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Measurements of the branching ratios of B → D(∗)τ ν̄/B → D(∗)ℓν̄ and Bc → J/ψ τ ν̄/Bc → J/ψ ℓν̄
by the BaBar, Belle and LHCb collaborations consistently point towards an abundance of taus
compared to channels with light leptons. However, the ratio Λb → Λcτ ν̄/Λb → Λcℓν̄ shows a
relative deficit in taus. In this paper, we critically address whether data still points towards a
coherent pattern of deviations, in particular in light of the sum rule relating these decays in a model-
independent way. We find that no common new physics explanation of all ratios is possible (within 2σ
or 1.5σ, depending on the R(Λc) normalization to light lepton channels). While this inconsistency
could be a statistical fluctuation, further measurements are required in order to converge to a
coherent pattern of experimental results.

I. INTRODUCTION

The Standard Model (SM) has a solid experimental
foundation since its formulation half a century ago [1–
3]. However, several incontestable observations, like the
presence of dark matter or neutrino oscillation (see, e.g.,
Refs. [4, 5] for recent reviews), prove the existence of
New Physics (NP). In the quest for its search, a use-
ful approach is to look at the violation of (approximate)
symmetries of the SM, like, e.g., lepton flavour univer-
sality (LFU) which is only broken in the SM Lagrangian
by the small Yukawa couplings.
In fact, several hints for the violation of LFU have

emerged over the last years (see e.g. Refs. [6–8] for a
recent review). In particular, ratios of the semi-leptonic
b hadrons decays

R(D(∗)) ≡ BR(B → D(∗)τ ν̄)/BR(B → D(∗)ℓν̄) ,

R(J/ψ) ≡ BR(Bc → J/ψ τ ν̄)/BR(Bc → J/ψ ℓν̄) ,

R(Λc) ≡ BR(Λb → Λcτ ν̄)/BR(Λb → Λcℓν̄) ,

(1)

where CKM and hadronic uncertainties drop out and are
reduced, respectively, show deviations from the SM pre-
dictions.1
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Both R(D) and R(D∗) have been measured by
BaBar [9, 10] and Belle [11–15] and a first combined mea-
surement of these ratios has just recently been announced
by LHCb [16], which previously had measured only the
latter one [17–19]. A global average for these quantities
has been provided by the HFLAV collaboration [20],

R(D) = 0.358± 0.025± 0.012 ,

R(D∗) = 0.285± 0.010± 0.008 ,
(2)

where the first uncertainty is statistical and the second is
systematic. When comparing this result with the recent
SM predictions [20–26],

RSM(D) = 0.298± 0.004 ,

RSM(D∗) = 0.254± 0.005 ,
(3)

one observes a tension at the level of 3.2 σ. As the de-
termination of |Vcb| from the modes with light leptons is
consistent with global CKM fits [27, 28], it is regularly
assumed that the deviation implies an over-abundance of
taus.
An analogous behaviour has been observed for

R(J/ψ) [29]

R(J/ψ) = 0.71± 0.17± 0.18 . (4)

To compare this result with SM predictions, we can rely
on the latest estimates [30–33],

RSM(J/ψ) = 0.258± 0.004 , (5)

that are compatible with data at the 1.8 σ level. However,
we are still missing a determination of the tensor form
factors from lattice, and the lack of a precise knowledge

http://arxiv.org/abs/2211.14172v1
mailto:marco.fedele@kit.edu
mailto:monika.blanke@kit.edu
mailto:andreas.crivellin@cern.ch
mailto:igurosyuhei@gmail.com
mailto:teppeik@kmi.nagoya-u.ac.jp
mailto:ulrich.nierste@kit.edu
mailto:wryou1985@gmail.com


2

for these form factors from other sources precludes an
accurate NP analysis [31, 34–37]. For this reason, we do
not include this observable in our NP analysis.
Finally, LHCb [38] finds

