, the sets of

mapped momenta tk̄pabc,defqun are renamed as a unique set of n momenta tkun, which in practice

means performing the substitutions

dΦpabc,defqn Ñ dΦn , B̄pabc,defq¨¨¨ Ñ B ¨¨¨ s̄
pabc,defq
ij Ñ sij . (4.33)

In particular, in the integral of SHCijkp1´CijkqRR, which involves a collinear splitting of partons

j and k, the momenta k̄
pjkr,icdq
k , k̄

pjkr,icrq
k , k̄

pkrj,icjq
j and k̄

pkrj,ijrq
j are all renamed as kp, where p is

the parent particle of j and k.

At this stage, in all integrated counterterms, the only recollection of the particles of the original

pn` 2q-body phase space is confined to the flavour factors fqi , f q̄i , fgi . These can be summed up,

and, if needed, translated into flavour factors for the particles of the pn` 1q-body and n-body phase

spaces. We now give the rules to perform these sums.

Let us begin with the simple case in which only one particle is integrated out, which is what

happens for K p1q and K p12q. In this case the following rules apply.

• When going from an pn` 2q-body phase space to an pn` 1q-body phase space by discarding

particle i, which happens when particle i is a soft gluon, the sum over flavour factors satisfies

ςn`2

ςn`1

ÿ

i

fgi “ 1 . (4.34)

For example, if all n` 2 particles are gluons, one has ςn`2 “ 1{pn` 2q! and ςn`1 “ 1{pn` 1q!,

and the sum yields the missing factor of n` 2.

• When going from an pn` 2q-body phase space to an pn` 1q-body phase space by replacing

two particles i, j with their parent particle p, which happens when i and j form a collinear

pair, the sum over the flavour factors of particles i, j can be written as a sum over flavour

factors for particle p according to the rules

ςn`2

ςn`1

ÿ

i,jąi

fqq̄ij “ Nf
ÿ

p

fgp ,

ςn`2

ςn`1

ÿ

i,jąi

pfgqij ` f
gq̄
ij q “

ÿ

p

pfqp ` f
q̄
p q ,

ςn`2

ςn`1

ÿ

i,jąi

fggij “
1

2

ÿ

p

fgp . (4.35)

As an example, consider the production of n gluons and a collinear qq̄ pair. In this case the

first line of Eq. (4.35) applies, and one must take into account the fact that quark flavours

must be summed, since the quark pair is integrated out. One then has ςn`2 “ Nf {n! and

ςn`1 “ 1{pn` 1q!, since the new final state involves pn` 1q gluons. For the same reason, the

r.h.s. yields Nf pn` 1q.

Not surprisingly, the flavour sum rules for the integrated K p2q are both more varied and more

intricate, since one is integrating out two particles, either by removing them (when they are soft),

or by replacing them with their (grand)parent particles when they form collinear sets. We consider

the various cases in turn.

• When going from an pn` 2q-body phase space to an n-body phase space by discarding two

particles i, j, the sum over particles i, j satisfies

ςn`2

ςn

ÿ

i

ÿ

jąi

fggij “
1

2
,

ςn`2

ςn

ÿ

i

ÿ

jąi

fqq̄ij “ Nf . (4.36)
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As before, the first equality is easily verified when all n` 2 particles are gluons, as is the

second one when the final state consists of n gluons and a quark-antiquark pair.

• When going from an pn` 2q-body phase space to an n-body phase space by replacing two

particles j, k with their parent particle p, and by discarding particle i, the sum over particles

i, j, k can be written as a sum over p according to the following rules.

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

fgi f
qq̄
jk “ Nf

ÿ

p

fgp ,

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

fgi pf
gq
jk ` f

gq̄
jk q “

ÿ

p

pfqp ` f
q̄
p q ,

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

fgi f
gg
jk “

1

2

ÿ

p

fgp , (4.37)

where it is important to pay attention to the range of the various sums.

• When going from an pn` 2q-body phase space to an n-body phase space by replacing three

particles i, j, k with their grandparent particle p, the sum over particles i, j, k can be replaced

by a sum over p according to the following rules.

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pfqq̄q
1

ijk ` fqq̄q̄
1

ijk q “ Nf
ÿ

p

pfqp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pfqq̄qijk ` f
qq̄q̄
ijk q “

1

2

ÿ

p

pfqp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

fqq̄gijk “ Nf
ÿ

p

fgp ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pfggqijk ` f
ggq̄
ijk q “

1

2

ÿ

p

pfqp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

fgggijk “
1

6

ÿ

p

fgp , (4.38)

where one easily recognises in the five lines the five possible partonic channels involving the

production of a cluster of three collinear particles: in the first line, the final quark-antiquark

pair can have any flavour (including that of the grandparent (anti)quark, which is the same

as that of the final (anti)quark q1), while in the second line all three (anti)quarks have the

same flavour.

• The most intricate channel for flavour sums arises when going from an pn` 2q-body phase

space to an n-body phase space by replacing two pairs of particles i, j and k, l with their

parent particles, p and t respectively. In this case, the sum over particles i, j, k, l can be
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replaced by a sum over p and t according to the following rules.

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

fqq̄ij f
q1q̄1

kl “
N2
f

2

ÿ

p,t‰p

fggpt ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

”

fqq̄ij pf
gq1

kl ` f
gq̄1

kl q ` pf
gq1

ij ` fgq̄
1

ij qf
qq̄
kl

ı

“
Nf
2

ÿ

p,t‰p

pfgqpt ` f
gq̄
pt q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

pfqq̄ij f
gg
kl ` f

gg
ij f

qq̄
kl q “

Nf
2

ÿ

p,t‰p

fggpt ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

pfgqij ` f
gq̄
ij qpf

gq1

kl ` f
gq̄1

kl q “
1

2

ÿ

p,t‰p

pfqp ` f
q̄
p qpf

q1

t ` f
q̄1

t q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

”

pfgqij ` f
gq̄
ij qf

gg
kl ` f

gg
ij pf

gq
kl ` f

gq̄
kl q

ı

“
1

4

ÿ

p,t‰p

pfgqpt ` f
gq̄
pt q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

fggij f
gg
kl “

1

8

ÿ

p,t‰p

fggpt . (4.39)

We emphasise that the flavour sum rules listed in this section apply for any final-state multiplicity

and flavour structure. We now have all the tools to assemble the complete integrated counterterms,

which will be naturally organised according to the flavour structures of the pn` 1q-particle and of

the n-particle phase spaces, as needed.

4.4 Assembling the complete integrated counterterms

After summing all contributions that were differently mapped, relabelling momenta, and making

use of the flavour rules listed in Section 4.3, the resulting integrated counterterms do not bear any

remaining trace of the original pn` 2q-body phase space, and we can actually get full results for

I p1q, I p2q, I p12q, as defined in Eq. (2.35). The simplest case is the integral of the single-unresolved

counterterm I p1q, which reads

I p1q “
ÿ

i,j‰i

I
p1q
ij Wij “

ÿ

i,jąi

I
p1q
ij Zij , (4.40)

I
p1q
ij “ ´

ÿ

c,d‰c

JspscdqRcd `
ÿ

k

J khcpskrqR , r “ rijk .

Here R is the full squared matrix element for single real radiation, defined in Eq. (2.4), and Rcd is its

colour-correlated counterpart, defined in Eq. (A.7). The single-soft integral Js is given in Eq. (E.2),

and the collinear integral J khc is given in Eq. (E.9). Because of the rule r “ rijk, a dependence of

J khcpskrq on i and j is left, excluding the possibility to sum over sectors in the hard-collinear part

of I p1q.

The integral of the double-unresolved counterterm, I p2q, is more intricate, and we assemble it

according to

I p2q “ I
p2q

SS ` I
p2q

SHC ` I
p2q

HCC ` I
p2q

HCHC , (4.41)

distinguishing double-soft, soft-times-hard-collinear and double-hard-collinear contributions, the

last of which may involve three or four Born-level particles. For I
p2q

SS we get contributions containing
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Born-level colour correlations involving four, three and two particles, and we write

I
p2q

SS “
1

4

ÿ

c,d‰c

#

ÿ

e‰c,d

„

ÿ

f‰c,d,e

J
p4q
sbspscd, sef qBcdef ` 4 J

p3q
sbspscd, sedqBcded



(4.42)

` 2 J
p2q
sbspscdqBcdcd ` 2

”

2Nf TR J
pqq̄q
ss pscdq ´ CA J

pggq
ss pscdq

ı

Bcd

+

,

where the constituent integrals are given in Eq. (E.4). The soft-times-hard-collinear contribution

yields

I
p2q

SHC “ ´
ÿ

k

"

J khcpskrq
ÿ

c,d‰c

JspscdqBcd ` J
k

shcpskrqB ` J
k,A
shc pskrqBkr (4.43)

`
ÿ

c‰k,r

”

Jk,Bshc pskr, skcqBkc ` J
k,B
shc pskr, scrqBcr

ı

*

, r “ rk ,

where the rule r “ rk, as defined in Eq. (A.14), prevents r from being equal to k. In Eq. (4.43) we

have introduced the following soft-times-hard-collinear integrals

J kshcpsq “ pfqk`f
q̄
k q

!

2CF J
gqg
sbhcpsq ` CA

”

Jggqsbhcpsq ´ J
gqg
sbhcpsq

ı)

` fgk CA

”

2Nf J
gqq
sbhcpsq ` J

ggg
sbhcpsq

ı

,

J k,Ashc psq “ pfqk`f
q̄
k q

"

2 Jgqgsbhcpsq `
CA
CF

”

Jggqsbhcpsq ´ J
gqg
sbhcpsq

ı

´ 2 J
4p2gq

sbhc ps, sq

*

` fgk

!

2Nf

”

Jgqqsbhcpsq ´ J
4p1gq

sbhc ps, sq
ı

` Jgggsbhcpsq ´ J
4p3gq

sbhc ps, sq
)

,

J k,Bshc ps, s
1q “ pfqk`f

q̄
k q

”

2 J
3p2gq

sbhc ps, s
1q ´ 2 J

4p2gq
sbhc ps, s

1q

ı

` fgk

!

2Nf

”

J
3p1gq

sbhc ps, s
1q ´ J

4p1gq
sbhc ps, s

1q

ı

` J
3p3gq

sbhc ps, s
1q ´ J

4p3gq
sbhc ps, s

1q

)

, (4.44)

whose constituent integrals can be found in Eq. (E.15). Next, we turn to the double-hard-collinear

integral involving three Born-level particles, which reads

I
p2q

HCC “
ÿ

k

"

pfqk`f
q̄
k q

„

Nf J
p0gq
hcc pskrq `

1

2
J
p0g,idq
hcc pskrq `

1

2
J
p2gq
hcc pskrq



` fgk

„

Nf J
p1gq
hcc pskrq `

1

6
J
p3gq
hcc pskrq

*

B , r “ rk ,

where the relevant constituent integrals are given in Eq. (E.11). Finally, we come to the double-

hard-collinear integral involving four Born-level particles, which reads

I
p2q

HCHC “
1

2

ÿ

j,l‰j

"

pfqj ` f
q̄
j qpf

q1

l ` f
q̄1

l qJ
qgqg
hcbhc

`

sjrslr
˘

(4.45)

`pfgqjl `f
gq̄
jl q

„

Nf J
qqqg
hcbhc

`

sjrslr
˘

`
1

2
Jqggg

hcbhc

`

sjrslr
˘



` fggjl

„

N2
f J

qqqq
hcbhc

`

sjrslr
˘

`NfJ
qqgg
hcbhc

`

sjrslr
˘

`
1

4
Jgggg

hcbhc

`

sjrslr
˘

*

B , r “ rjl ,

where the constituent integrals are given in Eq. (E.13). Similarly to I p1q, for the integral of

the strongly-ordered counterterm, I p12q, we provide expressions with both unsymmetrised and

symmetrised sector functions, so as to make it straightforward to prove that I p12q compensates
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sector by sector the phase-space singularities of I p1q. Beginning with the expression involving the

original sector functions Wij , we write

I p12q “
ÿ

i,j‰i

I
p12q
ij , I

p12q
ij “ I

p12q
S,ij Ws,ij ` I

p12q
C,ij ´ I

p12q
SC,ij , (4.46)

where the soft limit of sector functions Ws,ij is given in Eq. (C.4). The soft integral I
p12q
S,ij can

again be organised in terms of quadruple, triple and simple Born-level colour correlations, which in

this case will be multiplied times eikonal kernels for the second radiation, and NLO-type soft and

hard-collinear integrals. We find (r “ rik, r1 “ rij)

I
p12q
S,ij “ N1

ÿ

c‰i
d‰i,c

Epiqcd

"

1

2

ÿ

e‰i
f‰i,e

Jspsef q B̄
picdq
cdef `

ÿ

e‰i,d

Jspsdeq
´

B̄
picdq
cded ´ B̄

pidcq
cded

¯

(4.47)

´CA

”

Jspsicq ` Jspsidq ´ Jspscdq
ı

B̄
picdq
cd ´ J ihcpsir1qB̄

picdq
cd

*

´N1

ÿ

k‰i

J khcpskrq

„

ÿ

c‰i,k,r
d‰i,c,k,r

Epiqcd B̄
picdq
cd ` 2

ÿ

c‰i,k,r

Epiqcr B̄picrqcr ` 2
ÿ

c‰i,k

Epiqkc B̄
pickq
kc



,

where the component integrals are given in Eq. (E.2) and in Eq. (E.9). We notice that the expression

contains two different reference particles r and r1, both built according to the rule in Eq. (A.14).

In particular r1 “ rij introduces a dependence in I
p12q
S,ij on the particle j of the soft sector function

Ws,ij . The collinear integral I
p12q
C,ij is expressed in terms of spin-correlated Born-level squared

matrix elements, which in this case are multiplied times LO collinear kernels for the least-unresolved

collinear splitting, and times suitable combinations of the same constituent integrals as in Eq. (4.47).

We find (with r “ rij , r
1 “ rijk)

I
p12q
C,ij “ ´N1

Pµνijprq

sij

"

ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
µν,cd ` Cfrijs

ρpCq

rijs Jspsijq B̄
pijrq
µν (4.48)

`

„

ÿ

c‰i,j

Jspsicq
´

ρpCq

ij B̄
pjriq
µν,rijsc ` f̃

qq̄
ij B̄pjriqµν,rijsc

¯

`Cfrijs
ρpCq

ij Jspsirq
´

B̄pjriqµν ´ B̄pijrqµν

¯

` piØ jq

*

Wc,ijprq

`N1

Pµνijprq

sij

”

J ihcpsirq ` J
j

hcpsjrq
ı

B̄pijrqµν Wc,ijprq `N1

ÿ

k‰i,j

Pµνijpr1q

sij
J khcpskr1q B̄pijr

1
q

µν Wc,ijpr1q ,

where the collinear limit of sector functions Wc,ij is given in Eq. (C.5), and again two reference

particles have to be introduced. Finally, the soft-collinear integral has a similar structure and reads

(with r “ rij , r
1 “ rijk)

I
p12q
SC,ij “ ´ 2N1 Epiqjr

"

Cfj
ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
cd ´ CfjCA Jspsijq B̄

pijrq (4.49)

`CA

„

ÿ

c‰i,j

Jspsicq B̄
pjriq
rijsc ` Cfj Jspsirq

´

B̄pjriq´ B̄pijrq
¯



`p2Cfj´CAq

„

ÿ

c‰i,j

Jspsjcq B̄
pirjq
rijsc ` Cfj Jspsjrq

´

B̄pirjq´ B̄pijrq
¯

*

` 2N1CfjE
piq
jr

”

J ihcpsirq ` J
j

hcpsjrq
ı

B̄pijrq ` 2N1CfjE
piq
jr1

ÿ

k‰i,j

J khcpskr1q B̄pijr
1
q.
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As already noted, a more compact expression can be obtained using symmetrised sector functions.

We can write

I p12q “
ÿ

i,jąi

I
p12q
tiju , I

p12q
tiju “ I

p12q
S,ij Zs,ij ` I

p12q
S,ji Zs,ji ` I

p12q
HC,ij , (4.50)

where the soft contributions are given by Eq. (4.47) and the hard-collinear contribution I
p12q
HC,ij reads

(r “ rij , r
1 “ rijk)

I
p12q
HC,ij “ I

p12q
C,ij ` I

p12q
C,ji ´ I

p12q
SC,ij ´ I

p12q
SC,ji

“ ´N1

P hc,µν
ijprq

sij

"

ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
µν,cd ` Cfrijs

ρpCq

rijs Jspsijq B̄
pijrq
µν

`

„

ÿ

c‰i,j

Jspsicq
´

ρpCq

ij B̄
pjriq
µν,rijsc ` f̃

qq̄
ij B̄pjriqµν,rijsc

¯

`Cfrijs
ρpCq

ij Jspsirq
´

B̄pjriqµν ´ B̄pijrqµν

¯

` piØ jq

*

`N1

P hc,µν
ijprq

sij

”

J ihcpsirq ` J
j

hcpsjrq
ı

B̄pijrqµν `N1

ÿ

k‰i,j

P hc,µν
ijpr1q

sij
J khcpskr1q B̄pijr

1
q

µν . (4.51)

This concludes the list of integrated counterterms for double-real radiation. We now turn to the

treatment of real-virtual contributions.

5 The subtracted real-virtual contribution RV sub

Let us take stock of what we have achieved so far. After subtracting the appropriate combination

of the local counterterms K p1q, K p2q and K p12q from the double-real squared matrix element RR,

and after adding back the corresponding integrated counterterms, I p1q, I p2q and I p12q, we can write

a partially subtracted expression for the differential distribution in Eq. (2.32). It reads

dσNNLO

dX
“

ż

dΦn

”

V V ` I p2q
ı

δnpXq (5.1)

`

ż

dΦn`1

” ´

RV ` I p1q
¯

δn`1pXq ´ I
p12q δnpXq

ı

`

ż

dΦn`2RR subpXq .

Notice that no approximations have been made in reaching Eq. (5.1), since all local terms that were

subtracted from Eq. (2.32) were added back exactly in integrated form. At this stage, RR sub, given

in Eq. (3.24) or in Eq. (3.37), is free of phase-space singularities in Φn`2, and (evidently) does not

contain explicit poles in ε. Therefore it can be directly integrated in four dimensions, as desired.

We now focus on the second line of Eq. (5.1). While the introduction of the integrated counterterm

I p1q exactly cancels the ε poles of RV (in the same way as, at next-to-leading order, I cancels the

poles of V ), new poles in ε are introduced through I p12q; on top of this, the combination in square

brackets is still affected by phase-space singularities in Φn`1. To be more precise, the second line

of Eq. (5.1) verifies now two crucial properties that follow from general cancellation theorems and

from the definitions given so far. Specifically

p1q
`

RV ` I p1q
˘

δn`1pXq Ñ finite ,

p2q I p1q δn`1pXq ´ I
p12q δnpXq Ñ integrable , (5.2)
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where the integrated couterterms are defined in Eq. (4.40) and Eq. (4.46). The first property is

expected from the KLN theorem: indeed, I p1q is the integral over the most unresolved radiation

of RR, and its IR poles must compensate the virtual poles arising when one of the two unresolved

particles becomes virtual, while the other one is unaffected. These are precisely the poles of RV .

To check this, which provides a test of the results obtained so far, it is sufficient to perform the ε

expansion of I p1q, as given in Eq. (4.40), writing

I p1q “ I
p1q
poles ` I

p1q
fin `Opεq . (5.3)

Performing the sum over sectors in I
p1q
poles, we get

I
p1q
poles “

αs
2π

„

1

ε2
Σ
C
R`

1

ε

ˆ

Σγ R`
ÿ

c,d‰c

LcdRcd

˙

“ ´RVpoles . (5.4)

Keeping the complete dependence on sector functions in I
p1q
fin , we have

I
p1q
fin “

ÿ

i,j‰i

I
p1q
fin,ijWij “

ÿ

i,jąi

I
p1q
fin,ij Zij , (5.5)

I
p1q
fin,ij “

αs
2π

„ˆ

Σφ ´
ÿ

k

γhc
k Lkr

˙

R`
ÿ

c,d‰c

Lcd

ˆ

2´
1

2
Lcd

˙

Rcd



, r “ rijk .

In Eqs. (5.4)-(5.5), Lab “ logpsab{µ
2q, and the numerical coefficients are given in Eqs. (A.8)-(A.11).

