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Abstract. The Sun may copiously produce hypothetical light particles such as axions or
dark photons, a scenario which can be experimentally probed with so-called helioscopes. Here
we investigate the impact of the angular and spectral distribution of solar dark photons on
the sensitivity of such instruments. For the first time we evaluate this spectral and angular
dependence of the dark photon flux over the whole mass range and apply this information to
existing data from the Hinode Solar X-Ray Telescope. Specifically we use calibration images
for a classical helioscope analysis as well as data from a solar eclipse providing sensitivity to
exceptionally large oscillation lengths. We demonstrate that exploiting the signal features can
boost the constraints by more than one order of magnitude in terms of the mixing parameter
compared to a naive counting experiment.
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1 Introduction

The evidence for dark matter (DM) in the universe makes us confident that there exists physics
beyond the Standard Model (SM). Nevertheless, the lack of exciting signals in spite of huge
experimental efforts suggests that this new physics may differ from common expectations and
may for example manifest itself at much smaller masses and couplings than usually assumed.
One of the most well-motivated ways to add new light degrees of freedom to the SM are
so-called dark photons (DPs) [1, 2], i.e. (massive) vector bosons which interact with the SM
via kinetic mixing. These dark photons are known to be viable DM candidates across a
wide range of masses and predict a number of interesting observable effects even if they only
constitute a small fraction of DM.

In this work we will consider the simple case that the dark photon has no gauge inter-
actions with any other particles from the visible or dark sector, such that the model is fully
characterised by the mixing parameter ε and the DP mass m. The most common approach
to generate a mass for the DP is the Stückelberg mechanism, which circumvents the strong
exclusion limits on the case of a spontaneously broken U(1) via a dark Higgs boson [3, 4].

Constraints on DPs stretch from the GeV-regime that can be investigated in colliders or
beam dump experiments [5–7] to the realm of so-called fuzzy DM [8, 9] at around 10−21eV,
which is extremely hard to probe directly. The strength of these constraints depends on
whether the DP is considered as a DM candidate or as a more general extension of the SM.
In the former case, it is especially interesting to consider those regions of parameter space
that can be explored using haloscopes [10–13], i.e. experiments dedicated to detecting the
presence of DM in the Milky Way halo. In the latter case, searches for DPs are either indirect
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(exploiting for example virtual effects) or rely on local production mechanisms, leading to
substantially more freedom in the parameter space.

A local DP source of particular importance is the Sun, which may produce large numbers
of DPs with mass smaller than or comparable to its temperature (or, more precisely, its plasma
frequency) [14–18]. Due to plasma effects, which can resonantly enhance or strongly suppress
DP production, the production rate depends sensitively on the DP mass. The resulting
“dark” luminosity of the Sun can be used to constrain DP models by requiring that the visible
luminosity remains the dominant form of cooling. This so-called cooling argument can also be
applied to other astrophysical environments, such as horizontal branch stars, red giants [18]
or neutron stars [19]. Furthermore, DP plasma effects play a crucial role in the effects that
DPs can have on the early universe [20–25] where e.g. resonant photon-DP conversion can
distort the CMB black body spectrum. Furthermore, plasma effects might also be relevant
for black hole superradiance considerations [26] where a local electron density can quench the
superradiant instability.

In addition to these indirect constraints, we can hope to directly observe the flux of DPs
produced in the Sun. The strategy is analogous to solar axion searches [27, 28], i.e. it relies on
the oscillation of DPs into SM photons over a finite distance (called oscillation length). In fact
axion helioscopes like CAST [29] can be directly repurposed to search for DPs [14]. Since DPs
do not require a magnetic field to oscillate into SM photons, it is also possible to construct
simpler dedicated DP-only helioscopes, such as SHIPS [30]. These searches constrain a wide
range of DP masses from several keV down to µeV. Even stronger constraints stem from
searches for the absorption of the longitudinal DP component in direct detection experiments
[16, 17, 31, 32].

In this work we point out that constraints on DPs from helioscopes may be improved
considerably by taking into account the spectral and angular distribution of DPs, which has
not previously been considered in the context of DP searches (although it has been studied
in the context of axion searches [33]1). To illustrate our argument, we analyse the publicly
available data of the Hinode X-Ray Telescope (XRT) [34], which offers excellent angular
resolution. We show that it is possible to infer spectral information from this instrument even
though it was not originally built for this purpose. We then use the relatively long exposure
of so-called “darks”, calibration images of the Sun with a closed telescope, to demonstrate
the improvement of the constraints with respect to the naive analysis of just counting events
without spectral or angular information like in previous helioscope searches. We find that
thanks to this improvement, Hinode XRT can almost match the sensitivity to transverse DPs
of purpose-built helioscopes.