R(Λc) = 0.242± 0.026± 0.040± 0.059 , (6)

where the first uncertainty is statistical, the second is
systematic and the third is due to external branching
fraction measurements. A recent reanalysis of this result
has been performed in Ref. [39] where, in order to reduce
systematic errors, the tau decay channel measured by the
LHCb collaboration is normalized to the SM prediction
for Γ(Λb → Λcµν̄), rather than employing its experimen-
tal average. Such a procedure improves the accuracy and
slightly amplifies the central value, yielding

R(Λc) = |0.04/Vcb|2(0.285± 0.073) . (7)

In comparison the SM prediction, where the absence of a
subleading Isgur-Wise function atO(Λ̄/mc,b) in the Λb →
Λc transition suppresses the theoretical uncertainty [40],
is equal to [41–47]

RSM(Λc) = 0.324± 0.004 . (8)

Although this value does not point towards a strong ten-
sion with the SM, it actually hints this time to an under-
abundance of taus.
This opposite behaviour compared to the other ratios is

unexpected as all processes are described by the same ef-
fective Hamiltonian for b → clν transitions. Many model-
independent NP analyses have been performed to explain
either the deviation observed in R(D) and R(D∗) [48–
78], and/or R(Λc) alone [47, 79–84], with NP effects con-
nected to tau leptons. However, a joint description of the
three LFU ratios is mandatory, because the three decay
modes are correlated in a model-independent way: R(D),
R(D∗) and R(Λc) fulfill a sum rule which is rooted in
their properties in the heavy quark limit [85, 86].
The intent of this paper is therefore to critically scru-

tinize the compatibility of data. We try to understand,
by means of an EFT approach, whether it is possible to
introduce further NP effects in order to address exper-
imental measurements, or if on the other hand we are
facing a situation where current results are incompatible
among themselves. While most previous analyses were
restricted to NP contributions in tau final states, we also
consider the possibility to introduce NP coupled to light
leptons, thereby modifying the sum rule in order to po-
tentially accommodate data.
This paper is organized a follows: in Sec. II we intro-

duce the EFT formalism employed to perform the NP
analyses and in Sec. III we update the sum rule, which
is modified once taking the latest results into account.
In Sec. IV we review all the possible, simple UV comple-
tions that can produce the effects described by the EFT

at the low-scale, and in Sec. V we report the results of
our fits. We draw our conclusions in Sec. VI.

II. EFT FORMALISM

We use the effective Hamiltonian

Heff = 2
√
2GFVcb

[

(1 + Cl
VL

)Ol
VL

+ Cl
SR

Ol
SR

+Cl
SL

Ol
SL

+ Cl
TO

l
T

]

,
(9)

with the dimension-six operators

Ol
VL

= (c̄γµPLb)
(

l̄γµPLνl
)

,

Ol
SR

= (c̄PRb)
(

l̄PLνl
)

,

Ol
SL

= (c̄PLb)
(

l̄PLνl
)

,

Ol
T = (c̄σµνPLb)

(

l̄σµνPLνl
)

,

(10)

where σµν = i
2 [γµ, γν ]. Note that in our convention for

the effective Hamiltonian the Wilson coefficients (WCs)
Cl

i describe a genuine NP effect, and vanish in the SM.
Moreover, we do not include effects of possibly light right-
handed neutrinos,2 nor do we consider NP effects in
right-handed quark vector currents, which are LFU at
the dimension-six level [93–96].
Finally, it is important to remember that the operators

and WCs in Eq. (9) are scale-dependent. We perform our
analysis for a heavy NP scale, which we take to be 2TeV
for concreteness. To connect these coefficients to the de-
cay scale µ = µb = 4.2GeV, we use the renormalization-
group evolution (RGE) for the dimension-six operators
at the QCD next-to-leading and the electroweak leading
orders including the top-quark threshold corrections [97]
and take the QCD one-loop matching corrections into
account at the NP scale [98],

Cl
VL

(µb) = 1.12Cl
VL

(2TeV) ,

Cl
SR

(µb) = 2.00Cl
SR

(2TeV) , (11)
(

Cl
SL

(µb)
Cl

T (µb)

)

=

(

1.91 −0.38
0. 0.89

)(

Cl
SL

(2TeV)
Cl

T (2TeV)

)

.