One easily verifies that I
p1q
poles matches the explicit poles of the real-virtual matrix element RVpoles,

which have the well-known universal NLO structure (see for example [18, 48]), upon replacing the

n-point amplitude with the pn` 1q-point amplitude.

In order to prove the second property in Eq. (5.2), we start from the decompositions of

Eqs. (4.40)-(4.46) in terms of the sector fuctions Wij and write

Ip1qδn`1pXq ´ I
p12qδnpXq “

ÿ

i,j‰i

!

I
p1q
ij Wij δn`1pXq ´

”

I
p12q
S,ij Ws,ij ` I

p12q
C,ij ´ I

p12q
SC,ij

ı

δnpXq
)

, (5.6)

where the NLO sector functions Wij and Ws,ij are defined in Eq. (2.10) and Eq. (C.4) respectively.

The second property in Eq. (5.2) is thus satisfied at the level of single sectors Wij owing to the

relations

Si

”

I
p1q
ij Wij ´ I

p12q
S,ij Ws,ij

ı

Ñ integrable , Si

”

I
p12q
C,ij ´ I

p12q
SC,ij

ı

Ñ integrable ,

Cij

”

I
p1q
ij Wij ´ I

p12q
C,ij

ı

Ñ integrable , Cij

”

I
p12q
S,ij Ws,ij ´ I

p12q
SC,ij

ı

Ñ integrable . (5.7)

For concreteness, consider the first relation. Under soft limit, the pn` 1q-particle matrix element in

I
p1q
ij returns a sum of products of eikonal factors and Born-level, colour-correlated matrix elements,

and its sector function Wij becomes equal to Ws,ij . At the same time, when the operator Si acts

on I
p12q
S,ij , it effectively removes the phase-space mappings, so that Eq. (4.47) tends to the Si limit

of the square parenthesis in Eq. (4.40), up to the overall sign. Similar steps show the validity of the

other relations in Eq. (5.7).

At this point, on the one hand we have shown that the combination
`

RV `I p1q
˘

δn`1pXq is free

of explicit poles, but it still contains phase-space singularities. On the other hand, we have proven

that I p1q δn`1pXq ´ I p12q δnpXq is integrable in Φn`1, but may still contain poles in ε. In order

to build a fully subtracted real-virtual matrix element RV sub, free of poles in ε and integrable in

the whole pn` 1q-body phase space, we need to define, in each sector ij, a real-virtual counterterm
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K
pRVq
ij satisfying the two further properties

p3q K
pRVq
ij ` I

p12q
ij Ñ finite ,

p4q RV Wij δn`1pXq ´K
pRVq
ij δnpXq Ñ integrable . (5.8)

With a real-virtual counterterm satisfying the two properties in Eq. (5.8), the subtracted real-virtual

contribution to the cross section, defined in Eq. (2.38), is manifestly finite and integrable in Φn`1.

To construct RV sub explicitly, we rewrite it here as a sum over sectors:

RV subpXq “
ÿ

i,j‰i

„

´

RV ` I
p1q
ij

¯

Wij δn`1pXq ´
´

K
pRVq
ij ` I

p12q
ij

¯

δnpXq



. (5.9)

Thanks to the presence of sector functions, the second condition of Eq. (5.8) actually simplifies to

RV Wij δn`1pXq ´K
pRVq
ij δnpXq Ñ integrable in the limits Si, Cij . (5.10)

In order to find a suitable definition for K
pRVq
ij , satisfying the required properties, we start by

introducing soft and collinear improved limits, Si and Cij , for the real-virtual squared matrix

element. On the one hand, these limits must reproduce the singular behaviour of RV , so that

Si

”

`

1´ Si
˘

RV Wij

ı

Ñ integrable , Si

”

Cij

`

1´ Si
˘

RV Wij

ı

Ñ integrable ,

Cij

”

`

1´Cij

˘

RV Wij

ı

Ñ integrable , Cij

”

Si
`

1´Cij

˘

RV Wij

ı

Ñ integrable . (5.11)

On the other hand, the improved limits must feature appropriate mappings, such that they fulfil

momentum conservation and on-shell conditions for the Born-level particles, and, at the same time,

they simplify as much as possible the analytic integration over the radiation phase space. Following

the discussion presented at NLO, and the choices made in Ref. [92], we introduce

SiRV Wij ” ´N1

ÿ

c‰i
d‰i,c

„

Epiqcd V̄
picdq
cd ´

αs
2π

ˆ

Ẽpiqcd ` Epiqcd
β0

2ε

˙

B̄
picdq
cd ` αs

ÿ

e‰i,c,d

Ẽpiqcde B̄
picdq
cde



Ws,ij ,

Cij RV Wij ”
N1

sij

„

Pµνijprq V̄
pijrq
µν `

αs
2π

ˆ

P̃µνijprq´ P
µν
ijprq

β0

2ε

˙

B̄pijrqµν



Wc,ij ,

Si Cij RV Wij ” 2N1 Cfj

„

Epiqjr V̄
pijrq ´

αs
2π

ˆ

Ẽpiqjr ` Epiqjr
β0

2ε

˙

B̄pijrq


, r “ rij . (5.12)

The kernels Epiqcd and Pµνijprq are the eikonal and collinear kernels from tree-level factorisation, intro-

duced already at NLO, and given in Eq. (B.3) and in Eq. (B.7), respectively. In addition, Ẽpiqcd , Ẽpiqcde
and P̃µνijprq are the genuine real-virtual soft and collinear kernels [32, 33], presented here in Eq. (B.5)

and in Eq. (B.24), respectively.

Since the combination p1 ´ Siqp1 ´CijqRV Wij is integrable everywhere in Φn`1, one would

expect to define the counterterm K
pRVq
ij simply as an NLO-like combination of improved limits,

namely

K
pRVq
ij, expected “

”

Si `Cij

`

1´ Si
˘

ı

RV Wij . (5.13)

Although such a choice preserves the minimal structure of the real-virtual counterterm, and auto-

matically fulfils the condition (4) of Eq. (5.8), explicit computations show that it spoils the condition

(3) of Eq. (5.8). In principle, it would have been natural to expect that the poles of Eq. (5.13) would

cancel those of I
p12q
ij . Indeed, the poles of Eq. (5.13) are designed to match the poles of RV that are
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accompanied by phase-space singularities. At the same time, I
p12q
ij is the result of integrating the

strongly-ordered counterterm over the phase space of the most unresolved radiation: thus, it col-

lects precisely terms that have phase-space singularities in the remaining radiation, as well as poles

that should match their virtual counterpart, given by RV . On the other hand, there are subtleties

that prevent the poles of I
p12q
ij from matching exactly those of K

pRVq
ij,expected. The first subtlety stems

from the specific phase-space mappings one has to adopt in order to define the improved limits

in Eq. (5.12). Since such contributions are affected by both double poles in ε and by phase-space

singularities, they feature single poles in ε with coefficients depending on kinematic invariants. This

generates a mismatch: in fact, we notice that in Eqs. (4.47)-(4.49) the residues of the poles in I
p12q
ij

that depend on kinematics are proportional to logarithms of Lorentz invariants constructed with

unmapped momenta, i.e. with pn` 1q-body kinematics. In contrast, the residues of the poles in

the real-virtual improved limits of Eq. (5.12) can also depend on logarithms of mapped invariants,

obtained via momentum mappings from the pn`1q- to the n-particle phase space. This is the case,

for instance, for the virtual component of the soft limit: the pole content of V̄
picdq
cd includes terms

of the type log
`

s̄
picdq
ef {µ2

˘

, which cannot appear in I
p12q
ij . More involved mismatches occur in the

collinear sector, where the kinematics of the poles of I
p12q
ij fails to match that of K

pRVq
ij,expected out of

the collinear region, irrespectively of mappings.

The fact that all discrepancies in the single pole in ε disappear in the singular regions of phase

space, as they must, gives us the possibility to refine the definition of K
pRVq
ij,expected, by adding back

precisely the mismatched terms, thus obtaining the desired cancellation of the I
p12q
ij poles, without

introducing new phase-space singularities. Schematically, we define

K
pRVq
ij ” K

pRVq
ij, expected `∆ij “

”

Si `Cij

`

1´ Si
˘

ı

RV Wij `∆ij . (5.14)

The extra term ∆ij appearing in Eq. (5.14) is required not to spoil condition (4) of Eq. (5.8), and

therefore cannot have any phase-space singularity in the limits Si and Cij . Thus we impose that

Si ∆ij Ñ integrable , Cij ∆ij Ñ integrable . (5.15)

At the same time, ∆ij has the crucial role of matching the explicit ε poles of I
p12q
ij , implying the

finiteness of the combination K
pRVq
ij ` I

p12q
ij , in agreement with condition (3) of Eq. (5.8). In

practice, we introduce for ∆ij a decomposition into soft, collinear and soft-collinear components,

along the lines discussed for I
p12q
ij in Eq.(4.46), and we write

∆ij ” ∆S,iWs,ij `∆C,ij ´∆SC,ij . (5.16)

Using this decomposition, the properties Eq. (5.15) can be better detailed, and read

Si ∆S,iWs,ij Ñ integrable , Si
`

∆C,ij ´∆SC,ij

˘

Ñ integrable ,

Cij ∆C,ij Ñ integrable , Cij

`

∆S,iWs,ij ´∆SC,ij

˘

Ñ integrable . (5.17)

Furthermore, we can enforce the desired cancellation between K
pRVq
ij and I

p12q
ij for each component.

Specifically, we require that

”

SiRV Wij `

´

∆S,i ` I
p12q
S,ij

¯

Ws,ij

ı

poles
“ 0 ,

”

Cij RV Wij `

´

∆C,ij ` I
p12q
C,ij

¯ı

poles
“ 0 ,

”

Si Cij RV Wij `

´

∆SC,ij ` I
p12q
SC,ij

¯ı

poles
“ 0 . (5.18)
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Since the pole parts of both I
p12q
ij and K

pRVq
ij, expected are explicitly known, the necessary compensating

terms are easily determined. An expression for the three components of ∆ij can be constructed in

a minimal way by considering all and only the single poles of I
p12q
ij with mismatching kinematics.

Since they consist in differences of logarithms, or differences of Born matrix elements (which vanish

in the soft or collinear limit), we decided to promote the differences of logarithms to ratios of scales,

raised to a power vanishing with ε. This non-minimal structure simplifies subsequent integrations,

and it only affects finite parts, without introducing new phase-space singularities. Beginning with

the soft term ∆S,i, we define

∆S,i “ ´
αs
2π

N1

ÿ

c‰i
d‰i,c

Epiqcd

#

1

2ε2

ÿ

e‰i,c
f‰i,c,e

„ˆ

sef

s̄
picdq
ef

˙´ε

´ 1



B̄
picdq
efcd `

1

ε2

ÿ

e‰i,d

„ˆ

sed

s̄
picdq
ed

˙´ε

´ 1



B̄
picdq
edcd

`

„ˆ

1

ε2
`

2

ε

˙

2Cfc `
γhc
c

ε



´

B̄
picdq
cd ´ B̄

pidcq
cd

¯

+

´
αs
2π

N1

ÿ

k‰i
c‰i,k,r

Epiqcr
γhc
k

ε

´

B̄pircqcr ´ B̄picrqcr

¯

, r “ rik . (5.19)

Thanks to the fact that in the soft limit the mapped momenta coincide with the unmapped ones,

the first Eq. (5.17) is fulfilled in a straightforward way. The first relation in Eq. (5.18) is less evident,

but can be proven by simply performing the ε expansion of SiRV , ∆S,i and I
p12q
S,ij . For the collinear

component, we define (r “ rij , r
1 “ rijk)

∆C,ij “
αs
2π

N1

Pµνijprq

sij

1

ε2

ÿ

c‰i,j

#

ÿ

d‰i,j,c

„ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1



B̄
pijrq
µν,cd ` 2

„

1´

ˆ

s̄
pijrq
jc

srijsr

˙´ε 

B̄
pijrq
µν,rijsc

`

"

ρpCq

ij

„ˆ

s̄
pjriq
ic

s̄
pjriq
ir

˙´ε

´

ˆ

sir s̄
pjriq
ic

s̄
pjriq
ir sic

˙´ε 

B̄
pjriq
µν,rijsc

` f̃ qq̄ij

„ˆ

s̄
pjriq
ic

µ2

˙´ε

´

ˆ

s̄
pjriq
ic

sic

˙´ε 

B̄pjriqµν,rijsc ` piØ jq

*

+

Wc,ijprq

`
αs
2π

N1

ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙

«

Pµνijprq

sij
B̄pijrqµν Wc,ijprq ´

Pµνijpr1q

sij
B̄pijr

1
q

µν Wc,ijpr1q

ff

, (5.20)

where ρpCq

ij , f̃ qq̄ij , γhc
k , φhc

k and B̄ are defined in Appendix A, and Wc,ijprq is given in Eq. (C.5). The

third Eq. (5.17) can be verified by considering that in the collinear limit Cij we have

k̄
pijrq
j , k̄

pjriq
i

Cij
ÝÝÑ krijs, k̄pijrqr , k̄pjriqr

Cij
ÝÝÑ kr, k̄pijrqc , k̄pjriqc

Cij
ÝÝÑ kc. (5.21)

Again the second Eq. (5.18) can be proven upon expansion in ε. Finally for the soft-collinear

component we introduce (with r “ rij , r
1 “ rijk)

∆SC,ij “
αs
2π

2N1 Cfj E
piq
jr

1

ε2

ÿ

c‰i,j

#

ÿ

d‰i,j,c

„ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1



B̄
pijrq
cd ` 2

„ˆ

sjr
srijsr

˙´ε

´

ˆ

s̄
pijrq
jc

srijsr

˙´ε 

B̄
pijrq
rijsc

`
CA
Cfj

„ˆ

s̄
pjriq
ic

s̄
pjriq
ir

˙´ε

´

ˆ

sir s̄
pjriq
ic

s̄
pjriq
ir sic

˙´ε

B̄
pjriq
rijsc `

2Cfj´CA

Cfj

„ˆ

s̄
pirjq
jc

s̄
pirjq
jr

˙´ε

´

ˆ

sjr s̄
pirjq
jc

s̄
pirjq
jr sjc

˙´ε

B̄
pirjq
rijsc

+

`
αs
2π

2N1 Cfj
ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙„

Epiqjr B̄
pijrq ´ Epiqjr1 B̄

pijr1
q



. (5.22)
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With the latter definition we are able to prove the second and the fourth Eq. (5.17), by exploiting

the colour algebra of the colour-connected matrix elements, and the cancellation of the ε poles in

the third Eq. (5.18). The explicit expression of the components of ∆ij in Eq. (5.16) completes the

list of definitions required to implement the subtracted real-virtual squared matrix element RV sub.

Given its finiteness in d “ 4, we can now rewrite Eq. (5.9) as

RV subpXq “
ÿ

i,j‰i

„

´

RVfin ` I
p1q
fin,ij

¯

Wij δn`1pXq ´
´

K
pRVq
fin,ij ` I

p12q
fin,ij

¯

δnpXq



, (5.23)

where the subscript emphasises that, at this stage, all the explicit poles have already been cancelled.

The finite component I
p1q
fin,ij is given in Eq. (5.5), while I

p12q
fin,ij can easily be derived from Eqs. (4.47)-

(4.49). Finally, we obtain the finite contribution K
pRVq
fin,ij by computing the expansion in powers of

ε of the sum of Eqs. (5.12) and (5.19)-(5.22). We refrain from giving here the explicit expression

for the quantities in Eq. (5.23), as we will derive a more compact result for RV subpXq, in terms of

symmetrised sector functions in the next section.

5.1 RV sub with symmetrised sector functions

In the previous section we presented the construction of the subtracted real-virtual matrix element.

We started by introducing the general properties of RV sub, and we discussed the main steps nec-

essary to provide an explicit form for all the terms that contribute to its definition, according to

Eq. (5.9). We then proved that RV sub is free of both explicit poles and phase-space singularities

in each Wij sector separately. As was mentioned in Section 2.1 and in Section 3.6, however, one

can improve the numerical performance of the scheme by appropriately symmetrising the sector

functions. In this section we present explicit expressions for RV sub in terms of symmetrised sector

functions.

In analogy to the procedure applied at NLO in Eq. (2.28), and later generalised to RR sub

in Section 3.6, we rewrite the real-virtual counterterm KpRVq in terms the symmetrised sector

counterterms K
pRVq
tiju , defined as

K
pRVq
tiju “ K

pRVq
ij `K

pRVq
ji , KpRVq “

ÿ

i,j‰i

K
pRVq
ij “

ÿ

i,jąi

K
pRVq
tiju . (5.24)

Starting from Eq.(5.23), it is then straightforward to obtain

RV subpXq “
ÿ

i,jąi

"

”

RVfin ` I
p1q
fin,ij

ı

Zij δn`1pXq `
”

K
pRVq
fin,tiju ` I

p12q
fin,tiju

ı

δnpXq

*

, (5.25)

with I
p1q
fin,ij given in Eq. (5.5). To present explicitly the other finite terms featuring in Eq. (5.25),

we organise them in terms of soft and hard-collinear components, writing

K
pRVq
fin,tiju ` I

p12q
fin,tiju “ K

pRV`12q
S,ij Zs,ij `K

pRV`12q
S,ji Zs,ji `K

pRV`12q
HC,ij , (5.26)

where the soft limit of the symmetrised sector functions, Zs,ij , is defined in Eq. (3.33). The finite soft

counterterm K
pRV`12q
S,ij is obtained by combining Eq. (4.47) with Eqs. (5.12) and (5.19), dropping

the explicit poles. The result is extremely compact, and, except for the process-dependent finite

part of the single-virtual squared matrix element, it displays only simple logarithmic dependence

– 39 –



on the kinematics. We find (r “ rik, r1 “ rij)

K
pRV`12q
S,ij “ 4α2

s

ÿ

c‰i
d‰i,c

Epiqcd

#

ÿ

e‰i
f‰i,e

ˆ

Lef ´
1

4
L2
ef

˙

B̄
picdq
cdef ` 2

ÿ

e‰i,d

ˆ

Led ´
1

4
L2
ed

˙

´

B̄
picdq
cded ´ B̄

pidcq
cded

¯

`
ÿ

e‰i,d

ln2 s̄
picdq
de

sde
B̄
picdq
cded ´

1

2
ln2 s̄

picdq
cd

scd
B̄
picdq
cdcd ´ 2π

ÿ

e‰i,c,d

ln
sidsie
µ2 sde

B̄
picdq
cde

`

„ˆ

6´
7

2
ζ2

˙

`

Σ
C
`2Cfd´2Cfc

˘

`
ÿ

k

φhc
k ´

ÿ

k‰i

γhc
k Lkr ´ γ

hc
i Lir1

`CA

ˆ

6´ ζ2 ´ ln
sic
scd

ln
sid
scd

´ 2 ln
sicsid
µ2scd

˙

B̄
picdq
cd

+

` 4α2
s

ÿ

k‰i

`

φhc
k ´ γ

hc
k Lkr

˘

„

ÿ

c‰i,k

Epiqkc
´

B̄
pickq
kc ´ B̄

pikcq
kc

¯

`
ÿ

c‰i,k,r

Epiqcr
´

B̄picrqcr ´ B̄pircqcr

¯



` 8π αs
ÿ

c‰i
d‰i,c

Epiqcd V̄
picdq
fin,cd , (5.27)

where V̄
picdq
fin,cd is the finite part of the colour-correlated, single-virtual squared matrix element, ex-

pressed in the mapped kinematics. We notice that, as happened for I
p12q
S,ij , the presence of the

reference particle r1 “ rij introduces a dependence on the particle j of the soft sector function Zs,ij

which multiplies K
pRV`12q
S,ij .