We also analyse the data from Hinode XRT from an observed solar eclipse. This ob-
servation combines the main advantage of helioscopes, namely the large DP flux produced
in the Sun, with an advantage of so-called light-shining-through-the-wall (LSW) experiments
[35–37], namely a much longer oscillation length. Indeed, in a “light shining through the
Moon” experiment, the oscillation length can be as long as the distance from the Moon to
the Earth. We show that this advantage can compensate for the limited exposure, leading to
a substantially improved sensitivity to DP masses below the meV scale compared to conven-
tional helioscopes. Given that there exist multiple x-ray satellites that constantly track(ed)
the solar activity [34, 38, 39], we expect that even stronger constraints can be obtained by
combining data from several instruments and multiple solar eclipses.

1In fact axions are always predominantly produced in the centre of the Sun.

– 2 –



The remainder of this paper is structured as follows. In section 2 we will briefly discuss
the solar production of DPs with emphasis on the angular distribution in different production
regimes. In section 3 we present a collection of telescopes of interest, identify the require-
ments for our analysis and select a useful data set. We then summarise our analysis strategy,
emphasising the relevance of proper calibration, background subtraction, and knowledge of
the angular and spectral distribution to place more stringent limits. We subsequently contex-
tualise our results and discuss if and how experiments of this type can be made competitive
with the leading constraints in the mass range of interest. Finally, we conclude in section 4.
Additional technical details of our analysis are summarised in the appendix. Throughout this
paper, we work with ~ = c = 1.

2 Solar production of DPs and their detection

In this section, we briefly review the main properties of DPs in vacuum and then generalise to
homogeneous plasma environments. We then discuss how to use this knowledge to calculate
the flux of solar DPs and their angular dependence.

2.1 DP oscillations in the vacuum and in homogeneous plasmas

Let us start with a brief discussion of the vacuum physics of a massive DP A′µ. The most
general renormalisable and gauge-invariant Lagrangian for A′µ and the photon Aµ in vacuum
can be written as

Lvac = −1

4
FµνFµν −

1

4
F ′µνF ′µν −

ε

2
FµνF ′µν + jµA

µ +
m2

2
A′µA′µ , (2.1)

where the off-diagonal kinetic term couples the dark and SM sectors, with Fµν (F ′µν) being
the electromagnetic (dark) field strength. A redefinition of the fields can yield the usual
canonical (diagonal) kinetic structure, leading to either off-diagonal mass or interaction terms.
We emphasise that in vacuum there are only two new parameters, namely the DP mass m
and the mixing angle ε.

The kinetic mixing term allows for DP-photon oscillations in complete analogy to the
case of neutrinos [40, 41] and will therefore allow for DP production from photons. In the
case of small mixing, ε� 1, we have

P (DP↔ γ) = (2ε)2 sin2

(
m2L

4ω

)
, (2.2)

for the relativistic vacuum oscillation probability, where L denotes the distance that the
DP/photon travels in the vacuum and ω stands for the particle’s energy. For m2L � ω,
we expect the probability to oscillate so rapidly that it effectively averages out to 1

2 and
the physics on macroscopic experimental scales becomes independent of the exact energy and
length dependence. This observation implies in particular that we can use eq. (2.2) even when
the assumption of fully relativistic DPs breaks down. Conversely, for m2L � ω we can use
the small-angle approximation to show that the oscillation probability becomes proportional
to m4. In other words, any experiment that aims to detect DPs by relying on their conversion
into photons will rapidly lose sensitivity for DP massesm <

√
ω/L. This applies in particular

to terrestrial helioscopes searching for DPs produced in the interior of the Sun, see section 3.4
and table 3.4 for further discussion.
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While the physics of DPs in vacuum is remarkably simple, the environment can strongly
impact the kinetic mixing portal. For a first understanding, let us review the simplified
calculation from Ref. [42]. Inside a medium such as the solar plasma, the photon acquires an
effective mass mγ [43], which we can approximate by the plasma frequency ωp:

mγ ≈ ωp =

√
4παne
me

(2.3)

with the electron mass me and density ne. We now consider the following Lagrangian inside
the Sun:

L = −1

4
FµνFµν −

1

4
F ′µνF ′µν −

ε

2
FµνF ′µν + jµA

µ +
m2

2
A′µA′µ +

m2
γ

2
AµAµ . (2.4)

Note that there is an implicit radial dependence of the photon mass mγ = mγ(r) = mγ(r)
where the last equality follows under the assumption of spherical symmetry. The introduction
of an additional mass scale leads to two extremal limits. For the case of DPs much heavier
than the photon plasma mass, m� mγ , we effectively recover the vacuum scenario such that
we can ignore plasma effects. The opposite scenario of a dominant plasma mass,m� mγ , will
lead to a gradual decoupling of the DP consistent with the well-known case of a completely
decoupled massless DP (with an otherwise empty dark sector).2