III. UPDATED SUM RULE

R(D(∗)) and R(Λc) have strong theoretical correla-
tions as they depend on the same transition at the quark
level. Given the newly measured value for R(Λc) [38],
and the updates forR(D(∗)) [16], we update here the sum
rule connecting the three LFU ratios [85, 86]. For this we
start from a semi-numerical formula for R(Λc), assuming
NP contributions to the tau channel only and using the
Λb → Λc lattice QCD results of Refs. [43, 45, 75]:
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R(Λc)

RSM(Λc)
=
∣

∣1 + Cτ
VL

∣

∣

2
+ 0.50Re

[(

1 + Cτ
VL

)

Cτ∗
SR

]

+ 0.33Re
[(

1 + Cτ
VL

)

Cτ∗
SL

]

+ 0.52Re
(

Cτ
SL

Cτ∗
SR

)

+ 0.32
(

|Cτ
SL

|2 + |Cτ
SR

|2
)

− 3.11Re
[(

1 + Cτ
VL

)

Cτ∗
T

]

+ 10.4 |Cτ
T |2 , (12)

where the Wilson coefficients are at the scale µ = µb [45],
and we used mc(µb) = 0.92GeV for the form factors of
the scalar and pseudoscalar currents.
Combining this with the general NP formulae for

R(D(∗)) [99] and Eq. (12), we find3

R(Λc)

RSM(Λc)
= 0.280

R(D)

RSM(D)
+ 0.720

R(D∗)

RSM(D∗)
+ δΛc

,

(13)

with

δΛc
= Re

[(

1 + Cτ
VL

) (

0.314Cτ∗
T − 0.003Cτ∗

SR

)]

+ 0.014
(

|Cτ
SL

|2 + |Cτ
SR

|2
)

+ 0.004Re
(

Cτ
SL

Cτ∗
SR

)

− 1.30 |Cτ
T |2 . (14)

This is to be compared with

R(Λc)

RSM(Λc)
≃ 0.262

R(D)

RSM(D)
+ 0.738

R(D∗)

RSM(D∗)
, (15)

found in Ref. [86] and implying the prediction R(Λc) =
0.38± 0.01± 0.01.
It is interesting to notice that a deviation in R(D∗)

from the SM has a stronger impact on R(Λc) compared
to one in R(D). Therefore, the latest measurement of
LHCb [16] with a value for R(D∗) quite close to the SM
value while that of R(D) being further away, decreases
the expected deviation in R(Λc).
Equation (13) holds in any tau-philic NP scenario de-

scribed by the effective Hamiltonian in Eq. (9). More-
over, for |Cτ

T | ≪ 1, the correction factor δΛc
is irrelevant.

We therefore obtain the model-independent prediction

R(Λc) ≃ RSM(Λc)

(

0.280
R(D)

RSM(D)
+ 0.720

R(D∗)

RSM(D∗)

)

= RSM(Λc) (1.172± 0.038)

= 0.380± 0.012± 0.005 , (16)

where the first error arises from the experimental un-
certainty of R(D) and R(D∗), and the second one from
RSM(Λc). While the central value of the predicted R(Λc)
is unchanged respect to Ref. [86], the obtained errors are
smaller.

2 Studies including right-handed neutrinos in R(D(∗)) have been
carried out, e.g., in Refs. [87–92].

3 We obtain this sum rule by imposing a condition such that a
Cτ

VL
Cτ∗

SL
interference term is absent in δΛc

, while Ref. [85] has

imposed such a condition for Cτ
VL
Cτ∗

SR
. We find that although

both procedures are numerically equivalent, our procedure is
slightly more accurate whenever the δΛc

term is ignored.

IV. NP SCENARIOS

In this Section we consider NP scenarios including
WCs by the addition of at most two new heavy fields.
In the cases of two fields, we allow one of them to couple
to tau leptons, and the other to both light leptons with
the same strength.4 We consider all NP WCs to be real,
unless stated otherwise.