To conclude this section, we also report the finite hard-collinear counterterm K
pRV`12q
HC,ij , which

is the result of summing Eqs. (4.48) and (4.49) with Eqs. (5.12), (5.20), and (5.22). We find (with

r “ rij , r
1 “ rijk)

K
pRV`12q
HC,ij “ 4α2

s

P hc,µν
ijprq

sij

#

ÿ

c‰i,j

«

ln2
s̄
pijrq
jc

srijsr
B̄
pijrq
µν,rijsc ´

1

2

ÿ

d‰i,j,c

`

4Lcd´L
2
cd

˘

B̄
pijrq
µν,cd

ff

´
ÿ

c‰i,j,r

«

ln2 s̄
pijrq
cr

scr
B̄pijrqµν,cr `

ρpCq

ij

2
Lijcr B̄pjriqµν,rijsc `

ρpCq

ji

2
Ljicr B̄pirjqµν,rijsc

ff

´
1

2

ÿ

c‰i,j

f̃ qq̄ij

´

L̃ijcr B̄pjriqµν,rijsc ´ L̃jicr B̄pirjqµν,rijsc

¯

´

„ˆ

6´
7

2
ζ2

˙

´

Σ
C
´Cfrijs

ρpCq

rijs

¯

` Cfrijs

ρpCq

rijs

2

`

4Lij´L
2
ij

˘

´Cfrijs

ρpCq

ij

2

`

4Lir´L
2
ir

˘

´ Cfrijs

ρpCq

ji

2

`

4Ljr´L
2
jr

˘

` Σhc
φ



B̄pijrqµν

+

´ 4α2
s

„

2Cfj E
piq
jr Cfrijs

ln2 sjr
srijsr

B̄pijrq ` piØjq



` 4α2
s

«

P hc,µν
ijprq

sij

´

γhc
i Lir ` γ

hc
j Ljr

¯

B̄pijrqµν `
ÿ

k‰i,j

P hc,µν
ijpr1q

sij
γhc
k Lkr1 B̄pijr

1
q

µν

ff

´ 4α2
s

P̃ hc,µν
fin,ijprq

sij
B̄pijrqµν ´ 8π αs

P hc,µν
ijprq

sij
V̄
pijrq
fin,µν , (5.28)

where we introduced the shorthand notation

Lijcr “ 2 ln
sic
sir

«

2´ Lic ` ln
s̄
pjriq
ic

s̄
pjriq
ir

ff

, L̃ijcr “ 2Lic

«

2´ Lic ` ln
s̄
pjriq
ic

µ2

ff

. (5.29)
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Notice that also in Eq. (5.28) the kinematic dependence is expressed only in terms of simple loga-

rithms. Our next step is now to integrate the real-virtual counterterm, and add back the result to

complete Eq. (2.37).

6 Integration of the real-virtual counterterm

In Eqs. (5.14), (5.24) we have defined the counterterm KpRVq, that enabled us to build the sub-

tracted real-virtual squared matrix element RV sub, integrable in the whole pn` 1q-body phase

space, and free of poles in ε. The KpRVq counterterm needs to be integrated in d “ 4 ´ 2ε di-

mensions in the radiation phase space, and then the result must be added back, according to the

subtraction structure given in Eqs. (2.36)-(2.38). In order to compute the integrated counterterm,

IpRVq, as defined in Eq. (2.35), we proceed by summing over all sectors Wij , so that sector functions

drop out of the calculation, owing to the sum rules they satisfy (like for example those in (2.11)).

We then perform the integration over the radiative phase space, with the measure dΦ
pacdq
rad , naturally

induced by the mapping pacdq, according to
ż

dΦn`1ptkuq “
ςn`1

ςn

ż

dΦpacdqn

ż

dΦ
pacdq
rad , dΦpacdqn ” dΦnptk̄u

pacdqq , (6.1)

where dΦ
pacdq
rad is defined in Eq. (4.3). The integration of KpRVq is carried out following the methods

described in Ref. [92], and using the fact that the spin-correlated contributions proportional to

the kernels Qµνijprq and Q̃µνijprq vanish upon integration, as discussed in Appendix D. The formal

expression for the integrated version of KpRVq can be written as
ż

dΦn`1K
pRVq “

ż

dΦn`1

„

ÿ

i

´

SiRV `∆S,i

¯

`
ÿ

i, jąi

´

HCij RV `∆HC,ij

¯



, (6.2)

where the integrands are defined in Eqs. (5.12) and (5.19)-(5.22) and we use the shorthand notations

(see Eq. (2.29))

HCij RV ” Cijp1´ Si ´ SjqRV , ∆HC,ij ” ∆C,ij `∆C,ji ´∆SC,ij ´∆SC,ji . (6.3)

Before integrating, we can further simplify the expressions for ∆S,i and ∆C,ij , given in (5.19)-(5.20).

In fact, since s̄
picdq
ef “ sef for e, f ‰ i, c, d, and s̄

pijrq
cd “ scd for c, d ‰ i, j, r, one finds that

1

2

ÿ

e‰i,c
f‰i,c,e

«

ˆ

sef

s̄
picdq
ef

˙´ε

´ 1

ff

B̄
picdq
efcd `

ÿ

e‰i,d

«

ˆ

sed

s̄
picdq
ed

˙´ε

´ 1

ff

B̄
picdq
edcd “

“ 2
ÿ

e‰i,c,d

«

ˆ

sed

s̄
picdq
ed

˙´ε

´ 1

ff

B̄
picdq
edcd `

«

ˆ

scd

s̄
picdq
cd

˙´ε

´ 1

ff

B̄
picdq
cdcd , (6.4)

as well as

ÿ

c‰i,j
d‰i,j,c

«

ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1

ff

B̄
pijrq
µν,cd “ 2

ÿ

c‰i,j,r

«

ˆ

scr

s̄
pijrq
cr

˙´ε

´ 1

ff

B̄pijrqµν,cr . (6.5)

After integration, the soft contributions to Eq. (6.2) read
ż

dΦn`1 SiRV “ ´
ςn`1

ςn

ÿ

c‰i
d‰i,c

ż

dΦpicdqn

„

J icds V̄
picdq
cd ´

αs
2π

ˆ

J̃ icds ` J icds

β0

2ε

˙

B̄
picdq
cd (6.6)

` αs
ÿ

e‰i,c,d

J̃ icdes B̄
picdq
cde



,
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while (r “ rik)

ż

dΦn`1 ∆S,i “ ´
αs
2π

ςn`1

ςn

ÿ

c‰i
d‰i,c

#

ż

dΦpicdqn

„

ÿ

e‰i,c,d

J icdpeq
∆s

B̄
picdq
edcd ` J

icd
∆s

B̄
picdq
cdcd



(6.7)

`

„

2Cfc

ˆ

1

ε2
`

2

ε

˙

`
γhc
c

ε

„
ż

dΦpicdqn J icds B̄
picdq
cd ´

ż

dΦpidcqn J idcs B̄
pidcq
cd



+

´
αs
2π

ςn`1

ςn

ÿ

k‰i
c‰i,k,r

γhc
k

ε

„
ż

dΦpircqn J ircs B̄pircqcr ´

ż

dΦpicrqn J icrs B̄picrqcr



.

Explicit expressions for the constituent integrals J̃ icds , J̃ icdes , J icdpeq
∆s

and J icd
∆s

are given in Eq. (E.5),

while the NLO integral J icds is given in Eq. (E.1). We notice that the soft integrated real-virtual

counterterm in Eq. (6.6) receives contributions from the triple-colour-correlated squared matrix

element B̄cde. However, the pole content of such term vanishes upon performing the appropriate

colour sums (see Ref. [92] for further details). This cancellation represents a strong test for the

method: it is protected by the fact that no singular contributions proportional to colour tripoles

can arise from double-virtual nor from double-real corrections. On the other hand, integrating the

tripole contribution to the soft real-virtual kernel requires the non-trivial procedure described in

Ref. [92], which is necessary in order to verify the pole cancellation, and to compute the finite

remainder. To complete the discussion we also report the integrated hard-collinear component,

ż

dΦn`1 HCij RV “
ςn`1

ςn

ż

dΦpijrqn

„

J ijrhc V̄ pijrq `
αs
2π

ˆ

J̃ ijrhc ´ J
ijr

hc

β0

2ε

˙

B̄pijrq


, r “ rij , (6.8)

while the compensating hard-collinear term integrates to (r “ rij , r
1 “ rijk)

ż

dΦn`1 ∆HC,ij “
αs
2π

ςn`1

ςn

#

ż

dΦpijrqn

„

ÿ

c‰i,j,r

J ijr
∆hc

B̄pijrqcr `
ÿ

c‰i,j

J ijrc
∆hc

B̄
pijrq
rijsc



(6.9)

`
ÿ

c‰i,j,r

„
ż

dΦpjriqn J jri,c
∆hc

B̄
pjriq
rijsc `

ż

dΦpirjqn J irj,c
∆hc

B̄
pirjq
rijsc



`
ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙„
ż

dΦpijrqn J ijrhc B̄pijrq ´

ż

dΦpijr
1
q

n J ijr
1

hc B̄pijr
1
q



` f̃qq̄ij
ÿ

c‰i,j

„
ż

dΦpjriqn J̃ jri,c
∆hc

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ irj,c
∆hc

B̄pirjq
rijsc



+

.

Explicit expressions for the hard-collinear constituent integrals J̃ ijrhc , J ijr
∆hc

, J ijrc
∆hc

, J jri,c
∆hc

, and J̃ jri,c
∆hc

are given in Eq. (E.16), while the NLO hard-collinear integral J ijrhc is given in Eq. (E.7).

Having computed all relevant integrals, we now recombine them, following a procedure anal-

ogous to the one described at the end of Section 4.2. We rename the sets of mapped momenta

tk̄pabcqun to the same set of Born-level momenta tkun by means of the replacements

dΦpabcqn Ñ dΦn , B̄pabcq¨¨¨ Ñ B¨¨¨ , B̄pabcq¨¨¨ Ñ B̄¨¨¨ , s̄
pabcq
lm Ñ slm , (6.10)

where the ellipsis in the Born-level matrix element stands for a generic colour correlation. In

particular, in the integral of ∆HC,ij , all momenta k̄
pijrq
j , k̄

pjriq
i , k̄

pirjq
j , and k̄

pijr1
q

j are renamed as

kp, where p is the label of the parent particle splitting into i and j. As a consequence of this

renaming, the integrals involving B̄rijsc can be recombined, and do not contribute to the integrated
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counterterm. Indeed
ż

dΦpjriqn J̃ jri,c
∆hc

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ irj,c
∆hc

B̄pirjq
rijsc “ (6.11)

“

ż

dΦpjriqn J̃ c
∆hc

´

s̄
pjriq
ir , s̄

pjriq
ic

¯

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ c
∆hc

´

s̄
pirjq
jr , s̄

pirjq
jc

¯

B̄pirjq
rijsc

Ñ

ż

dΦn J̃
c

∆hc

´

spr, spc

¯

Bpc ´
ż

dΦn J̃
c

∆hc

´

spr, spc

¯

Bpc “ 0 .

The dependence on the pn` 1q-body phase-space particles is now limited to the flavour factors fqi ,

f q̄i and fgi , which can be translated into flavour factors for the n-body-phase-space particles, as was

done in Section 4.3 for the double-real contribution. In particular, when going from an pn` 1q-body

phase space to an n-body phase space the relations in Eq. (4.34) and Eq. (4.35) apply, with the

formal replacement n Ñ n ´ 1. After performing the flavour sums, no dependence on the original

pn` 1q-body phase space remains. Simplifying the colour correlations where possible, we finally

get

IpRVq “ ´
ÿ

c,d‰c

„

JspscdqVcd ` JsRVpscdqBcd ` J
p2q

sRVpscdqBcdcd `
ÿ

e‰c,d

JcdesRV Bcde



`
ÿ

j

#

J jhcpsjrqV ` J
j

hcRVpsjrqB ` J
j,A

hcRVpsjrqBjr `
ÿ

c‰j,r

„

J j,BhcRVpsjcqBjc ` J
j,C

hcRVpsjrqBcr



`
αs
2π

ÿ

k‰j

ˆ

γhc
k

ε
` φhc

k

˙

”

J jhcpsjrq ´ J
j

hcpsjr1q

ı

+

, (6.12)

where we introduced the following combinations of constituent integrals:

JsRVpsq “ ´
αs
2π

„

CA J̃spsq `
β0

2ε
Jspsq ` 2Cfc J

p3q
∆s
psq



, (6.13)

J
p2q

sRVpsq “
αs
2π

”

J p2q
∆s
psq ´ J p3q

∆s
psq

ı

, (6.14)

JcdesRV “ ´
α2
s

2π

„

1

2
ln
sce
sde

ln2 scd
µ2

`
1

6
ln3 sce

sde
` Li3

ˆ

´
sce
sde

˙

`Opεq


, (6.15)

J jhcRVpsq “
αs
2π

#

`

fqj `f
q̄
j

˘

„

J̃
p1gq
hc psq ´

β0

2ε
J
p1gq
hc psq ´ CF J

p1gq
∆hc,A

psq ´ CF J
qg

∆hc,A
psq ´ CF J

gq
∆hc,A

psq



` fgj

„

1

2

ˆ

J̃
p2gq
hc psq ´

β0

2ε
J
p2gq
hc psq ´ CA J

p2gq
∆hc,A

psq ´ 2CA J
gg

∆hc,A
psq

˙

`Nf

ˆ

J̃
p0gq
hc psq ´

β0

2ε
J
p0gq
hc psq ´ CA J

p0gq
∆hc,A

psq ´ 2CA J
qq

∆hc,A
psq

˙

+

, (6.16)

J j,AhcRVpsq “
αs
2π

#

`

fqj `f
q̄
j

˘

´

J p1gq
∆hc,B

psq ´ Jqg
∆hc,A

psq ´ Jgq
∆hc,A

psq
¯

` fgj

„

1

2

´

J p2gq
∆hc,B

psq ´ 2 Jgg
∆hc,A

psq
¯

`Nf

´

J p0gq
∆hc,B

psq ´ 2 Jqq
∆hc,A

psq
¯



+

, (6.17)
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J j,BhcRVpsq “
αs
2π

#

`

fqj ` f
q̄
j

˘

´

J p1gq
∆hc,B

psq ` Jqg
∆hc,B

psq ` Jgq
∆hc,B

psq
¯

` fgj

„

1

2

´

J p2gq
∆hc,B

psq ` 2 Jgg
∆hc,B

psq
¯

`Nf

´

J p0gq
∆hc,B

psq ` 2 Jqq
∆hc,B

psq
¯



+

, (6.18)

J j,ChcRVpsq “
αs
2π

#

`

fqj ` f
q̄
j

˘

J p1gq
∆hc

psq ` fgj

„

1

2
J p2gq

∆hc
psq `Nf J

p0gq
∆hc

psq



+

. (6.19)

All new constituent integrals appearing in the above results are listed in Appendix E: the soft

integrals are presented in Eq. (E.6), the hard-collinear integrals in Eq. (E.17), and the integrals

arising from the compensating ∆ij terms in Eqs. (E.18)-(E.20). We note once again that all integrals

involved are single-scale, and thus involve only simple logarithms. Interestingly, the only exception

is Eq. (6.15), a uniform-weight-three function featuring three scales and a single trilogarithm: this

integral arises as a finite remainder of the non-trivial integration of the tripole term.

The integrated counterterm IpRVq given in Eq. (6.12), which features Born-level kinematics,

contains explicit poles in ε, that must be combined with those of the integrated counterterm I p2q,

and must, together, cancel the singularities of the double-virtual squared matrix element. In the

next section we turn to the proof of this statement, which provides a highly non-trivial test of all

our calculations, and completes the subtraction programme for generic massless final states.

7 The subtracted double-virtual contribution V V sub

Finally, we turn our attention to the first line in Eq. (2.37), which we rewrite here as

V V subpXq “
”

V V ` I p2q ` IpRVq
ı

δnpXq . (7.1)

It is our task to show that the equation above is free of ε poles. To verify this, we first explicitly

derive the ε poles of V V , and then we provide the complete ε expansion of I p2q ` IpRVq, including

Opε0q terms, obtained by combining Eq. (4.41) and Eq. (6.12).

7.1 The pole part of the double-virtual matrix element V V

All infrared poles of gauge-theory scattering amplitudes can be expressed in a factorised form

through the formula [18, 19, 21, 24, 25]

A
ˆ

ki
µ
, αspµq, ε

˙

“ Z

ˆ

ki
µ
, αspµq, ε

˙

H
ˆ

ki
µ
, αspµq, ε

˙

, (7.2)

where H is finite as εÑ 0, and Z is a colour operator with a universal form, to be discussed below.

The infrared operator Z obeys a (matrix) renormalisation-group equation, which can be solved in

exponential form, with a trivial initial condition, in terms of an anomalous-dimension matrix Γ.

One may write

Z

ˆ

ki
µ
, αspµq, ε

˙

“ P exp

„
ż µ

0

dλ

λ
Γ

ˆ

ki
λ
, αspλq, ε

˙

, (7.3)

where the integral converges at λ “ 0 in dimensional regularisation thanks to the behaviour of the

β function in d “ 4´ 2ε, for ε ă 0 (d ą 4). Indeed, in dimensional regularisation one has

µ
dαs
dµ

” β pε, αsq “ ´ 2ε αs ´
α2
s

2π
β0 ` O

`

α3
s

˘

, (7.4)
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whose solution implies [16] that the d-dimensional running coupling αspµ, εq vanishes at µ “ 0 for

ε ă 0, so that the corresponding initial condition is Zpµ “ 0q “ 1, leading to Eq. (7.3). For the

purposes of NNLO subtraction (and thus at two loops for virtual amplitudes), Γ is given by the

dipole formula [21, 24]

Γ
´pi
λ
, αspλq, ε

¯

“
1

2
pγK pαspλ, εqq

ÿ

i,jąi

ln

ˆ

sij e
iπσij

λ2

˙

Ti ¨Tj `
ÿ

i

γi pαspλ, εqq . (7.5)

In Eq. (7.5), the phases σij are given by σij “ `1 if partons i and j are either both in the initial

state or both in the final state, while σij “ 0 otherwise. For our present final-state application, we

can thus henceforth replace all phase factors using eiπσij “ ´1, with the understanding that the

logarithm is taken above the cut.

The anomalous dimensions appearing in Eq. (7.5) are the cusp anomalous dimension pγK pαsq

and the collinear anomalous dimensions γi pαsq. More precisely, in the derivation of Eq. (7.5) it has

been assumed that the (light-like) cusp anomalous dimension γ
prq
K pαsq, in colour representation r,

obeys ‘Casimir scaling’, i.e. it can be written as

γ
prq
K pαsq “ Cr pγKpαsq , (7.6)

where Cr is the quadratic Casimir eigenvalue for colour representation r, while pγKpαsq is a universal

(representation-independent) function. This assumption is known to fail at four loops [96, 97]. The

collinear anomalous dimensions γipαsq are related to the anomalous dimensions of quark and gluon

fields, and can be derived from essentially colour-singlet calculations such as those of form factors.

One important consequence of the dipole formula is that the scale integration in Eq. (7.3) can

be performed without affecting the colour structure (which is scale-independent): one may therefore

omit the path-ordering in Eq. (7.3), simplifying considerably the necessary calculations. Expanding

the various ingredients perturbatively as

pγKpαsq “
8
ÿ

n“1

pγ
pnq
K

´αs
2π

¯n

, γipαsq “
8
ÿ

n“1

γ
pnq
i

´αs
2π

¯n

, Γpαsq “
8
ÿ

n“1

Γpnq
´αs

2π

¯n

, (7.7)

one gets at NLO

Γp1q “
1

4
pγ
p1q
K

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj `
ÿ

i

γ
p1q
i ´

1

4
pγ
p1q
K ln

ˆ

µ2

λ2

˙

ÿ

i

Cfi , (7.8)

and consequently

Zp1q
ˆ

pi
µ
, ε

˙

“ ´
1

ε2
pγ
p1q
K

8
Σ
C
´

1

ε

˜

pγ
p1q
K

8

ÿ

i,j‰i

Lij Ti ¨Tj `
1

2
Σγ

¸

` iπ
γ
p1q
K

8ε
Σ
C
, (7.9)

where Lij “ lnpsij{µ
2q. Eq. (7.9) is in agreement with [18, 24], with the one-loop anomalous-

dimension coefficients given by

pγ
p1q
K “ 4 , γ

p1q
i ” γi “

3

2
CF pf

q
i `f

q̄
i q `

1

2
β0 f

g
i , Σ

C
“

ÿ

i

Cfi , Σγ “
ÿ

i

γi , (7.10)

where we noted that in the text we have sometimes used the notation γi for the one-loop coefficient

denoted here by γ
p1q
i . Expanding the anomalous dimensions to two loops and performing the
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relevant integrals, the NNLO result for the Z factor is

Zp2q “
1

ε4

´

pγ
p1q
K

¯2

128
Σ2
C

`
1

ε3
pγ
p1q
K

64
Σ
C

«

3β0 ` 4Σγ ` pγ
p1q
K

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj

ff

`
1

ε2
1

8

«

β0 pγ
p1q
K

4

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj ` β0Σγ ´
pγ
p2q
K

4
Σ
C

` Σ2
γ `

pγ
p1q
K

2
Σγ

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj

`

´

pγ
p1q
K

¯2

16

ÿ

i,j‰i
k,l‰k

ln

ˆ

´sij ` iη

µ2

˙

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj Tk ¨Tl

ff

´
1

ε

1

4

«

pγ
p2q
K

4

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj ` Σp2qγ

ff

, (7.11)

which agrees with [24], with the anomalous dimension coefficients given in Eq. (A.13), and where we

defined Σ
p2q
γ “

ř

i γ
p2q
i . Having deduced the Z elements up to the needed order, we can now interfere

the double-virtual amplitude with the Born, and extract the poles. The perturbative expansion of

(7.2) yields

Ap0q “ Hp0q ,

Ap1q “ αs
2π

”

Hp1q ` Zp1qHp0q
ı

”
αs
2π

Ap1q ,

Ap2q “
ˆ

αs
2π

˙2
”

Hp2q ` Zp1qHp1q ` Zp2qHp0q
ı

”

ˆ

αs
2π

˙2

Ap2q , (7.12)

implying

|A|2 “
ˇ

ˇ

ˇ
Hp0q

ˇ

ˇ

ˇ

2

`
αs
2π

2 Re

„

´

Hp0q
¯:

Hp1q `
´

Hp0q
¯:

Zp1qHp0q


(7.13)

`

ˆ

αs
2π

˙2 „

2 Re

ˆ

´

Hp0q
¯:

Hp2q `
´

Hp0q
¯:

Zp1qHp1q `
´

Hp0q
¯:

Zp2qHp0q
˙

`

ˇ

ˇ

ˇ
Hp1q

ˇ

ˇ

ˇ

2

`

´

Hp0q
¯: ´

Zp1q
¯:

Zp1qHp0q ` 2 Re

ˆ

´

Hp1q
¯:

Zp1qHp0q
˙

`Opα3
sq .