To explore these limiting cases, let us restore the canonical kinetic terms up to first order
in the mixing parameter ε,

Aµ → Aµ

A′µ → A′µ − εAµ

⇒ L = −1

4
FµνFµν −

1

4
F ′µνF ′µν + jµA

µ +
m2

2
A′µA′µ − εm2AµA′µ +

m2
γ

2
AµAµ . (2.5)

This form of the Lagrangian corresponds to the interaction eigenbasis, in which the DP is
completely decoupled from the SM fermions and can only oscillate into the photon (and
vice versa) via the mass mixing term. We will mostly work with this basis in the following.
Nevertheless, to improve our understanding of the oscillation probability, let us briefly also
investigate the propagation eigenbasis, where the mass terms are diagonal. To achieve this
diagonalisation while simultaneously keeping the canonical kinetic terms intact we perform an
orthogonal rotation, which introduces an effective coupling of the DP to the electromagnetic
current

jµA
µ → jµ(Aµ + εeffA

′µ) (2.6)

with

εeff = ε
m2

|m2
γ −m2| ≈

{
ε , m2 � m2

γ

εm
2

m2
γ
, m2 � m2

γ

. (2.7)

Again we recover the decoupling of the DP in the limit of dominant plasma mass.
2Note that this appears to be in contradiction with the statement that the massless DP and the massive

DP in the massless limit are not the same [2], i.e. “m = 0” 6= “m→ 0”. While this is true in a perfect vacuum
where the DP mass will always set the largest mass scale in the system of eq. (2.1), realistic environments
will always lead to matter effects which set an additional mass scale that can effectively suppress the kinetic
mixing. Thus, the following calculation will not be in contradiction with the conceptual difference between
massive and massless DPs.
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The intermediate regime wherem ≈ mγ allows for resonant conversions between photons
and DPs and therefore needs to be treated with more care. In this resonant regime, we will
find that the spectral and the angular part of the DP flux factorise, simplifying the calculation
significantly compared to the two limiting regimes. We will use a more careful treatment of
plasma effects to study this case in the next subsection.

2.2 Solar DP physics

From now on, we will follow closely Refs. [14, 15], which provides a detailed description of the
solar DP production covering mostly the transverse components. Further work on solar DP
production can be found in Refs. [16, 18] with a focus on the longitudinal component, which
is not of interest in this work because it cannot be detected in classical helioscope setups (see
section 2.3). We will give a detailed description of the solar DP production based on input
from the solar standard model [44–46]. For the first time, we give estimates for the angular
distribution of DPs over the whole mass spectrum. For the remainder of this section, we will
exclusively work in the interaction eigenbasis of eq. (2.5).

Let us start with the production rate of DPs, which can be written as [14]

dN

dV dt
(r0) = 2

∫
d3k

(2π)3
Γprod(ω, r0)P (ω, r(l)) . (2.8)

Here the factor of 2 accounts for the two transverse helicities of the DP as we ignore the lon-
gitudinal component. The local production rate of photons follows from local thermodynamic
equilibrium and is given by

Γprod(ω, r0) =
Γ(ω, r0)

eω/T (r0) − 1
, (2.9)

where Γ = Γabs − Γprod , i.e. we define the so-called absorption coefficient Γ as the difference
of absorption and production rates. Furthermore, we have used detailed balance to obtain
the relation Γprod = e−ω/TΓabs, where T is the (position dependent) temperature. To obtain
the DP production rate the local production rate of photons must be multiplied with the
probability P (ω, r(l)) that the photon oscillates into a DP, which depends on the trajectory
of the photon r(l) = r0 + lk̂ where l denotes the distance the photon travels and k̂ denotes
its direction, see figure 1. Finally, the total DP production is given by an integral over the
photon phase space, i.e. all possible momenta.