A. Scalar Leptoquarks

Out of the five scalar Leptoquarks (LQs) [101], only
three can generate b → clν transitions:

• S1 = (3̄,1, 1/3) gives Cl
VL

and/or the combina-

tion Cl
SL

= −4Cl
T (at the matching scale) that be-

comes Cl
SL

(µb) ≃ −8.9Cl
T (µb) at the decay scale.

Solutions to the R(D) and R(D∗) anomalies by
means of this LQ can be found in Refs. [57, 102–
112]. Note however that the SU(2)L symmetry im-
plies an inevitable correlation between Cl

VL
and a

tree-level contribution to b → sνlνl. Hence, a con-
straint from B → K∗νν̄ measurement is unavoid-
able [113–115]. Moreover, additional severe bounds
come from the S1–νl box diagrams contributions to
∆Ms [116, 117].

• R2 = (3,2, 7/6), a weak doublet scalar whose foot-
prints at the B-meson scale are described by a con-
tribution satisfying Cl

SL
= 4Cl

T . Once again, due

to RGE this relation becomes Cl
SL

(µb) ≃ 8.4Cl
T (µb)

at the low scale. In this specific scenario we allow
the WCs to be complex, since this is a necessary
requirement in order to address at the same time
R(D) and R(D∗) [85, 86, 100, 109, 118–121].

• S3 = (3̄,3, 1/3), an SU(2)L-triplet scalar that is
parametrized at the low scale by the WC Cl

VL
.

Models which contain such a solution to the LFU
ratios have been studied in Refs. [52, 57, 102, 103,
105, 108, 121]. Similarly to the S1 case, also
this scenario suffers from the constraint induced by
B → K∗νν̄, severely limiting the allowed size for
Cl

VL
[103].

4 Strictly speaking, if the NP field coupling to light leptons is a lep-
toquark, the stringent constraints from lepton flavour violating
decays require the introduction of two such fields, one coupling
to muons and the other to electrons [100].
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It is important to remember that, in order to avoid the
undesirable effect of proton decays, one has to forbid di-
quark couplings to the LQ for S1 and S3 (e.g. by a sym-
metry, see Ref. [122]).

B. Vector Leptoquarks

A second family of solutions for the LFU ratios involves
vector LQs.5 Out of the five vector LQs [101] only two
can produce effects of interest in our study, namely:

• U1 = (3,1, 2/3), an SU(2)L-singlet vector that
produces at the low scale the WCs Cl

VL
and/or

Cl
SR

. Models that include this LQ in a Pati-
Salam extension of the SM can be found, e.g., in
Refs. [69, 109, 110, 117, 123–149].

• V2 = (3̄,2, 5/6), a weak doublet vector whose ef-
fects at the decay scale can be described by means
of the WC Cl

SR
. An example for this kind of solu-

tion can be found, e.g., in Ref. [150]. This scenario,
previously disfavoured due to its limited impact on
R(D∗), is now viable again due to the recent LHCb
result hinting at a smaller deviation in R(D∗) com-
pared to the one in R(D) [16]. Note that, in order
to avoid proton decay, also this scenario requires a
symmetry that prevents di-quark coupling to V2.

C. Charged Higgses

A charged scalar boson (H±) generates the WCs Cl
SR

and Cl
SL

. The 2HDMmodel of type II at large tanβ [151–
153] leads to the wrong sign to fit data, but the 2HDM
with a generic flavour structure [87, 154–170] can lead to
constructive effects. It is interesting to note that while a
fit including only Cl

SL
requires it to be complex in order

to properly address the data, this is no longer necessary
once both WCs are allowed at the same time, as in our
fits.

D. Singly charged vector boson

W ′, being a charged vector boson, generates Cl
VL

[171–
176]. However, such solutions are no more viable due to
constraints from ∆Ms, b → sνν and LHC direct searches
like pp(bb̄) → Z ′ → τ+τ−, which arose due to SU(2)L
invariance. Similarly, a W ′

R scenario [88] is no longer
compatible with collider bounds [177].