We are interested in the divergent contributions to Eq. (7.13) at Opα2
sq: we extract them in turn.
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First, the direct contribution of the two-loop Z matrix is given by

2 Re

ˆ

´

Hp0q
¯:

Zp2qHp0q
˙

“ Hp0q
:`

Zp2q ` Zp2q
:˘

Hp0q

“
1

ε4
1

4
Σ2
C
B `

1

ε3
1

2
Σ
C

«

´3

4
β0 ` Σγ

¯

B `
ÿ

i,j‰i

Lij Bij

ff

`
1

ε2
1

4

«

´

β0Σγ ´
pγ
p2q
K

4
Σ
C
` Σ2

γ

¯

B ` pβ0 ` 2 Σγq
ÿ

i,j‰i

Lij Bij

`
1

2

ÿ

i,j‰i
k,l‰k

´

Lij Lkl ´ π
2
¯

Bijkl

ff

´
1

ε

1

8

«

4 Σp2qγ B ` pγ
p2q
K

ÿ

i,j‰i

Lij Bij

ff

, (7.14)

where again Lij “ lnpsij{µ
2q, and the colour-correlated Born amplitudes Bij and Bijkl are defined

in Eq. (A.5). The square of the one-loop Z matrix contributes

Hp0q
:
Zp1q

:
Zp1qHp0q “ 1

ε4
1

4
Σ2
C
B `

1

ε3
1

2
Σ
C

«

Σγ B `
ÿ

i,j‰i

Lij Bij

ff

`
1

ε2
1

4

«

Σ2
γ B ` 2 Σγ

ÿ

i,j‰i

Lij Bij `
1

2

ÿ

i,j‰i
k,l‰k

´

Lij Lkl ` π
2
¯

Bijkl

ff

. (7.15)

Note that in Eq. (7.14) and in Eq. (7.15), for simplicity, we already substituted pγ
p1q
K “ 4. Finally,

terms involving the product of the one-loop hard part and the one-loop Z matrix give

2 Re
´

Hp0q
:
Zp1qHp1q `Hp1q

:
Zp1qHp0q

¯

“ Hp0q
:
´

Zp1q ` Zp1q
:
¯

Hp1q

`Hp1q
:
´

Zp1q ` Zp1q
:
¯

Hp0q . (7.16)

In order to make use in practice of Eq. (7.16), it is useful to rewrite Hp1q in terms of the full virtual

amplitude Ap1q, using

Hp1q “ Ap1q ´ Zp1qHp0q . (7.17)

Eq. (7.16) then becomes

2 Re
´

Hp0q
:
Zp1qHp1q `Hp1q

:
Zp1qHp0q

¯

“ Hp0q
:
´

Zp1q ` Zp1q
:
¯

Ap1q `Ap1q
:
´

Zp1q ` Zp1q
:
¯

Hp0q

´Hp0q
:
´

Zp1q
2
` 2 Zp1q

:
Zp1q ` Zp1q

:2
¯

Hp0q . (7.18)

The term on the second line of Eq. (7.18) is easily computed using Eq. (7.9) and yields

´Hp0q
:
´

Zp1q
2
` 2 Zp1q

:
Zp1q ` Zp1q

:2
¯

Hp0q “ ´
1

ε4
Σ2
C
B ´

1

ε3
2 Σ

C

«

Σγ B `
ÿ

i,j‰i

Lij Bij

ff

´
1

ε2

«

Σ2
γB ` 2 Σγ

ÿ

i,j‰i

Lij Bij `
1

2

ÿ

i,j‰i
k,l‰k

Lij LklBijkl

ff

. (7.19)
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The first two terms on the r.h.s. of Eq. (7.18) can be expressed in terms of the one-loop virtual

correction to the cross section. One finds

αs
2π

”

Hp0q
:
´

Zp1q ` Zp1q
:
¯

Ap1q `Ap1q
:
´

Zp1q ` Zp1q
:
¯

Hp0q
ı

“ Hp0q
:

«

´
1

ε2
pγ
p1q
K

4
Σ
C
´

1

ε

˜

pγ
p1q
K

4

ÿ

i,j‰i

Lij Ti ¨Tj ` Σγ

¸ff

Ap1q ` h. c.

“ ´
1

ε2
Σ
C
V ´

1

ε
Σγ V ´

1

ε

ÿ

i,j‰i

Lij Vij , (7.20)

where the colour-correlated virtual correction Vij is defined in Eq. (A.7). Combining Eq. (7.14)

with Eq. (7.15) and Eq. (7.20), we get a complete and explicit expression for the pole part of the

double-virtual contribution to the cross section,

V V
ˇ

ˇ

ˇ

poles
“

ˆ

αs
2π

˙2
#

´
1

ε4
1

2
Σ2
C
B `

1

ε3
Σ
C

„ˆ

3

8
β0 ´ Σγ

˙

B ´
ÿ

i,j‰i

Lij Bij



`
1

ε2
1

4

„ˆ

β0Σγ ´
pγ
p2q
K

4
Σ
C
´ 2 Σ2

γ

˙

B

`

ˆ

β0 ´ 4 Σγ

˙

ÿ

i,j‰i

Lij Bij ´
ÿ

i,j‰i
k,l‰k

Lij LklBijkl



´
1

ε

1

8

„

4 Σp2qγ B ` pγ
p2q
K

ÿ

i,j‰i

Lij Bij



+

´
αs
2π

„

1

ε2
Σ
C
V `

1

ε
Σγ V `

1

ε

ÿ

i,j‰i

Lij Vij



. (7.21)

Eq. (7.21) can now be combined with the integrals of the double-radiative and the real-virtual

counterterms to form the subtracted double-virtual contribution to the cross section, V V sub, given

in Eq. (7.1).

7.2 Integrated counterterms for double-virtual poles

The expressions for the relevant integrated counterterms, I p2q and IpRVq, were given in Eq. (4.41)

and in Eq. (6.12), respectively. We only need to expand these expressions in powers of ε, including

terms up to Opε0q. We define

I p2q ` IpRVq ” I
p2`RVq
poles ` I

p2`RVq
fin `Opεq . (7.22)

As expected, the pole part I
p2`RVq
poles exactly cancels Eq. (7.21):

I
p2`RVq
poles “ ´V V

ˇ

ˇ

ˇ

poles
. (7.23)

We note in particular that it is not necessary to compute NLO virtual corrections up to Opε2q,
since the last term in Eq. (7.21), containing virtual corrections multiplied times explicit poles up to

ε´2, is exactly reproduced by I
p2`RVq
poles , so that Opεq contributions to NLO corrections never appear

in our subtraction formula11. This was anticipated in Ref. [98] and emerges clearly in our approach

11This understands the technical capability by a two-loop provider to turn off the Opεq NLO virtual contribution

in the computation of V V . Were this is not the case, the evaluation of I p2q as well would have to be performed with

such a contribution turned on.
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thanks to the factorisation properties of the one-loop amplitude, and the minimal scheme we adopt

for the factorisation of virtual corrections. The finite part of the integrated counterterms can be

written as (r “ rj , r
1 “ rjl)

I
p2`RVq
fin “

ˆ

αs
2π

˙2
#

„

Ip0q `
ÿ

j

I
p1q
j Ljr `

ÿ

j

I
p2q
j L2

jr `
1

2

ÿ

j,l‰j

γhc
j γhc

l Ljr1Llr1



B (7.24)

`
ÿ

j

”

I
p0q
jr ` I

p1q
jr Ljr

ı

Bjr ´ 2
`

1´ ζ2
˘

ÿ

j,c‰j,r

γhc
j

`

2´ Lcr
˘

Bcr

`
ÿ

c,d‰c

Lcd

„

I
p0q
cd ` I

p1q
cd Lcd `

β0

12
L2
cd ´

1

2

`

4´ Lcd
˘

ÿ

j

γhc
j Ljr



Bcd

`
ÿ

c,d‰c

„

´ 2` ζ2 ` 2 ζ3 ´
5

4
ζ4 ` 2

`

1´ ζ3
˘

Lcd



Bcdcd

`
`

1´ ζ2
˘

ÿ

c,d‰c
e‰d

Lcd LedBcded `
ÿ

c,d‰c
e,f‰e

Lcd Lef

„

1´
1

2
Lcd

ˆ

1´
1

8
Lef

˙

Bcdef

`π
ÿ

c,d‰c
e‰c,d

„

ln
sce
sde

L2
cd `

1

3
ln3 sce

sde
` 2 Li3

ˆ

´
sce
sde

˙

Bcde

+

`
αs
2π

„ˆ

Σφ ´
ÿ

j

γhc
j Ljr

˙

V fin `
ÿ

c,d‰c

Lcd

ˆ

2´
1

2
Lcd

˙

V fin
cd



,

where V fin and V fin
cd are the Opε0q terms in the virtual and colour-correlated virtual contributions,

which are obtained from the full virtual contributions V and Vcd by subtracting the IR poles given

explicitly by Eq. (7.9). We emphasise that the kinematic dependence of Eq. (7.24) is only through

simple logarithms of kinematic invariants, with the single exception of the trilogarithm multiplying

the tripole Born-level colour correlation Bcde on the one-but-last line of Eq. (7.9). All the integral

coefficients appearing in Eq. (7.9) are pure numbers, and they are given by

Ip0q “ N2
qC

2
F

„

101

8
´

141

8
ζ2`

245

16
ζ4



` NgNqCF

„

C
A

ˆ

13

3
´

125

6
ζ2`

245

8
ζ4

˙

` β0

ˆ

77

12
´

53

12
ζ2

˙

` N2
g

„

C2
A

ˆ

20

9
´

13

3
ζ2 `

245

16
ζ4

˙

` β2
0

ˆ

73

72
´

1

8
ζ2

˙

` C
A
β0

ˆ

´
1

9
´

11

3
ζ2

˙

` NqCF

„

C
F

ˆ

53

32
´

57

8
ζ2`

1

2
ζ3`

21

4
ζ4

˙

` C
A

ˆ

677

432
`

5

3
ζ2´

25

2
ζ3`

47

8
ζ4

˙

`β0

ˆ

5669

864
´

85

24
ζ2´

11

12
ζ3

˙

` Ng

„

C
F
C
A

ˆ

´
737

48
` 11ζ3

˙

` C
F
β0

ˆ

67

16
´ 3ζ3

˙

` β2
0

ˆ

73

72
´

3

8
ζ2

˙

`C2
A

ˆ

´
4289

216
`

15

2
ζ2 ´ 14ζ3 `

89

8
ζ4

˙

` C
A
β0

ˆ

647

54
´

53

8
ζ2 ´

11

12
ζ3

˙

,
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I
p1q
j “ pfqj ` f

q̄
j qCF

„

NqCF

ˆ

5

2
´

7

4
ζ2

˙

`NgCA

ˆ

1

3
´

7

4
ζ2

˙

`
2

3
Ngβ0

`C
F

ˆ

´
3

8
´ 4ζ2 ` 2ζ3

˙

` C
A

ˆ

25

12
´ 3ζ2 ` 3ζ3

˙

` β0

ˆ

1

24
` ζ2

˙

` fgj

„

NqCFCA
`

10´7ζ2
˘

´NqCF β0

ˆ

5

2
´

7

4
ζ2

˙

`NgC
2
A

ˆ

4

3
´7ζ2

˙

`NgCAβ0

ˆ

7

3
`

7

4
ζ2

˙

´
2

3
pNg ` 1qβ2

0 `
11

4
C
F
C
A
´

3

4
C
F
β0 ` C

2
A

ˆ

28

3
´

23

2
ζ2`5ζ3

˙

´ C
A
β0

ˆ

2

3
´

5

2
ζ2

˙

,

I
p2q
j “

1

8

`

15CA ´ 7β0

˘

Cfj ´
1

4

`

5CA ´ 2β0

˘

γj `
1

8

`

16 ζ2 ´ 15
˘

C2
fj ,

I
p0q
jr “

`

´ 1` 3ζ2 ´ 2ζ3
˘

CA ´
1

2

`

13` 10ζ2 ` 2ζ3
˘

Cfj `
`

5` 2ζ3
˘

γj ,

I
p1q
jr “

`

1´ ζ2
˘

CA `
1

2

`

4` 7ζ2
˘

Cfj ´
`

2` ζ2
˘

γj ,

I
p0q
cd “

ˆ

20

9
´ 2ζ2 ´

7

2
ζ3

˙

CA `
31

9
β0 ` 2 Σφ ` 8

`

1´ ζ2
˘

Cfd ,

I
p1q
cd “ ´

ˆ

1

3
´

1

2
ζ2

˙

CA ´
11

12
β0 ´

1

2
Σφ . (7.25)

We stress that, as expected, the pole part I
p2`RVq
poles does not depend on reference momenta r, r1;

conversely, the dependence on r, r1 arising in the finite part I
p2`RVq
fin is necessary to cancel the one

explicit in the counterterms K p2q and KpRVq.

8 Status and perspective

We have presented a complete analytic solution to the NNLO subtraction problem for general

massless coloured final states, within the framework of Local Analytic Sector Subtraction, which

can be implemented in conjunction with any numerical code providing the appropriate one- and

two-loop matrix elements, and an efficient phase-space integrator.

The main ingredients for our construction are the following. Beginning with the double-radiative

contribution, we introduce a smooth partition of the radiative phase space into sectors, each con-

taining a minimal number of soft and collinear singularities, following the basic logic of Ref. [50].

Next, we list all uniform soft and collinear limits, with up to two particles becoming unresolved,

that contribute to each sector. Denoting these limits by `sect, i, we then follow the strategy of

Ref. [64], and construct combinations of the form
ś

ip1 ´ `sect, iq, which are guaranteed to be inte-

grable in the relevant phase spaces, and for which double-counted nested limits have been properly

subtracted. Crucially, in all cases we define commuting limits, which significantly simplify subse-

quent manipulations. Exploiting the soft- and collinear-factorisation properties of matrix elements,

all relevant limits can be expressed as products of known splitting kernels times lower-multiplicity

matrix elements. In order to properly exploit this factorised structure for matrix elements, we then

introduce a flexible set of phase-space mappings, which lead to the complete factorisation of the

phase-space integration, separating the on-shell Born-level configuration from radiative factors. Us-

ing these mappings, we construct improved limits ¯̀
sect, i, which are highly optimised, with different

choices of mappings for different limits, different sectors and different terms in each sector; further-

more, the action of the improved limits on sector functions is tuned, when needed. Importantly,

these optimisations must pass stringent consistency conditions, ensuring that nested improved limits

with different mappings remain aligned with the underlying physical soft and collinear limits. An

analogous procedure is followed for the real-virtual contribution, where the radiative phase-space

structure is much simpler, but splitting kernels (and thus improved limits) are more intricate.
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This lengthy optimisation work pays off when the local counterterms, thus obtained, are inte-

grated over the radiative degrees of freedom. All counterterms can be analytically integrated, and

all singular contributions to the integrated counterterms are given by single-scale integrals, with

trivial logarithmic dependence on Born-level kinematic invariants. When integrated counterterms

are properly combined with the singular part of the double-virtual contribution to the cross section,

all poles are analytically shown to cancel. All finite contributions can also be obtained analytically,

and they are of similar simplicity, with just a single contribution (proportional to a colour tripole)

displaying a weight-three polylogarithm depending on two physical scales. In a sense, the exist-

ing tension between the remarkable simplicity of double-virtual singularities and the increasing

intricacy of real-virtual and double-real radiative contributions is resolved by a judicious choice of

sectors and mappings. Indeed, the simplicity of the integrals associated with both double-real and

real-virtual counterterms kindles hopes that a generalisation to N3LO subtraction with the same

degree of generality might be achievable. On the other hand, our approach is undeniably costly

from the combinatorial viewpoint, and requires a fast-growing number of consistency checks, which

would be challenging to tackle at higher orders.

The future developments of our work are clearly outlined. First of all, the formalism must be

numerically implemented and tested for efficiency. This work is under way, and was completed at

NLO in Ref. [89]. In that paper, the NLO formalism was also extended to initial-state coloured

particles, without significantly raising the technical difficulties. Obviously, the inclusion of non-

trivial initial states is a high-priority goal at NNLO as well, in view of LHC applications. Also in

this case, this generalisation is not expected to involve new major technical obstacles: as observed

at NLO, new classes of mappings are needed, and collinear factorisation must be consistently

implemented, but all of these developments are expected to be comparatively straightforward.

Importantly, new phase-space integrals are expected to be of the same level of complexity as those

presented here, so that a completely analytic result is expected to be within reach. Work is in

progress also on this front. In the longer run, an important further ingredient to achieve complete

generality for NNLO subtraction is the inclusion of massive particles in the final state. This task

is going to be simplified by the fact that the number and type of singular limits associated with

massive coloured particles are limited, since collinear limits for real radiation are non-singular in this

case. Since our approach is combinatorially intensive, this is expected to be a significant advantage.

On the other hand, massive particles will require adjustments in phase-space mappings, and will

likely involve new classes of integrals, with a more intricate scale dependence. We are, nonetheless,

confident that a complete analytic expression can be derived also in that case.

Finally, we believe that, notwithstanding the simplicity of our analytic results, there is further

room for optimisation, which would be very important in view of a future generalisation of our

approach to N3LO. We note for example that the minimal interference between soft and collinear

singularities which is suggested by factorisation at amplitude level still emerges in our formalism

as an output rather than being introduced from the outset. We hope that a more detailed under-

standing of the factorisation structure for real radiation, in particular for strongly-ordered limits,

along the lines of Refs. [84, 91] will provide further insights in this direction. Simplifications in the

structure of nested infrared limits would likely improve significantly the combinatorial challenges

of our approach, and open the way to higher orders.

In summary, we believe that our results bring the goal of establishing a completely general,

local, analytic and efficient NNLO-subtraction formalism one step closer.
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A General notation

We denote by s the squared centre-of-mass energy and by qµ “ p
?
s,~0 q the centre-of-mass four-

momentum. Given two final-state momenta kµi and kµj , we define

sqi “ 2 q ¨ ki , sij “ 2 ki ¨ kj , Lij “ ln
sij
µ2

,

ei “
sqi
s
, wij “

s sij
sqi sqj

. (A.1)

In addition, given four final-state momenta kµa , kµb , kµc and kµd , we define

sabc “ sab ` sbc ` sac , srabsc “ sac ` sbc , kµ
rabs “ kµa ` k

µ
b ,

sabcd “ sab ` sac ` sad ` sbc ` sbd ` scd , srabcsd “ sad ` sbd ` scd . (A.2)

For the sake of compactness, we define the following flavour structures:

fqi “

"

1 if i is a quark

0 if i is not a quark
f q̄i “

"

1 if i is an antiquark

0 if i is not an antiquark
fgi “

"

1 if i is a gluon

0 if i is not a gluon

fqq̄ij “ fqi f
q̄
j ` f

q̄
i f

q
j , fggij “ fgi f

g
j , fgggijk “ fgi f

g
j f

g
k , f̃ qq̄ij “ fqi f

q̄
j ´ f

q̄
i f

q
j , (A.3)

which are special cases of the general rule

ff1...fn
i1...in

“
ÿ

g1,...,gn“
P pf1,...,fnq

fg1

i1
¨ ¨ ¨ fgnin , f̃f1...fn

i1...in
“

ÿ

g1,...,gn“
P pf1,...,fnq

signpP q fg1

i1
¨ ¨ ¨ fgnin , (A.4)

where P pf1, . . . , fnq is a generic permutation of indices f1, . . . , fn.