Using the on-shell relation ω2 = k2 +m2 and the rotational symmetry of the momentum
in eq. (2.8) we find

dN

dV dt
=

4π

(2π)3

∫
d cos θkk

2dk
Γ(ω, r0)

eω/T (r0) − 1
P (ω, r(l))

⇒ 1

4πR2
e

dN

dV dtdω
=

dΦ

dV dω
=
ω
√
ω2 −m2

8π3R2
e

∫
d cos θk

Γ(ω, r0)

eω/T (r0) − 1
P (ω, r(l)) . (2.10)

Here, we have defined the flux Φ at the position of Earth, i.e. at a distance of Re. One can
now obtain the total spectral flux of the Sun by integrating over the Sun’s volume:

dΦ

dω
=
ω
√
ω2 −m2

8π3R2
e

∫
sun

dV

∫
d cos θk

Γ(ω, r)

eω/T (r) − 1
P (ω, r(l))

=
ω
√
ω2 −m2

2π2R2
e

∫ R�

0
r2dr

∫ 1

−1
d cos θ

Γ(ω, r)

eω/T (r) − 1
P (ω, r, θ) , (2.11)
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Re R

r0l.o.s.
k

l

r(l)

Earth Sun

Figure 1. In this sketch of the Sun-Earth system (adapted from Ref. [15]), we can define all the
geometric quantities necessary to calculate the solar DP flux. As we work in the approximation of an
isotropic solar model, the angular flux can at most depend on the angle ψ under which we observe
the Sun.

where R� denotes the solar radius and we have used that the probability P can only depend
on the radial position r and on the angle θ between the position vector r and the photon
direction k (i.e. r · k = rk cos θ) so that we can integrate over all remaining angles.

In order to calculate the angular distribution of DPs, we need to consider the DP pro-
duction along a chosen line of sight (l.o.s.) as shown in figure 1. We can parametrise this
l.o.s. by the radius r and the point of closest distance to the core rmin. This yields

dΦ

dωdΩ
=
ω
√
ω2 −m2

4π3

∫
l.o.s.

ds
Γ(ω, r)

eω/T (r) − 1
P (ω, r(l))

=
ω
√
ω2 −m2

4π3

∫ R�

rmin

2rdr√
r2 − r2

min

Γ(ω, r)

eω/T (r) − 1
P (ω, r, θ) . (2.12)

Following Ref. [15] we assume that the oscillation length of the DP is always much smaller
than the scale of significant changes in the plasma, i.e. we take the plasma to be locally
homogeneous. For weak mixing the in-medium oscillations can then simply be described
by [14–16, 18]

P (γ → DP) =
ε2m4(

m2
γ(r)−m2

)2
+ (ωΓ(ω, r))2

, (2.13)

where Γ again denotes the absorption coefficient. The plasma mass and the absorption co-
efficient are important for position and strength of a potential resonance in the conversion
probability. We note that the former is given by the real and the latter by the imaginary part
of the transverse component of the photon self-energy [14, 47] which enables us to relate the
microphysics of the oscillation to the macroscopic plasma properties like its electron density.

If the DP mass is such that the condition m ≈ mγ(r) can be fulfilled for some specific
radius r = r∗, DP production will be dominated by a thin shell around r∗. As shown in
detail in appendix A, we find that in this resonant regime the differential flux factorises into
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a spectral and an angular part

dΦres

dωdΩ
≈ dΦ

dω

dXres

dΩ
, (2.14)

with dΦ/dω given by eq. (2.11) and

dXres

dΩ
=

1

2π

Re
r∗

1√
ψ2
∗ − ψ2

Θ(r∗ − rmin) . (2.15)

Here we follow the notation from Ref. [15], i.e. we introduce the observation angle ψ = rmin
Re

(see figure 1) and the resonance angle ψ∗ = ψ
∣∣
m=mγ

. Our final result however differs slightly

from Ref. [15], in particular in that it is correctly normalised, i.e.
∫

dΩdX
dΩ = 1.

The resonance condition can only be met for a small range of DP masses around 5–
300 eV3, while helioscopes are in principle sensitive to the much wider range from around
10−6–103 eV. In this non-resonant case, there is no factorisation of angular and energy de-
pendence because the absorption term depends inseparably on position and energy. Since a
full numerical calculation of the differential flux is computationally expensive, it is desirable
to obtain at least approximate expressions for the angular distribution also in this case. To
the best of our knowledge, these expressions have not been presented previously, even though
they can be derived based on relatively simple arguments.

First of all, we should note that there a two distinct regimes: suppressed (m < mγ,min ∼
5 eV) and unsuppressed (m > mγ,max ∼ 300 eV) with only a weak energy dependence. Let us
begin with the unsuppressed case, which we label with subscript vac, as it is similar to the
vacuum scenario. For fixed values of ε and m we find

Pvac(ω, r, θ) ≈
ε2m4(

m2
γ(r)−m2

)2
+ (ωΓ(ω, r))2

m�mγ−−−−→ const

⇒ dΦvac

dωdΩ
∝
∫ ∞
rmin

2rdr√
r2 − r2

min

ne(r)

eω/T (r) − 1
, (2.16)

and similarly for the suppressed case

Psup(ω, r, θ)
m�mγ−−−−→ const

m4
γ(r)

⇒ dΦsup

dωdΩ
∝
∫ ∞
rmin

2rdr√
r2 − r2

min

ne(r)

eω/T (r) − 1
m−4
γ (r) . (2.17)

Here we made the crucial assumption that the absorption coefficient receives its dominant
contribution from the electron density, which should at least track the general trend of the
radial dependence of Γ. The angular dependence then stems directly from the integration
limit rmin.