5 It is worth mentioning that these solutions usually require some
sort of UV completion in order to explain the origin of a massive
spin-1 particle.

scenario R(D) R(D∗) R(Λc)

exp. 0.36(3) 0.29(1) 0.24(7)

S1 0.36(3) 0.29(1) 0.38(3)

R2 0.36(3) 0.28(1) 0.40(4)

S3 0.33(2) 0.29(1) 0.38(2)

U1 0.36(3) 0.28(1) 0.37(2)

V2 0.36(3) 0.28(1) 0.36(1)

H
± 0.36(3) 0.28(1) 0.36(2)

TABLE I. Predicted values for R(Λc) from a fit to R(D) and
R(D∗) for several single particle extensions of the SM which
couple to tau leptons.

V. RESULTS AND DISCUSSION

We are now ready to assess how 1D and 2D extension of
the SM perform in explaining R(D), R(D∗) and R(Λc),
where the dimensionality of the extension refers to the
number of new fields, not to the number of WCs gener-
ated. Our fits are performed by carrying out a Markov
Chain Monte Carlo Bayesian analysis, implementing the
full analytic expressions and including all theoretical cor-
relations for all the analysed modes, using the HEPfit

code [178]. Flat priors with large intervals for the NP
WCs have been allowed in all cases, in order to obtain
prior-independent results. Given that our goal is to test
the validity of the sum rule among the three LFU ra-
tios, we proceed in the following way: as a first step, we
perform a fit only to the ratios in order to assess how
they comply with the sum rule; in the case of a positive
result, we therefore inspect and comment on how they
fare once additional constraints are considered, like, e.g.,
the Bc → τν decay (which we allow to be as large as
60% [85]), the D∗− polarization [179] or constraints on
|Vcb| coming from fits to the Unitary Triangle [27, 28].
For the sake of clarity, we list below our SM predic-

tions for the three LFU ratios, based on the lattice results
available for all three channels [43, 180, 181]:

RSM(D) = 0.299± 0.011 ,

RSM(D∗) = 0.265± 0.013 ,

RSM(Λc) = 0.333± 0.010 .

(17)

Our conclusions below are however unchanged if one em-
ploys instead the HFLAV average of the SM prediction,
as reported in Eq. (3).

A. 1D scenarios

Assuming that NP couples to taus only, none of the
extensions discussed in the previous Section is capable of
describing in a satisfactory way the measurements of the
three LFU ratios. This does not come as a surprise, since
it was already known that the three ratios are connected
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scenario R(Λc) R(D) R(D∗)

exp. 0.24(7) 0.36(3) 0.29(1)

S1 0.23(7) 0.21(8) 0.16(8)

S3 0.21(8) 0.18(7) 0.17(6)

U1 0.22(8) 0.15(8) 0.17(8)

TABLE II. Predicted values for R(D) and R(D∗) from a fit
to the experimental value of R(Λc) [38].

by the sum rule derived in Refs. [85, 86] and Sec. III:
if two of them are measured above the SM prediction,
like is the case for R(D) and R(D∗), a similar behaviour
is expected for the third one, contrary to what is the
case for R(Λc). For a recent result of 1D global fits to
all relevant data in this sector, we refer the reader to
Ref. [99].
To better assess the (in)compatibility of data under

the 1D hypotheses, we therefore performed the follow-
ing test: first, for each scenario capable to fit R(D) and
R(D∗), we predict the value for R(Λc); in a similar fash-
ion, for each scenario capable to fit R(Λc), we predict
the values for R(D) and R(D∗). It is worth mention-
ing that, as already observed in Refs. [85, 86], the only
prediction for R(Λc) affected (albeit marginally) by al-
lowing the Bc → τν decay up to 60% instead of a lower
value, e.g. 30%, is the one involving a charged Higgs. We
report our findings in Tables I and II, respectively. Note
that in Table II we report only the scenarios of a scalar
LQ S1 or S3, or of a vector LQ U1, since those are the
only ones capable to reproduce the measured value of
R(Λc). As expected, in the case where the meson LFU
ratios are considered in the fit, a large prediction for the
baryon one is obtained, compatible with the prediction of
the sum rule in Eq. (16), larger than the SM prediction
and hence ∼ 2σ above its measured value. On the other
hand, when predicting the values for R(D) and R(D∗)
from a fit to R(Λc), the opposite pattern is observed:
a value for the latter ratio complying with data would
imply values for the former ones smaller than their SM
predictions, and ∼ 2σ below their measured values. It is
worth mentioning that, if one uses for R(Λc) the value
suggested in Ref. [39], the discrepancy among predicted
values and measured ones is reduced to ∼ 1.5σ, as shown
in Table III.
Nevertheless, the current uncertainty on R(Λc) is still