We introduce a compact notation for Born-level colour correlations:

Bcd ” Ap0q:n Tc ¨TdAp0qn , Bcdef ” Ap0q:n tTc ¨Td,Te ¨TfuAp0qn , (A.5)

Bcd ” fgc Ap0q:n Tc ¨TdAp0qn , pTAqBC “ dABC . (A.6)

Analogously, the colour-correlated real and virtual matrix elements are defined as

Vcd ” 2 Re
”

Ap1q:n Tc ¨TdAp0qn
ı

, Rcd ” Ap0q:n`1 Tc ¨Td Ap0qn`1 , (A.7)

which are of relative order αs with respect to the corresponding Born-level terms.

We define the following combinations of Casimir operators,

ρpCq

ab “
Cfrabs

` Cfa ´ Cfb
Cfrabs

, ρpCq

rabs “
Cfrabs

´ Cfa ´ Cfb
Cfrabs

, Σ
C
“

ÿ

a

Cfa , (A.8)
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and

γa “
3

2
CF pf

q
a`f

q̄
aq `

1

2
β0 f

g
a , Σγ “

ÿ

a

γa , γhc
a “ γa ´ 2Cfa , (A.9)

φa “
13

3
CF pf

q
a`f

q̄
aq `

4

3
β0 f

g
a `

ˆ

2

3
´

7

2
ζ2

˙

Cfa , Σφ “
ÿ

a

φa , (A.10)

φhc
a “

13

3
CF pf

q
a`f

q̄
aq `

4

3
β0 f

g
a ´

16

3
Cfa , Σhc

φ “
ÿ

a

φhc
a , (A.11)

where the sums run over all final-state QCD partons and

β0 “
11CA ´ 4TRNf

3
. (A.12)

The two-loop anomalous dimensions are given by

pγp2q
K

“ 4

"ˆ

67

18
´ ζ2

˙

CA ´
10

9
TRNf

*

“

ˆ

8

3
´ 4ζ2

˙

CA `
10

3
β0 ,

γ
p2q
i “ pfqi `f

q̄
i qCF

„

3

ˆ

1

8
´ ζ2 ` 2ζ3

˙

CF `

ˆ

41

36
´

13

2
ζ3

˙

CA `

ˆ

65

72
`

3

4
ζ2

˙

β0



` fgi

"

CA

„

´
11

4
CF `

ˆ

´
1

9
´

1

2
ζ3

˙

CA



` β0

„

3

4
CF `

ˆ

16

9
´

1

4
ζ2

˙

CA

*

. (A.13)

As for the labelling of particles we introduce the notation

ri1...in “ Rnpi1, . . . , inq ‰ i1, . . . , in , (A.14)

to indicate a generic particle label different from i1, . . . , in, defined following a specific rule Rn.

Such a rule is arbitrary to some extent, and could for instance assign ri1...in as the smallest label

different from all i1, . . . , in, or the largest, and so on. A crucial feature, however, is that Rn must

be symmetric under permutations of all indices i1, . . . , in, and must be the same for all ri1...in with

the same n. As a consequence, the notation ri1...in always refers to the rule Rnpi1, . . . , inq, which

is a symmetric function of its indices i1, . . . , in, and just depends on n.

B Infrared kernels

B.1 Soft kernels at tree level

We introduce the kernels associated with the real emission of one or two soft partons, as given in

Ref. [92], relevant for both NLO (with the emission of just one parton) and NNLO corrections (with

the emission of either one or two partons). We express all kernels in terms of Lorentz-invariant

quantities, and using the flavour structures defined in Appendix A. The resulting expressions are

Ipiqcd “ fgi
scd
sic sid

, Ipijqcd “ fqq̄ij 2TR Ipqq̄qpijqcd ´ fggij 2CA Ipggqpijqcd , (B.1)

where

Ipqq̄qpijqcd “
sicsjd ` sidsjc ´ sijscd

s2
ij srijsc srijsd

, (B.2)

Ipggqpijqcd “
p1´ εqpsicsjd ` sidsjcq ´ 2sijscd

s2
ij srijsc srijsd

` scd
sicsjd ` sidsjc ´ sijscd

sijsicsjdsidsjc

„

1´
1

2

sicsjd ` sidsjc
srijsc srijsd



.

– 53 –



We also define the combinations of eikonal kernels

Epiqcd ” Ipiqcd “ fgi
scd
sic sid

,

Epijqcd ” Ipijqcd ´
1

2
Ipijqcc ´

1

2
Ipijqdd “ fqq̄ij 2TR Epqq̄qpijqcd ´ fggij 2CA Epggqpijqcd , (B.3)

with

Epqq̄qpijqcd “
1

s2
ij

«

sicsjd ` sidsjc
srijscsrijsd

´
sicsjc
s2
rijsc

´
sidsjd
s2
rijsd

ff

´
scd

sijsrijscsrijsd
,

Epggqpijqcd “
1´ ε

s2
ij

«

sicsjd ` sidsjc
srijscsrijsd

´
sicsjc
s2
rijsc

´
sidsjd
s2
rijsd

ff

´ 2
scd

sijsrijscsrijsd

` scd
sicsjd ` sidsjc ´ sijscd

sijsicsjdsidsjc

„

1´
1

2

sicsjd ` sidsjc
srijscsrijsd



. (B.4)

B.2 Soft kernels at one loop

We introduce kernels associated to the emission of a single-soft gluon at one-loop level, relevant for

the soft part of the real-virtual counterterm at NNLO,

Ẽpiqcd ” fgi CA
Γ3p1` εqΓ4p1´ εq

ε2 Γp1` 2εqΓ2p1´ 2εq

scd
sicsid

ˆ

eγE µ2scd
sicsid

˙ε

“ CA Epiqcd

„

1

ε2
´

1

ε
ln
sicsid
µ2 scd

´
5

2
ζ2 `

1

2
ln2 sicsid

µ2 scd
`Opεq



,

Ẽpiqcde ” fgi
Γp1` εqΓ2p1´ εq

εΓp1´ 2εq

scd
sicsid

ˆ

eγE µ2 sde
sidsie

˙ε

“ Epiqcd

„

1

ε
´ ln

sidsie
µ2 sde

`Opεq


, (B.5)

where ε is the dimensional regulator (d “ 4´ 2ε).

B.3 Collinear and hard-collinear kernels at tree level

In order to define the kernel associated to the tree-level emission of two collinear final-state particles

i and j (labelled single-collinear), we choose a reference momentum kr, with r ‰ i, j, and introduce

the following kinematic structures:

xi “
sir
srijsr

, xj “
sjr
srijsr

, k̃i “ xi kj ´ xj ki ´ p1´2xjq
sij
srijsr

kr . (B.6)

Then, the collinear (Altarelli-Parisi) kernels Pµνijprq are defined as

Pµνijprq “ ´Pijprq g
µν `Qµνijprq , Qµνijprq “ Qijprq d

µν
i , (B.7)

where the azimuthal tensor reads

dµνi “ ´gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i

, (B.8)

and

Pijprq “ P
p0gq
ijprq f

qq̄
ij ` P

p1gq
ijprq f

g
i pf

q
j `f

q̄
j q ` P

p1gq
jiprq pf

q
i `f

q̄
i qf

g
j ` P

p2gq
ijprq f

gg
ij , (B.9)

Qijprq “ TR
2xixj
1´ ε

fqq̄ij ´ 2CA xixj f
gg
ij ,

P
p0gq
ijprq “ TR

ˆ

1´
2xixj
1´ ε

˙

, P
p1gq
ijprq “ CF

„

2
xj
xi
` p1´ εqxi



, P
p2gq
ijprq “ 2CA

ˆ

xi
xj
`
xj
xi
` xixj

˙

.
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The hard-collinear kernels P hc,µν
ijprq are defined as

P hc,µν
ijprq ” Pµνijprq ` sij

”

2Cfj E
piq
jr ` 2Cfi E

pjq
ir

ı

gµν ” ´P hc
ijprq g

µν `Qµνijprq , (B.10)

where

P hc
ijprq “ P

hc,p0gq
ijprq fqq̄ij ` P

hc,p1gq
ijprq fgi pf

q
j `f

q̄
j q ` P

hc,p1gq
jiprq pfqi `f

q̄
i qf

g
j ` P

hc,p2gq
ijprq fggij , (B.11)

P
hc,p0gq
ijprq “ P

p0gq
ijprq “ TR

ˆ

1´
2xixj
1´ ε

˙

, P
hc,p1gq
ijprq “ CF p1´ εqxi , P

hc,p2gq
ijprq “ 2CA xixj .

The kernel associated to the emission of three collinear final-state partons i, j and k (labelled

double-collinear) relies on the choice of a reference momentum kr, with r ‰ i, j, k, and on the

following kinematic structures,

za “
sar
srijksr

, zab “ za ` zb , a, b “ i, j, k (B.12)

k̃µa “ kµa ´ zapk
µ
i ` k

µ
j ` k

µ
k q ´ psrijksa ´ 2 zas

2
ijkq

kµr
srijksr

, a, b, c “ i, j, k ,

k̃2
a “ zapzas

2
ijk ´ srijksaq “ zapsbc ´ zbcsijkq .

The double-collinear kernels Pµνijkprq are defined as

Pµνijkprq ” ´Pijkprq g
µν `Qµνijkprq , Qµνijkprq “

ÿ

a“i,j,k

Qaijkprq d
µν
a . (B.13)

The Pijkprq kernels, organised by flavour structures, are given by

Pijkprq “ P
p0gq
ijkprq f

qq̄
ij pf

q1

k `f
q̄1

k q ` P
p0gq
jkiprq f

qq̄
jk pf

q1

i `f
q̄1

i q ` P
p0gq
kijprq f

qq̄
ik pf

q1

j `f
q̄1

j q

` P
p0g,idq
ijkprq pf

q
i f

q
j f

q̄
k`f

q̄
i f

q̄
j f

q
k q ` P

p0g,idq
jkiprq pf

q
j f

q
kf

q̄
i `f

q̄
j f

q̄
kf

q
i q ` P

p0g,idq
kijprq pf

q
i f

q
kf

q̄
j `f

q̄
i f

q̄
kf

q
j q

` P
p1gq
ijkprq f

qq̄
ij f

g
k ` P

p1gq
jkiprq f

qq̄
jk f

g
i ` P

p1gq
kijprq f

qq̄
ik f

g
j

` P
p2gq
ijkprq f

gg
ij pf

q
k`f

q̄
k q ` P

p2gq
jkiprq f

gg
jk pf

q
i `f

q̄
i q ` P

p2gq
kijprq f

gg
ik pf

q
j `f

q̄
j q

` P
p3gq
ijkprq f

ggg
ijk , (B.14)

where q1 is a quark of flavour equal to or different from that of q; similarly, the azimuthal tensor

kernel can be written as

Qaijkprq “ Q
p1gq,a
ijkprq f

qq̄
ij f

g
k `Q

p1gq,a
jkiprq f

qq̄
jk f

g
i `Q

p1gq,a
kijprq f

qq̄
ik f

g
j `Q

p3gq,a
ijkprq f

ggg
ijk . (B.15)

The expressions for P
p0gq
ijkprq, P

p0g,idq
ijkprq , P

p1gq
ijkprq, P

p2gq
ijkprq, and P

p3gq
ijkprq read:

P
p0gq
ijkprq “ CFTR

#

´
s2
ijk

2s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi´zj
zij

˙2

`
sijk
sij

„

2
zk´zizj
zij

` p1´ εqzij



´
1

2
` ε

+

, (B.16)

P
p0g,idq
ijkprq “ CF p2CF´CAq

#

´
s2
ijk zk

2sjksik

„

1` z2
k

zjkzik
´ ε

ˆ

zik
zjk

`
zjk
zik

` 1` ε

˙

` p1´ εq

„

sij
sjk

`
sij
sik

´ ε



`
sijk
2sjk

„

1` z2
k ´ εz

2
jk

zik
´ 2p1´ εq

zj
zjk

´ εp1` zkq ´ ε
2 zjk



`
sijk
2sik

„

1` z2
k ´ εz

2
ik

zjk
´ 2p1´ εq

zi
zik

´ εp1` zkq ´ ε
2 zik



+

, (B.17)
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P
p1gq
ijkprq “ CFTR

#

2s2
ijk

siksjk

„

1` z2
k ´

zk ` 2zizj
1´ ε



´ p1´ εq

„

sij
sjk

`
sij
sik



´ 2

´
sijk
sjk

„

1` 2zk ` ε´
2zjk
1´ ε



´
sijk
sik

„

1` 2zk ` ε´
2zik
1´ ε



+

` CATR

#

´
s2
ijk

2s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

´
s2
ijk

siksjk

„

1` z2
k ´

zk ` 2zizj
1´ ε



`
s2
ijk

2sijsik

zi
zkzij

„

z3
ij ´ z

3
k ´

2zipzjk ´ 2zjzkq

1´ ε



`
s2
ijk

2sijsjk

zj
zkzij

„

z3
ij ´ z

3
k ´

2zjpzik ´ 2zizkq

1´ ε



`
sijk
2sik

zik
zkzij

„

1` zkzij ´
2zjzik
1´ ε



`
sijk
2sjk

zjk
zkzij

„

1` zkzij ´
2zizjk
1´ ε



`
sijk
sij

1

zkzij

„

1` z3
k `

zkpzi ´ zjq
2 ´ 2zizjp1` zkq

1´ ε



´
1

2
` ε

+

, (B.18)

P
p2gq
ijkprq “ C2

F

#

s2
ijk zk

2siksjk

„

1` z2
k ´ εz

2
ij

zizj
` εp1´ εq



´ p1´ εq2
sjk
sik

` εp1´ εq

`
sijk
sik

„

zkzjk ` z
3
ik ´ εzikz

2
ij

zizj
` ε zik ` ε

2 p1` zkq



+

` CFCA

#

p1´ εq
s2
ijk

4s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

´
s2
ijk zk

4siksjk

„

z2
ijp1´ εq ` 2zk

zizj
` εp1´ εq



`
s2
ijk

2sijsik

„

z2
ijp1´ εq ` 2zk

zj
`
z2
j p1´ εq ` 2zik

zij



`
1

4
p1´ εqp1´ 2εq

`
sijk
2sik

„

p1´ εq
z3
ik ` z

2
k ´ zj

zjzij
´ 2ε

zikpzj ´ zkq

zjzij

´
zkzjk ` z

3
ik

zizj
` ε zik

z2
ij

zizj
´ εp1` zkq ´ ε

2zik



`
sijk
2sij

„

p1´ εq
zip2zjk ` z

2
i q ´ zjp6zik ` z

2
j q

zjzij
` 2ε

zkpzi ´ 2zjq ´ zj
zjzij



+

` piØ jq , (B.19)

P
p3gq
ijkprq “ C2

A

#

p1´ εq
s2
ijk

4s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

`
3

4
p1´ εq

`
s2
ijk

2sijsik

„

2zizjzikp1´2zkq

zkzij
`

1`2zi`2z2
i

zikzij
`

1´2zizjk
zjzk

` 2zjzk ` zip1`2ziq ´ 4



`
sijk
sij

„

4
zizj ´ 1

zij
`
zizj ´ 2

zk
`
p1´ zkzijq

2

zizkzjk
`

5

2
zk `

3

2



+

` ( 5 permutations ) . (B.20)
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The azimuthal kernels Q
p1gq,a
ijkprq and Q

p3gq,a
ijkprq are defined according to the following expressions:

Q
p1gq,i
ijkprq “ TR

k̃2
i

1´ε

sijk
siksjk

"

CA

„

1´
2zj
zk

sij`2sjk
s2
ij

sik`
zisjk`zjsik

zijsij
`

ˆ

zizj
zkzij

´
1´ε

2

˙

sik´sjk
sij



´2CF

*

,

Q
p1gq,j
ijkprq “ TR

k̃2
j

1´ε

sijk
siksjk

"

CA

„

1´
2zi
zk

sij`2sik
s2
ij

sjk`
zisjk`zjsik

zijsij
`

ˆ

zizj
zkzij

´
1´ε

2

˙

sjk´sik
sij



´2CF

*

,

Q
p1gq,k
ijkprq “ TR

k̃2
k

1´ε

sijk
siksjk

"

CA

„

zizj
zkzij

4siksjk`sijsrijsk

s2
ij

`
zi´zj
2zij

sik´sjk
sij

´ε
sijk`sij

2sij



` 2CF ε

*

,

ÿ

a“i,j,k

Q
p3gq,a
ijkprqd

µν
a “ C2

A

sijk
sij

#

„

2zj
zk

1

sij
`

ˆ

zjzik
zkzij

´
3

2

˙

1

sik



k̃2
i d

µν
i (B.21)

`

„

2zi
zk

1

sij
´

ˆ

zjzik
zkzij

´
3

2
´
zi
zk
`

zi
zij

˙

1

sik



k̃2
j d

µν
j

´

„

2zizj
zijzk

1

sij
`

ˆ

zjzik
zkzij

´
3

2
´
zi
zj
`
zi
zik

˙

1

sik



k̃2
k d

µν
k

+

` (5 permutations) .