large enough that those models cannot be ruled out
at present, and a potential decrease in the discrepancy
among R(D), R(D∗) and their SM prediction could re-
duce the induced tension in R(Λc), or vice versa.

B. 2D scenarios

Here we allow a first new field to couple to taus only,
and a second one to couple to muons and electrons
equally. For this reason, we identify fields belonging to

scenario R(Λc) R(D) R(D∗)

Ref. [39] 0.29(7) 0.36(3) 0.29(1)

S1 0.28(7) 0.25(8) 0.19(8)

S3 0.27(7) 0.23(6) 0.21(6)

U1 0.28(7) 0.17(9) 0.22(8)

TABLE III. Predicted values for R(D) and R(D∗) using the
value of R(Λc) from Ref. [39], assuming |Vcb| = 0.04.

the first class with the label τ , e.g., Rτ
2 , while fields re-

lated to the second one are labelled with ℓ, e.g., Sℓ
1. Hav-

ing at hand six possible kinds of fields parametrized by
a different low-energy EFT description, and each being
allowed to couple either to the heavy charged lepton or to
the light ones, we ultimately inspected a total of 36 po-
tential 2D scenarios. Out of all these possibilities, we only
found two scenarios capable to reproduce in a satisfac-
tory way all three LFU ratios, with all the other scenarios
still implying an over-production of taus in R(Λc) at the
2 σ level. The first viable model is composed by an S1 LQ
coupling to light fermions, together with an R2 coupled
to taus, namely the pair formed by Sℓ

1 and Rτ
2 . The sec-

ond possibility shares the same NP extension coupled to
muons and electrons, but requires furthermore a charged
Higgs coupled to taus, i.e., the pair formed by Sℓ

1 and
H±τ . The fact that both scenarios rely on the presence
of an SU(2)L-singlet scalar LQ coupled to light fermions
is the reason why these scenarios apparently comply with
data, but is also the origin why they ultimately fail once
faced with additional constraints.

Indeed, once NP is allowed to couple to both heavy
and light charged leptons, the numerical formulae for the
LFU ratios and for the sum rule connecting them have to
be modified accordingly. Observing now that Sℓ

1 implies
the presence of a tensor WC, a strong violation of the sum
rule (and hence a potential opposite behaviour of R(Λc)
w.r.t.R(D) and R(D∗)) could be induced in the case of
a non-negligible size for this coefficient. This is indeed
what we find in our fits, where in both viable scenarios
we need a strong contribution to the scalar and tensor
currents, equal to Cℓ

SL
= −4Cℓ

T ≃ ±1, in order to obtain
a value R(Λc) ≃ 0.24.

Moreover, this is not the only requirement for the WCs
coupling to light leptons: Sℓ

1 also generates a vector cur-
rent mediated by Cℓ

VL
, whose value is constrained by the

fit in strong correlation with that of the former pair of
WCs, and determined to be in both scenarios equal to
Cℓ

VL
≃ −1. This corresponds to a −100% correction in

the light leptons vector current w.r.t. the SM contribu-
tion, inducing a complete cancellation of this term.