The hard-double-collinear kernels P hc,µν
ijkprq are defined as

P hc,µν
ijkprq ” ´P hc

ijkprq g
µν `Qµνijkprq , (B.22)

where Qµνijkprq is given in Eq. (B.13) and

P hc
ijkprq ” Pijkprq ´ s

2
ijk

”

Cfk

´

4CfkE
piq
kr E

pjq
kr ´ Epijqkr

¯

` piØ kq ` pj Ø kq
ı

. (B.23)

B.4 Collinear and hard-collinear kernels at one loop

The collinear contribution to the real-virtual counterterm at NNLO depends on the one-loop, single-

collinear kernel which reads (r ‰ i, j):

P̃µνijprq ”
Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs

ε2

”

ρpCq

rijs ` ρ
pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

Pµνijprq ` P̂
µν
ijprq

*

, (B.24)

where the function F pxq is defined by

F pxq ” 1´ 2F1

ˆ

1,´ε; 1´ ε;
x´ 1

x

˙

“ ε lnx`
`8
ÿ

n“2

εn Lin

ˆ

x´ 1

x

˙

, (B.25)

and P̂µνijprq reads

P̂µνijprq “

„

´ gµν ` 4xixj
k̃µi k̃

ν
i

k̃2
i



TR
1´2ε

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



fqq̄ij ,

´ gµν CF
CA´CF
1´ 2ε

”

`

1´ εxi
˘

fgi pf
q
j `f

q̄
j q `

`

1´ εxj
˘

pfqi `f
q̄
i qf

g
j

ı

`
k̃µi k̃

ν
i

k̃2
i

4CA
2TRNf ´ CAp1´ εq

p1´ 2εqp2´2εqp3´2εq

`

1´ 2εxixj
˘

fggij . (B.26)
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The expansion of P̃µνijprq in the dimensional regulator ε gives

P̃µνijprq “ Pµνijprq Cfrijs

"

ρpCq

rijs

„

1

ε2
´

1

ε
ln
sij
µ2
´

1

2

ˆ

7 ζ2 ´ ln2 sij
µ2

˙

`

„

1

ε
´ ln

sij
µ2



`

ρpCq

ij lnxi ` ρ
pCq

ji lnxj
˘

` ρpCq

ij Li2

ˆ

´xj
xi

˙

` ρpCq

ji Li2

ˆ

´xi
xj

˙*

`

„

´ gµν ` 4xixj
k̃µi k̃

ν
i

k̃2
i



fqq̄ij TR

„ˆ

1

ε
´ ln

sij
µ2

˙

`

β0 ´ 3CF
˘

`
7

3
CA `

5

3
β0 ´ 8CF



´ gµν pf
gq
ij `f

gq̄
ij q CF pCA´CF q `

k̃µi k̃
ν
i

k̃2
i

fggij CA p3CA ´ β0q `Opεq . (B.27)

The one-loop collinear kernel P̂µνijprq can be rewritten according to the same structure as in Eq. (B.7),

P̂µνijprq “ ´ P̂ijprq g
µν ` Q̂µνijprq , Q̂µνijprq “ Q̂ijprq d

µν
i , (B.28)

where we have introduced

P̂ijprq “
TR

1´2ε

„

1´
2xixj
1´ε

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



fqq̄ij

`CF
CA´CF
1´ 2ε

”

`

1´ εxi
˘

fgi pf
q
j `f

q̄
j q `

`

1´ εxj
˘

pfqi `f
q̄
i qf

g
j

ı

` 4CA
CAp1´ εq ´ 2TRNf
p1´ 2εqp2´2εq2p3´2εq

`

1´ 2εxixj
˘

fggij ,

Q̂ijprq “ 2xixj
TR

p1´2εqp1´εq

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



fqq̄ij

` 4CA
2TRNf ´ CAp1´ εq

p1´ 2εqp2´2εq2p3´2εq

`

1´ 2εxixj
˘

fggij . (B.29)

Analogously, the ε expansion P̃µνijprq can be recast in the same form, as

P̃µνijprq “ ´ P̃ijprq g
µν ` Q̃µνijprq , Q̃µνijprq “ Q̃ijprq d

µν
i , (B.30)

where P̃ijprq and Q̃ijprq are given by (F “ P,Q)

F̃ijprq “
Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs

ε2

”

ρpCq

rijs ` ρ
pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

Fijprq ` F̂ijprq
*

.(B.31)

The hard-collinear real-virtual kernel, expanded in the regulator ε, reads

P̃ hc,µν
ijprq ” P̃µνijprq ´ sij

”

2Cfj Ẽ
piq
jr ` 2Cfi Ẽ

pjq
ir

ı

gµν (B.32)

“ P̃ hc,µν
fin,ijprq ` Cfrijs

„

ρpCq

rijs

ˆ

1

ε2
´

1

ε
ln
sij
µ2

˙

`
1

ε

´

ρpCq

ij lnxi ` ρ
pCq

ji lnxj

¯



P hc,µν
ijprq

´
4

ε

„

fgi C
2
fj

xj
xi

lnxj ` f
g
j C

2
fi

xi
xj

lnxi



gµν ´
TR
ε

`

β0´3CF
˘

fqq̄ij

„

gµν ´ 4xixj
k̃µi k̃

ν
i

k̃2
i



`Opεq ,
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where

P̃ hc,µν
fin,ijprq “ P hc,µν

ijprq Cfrijs

"

ρpCq

rijs

„ˆ

1

2
ln2 sij

µ2
´

7

2
ζ2

˙

` ρpCq

ij

„

Li2

ˆ

´xj
xi

˙

´ ln
sij
µ2

lnxi



` ρpCq

ji

„

Li2

ˆ

´xi
xj

˙

´ ln
sij
µ2

lnxj

*

´ gµν 2 fgi Cfj
xj
xi

"

CA

„

ln2xj ` 2 Li2pxiq



` 2Cfj

„

Li2

ˆ

´xi
xj

˙

´ ln
sij
µ2

lnxj

*

´ gµν 2 fgj Cfi
xi
xj

"

CA

„

ln2xi ` 2 Li2pxjq



` 2Cfi

„

Li2

ˆ

´xj
xi

˙

´ ln
sij
µ2

lnxi

*

´

„

gµν ´ 4xixj
k̃µi k̃

ν
i

k̃2
i



fqq̄ij TR

„

ln
sij
µ2

`

3CF ´ β0

˘

`
7

3
CA `

5

3
β0 ´ 8CF



´ gµν pf
gq
ij `f

gq̄
ij q CF pCA´CF q `

k̃µi k̃
ν
i

k̃2
i

fggij CA p3CA ´ β0q , (B.33)

and

Li2

ˆ

´
xi
xj

˙

“ ´Li2pxiq ´
1

2
ln2 xj “ Li2pxjq ` lnxi lnxj ´

1

2
ln2 xj ´ ζ2 ,

Li2

ˆ

´
xj
xi

˙

“ ´Li2pxjq ´
1

2
ln2 xi “ Li2pxiq ` lnxi lnxj ´

1

2
ln2 xi ´ ζ2 . (B.34)

Equivalently we can write P̃ hc,µν
ijprq in the form

P̃ hc,µν
ijprq “ ´ P̃ hc

ijprq g
µν ` Q̃µνijprq , (B.35)

with

P̃ hc
ijprq ” P̃ijprq ` sij

”

2Cfj Ẽ
piq
jr ` 2Cfi Ẽ

pjq
ir

ı

(B.36)

“
Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs

ε2

”

ρpCq

rijs ` ρ
pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

Pijprq ` P̂ijprq

` 2CA
Γp1`εqΓp1´εq

ε2

„

fgi Cfj

ˆ

xj
xi

˙1`ε

` fgj Cfi

ˆ

xi
xj

˙1`ε *

.

C Improved limits

In this Appendix we provide three Sections collecting the building blocks for the construction of

our local counterterms, namely we explicitly define the action of

• improved limits on the double-real matrix element RR (Section C.1);

• improved limits on sector functions Wijjk, Wijkj , Wijkl (Section C.2);

• improved limits on symmetrised sector functions Zijk, Zijkl (Section C.3).

The content of each section is organised according to the nature of the singular limits involved, which

can be single-unresolved, uniform double-unresolved, and strongly-ordered double-unresolved. The

action of improved limits L on matrix elements times sector functions is specified by LRRWabcd ”
`

LRR
˘ `

L Wabcd

˘

, and similarly for Z functions. When acting on sector functions, single-unresolved

and strongly-ordered improved limits imply the latter to be evaluated with mapped kinematics.

Mapped sector functions are indicated generically as W or Z̄ with no mapping labels in Sections
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C.2, C.3, understanding that the actual mapping to be used must be adapted to the one of the ma-

trix elements the sector function is associated to. To be more precise, for each term of an improved

limit, the mapping of W or Z̄ is always the same as the first mapping of matrix elements in that

term.

To give an explicit example, let us apply this rule to the Si Sik RRWijkl contribution to K
p12q
ijkl

counterterm. Starting with the definitions

Si Sik RR ”

N 2
1

2

ÿ

c‰i,k
d‰i,k,c

"

Epiqcd

„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ēpkqpicdqef B̄
picd,kefq
cdef ` 2 Ēpkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ēpkqpidcqed B̄
pidc,kedq
cded ` 2 Ēpkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯



´ 2CA

”

Epiqkc Ēpkqpickqcd B̄
pick,kcdq
cd ` Epiqkd Ēpkqpikdqcd B̄

pikd,kcdq
cd

ı

*

, (C.1)

and

Si SikWijkl ” Ws, klWpαq
s, ij , (C.2)

according to the procedure detailed above, the explicit expression for Si Sik RRWijkl results in

Si Sik RRWijkl ”

N 2
1

2

ÿ

c‰i,k
d‰i,k,c

"

Epiqcd

„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ēpkqpicdqef B̄
picd,kefq
cdef ` 2 Ēpkqpicdqed B̄

picd,kedq
cded

˙

Wpicdq

s, kl

` 2
ÿ

e‰i,k,c,d

Ēpkqpidcqed B̄
pidc,kedq
cded Wpidcq

s, kl ` 2 Ēpkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯

Wpicdq

s, kl



´ 2CA

”

Epiqkc Ēpkqpickqcd B̄
pick,kcdq
cd Wpickq

s, kl ` Epiqkd Ēpkqpikdqcd B̄
pikd,kcdq
cd Wpikdq

s, kl

ı

*

Wpαq
s, ij , (C.3)

where it is evident that each Wab contribution is mapped according to the first mapping of the

Born matrix element it accompanies.

Finally, we introduce a shorthand notation to simplify the treatment in section C.2: we define

single-unresolved improved limits on NLO sector functions as

Wpαq
s, ij ” SiWpαq

ij ”

1
wαij

ř

l‰i

1
wαil

, Ws, ij ” Wp1q
s, ij , (C.4)

Wpαq
c, ijprq ” CijWpαq

ij ”
eαj w

α
jr

eαi w
α
ir ` e

α
j w

α
jr

, Wc, ijprq ” Wp1q
c, ijprq , (C.5)

depending on a reference particle r ‰ i, j, whose choice will be specified case by case; as for NNLO

sector functions, we introduce

σ̂abcdprq “
1

pea wab warqα
1

pec wcr ` δbc ea warqwcd
, (C.6)

and

σ̂tijkuprq “ σ̂ijjkprq`σ̂ikjkprq`σ̂jiikprq`σ̂jkikprq`σ̂ijkjprq`σ̂ikkjprq

` σ̂kiijprq`σ̂kjijprq`σ̂jikiprq`σ̂jkkiprq`σ̂kijiprq`σ̂kjjiprq . (C.7)
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C.1 Improved limits of RR

Single-unresolved improved limits

For the single-unresolved improved limits we have (j ‰ i)

SiRR ” ´N1

ÿ

c‰i
d‰i,c

Epiqcd R̄
picdq
cd , (C.8)

Cij RR ” N1

Pµνijprq

sij
R̄pijrqµν , (C.9)

Si Cij RR ” Si CjiRR ” N1 2Cfj E
piq
jr R̄

pijrq ; (C.10)

HCij RR ” Cij

`

1´ Si ´ Sj
˘

RR “ N1

P hc,µν
ijprq

sij
R̄pijrqµν . (C.11)

In these equations r must be chosen according to the rule of Eq. (A.14) as r “ rijkl ‰ i, j, k, l, where

i, j, k, l are the indices appearing in the NNLO sector functions multiplying the improved limits Cij ,

Si Cij , HCij . This means that in the topologies Wijjk, Wijkj the index r “ rijk is different from

the three indices of the sector, while for the topology Wijkl (i, j, k, l all different) the index r “ rijkl
is different from the four indices of the sector. We stress that, having defined r “ rijkl, one needs

at least five massless partons in Φn`2, namely three massless final-state partons at Born level. We

work under this assumption throughout the paper.

Uniform double-unresolved improved limits

The double-soft improved limit is given by (k ‰ i)

Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

Epiqcd
ÿ

e‰i,k,c,d

„

ÿ

f‰i,k,c,d,e

Epkqef B̄
picd,kefq
cdef ` 4 Epkqed B̄

picd,kedq
cded



` 2 Epiqcd E
pkq
cd B̄

picd,kcdq
cdcd ` Epikqcd B̄

pikcdq
cd

*

. (C.12)

The soft-collinear improved limits SCikl and its double-soft version Sik SCikl read (k ‰ i, l ‰ i, k,

and r “ rikl ‰ i, k, l defined with the rule of Eq. (A.14))

SCiklRR ” ´N 2
1

Pµνklprq

skl

"

ÿ

c‰i,k,l,r

„

ÿ

d‰i,k,l,r,c

Epiqcd B̄
pklr,icdq
µν,cd ` 2 Epiqcr B̄pklr,icrqµν,cr



`
ÿ

c‰i,k,l

”

Epiqkc
´

ρpCq

kl B̄
plrk,ickq
µν,rklsc `

˜̄B
plrk,ickq
µν,rklsc f̃

qq̄
kl

¯

` pk Ø lq
ı

*

, (C.13)

Sik SCiklRR ” Ski SCiklRR ” Sik SCilk RR

” ´ 2N 2
1 Epkqlr

"

Cfl
ÿ

c‰i,k,l,r

„

ÿ

d‰i,k,l,r,c

Epiqcd B̄
pklr,icdq
cd ` 2 Epiqcr B̄pklr,icrqcr



`
ÿ

c‰i,k,l

”

CA Epiqkc B̄
plrk,ickq
rklsc ` p2Cfl´CAq E

piq
lc B̄

pkrl,iclq
rklsc

ı

*

. (C.14)

The improved limits SCijk, SCkij , Sij SCijk, Sik SCijk, Sik SCkij can be obtained from these

limits with a renaming of indices. For the uniform double-unresolved limits involving Cijk, we have

(j ‰ i, k ‰ i, j and r “ rijk ‰ i, j, k)

Cijk RR ”
N 2

1

s2
ijk

Pµνijkprq B̄
pijkrq
µν ; (C.15)
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Sij Cijk RR ” Sij Cikj RR ” Sij Ckij RR ” N 2
1 Cfk

„

4Cfk E
piq
kr Epjqkr ´ Epijqkr



B̄pijkrq , (C.16)

HCijk RR ” Cijk

`

1´ Sij ´ Sik ´ Sjk
˘

RR “
N 2

1

s2
ijk

P hc,µν
ijkprq B̄

pijkrq
µν ; (C.17)

Cijk SCijk RR ” Cjki SCijk RR

” N 2
1 Cfrjks

Pµνjkprq

sjk

„

ρpCq

jk E
piq
jr B̄

pkrj,ijrq
µν ` ρpCq

kj E
piq
kr B̄

pjrk,ikrq
µν



, (C.18)

Sij Cijk SCijk RR ” Sij Cikj SCikj RR “ Sji Cjki SCijk RR

” 2N 2
1 Cfk E

pjq
kr

”

CA Epiqjr B̄
pkrj,ijrq ` p2Cfk´CAq E

piq
kr B̄

pjrk,ikrq
ı

, (C.19)

Cijk SHCijk RR ” Cijk SCijk

`

1´ Sij ´ Sik
˘

RR

” N 2
1 Cfrjks

P hc,µν
jkprq

sjk

„

ρpCq

jk E
piq
jr B̄

pkrj,ijrq
µν ` ρpCq

kj E
piq
kr B̄

pjrk,ikrq
µν



, (C.20)

`

1´Cijk

˘

SHCijk RR ”
`

1´Cijk

˘

SCijk

`

1´ Sij ´ Sik
˘

RR (C.21)

” ´N 2
1

P hc,µν
jkprq

sjk

"

ÿ

c‰i,j,k,r

„

ÿ

d‰i,j,k,r,c

Epiqcd B̄
pjkr,icdq
µν,cd ` 2 Epiqcr B̄pjkr,icrqµν,cr



`
ÿ

c‰i,j,k

„

Epiqjc
´

ρpCq

jk B̄
pkrj,icjq
µν,rjksc `

˜̄B
pkrj,icjq

µν,rjksc f̃
qq̄
jk

¯

`pj Ø kq



`Cfrjks

„

ρpCq

jk E
piq
jr B̄

pkrj,ijrq
µν ` ρpCq

kj E
piq
kr B̄

pjrk,ikrq
µν

*

.

Finally, the limits involving Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰ i, j, k, l)

CijklRR ” N 2
1

Pµνijprq

sij

P ρσklprq

skl
B̄pijr,klrqµνρσ , (C.22)

Sik CijklRR ” Sik CjiklRR ” Sik Cijlk RR ” Sik Cjilk RR

” 4N 2
1 Cfj Cfl E

piq
jr Epkqlr B̄pijr,klrq ; (C.23)

SCikl CijklRR ” SCikl Cklij RR ” SCikl CjiklRR ” SCikl CkljiRR

” 2N 2
1 Cfj E

piq
jr

Pµνklprq

skl
B̄pijr,klrqµν ; (C.24)

HCijklRR ” Cijkl

`

1` Sik ` Sjk ` Sil ` Sjl ´ SCikl ´ SCjkl ´ SCkij ´ SClij

˘

RR

“ N 2
1

P hc,µν
ijprq

sij

P hc,ρσ
klprq

skl
B̄pijr,klrqµνρσ . (C.25)

Strongly-ordered double-unresolved improved limits

The improved limit Si Sik is given by (k ‰ i)

Si Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

Epiqcd

„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ēpkqpicdqef B̄
picd,kefq
cdef ` 2 Ēpkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ēpkqpidcqed B̄
pidc,kedq
cded ` 2 Ēpkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯



´ 2CA

”

Epiqkc Ēpkqpickqcd B̄
pick,kcdq
cd ` Epiqkd Ēpkqpikdqcd B̄

pikd,kcdq
cd

ı

*

. (C.26)
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For Si SCikl and Si Sik SCikl we have (k ‰ i, l ‰ i, k, and r “ rikl ‰ i, k, l)

Si SCiklRR ” ´N 2
1

ÿ

c‰i,k,l

#

ÿ

d‰i,k,l,c

Epiqcd
P̄
picdqµν
klprq

s̄
picdq
kl

B̄
picd,klrq
µν,cd (C.27)

`

«

Epiqkc
P̄
pikcqµν
klprq

2 s̄
pikcq
kl

´

ρpCq

kl B̄
pikc,lrkq
µν,rklsc `

˜̄B
pikc,lrkq
µν,rklsc f̃

qq̄
kl

¯

` pk Ø lq

ff

`

«

Epiqkc
P̄
pickqµν
klprq

2 s̄
pickq
kl

´

ρpCq

kl B̄
pick,lrkq
µν,rklsc `

˜̄B
pick,lrkq
µν,rklsc f̃

qq̄
kl

¯

` pk Ø lq

ff+

,

Si Sik SCiklRR ” Si Sik SCilk RR

” ´N 2
1

ÿ

c‰i,k,l

„

2Cfl
ÿ

d‰i,k,l,c

Epiqcd Ēpkqpicdqlr B̄
picd,klrq
cd (C.28)

`CA Epiqkc
´

Ēpkqpikcqlr B̄
pikc,lrkq
lc ` Ēpkqpickqlr B̄

pick,lrkq
lc

¯

`p2Cfl´CAq E
piq
lc

´

Ēpkqpilcqlr B̄
pilc,krlq
lc ` Ēpkqpiclqlr B̄

picl,krlq
lc

¯



.

Combining the previous definitions we have (j ‰ i, k ‰ i, j, and r “ rijk ‰ i, j, k)

Si SHCijk RR ” Si SCijk

`

1´ Sij ´ Sik
˘

RR (C.29)

” ´N 2
1

ÿ

c‰i,j,k

#

ÿ

d‰i,j,k,c

Epiqcd
P̄
picdqhc,µν
jkprq

s̄
picdq
jk

B̄
picd,jkrq
µν,cd

`

«

Epiqjc
P̄
pijcqhc,µν
jkprq

2 s̄
pijcq
jk

´

ρpCq

jk B̄
pijc,krjq
µν,rjksc `

˜̄B
pijc,krjq
µν,rjksc f̃

qq̄
jk

¯

` pj Ø kq

ff

`

«

Epiqjc
P̄
picjqhc,µν
jkprq

2 s̄
picjq
jk

´

ρpCq

jk B̄
picj,krjq
µν,rjksc `

˜̄B
picj,krjq
µν,rjksc f̃

qq̄
jk

¯

` pj Ø kq

ff+

.

For the strongly-ordered double-unresolved limits involving Si Cijk, we have (j ‰ i, k ‰ i, j,

r “ rijk ‰ i, j, k)

Si Cijkp1´SCijkqRR ”

N 2
1

Cfrjks

2

#

ρpCq

jk Epiqjr

«

P̄
pijrqµν
jkprq

s̄
pijrq
jk

´

B̄pijr,jkrqµν ´B̄pijr,krjqµν

¯

`
P̄
pirjqµν
jkprq

s̄
pirjq
jk

´

B̄pirj,jkrqµν ´B̄pirj,krjqµν

¯

ff

` ρpCq

kj E
piq
kr

«

P̄
pikrqµν
jkprq

s̄
pikrq
jk

´

B̄pikr,jkrqµν ´B̄pikr,jrkqµν

¯

`
P̄
pirkqµν
jkprq

s̄
pirkq
jk

´

B̄pirk,jkrqµν ´B̄pirk,jrkqµν

¯

ff

´ ρpCq

rjks E
piq
jk

«

P̄
pijkqµν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν `
P̄
pikjqµν
jkprq

s̄
pikjq
jk

B̄pikj,jkrqµν

ff+

, (C.30)

Si Sij Cijkp1´SCijkqRR ” Si Sij Cikjp1´SCikjqRR

” N 2
1 Cfk

"

CA Epiqjr
”

Ēpjqpijrqkr

´

B̄pijr,jkrq´B̄pijr,krjq
¯

` Ēpjqpirjqkr

´

B̄pirj,jkrq´B̄pirj,krjq
¯ ı

`p2Cfk´CAq E
piq
kr

”

Ēpjqpikrqkr

´

B̄pikr,jkrq´B̄pikr,jrkq
¯

` Ēpjqpirkqkr

´

B̄pirk,jkrq´B̄pirk,jrkq
¯ı

`CA Epiqjk
”

Ēpjqpijkqkr B̄pijk,jkrq ` Ēpjqpikjqkr B̄pikj,jkrq
ı

*

, (C.31)
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Si HC
psq

ijk RR ” Si Cijk

`

1´ Sij ´ Sik
˘`

1´ SCijk

˘

RR (C.32)

“ N 2
1

Cfrjks

2

#

ρpCq

jk Epiqjr

«

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

´

B̄pijr,jkrqµν ´B̄pijr,krjqµν

¯

`
P̄
pirjqhc,µν
jkprq

s̄
pirjq
jk

´

B̄pirj,jkrqµν ´B̄pirj,krjqµν

¯

ff

` ρpCq

kj E
piq
kr

«

P̄
pikrqhc,µν
jkprq

s̄
pikrq
jk

´

B̄pikr,jkrqµν ´B̄pikr,jrkqµν

¯

`
P̄
pirkqhc,µν
jkprq

s̄
pirkq
jk

´

B̄pirk,jkrqµν ´B̄pirk,jrkqµν

¯

ff

´ ρpCq

rjks E
piq
jk

«

P̄
pijkqhc,µν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν `
P̄
pikjqhc,µν
jkprq

s̄
pikjq
jk

B̄pikj,jkrqµν

ff+

.

For Cij SCkij and Si Cij SCkij we have (j ‰ i, k ‰ i, j, r “ rijk ‰ i, j, k)

Cij SCkij RR ” ´N 2
1

Pµνijprq

sij

"

ÿ

c‰i,j,k,r

„

ÿ

d‰i,j,k,r,c

Ēpkqpijrqcd B̄
pijr,kcdq
µν,cd ` 2 Ēpkqpijrqcr B̄pijr,kcrqµν,cr



` 2
ÿ

c‰i,j,k

Ēpkqpijrqjc B̄
pijr,kcjq
µν,jc

*

, (C.33)

Si Cij SCkij RR ” Si Cji SCkjiRR

” ´ 2N 2
1 Cfj E

piq
jr

"

ÿ

c‰i,j,k,r

„

ÿ

d‰i,j,k,r,c

Ēpkqpijrqcd B̄
pijr,kcdq
cd ` 2 Ēpkqpijrqcr B̄pijr,kcrqcr



` 2
ÿ

c‰i,j,k

Ēpkqpijrqjc B̄
pijr,kcjq
jc



, (C.34)

HCij SCkij RR ” Cij

`

1´ Si ´ Sj
˘

SCkij RR

“ ´N 2
1

P hc,µν
ijprq

sij

"

ÿ

c‰i,j,k,r

„

ÿ

d‰i,j,k,r,c

Ēpkqpijrqcd B̄
pijr,kcdq
µν,cd ` 2 Ēpkqpijrqcr B̄pijr,kcrqµν,cr



` 2
ÿ

c‰i,j,k

Ēpkqpijrqjc B̄
pijr,kcjq
µν,jc

*

. (C.35)

The improved limits Cij Sij RR, Si Cij Sij RR and their combination HCij Sij RR appear in the

sector topology Wijjk only, and are given by (j ‰ i and r “ rijk ‰ i, j, k)

Cij SijRR ” ´N 2
1

ÿ

c‰i,j
d‰i,j,c

#

Pijprq

sij
Ēpjqpijrqcd `

Qµνijprq

sij

«

k̄
pijrq
c,µ

s̄
pijrq
jc

´
k̄
pijrq
d,µ

s̄
pijrq
jd

ff«

k̄
pijrq
c,ν

s̄
pijrq
jc

´
k̄
pijrq
d,ν

s̄
pijrq
jd

ff+

B̄
pijr,jcdq
cd , (C.36)

Si Cij Sij RR ” Si Cji SjiRR ” ´ 2N 2
1 Cfj E

piq
jr

ÿ

c‰i,j
d‰i,j,c

Ēpjqpijrqcd B̄
pijr,jcdq
cd , (C.37)

HCij Sij RR ” Cij

`

1´ Si ´ Sj
˘

SijRR (C.38)

“ ´N 2
1

ÿ

c‰i,j
d‰i,j,c

«

P hc
ijprq

sij
Ēpjqpijrqcd `

Qµνijprq

sij

˜

k̄
pijrq
c,µ

s̄
pijrq
jc

´
k̄
pijrq
d,µ

s̄
pijrq
jd

¸˜

k̄
pijrq
c,ν

s̄
pijrq
jc

´
k̄
pijrq
d,ν

s̄
pijrq
jd

¸ff

B̄
pijr,jcdq
cd .
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For the strongly-ordered double-unresolved limits involving Cij Cijk, we have (j ‰ i, k ‰ i, j,

r “ rijk ‰ i, j, k)

Cij Cijk RR ” N 2
1

#

Pijprq

sij

P̄
pijrqµν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν ` 2CA Ēpkqpijrqjr

Qµνijprq

sij
B̄pijr,jkrqµν (C.39)

´ 2Cfk Ē
pjqpijrq
kr

Qµνijprq

sij

˜̄k
pijrq
µ

˜̄k
pijrq
ν

`˜̄kpijrq
˘2

B̄pijr,jkrq

+

,

Si Cij Cijk RR ” Si Cji Cjik RR ” 2N 2
1 Cfj E

piq
jr

P̄
pijrqµν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν , (C.40)

Cij Sij CijkRR ” 2N 2
1 Cfk Ē

pjqpijrq
kr

#

Pijprq

sij
´
Qµνijprq

sij

˜̄k
pijrq
µ

˜̄k
pijrq
ν

`˜̄kpijrq
˘2

+

B̄pijr,jkrq , (C.41)

Si Cij Sij Cijk RR ” Si Cji Sji Cjik RR ” 4N 2
1 Cfj Cfk E

piq
jr Ēpjqpijrqkr B̄pijr,jkrq , (C.42)

Cij Cijk SCkij RR ” 2N 2
1 Cfrijs

Ēpkqpijrqjr

Pµνijprq

sij
B̄pijr,kjrqµν , (C.43)

Si Cij Cijk SCkij RR ” Si Cji Cjik SCkjiRR ” 4N 2
1 C2

fj E
piq
jr Ēpkqpijrqjr B̄pijr,kjrq , (C.44)

HCij HC
pcq

ijk RRZijk ” Cij

`

1´ Si ´ Sj
˘

Cijk

`

1´ Sij ´ SCkij

˘

RR (C.45)

“ N 2
1

P hc
ijprq

sij

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν .

Finally the limits involving Cij Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰ i, j, k, l)

Cij CijklRR ” N 2
1

Pµνijprq

sij

P̄
pijrqρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqµνρσ , (C.46)

Si Cij CijklRR ” Si Cji CjiklRR ” 2N 2
1 Cfj E

piq
jr

P̄
pijrqρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqρσ , (C.47)

Cij SCkij CijklRR ” Cij SCkij Cijlk RR ” 2N 2
1 Cfl

Pµνijprq

sij
Ēpkqpijrqlr B̄pijr,klrqµν , (C.48)

Si Cij SCkij CijklRR ” Si Cji SCkji CjiklRR ” Si Cij SCkij Cijlk RR ” Si Cji SCkji Cjilk RR

” 4N 2
1 CfjCfl E

piq
jr Epkqlr B̄pijr,klrq , (C.49)

HCij HC
pcq

ijklRR ” Cij

`

1´ Si ´ Sj
˘

Cijkl

`

1´ SCkij ´ SClij

˘

RR (C.50)

“ N 2
1

P hc,µν
ijprq

sij

P̄
pijrqhc,ρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqµνρσ .

C.2 Improved limits of Wijjk, Wijkj, Wijkl

Single-unresolved improved limits

For the single-unresolved improved limits we have (j ‰ i, k ‰ i, l ‰ i, k and r “ rijk ‰ i, j, k)

SiWijkl ” WklWpαq
s, ij , (C.51)

CijWijkl ” WklWpαq
c, ijprq , (C.52)

Si CijWijkl ” Wkl . (C.53)
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Uniform double-unresolved improved limits

The double-soft improved limit is given by (j ‰ i, k ‰ i, l ‰ i, k)

SikWijkl ”
σijkl

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
. (C.54)

The soft-collinear improved limits SCikl and SCkij as well as their double-soft versions Sik SCikl

and Sik SCkij read (j ‰ i, k ‰ i, l ‰ i, k)

SCiklWijkl ”
σ
pαq
ij

σkl
wkr

ř

b‰i σ
pαq
ib

´

σkl
wkr

`
σlk
wlr

¯

`
σ

pαq

kl

wkr

ř

d‰i,k σid `
σ

pαq

lk

wlr

ř

d‰i,l σid

, r “ rikl , (C.55)

SCkijWijkl ”

σ
pαq

ij

wir
σkl

ř

b‰k σ
pαq
kb

´

σij
wir

`
σji
wjr

¯

`
σ

pαq

ij

wir

ř

d‰i,k σkd `
σ

pαq

ji

wjr

ř

d‰k,j σkd

, r “ rijk , (C.56)

Sik SCiklWijkl ”
σ
pαq
ij σkl

ř

b‰i σ
pαq
ib σkl ` σ

pαq
kl

ř

d‰i,k σid
, r “ rikl , (C.57)

Sik SCkijWijkl ”
σ
pαq
ij σkl

ř

b‰k σ
pαq
kb σij ` σ

pαq
ij

ř

d‰i,k σkd
, r “ rijk . (C.58)

For the uniform double-unresolved limits involving Cijk, we have (j ‰ i, k ‰ i, j and r “ rijk ‰

i, j, k)

CijkWijjk ”
σ̂ijjkprq

σ̂tijkuprq
, CijkWijkj ”

σ̂ijkjprq

σ̂tijkuprq
; (C.59)

Sij CijkWijjk ”
σ̂ijjkprq

σ̂ijjkprq`σ̂ikjkprq`σ̂jiikprq`σ̂jkikprq
, (C.60)

Sik CijkWijkj ”
σ̂ijkjprq

σ̂ijkjprq ` σ̂ikkjprq ` σ̂kiijprq ` σ̂kjijprq
; (C.61)

Cijk SCijkWijjk ”

σ
pαq

ij

wαir

σjk
wjr

σ
pαq

ij `σ
pαq

ik

wαir

´

σjk
wjr

`
σkj
wkr

¯

`
σ

pαq

jk

wαjr

σik
wir

`
σ

pαq

kj

wαkr

σij
wir

, (C.62)

Cijk SCijkWijkj ”

σ
pαq

ij

wαir

σkj
wkr

σ
pαq

ij `σ
pαq

ik

wαir

´

σjk
wjr

`
σkj
wkr

¯

`
σ

pαq

jk

wαjr

σik
wir

`
σ

pαq

kj

wαkr

σij
wir

, (C.63)

Cijk SCkijWijkj ”

σ
pαq

ij

wαir

σkj
wkr

σ
pαq

kj `σ
pαq

ki

wαkr

´

σji
wjr

`
σij
wir

¯

`
σ

pαq

ji

wαjr

σki
wkr

`
σ

pαq

ij

wαir

σkj
wkr

; (C.64)
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Sij Cijk SCijkWijjk ”

σ
pαq

ij

wαir

σjk
wjr

σ
pαq

ij `σ
pαq

ik

wαir

σjk
wjr

`
σ

pαq

jk

wαjr

σik
wir

, (C.65)

Sik Cijk SCijkWijkj ”

σ
pαq

ij

wαir

σkj
wkr

σ
pαq

ij `σ
pαq

ik

wαir

σkj
wkr

`
σ

pαq

kj

wαkr

σij
wir

, (C.66)

Sik Cijk SCkijWijkj ”

σ
pαq

ij

wαir

σkj
wkr

σ
pαq

kj `σ
pαq

ki

wαkr

σij
wir

`
σ

pαq

ij

wαir

σkj
wkr

. (C.67)

Finally the limits involving Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰ i, j, k, l)

CijklWijkl ”

σijkl
wirwkr

σijkl̀ σklij
wirwkr

`
σijlk̀ σlkij
wirwlr

`
σjikl̀ σklji
wjrwkr

`
σjilk̀ σlkji
wjrwlr

, (C.68)

Sik CijklWijkl ”
σ
pαq
ij σkl

σ
pαq
ij σkl ` σ

pαq
kl σij

, (C.69)

SCikl CijklWijkl ”
σ
pαq
ij

σkl
wkr

σ
pαq
ij

´

σkl
wkr
`
σlk
wlr

¯

`

ˆ

σ
pαq

kl

wkr
`
σ

pαq

lk

wlr

˙

σij

, (C.70)

SCkij CijklWijkl ”

σ
pαq

ij

wir
σkl

σ
pαq
kl

´

σij
wir
`
σji
wjr

¯

`

ˆ

σ
pαq

ij

wir
`
σ

pαq

ji

wjr

˙

σkl

. (C.71)

Strongly-ordered double-unresolved improved limits

The improved limit Si Sik is given by (j ‰ i, k ‰ i, l ‰ i, k)

Si SikWijkl ” Ws, klWpαq
s, ij . (C.72)

For Si SCikl and Si Sik SCikl we have (j ‰ i, k ‰ i, l ‰ i, k, and r “ rikl ‰ i, k, l)

Si SCiklWijkl ” Wc, klprqW
pαq
s, ij , (C.73)

Si Sik SCiklWijkl ” Wpαq
s, ij . (C.74)

For the strongly-ordered double-unresolved limits involving Si Cijk, we have (j ‰ i, k ‰ i, j,

r “ rijk ‰ i, j, k and τ “ jk, kj)

Si Cijkp1´SCijkqWijτ ” Wc,τprq

σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

, (C.75)

Si Sij Cijkp1´SCijkqWijjk ”
σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

, (C.76)
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Si Sik Cijkp1´SCijkqWijkj ”
σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

. (C.77)

For Cij SCkij and Si Cij SCkij we have (j ‰ i, k ‰ i, l ‰ i, k, and r “ rijk ‰ i, j, k)

Cij SCkijWijkl ” Wpαq
c, ijprqWs, kl ; (C.78)

Si Cij SCkijWijkl ” Ws, kl . (C.79)

The improved limits Cij Sij RRWijjk and Si Cij Sij RRWijjk read (j ‰ i, k ‰ i, j and r “ rijk ‰

i, j, k)

Cij SijWijjk ” Wpαq
c, ijprqWs, jk ; (C.80)

Si Cij SijWijjk ” Ws, jk . (C.81)

For the strongly-ordered double-unresolved limits involving Cij Cijk, we have (j ‰ i, k ‰ i, j,

r “ rijk ‰ i, j, k, and τ “ jk, kj)

Cij CijkWijτ ” Wpαq
c, ijprqWc, τprq ; (C.82)

Si Cij CijkWijτ ” Wc, τprq ; (C.83)

Cij Sij CijkWijjk ” Wpαq
c, ijprq ; (C.84)

Si Cij Sij CijkWijjk ” 1 ; (C.85)

Cij Cijk SCkijWijkj ” Wpαq
c, ijprq ; (C.86)

Si Cij Cijk SCkijWijkj ” 1 . (C.87)

Finally the limits involving Cij Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰ i, j, k, l)

Cij CijklWijkl ” Wpαq
c, ijprqWc, klprq ; (C.88)

Si Cij CijklWijkl ” Wc, klprq ; (C.89)

Cij SCkij CijklWijkl ” Wpαq
c, ijprq ; (C.90)

Si Cij SCkij CijklWijkl ” 1 . (C.91)

C.3 Improved limits of Zijk, Zijkl
Single-unresolved improved limits

For the single-unresolved improved limits in K
p1q
tijku we have (j ‰ i, k ‰ i, j)

SiZijk “ Z̄jk
´

Zpαqs, ij ` Zpαqs, ik

¯

, HCij Zijk “ Z̄jk ; (C.92)

while for K
p1q
tijklu we have (j ‰ i, k ‰ i, j)

SiZijkl “ Z̄kl Zpαqs, ij , HCij Zijkl “ Z̄kl . (C.93)
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Uniform double-unresolved improved limits

For K
p2q
tijku we have (j ‰ i, k ‰ i, j, and r “ rijk ‰ i, j, k)

Sik Zijk “
σikkj ` σijkj ` σkiij ` σkjij

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
, (C.94)

SCijk Zijk “

´

σ
pαq
ij ` σ

pαq
ik

¯´

σjk
wjr

`
σkj
wkr

¯

`
σ

pαq

jk

wjr
σik `

σ
pαq

kj

wkr
σij

ř

b‰i σ
pαq
ib

´

σjk
wjr

`
σkj
wkr

¯

`
σ

pαq

jk

wjr

ř

d‰i,j σid `
σ

pαq

kj

wkr

ř

d‰i,k σid

,

Sij SCijk Zijk “

´

σ
pαq
ij ` σ

pαq
ik

¯

σjk ` σ
pαq
jk σik

ř

b‰i σ
pαq
ib σjk ` σ

pαq
jk

ř

d‰i,j σid
,

HCijk Zijk “ 1 ,

Cijk SHCijk Zijk “ 1 .

For K
p2q
tijklu one has (j ‰ i, k ‰ i, j, l ‰ i, j, k, and r “ rikl ‰ i, k, l)

Sik Zijkl “
σijkl ` σklij

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
, (C.95)

SCikl Zijkl “
σ
pαq
ij

´

σkl
wkr

`
σlk
wlr

¯

`

ˆ

σ
pαq

kl

wkr
`

σ
pαq

lk

wlr

˙

σij

ř

b‰i σ
pαq
ib

´

σkl
wkr

`
σlk
wlr

¯

`
σ

pαq

kl

wkr

ř

d‰i,k σid `
σ

pαq

lk

wlr

ř

d‰i,l σid

,

Sik SCikl Zijkl “
σ
pαq
ij σkl ` σ

pαq
kl σij

ř

b‰i σ
pαq
ib σkl ` σ

pαq
kl

ř

d‰i,k σid
,

HCijkl Zijkl “ 1 .

Strongly-ordered double-unresolved improved limits

For K
p12q
tijku one has (j ‰ i, k ‰ i, j)

Si Sij Zijk “ Z̄s, jk

´

Zpαqs, ij ` Zpαqs, ik

¯

, (C.96)

Si SHCijk Zijk “ Zpαqs, ij ` Zpαqs, ik ,

Si HC
psq

ijk Zijk “ 1 ,

HCij Sij Zijk “ Z̄s, jk ,

HCij SCkij Zijk “ Z̄s, kj ,

HCij HC
pcq

ijk Zijk “ 1 .

For K
p12q
tijklu one has (j ‰ i, k ‰ i, j, l ‰ i, j, k)

Si Sik Zijkl “ Z̄s, kl Zpαqs, ij , (C.97)

Si SHCikl Zijkl “ Zpαqs, ij ,

HCij SCkij Zijkl “ Z̄s, kl ,

HCij HC
pcq

ijkl Zijkl “ 1 .
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D Integration of azimuthal contributions

The azimuthal parts of the collinear kernels Qµνijprq, Q̃
µν
ijprq and Qµνijkprq, defined in Appendix B,

contain k̃µa k̃
ν
a , where a “ i for Pµνijprq, P̃

µν
ijprq and a “ i, j, k for Pµνijkprq. In all counterterms, Qµνijprq

has to be integrated in the single-radiative phase space dΦ
pijrq
rad , dΦ

pirjq
rad or dΦ

pjriq
rad , while Q̃µνijprq and

Qµνijkprq are always integrated in dΦ
pijrq
rad and dΦ

pijkrq
rad,2 , respectively. In all cases, when integrating

Qµνijprq and Q̃µνijprq in their single-radiative phase space, or Qµνijkprq in its double-radiative phase space,

the integral of the tensor structure k̃µa k̃
ν
a must be a symmetric rank-2 tensor constructed combining

gµν and mapped momenta, see [99]. Thus
ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ Agµν `B k̄pτqµk̄pτqν ` C

´

k̄pτqµk̄pτqνq ` k̄pτqµq k̄pτqν
¯

`D k̄pτqµq k̄pτqνq , (D.1)

where τ “ ijr, irj, jri, ijkr, q “ r if τ “ ijr, irj, jri, q “ r if τ “ ijkr, and

k̄pijrq “ k̄
pijrq
j , k̄pirjq “ k̄

pirjq
j , k̄pjriq “ k̄

pjriq
i , k̄pijkrq “ k̄

pijkrq
k . (D.2)

Since k̃a is orthogonal to k̄pτqµ and k̄
pτqµ
q , so must be also its integrals. This leads to the conditions

D “ 0 and A` C k̄pτq ¨k̄
pτq
q “ 0. We have

ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ A

«

gµν ´
k̄pτqµk̄

pτqν
q ` k̄

pτqµ
q k̄pτqν

k̄pτq ¨k̄
pτq
q

ff

`B k̄pτqµk̄pτqν . (D.3)

In all counterterms this tensor is contracted with either

R̄pτqµν , B̄pτqµν , B̄pτ,... qµν , or

«

k̄
pτq
c,µ

s̄
pτq
jc

´
k̄
pτq
d,µ

s̄
pτq
jd

ff«

k̄
pτq
c,ν

s̄
pτq
jc

´
k̄
pτq
d,ν

s̄
pτq
jd

ff

. (D.4)

As a consequence, the terms proportional to k̄pτqµ or to k̄pτqν vanish, and just Agµν contributes.