However, these solutions are actually not viable once
further constraints are taken into account: NP con-
tributions to the vector current involving light leptons
are strongly constrained by CKM fits since they would
heavily alter the determination of |Vcb| from various
modes [27, 28], and are also constrained by high-pT lep-
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ton tail searches at the LHC |Ce
VL

| < 0.25 [120, 182]
and, even more, by the aforementioned bound imposed
on S1 LQs by B → K∗νν̄ measurement [113], which im-
plies −0.011 ≤ Cℓ

VL
≤ 0.027 [115]; on the other hand,

a strong NP tensor component for light leptons is also
heavily constrained by the high-pT search [183], which
implies |Ce

T | < 0.32, or by an analysis of angular distri-
bution [184, 185] and D∗− polarization data [179], which
requires it to be even smaller, namely |Cℓ

T | ≤ 0.05 [186].

C. General Model-Independent fit

For completeness, we conclude our analysis of viable
NP scenarios by performing a fully model-independent fit

for eight generic WCs, i.e., Cτ,ℓ
VL,SL,R,T 6= 0, which we take

to be real.6 The results turn out to be similar to the ones
observed for the 2D scenarios: while it is indeed possible
to find regions of the eight-dimensional WC parameter
space where the values for all three LFU ratios are found
to be compatible with observed measurements, when ad-
ditional constraints like the |Vcb| determination within
CKM fits, angular distributions data, D∗− polarization
and collider bounds are considered, these solutions are
no longer acceptable.

VI. CONCLUSIONS

In this paper, we have critically analysed the latest re-
sults concerning LFU ratios in B-meson charged-current
decays, aiming to assess the compatibility of data which
is challenged by the measurement ofR(Λc): the latter re-
sult, being smaller than the SM prediction, is in contrast
with R(D) and R(D∗), where an enhancement w.r.t. the
SM of 3.2 σ is observed. Since all these ratios are medi-
ated by the same b → clν̄ transition, their NP predictions
are connected in a model-independent way by a sum rule,
which we updated here while investigating whether the
data at hand complies with it. For this we have relaxed
one assumption of the sum rule, namely that NP affects
b → cτν but not b → cℓν with ℓ = e, µ. Due to the sum
rule, no single particle can explain all three LFU ratios
at the same time, and even when considering the differ-
ent normalization suggested in Ref. [39] for R(Λc) the
discrepancy is still at the ∼ 1.5 σ level.

We therefore investigated whether the addition of a
second NP field, this time coupling equally to light

charged leptons ℓ = e, µ, could induce a modification in
the sum rule such that it is possible to address the oppo-
site behaviour of R(Λc) compared to R(D(∗)). While we
found two possible scenarios capable to address the three
LFU ratios at the same time, namely one formed by the
pair Sℓ

1 and Rτ
2 , and the second formed by the couple Sℓ

1

and H±τ , we ultimately ruled out these possibilities as
well using CKM fits, B → K∗νν̄, angular distributions
and high-pT collider bounds.
We further performed a fit to eight WCs, half of them

related to taus with the remaining associated with light
charged leptons. Even in this general case we found that
while a fit to the three LFU ratios might find viable solu-
tions in the eight-dimensional WC parameter space, once
additional constraints are taken into account such a solu-
tion is no longer acceptable. We therefore concluded that
present data cannot be addressed, neither in the SM nor
beyond, in a satisfactory way, as current experimental
results for R(D(∗)) and R(Λc) show an inconsistent pat-
tern. It is therefore mandatory to obtain further exper-
imental results in this sector in order to eventually con-
verge to a coherent data pattern, differently from what
we currently observe. Whether this pattern will lead us
to the SM or to NP, only time will tell.
With our current input and assumptions, we predict

that at least one of the central values of R(D(∗)) or
R(Λc) will move from its present value once more statis-
tics is accumulated, independently of the presence or
nature of NP. Moreover, it might also be possible that
NP is present in the q2 distributions of light lepton
modes, while still resulting in consistent values for |Vcb|,
if a different theoretical approach for the form factors is
used [187]. Interestingly, this might provide a connection
to the anomaly in ∆AFB [188], which requires different
NP related to muons and electrons [114]. Furthermore,
in a UV complete (or simplified) model, NP effects in
∆F = 2 processes occur in general, such that the global
CKM fit could allow for larger NP effects in the determi-
nation of |Vcb|.
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