On the other hand, since k̄pτq is on shell, A can be obtained as follows:

gµν

ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ A pd´ 2q ùñ A “

1

d´ 2

ż

dΦ
pτq
rad fptkuq k̃

2
a . (D.5)

Thus in all counterterms we can subtitute
ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a Ñ Agµν “

ż

dΦ
pτq
rad fptkuq

gµν

d´ 2
k̃2
a , (D.6)

and the integrals of Qµνijprq, Q̃
µν
ijprq and Qµνijkprq vanish in all counterterms:

ż

dΦ
pτq
rad

Qµνijprq

sij
“

ż

dΦ
pτq
rad

Qijprq

sij

„

´ gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i



Ñ 0 , τ “ ijr, irj, jri ;

ż

dΦ
pτq
rad

Q̃µνijprq

sij
“

ż

dΦ
pτq
rad

Q̃ijprq

sij

„

´ gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i



Ñ 0 , τ “ ijr ;

ż

dΦ
pτq
rad,2

Qµνijkprq

s2
ijk

“
ÿ

a“i,j,k

ż

dΦ
pτq
rad,2

Q
paq
ijkprq

s2
ijk

„

´ gµν ` pd´ 2q
k̃µa k̃

ν
a

k̃2
a



Ñ 0 , τ “ ijkr . (D.7)

E Constituent integrals

In the following we report the constituent integrals relevant for the analytic integration of all

counterterms at NNLO. Such integrals are schematically denoted as J`t , where t indicates the type

of integral, while ` is a set of labels whose different indices denote distinguished particles.
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The soft integrated kernel is

J ilms ” N1

ż

dΦ
pilmq
rad Epiqlm ” δfig Jsps̄

pilmq
lm q , (E.1)

with

Jspsq “
αs
2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

ε2 Γp2´ 3εq

“
αs
2π

ˆ

s

µ2

˙´ε „
1

ε2
`

2

ε
` 6´

7

12
π2 `

ˆ

18´
7

6
π2 ´

25

3
ζ3

˙

ε

`

ˆ

54´
7

2
π2 ´

50

3
ζ3 ´

71

1440
π4

˙

ε2 `Opε3q


. (E.2)

The double-soft integrated kernels read

J ijcdefsbs ” N 2
1

ż

dΦ
picd,jefq
rad,2 Epiqcd Epjqef ” J

p4q
sbs

´

s̄
picd,jefq
cd , s̄

picd,jefq
ef

¯

fggij ,

J ijcdesbs ” N 2
1

ż

dΦ
picd,jedq
rad,2 Epiqcd Epjqed ” J

p3q
sbs

´

s̄
picd,jedq
cd , s̄

picd,jedq
ed

¯

fggij ,

J ijcdsbs ” N 2
1

ż

dΦ
pijcdq
rad,2 Epiqcd Epjqcd ” J

p2q
sbs

´

s̄
pijcdq
cd

¯

fggij ,

J ijcdss ” N 2
1

ż

dΦ
pijcdq
rad,2 Epijqcd ” 2TR J

pqq̄q
ss

´

s̄
pijcdq
cd

¯

fqq̄ij ´ 2CA J
pggq
ss

´

s̄
pijcdq
cd

¯

fggij , (E.3)

with

J
p4q
sbsps, s

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε „
1

ε4
`

4

ε3
`

ˆ

16´
7

6
π2

˙

1

ε2
`

ˆ

60´
14

3
π2 ´

50

3
ζ3

˙

1

ε
(E.4)

` 216´
56

3
π2 ´

200

3
ζ3 `

29

120
π4`Opεq



,

J
p3q
sbsps, s

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε „
1

ε4
`

4

ε3
`

ˆ

17´
4

3
π2

˙

1

ε2
`

ˆ

70´
16

3
π2 ´

68

3
ζ3

˙

1

ε

` 284´
68

3
π2 ´

272

3
ζ3 `

13

90
π4 `Opεq



,

J
p2q
sbspsq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε„
1

ε4
`

4

ε3
`

ˆ

18´
3

2
π2

˙

1

ε2
`

ˆ

76´ 6π2 ´
74

3
ζ3

˙

1

ε

` 312´ 27π2 ´
308

3
ζ3 `

49

120
π4`Opεq



,

J pqq̄q
ss psq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε„
1

6

1

ε3
`

17

18

1

ε2
`

ˆ

116

27
´

7

36
π2

˙

1

ε
`

1474

81
´

131

108
π2 ´

19

9
ζ3 `Opεq



,

J pggq
ss psq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε„
1

2

1

ε4
`

35

12

1

ε3
`

ˆ

487

36
´

2

3
π2

˙

1

ε2
`

ˆ

1562

27
´

269

72
π2 ´

77

6
ζ3

˙

1

ε

`
19351

81
´

3829

216
π2 ´

1025

18
ζ3 ´

23

240
π4 `Opεq



.
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The soft real-virtual integrated kernels are

J̃ icds ” N1

ż

dΦ
picdq
rad Ẽpiqcd ” δfig CA J̃s

´

s̄
picdq
cd

¯

,

J icdpeq
∆s

” N1
2

ε2

ż

dΦ
picdq
rad Epiqcd

„ˆ

sed

s̄
picdq
ed

˙´ε

´ 1



” fgi J
p3q

∆s

´

s̄
picdq
cd

¯

,

J icd
∆s

” N1
1

ε2

ż

dΦ
picdq
rad Epiqcd

„ˆ

scd

s̄
picdq
cd

˙´ε

´ 1



” fgi J
p2q

∆s

´

s̄
picdq
cd

¯

,

J̃ icdes ” N1

ż

dΦ
picdq
rad Ẽpiqcde , (E.5)

with

J̃spsq “
αs
2π

ˆ

s

eγEµ2

˙´2ε
Γ3p1` εqΓ3p1´ εq

4 ε4 Γp1` 2εqΓp2´ 4εq
(E.6)

“
αs
2π

ˆ

s

µ2

˙´2ε „
1

4ε4
`

1

ε3
`

ˆ

4´
7

24
π2

˙

1

ε2
`

ˆ

16´
7

6
π2 ´

14

3
ζ3

˙

1

ε

` 64´
14

3
π2 ´

56

3
ζ3 ´

7

480
π4 `Opεq



,

J p3q
∆s
psq “

αs
2π

ˆ

s

µ2

˙´ε„ˆ

2´
π2

3

˙

1

ε2
`

ˆ

16´
2

3
π2 ´ 12 ζ3

˙

1

ε
` 92´

7

2
π2 ´ 24 ζ3 ´

7

18
π4 `Opεq



,

J p2q
∆s
psq “

αs
2π

ˆ

s

µ2

˙´ε„ˆ

2´
π2

3

˙

1

ε2
`

ˆ

14´
2

3
π2 ´ 10 ζ3

˙

1

ε
` 74´

23

6
π2 ´ 20 ζ3 ´

7

36
π4 `Opεq



,

ÿ

c‰i,d‰i,c
e‰i,c,d

J̃ icdes Bcde “ ´ fgi
αs
2π

ÿ

c‰i,d‰i,c
e‰i,c,d

Bcde

„

1

2
ln
s̄ce
s̄de

ln2 s̄cd
µ2
`

1

6
ln3 s̄ce

s̄de
` Li3

ˆ

´
s̄ce
s̄de

˙

`Opεq


.

The hard-collinear integrated kernels are given by

J ijrhc ” N1

ż

dΦ
pijrq
rad

P hc
ijprq

sij

” J
p0gq
hc

´

s̄
pijrq
jr

¯

fqq̄ij ` J
p1gq
hc

´

s̄
pijrq
jr

¯

pfgqij ` f
gq̄
ij q ` J

p2gq
hc

´

s̄
pijrq
jr

¯

fggij , (E.7)

where

J
p0gq
hc psq “

αs
2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
TR

´2

3´ 2ε

“
αs
2π

ˆ

s

µ2

˙´ε

TR

„

´
2

3

1

ε
´

16

9
´

ˆ

140

27
´

7

18
π2

˙

ε´

ˆ

1252

81
´

28

27
π2 ´

50

9
ζ3

˙

ε2 `Opε3q


,

J
p1gq
hc psq “

αs
2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
CF

ˆ

´
1

2

˙

“
αs
2π

ˆ

s

µ2

˙´ε

CF

„

´
1

2

1

ε
´ 1´

ˆ

3´
7

24
π2

˙

ε´

ˆ

9´
7

12
π2 ´

25

6
ζ3

˙

ε2 `Opε3q


,

J
p2gq
hc psq “

αs
2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
CA

ˆ

´
1

3´ 2ε

˙

(E.8)

“
αs
2π

ˆ

s

µ2

˙´ε

CA

„

´
1

3

1

ε
´

8

9
´

ˆ

70

27
´

7

36
π2

˙

ε´

ˆ

626

81
´

14

27
π2 ´

25

9
ζ3

˙

ε2 `Opε3q


.
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A useful combination of these constituent integrals is

J khcpsq “ pfqk`f
q̄
k q J

p1gq
hc psq ` fgk

„

Nf J
p0gq
hc psq `

1

2
J
p2gq
hc psq



“
αs
2π

ˆ

s

µ2

˙´ε „
γhc
k

ε
` φhc

k `Opεq


. (E.9)

The hard double-collinear integrated kernels are given by

J ijkrhcc ” N 2
1

ż

dΦ
pijkrq
rad,2

P hc
ijkprq

s2
ijk

” J
p0gq
hcc

´

s̄
pijkrq
kr

¯

pfqq̄q
1

ijk ` fqq̄q̄
1

ijk q ` J
p0g,idq
hcc

´

s̄
pijkrq
kr

¯

pfqq̄qijk ` f
qq̄q̄
ijk q

` J
p1gq
hcc

´

s̄
pijkrq
kr

¯

fqq̄gijk ` J
p2gq
hcc

´

s̄
pijkrq
kr

¯

pfggqijk ` f
ggq̄
ijk q ` J

p3gq
hcc

´

s̄
pijkrq
kr

¯

fgggijk , (E.10)

with

J
p0gq
hcc psq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

CFTR

„

1

6

1

ε2
`

ˆ

13

36
`

1

9
π2

˙

1

ε
´

119

216
`

17

108
π2 `

14

3
ζ3 `Opεq



,

J
p0g,idq
hcc psq “

ˆ

αs
2π

˙2 ˆ
s

µ2

˙´2ε

CF
`

2CF ´ CA
˘

ˆ

„

´

ˆ

13

8
´

1

4
π2 ` ζ3

˙

1

ε
´

227

16
` π2 `

17

2
ζ3 ´

11

120
π4 `Opεq



,

J
p1gq
hcc psq “

ˆ

αs
2π

˙2 ˆ
s

µ2

˙´2ε

ˆ

#

CFTR

„

´
2

3

1

ε3
´

31

9

1

ε2
´

ˆ

889

54
´ π2

˙

1

ε
´

23833

324
`

31

6
π2 `

160

9
ζ3 `Opεq



`CATR

„

´
1

ε3
´

89

18

1

ε2
´

ˆ

1211

54
´

3

2
π2

˙

1

ε
´

2620

27
`

89

12
π2 `

80

3
ζ3 `Opεq



+

,

J
p2gq
hcc psq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε
#

C2
F

„

´
2

ε3
´

37

4

1

ε2
´

ˆ

307

8
´ 3π2 ` 4 ζ3

˙

1

ε

´
2361

16
`

111

8
π2 `

136

3
ζ3 ´

π4

3
`Opεq



`CFCA

„

´
1

2

1

ε3
´

23

12

1

ε2
´

ˆ

241

36
´

1

18
π2 ´ 4 ζ3

˙

1

ε

´
4609

216
`

53

216
π2 ´

47

6
ζ3 `

7

20
π4 `Opεq



+

,

J
p3gq
hcc psq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

C2
A

„

´
5

2

1

ε3
´

77

6

1

ε2
´

ˆ

48´
11

4
π2 ` 3 ζ3

˙

1

ε

´
16943

108
`

61

4
π2 `

56

3
ζ3 ´

9

40
π4 `Opεq



. (E.11)
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For the hard-collinear times hard-collinear integrated kernels we have

J ijklrhcbhc ” N 2
1

ż

dΦ
pijr,klrq
rad,2

P hc
ijprqpsir, sjrq

sij

P hc
klprqpskr, slrq

skl

” Jqqqq
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯

fqq̄ij f
q1q̄1

kl

` Jqqqg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯ ”

fqq̄ij pf
gq1

kl `f
gq̄1

kl q`pf
gq1

ij `f
gq̄1

ij qf
qq̄
kl

ı

` Jqqgg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯

pfqq̄ij f
gg
kl ` f

gg
ij f

qq̄
kl q

` Jqgqg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯

pfgqij ` f
gq̄
ij qpf

gq1

kl ` f
gq̄1

kl q

` Jqggg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯ ”

pfgqij `f
gq̄
ij qf

gg
kl `f

gg
ij pf

gq
kl `f

gq̄
kl q

ı

` Jgggg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯

fggij f
gg
kl , (E.12)

with

Jqqqq
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

T 2
R

„

4

9

1

ε2
`

64

27

1

ε
`

284

27
´

16

27
π2 `Opεq



,

Jqqqg
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

TR CF

„

1

3

1

ε2
`

14

9

1

ε
`

181

27
´

4

9
π2 `Opεq



,

Jqqgg
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

TR CA

„

2

9

1

ε2
`

32

27

1

ε
`

142

27
´

8

27
π2 `Opεq



,

Jqgqg
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

C2
F

„

1

4

1

ε2
`

1

ε
`

17

4
´

1

3
π2 `Opεq



,

Jqggg
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

CA CF

„

1

6

1

ε2
`

7

9

1

ε
`

181

54
´

2

9
π2 `Opεq



,

Jgggg
hcbhcpss

1q “

ˆ

αs
2π

˙2 ˆ
ss1

µ4

˙´ε

C2
A

„

1

9

1

ε2
`

16

27

1

ε
`

71

27
´

4

27
π2 `Opεq



. (E.13)

The soft-times-hard-collinear integrated kernels read

J jkricdsbhc ” N 2
1

ż

dΦ
pjkr,icdq
rad,2

P hc
jkprq

sjk
Epiqcd

” fgi

”

J
4p1gq

sbhc

´

s̄
pµq
kr , s̄

pµq
cd

¯

fqq̄jk ` J
4p2gq

sbhc

´

s̄
pµq
kr , s̄

pµq
cd

¯

pfgqjk`f
gq̄
jk q ` J

4p3gq
sbhc

´

s̄
pµq
kr , s̄

pµq
cd

¯

fggjk

ı

µ“jkr,icd
,

J jkricrsbhc ” N 2
1

ż

dΦ
pjkr,icrq
rad,2

P hc
jkprq

sjk
Epiqcr

” fgi

”

J
3p1gq

sbhc

´

s̄
pµq
kr , s̄

pµq
cr

¯

fqq̄jk ` J
3p2gq

sbhc

´

s̄
pµq
kr , s̄

pµq
cr

¯

pfgqjk`f
gq̄
jk q ` J

3p3gq
sbhc

´

s̄
pµq
kr , s̄

pµq
cr

¯

fggjk

ı

µ“jkr,icr
,

J krjicsbhc ” N 2
1

ż

dΦ
pkrj,icjq
rad,2

P hc
jkprq

sjk
Epiqjc

” fgi

”

J
3p1gq

sbhc

´

s̄
pµq
jr , s̄

pµq
jc

¯

fqq̄jk ` J
3p2gq

sbhc

´

s̄
pµq
jr , s̄

pµq
jc

¯

pfgqjk`f
gq̄
jk q ` J

3p3gq
sbhc

´

s̄
pµq
jr , s̄

pµq
jc

¯

fggjk

ı

µ“krj,icj
,

J krjirsbhc ” N 2
1

ż

dΦ
pµq
rad,2

P hc
jkprq

sjk
Epiqjr

” fgi

”

Jgqqsbhc

´

s̄
pµq
jr

¯

fqq̄jk ` J
ggq
sbhc

´

s̄
pµq
jr

¯

fgj pf
q
k`f

q̄
k q

` Jgqgsbhc

´

s̄
pµq
jr

¯

pfqj `f
q̄
j qf

g
k ` J

ggg
sbhc

´

s̄
pµq
jr

¯

fggjk

ı

µ“tkrj,irj; krj,ijru
, (E.14)
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with

J
4p1gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

TR

„

´
2

3

1

ε3
´

28

9

1

ε2
´

ˆ

344

27
´

7

9
π2

˙

1

ε
´

3928

81
`

98

27
π2 `

100

9
ζp3q `Opεq



,

J
4p2gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

CF

„

´
1

2

1

ε3
´

2

ε2
´

ˆ

8´
7

12
π2

˙

1

ε
´ 30`

7

3
π2 `

25

3
ζp3q `Opεq



,

J
4p3gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

CA

„

´
1

3

1

ε3
´

14

9

1

ε2
´

ˆ

172

27
´

7

18
π2

˙

1

ε
´

1964

81
`

49

27
π2 `

50

9
ζp3q `Opεq



,

J
3p1gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

TR

„

´
2

3

1

ε3
´

28

9

1

ε2
´

ˆ

362

27
´

8

9
π2

˙

1

ε
´

4504

81
`

112

27
π2 `

136

9
ζp3q `Opεq



,

J
3p2gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

CF

„

´
1

2

1

ε3
´

2

ε2
´

ˆ

17

2
´

2

3
π2

˙

1

ε
´ 35`

8

3
π2 `

34

3
ζp3q `Opεq



,

J
3p3gq

sbhc ps,s
1q “

ˆ

αs
2π

˙2ˆ
ss1

µ4

˙´ε

CA

„

´
1

3

1

ε3
´

14

9

1

ε2
´

ˆ

181

27
´

4

9
π2

˙

1

ε
´

2252

81
`

56

27
π2 `

68

9
ζp3q `Opεq



,

Jgqqsbhcpsq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

TR

„

´
2

3

1

ε3
´

28

9

1

ε2
´

ˆ

344

27
´

17

18
π2

˙

1

ε
´

4225

81
`

128

27
π2 `

139

9
ζp3q `Opεq



,

Jgqgsbhcpsq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

CF

„

´
1

2

1

ε3
´

2

ε2
´

ˆ

9´
5

6
π2

˙

1

ε
´ 38`

19

6
π2 `

101

6
ζp3q `Opεq



,

Jggqsbhcpsq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

CF

„

´
1

2

1

ε3
´

2

ε2
´

ˆ

8´
2

3
π2

˙

1

ε
´ 32`

17

6
π2 `

59

6
ζp3q `Opεq



, (E.15)

Jgggsbhcpsq “

ˆ

αs
2π

˙2ˆ
s

µ2

˙´2ε

CA

„

´
1

3

1

ε3
´

14

9

1

ε2
´

ˆ

199

27
´

5

9
π2

˙

1

ε
´

2477

81
`

119

54
π2 `

101

9
ζp3q `Opεq



.

Finally the hard-collinear real-virtual integrated kernels read

J̃ ijrhc ” N1

ż

dΦ
pijrq
rad

P̃ hc
ijprq

sij
” J̃

p0gq
hc

´

s̄
pijrq
jr

¯

fqq̄ij ` J̃
p1gq
hc

´

s̄
pijrq
jr

¯

pfgqij `f
gq̄
ij q ` J̃

p2gq
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