To obtain the angular distribution of the DP signal for a given telescope, we can convolute
the flux with the energy-dependent efficiency Q(ω) of the instrument under consideration,
leading to

dXvac/sup

dΩ
∝
∫ Emax

Emin

dω Q(ω)
dΦvac/sup

dωdΩ
. (2.18)

3For m < 5 eV one would in principle expect resonant conversion in the outer regions of the Sun, where
the assumption of spherical symmetry breaks down. However, the exponential suppression in eq. (2.9) makes
the resonant contribution negligible.
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Figure 2. Plot of the different angular shapes of the DP signals for the suppressed, resonant and
unsuppressed cases. f(r) denotes the probability density of the DP distribution. We have normalised
the distribution to the dimensionless radius r/R�. We note that the resonant case is not energy depen-
dent and the two remaining regimes are (approximately) mass independent except for the kinematic
threshold of m < ω.

This approximation is accurate if the range of integration [Emin, Emax] is small enough that the
DP production does not change significantly. Using appropriate choices of Emin/max, eq. (2.18)
can be used both for the whole spectrum or for individual energy bins. For temperature,
density, and plasma mass we can use data shown in Ref. [14] taken from Ref. [44]. As we can
fix the normalisation by hand, this is all we need to calculate a detector-dependent angular
distribution. In conclusion, we can write

dΦres/vac/sup

dωdΩ
≈ dΦ

dω

dXres/vac/sup

dΩ
, (2.19)

with the different contributions as derived above. This factorisation enables us to make use
of the predictions for dΦ

dω from Ref. [15].
Before considering specific instruments with explicit efficiency functions in section 3, let

us briefly look at the predictions without weighted averaging, i.e. for specific DP energies.
For this purpose we define

f(r) ≡ 2π
r

Re

dX

dΩ

dψ

dr
=

r

Re

dX

dr
, (2.20)

which gives the probability of a DP production event to occur in a ring of radius r and width
dr as f(r)dr. We show this probability distribution in figure 2. As expected, the resonant
regime exhibits a strong peak at r = r∗ wheremγ(r∗) = m. The position of this peak is energy
independent as long as resonant production is kinematically allowed. In the suppressed and

– 8 –



vacuum-like regime, the radial distribution is broader and energy dependent. The vacuum-like
case has its peak close to the solar center, because it benefits from the high densities implying
high photon production. The suppressed case experiences the same enhancement but also an
additional suppression due to the higher plasma mass, which pushes the maximum further
outwards, especially for small DP energies. For highly-energetic particles, the suppressed DP
production will still come from the solar centre due to the exponential suppression of the
photon production in colder regions of the Sun (see eq. (2.9)).

2.3 DP oscillation and detection

Once a DP with transverse polarisation has been produced in the Sun, it can in principle
oscillate back into a visible, i.e. interacting, photon. However, as long as the DP travels
through the solar plasma, it will constantly be projected back onto the local propagation
eigenstate, because the interacting component quickly gets absorbed. In fact, as the plasma
density changes slowly and the absorption process is still efficient even in the outer regions
of the Sun the DP will approach the vacuum propagation eigenstate [14]. Therefore, once the
DP leaves the Sun and enters the vacuum4 it cannot oscillate into visible photons irrespective
of the distance it travels.

However, as soon as this propagation eigenstate enters dense matter (such as the shutter
of a telescope or the Moon), the interaction component with electromagnetic interactions will
be absorbed, such that one is left with the sterile interaction eigenstate. If this state now
rapidly transitions from dense matter to vacuum, it will no longer be in a local propagation
eigenstate, such that the oscillation probability can build up.

Contrary to transverse DPs, longitudinal DPs can only be detected for non-vanishing
matter effects due to the transverse nature of the photon (in vacuum). As a result it is not
possible for DPs with longitudinal polarisation to oscillate into visible photons in the usual
helioscope setup. Nevertheless, the longitudinal mode can still be absorbed in a dense medium,
which enables direct detection experiments to set constraints on longitudinal DPs. For DP
masses smaller than 1 eV, the longitudinal component is produced in larger numbers than the
transverse one, leading to very impressive constraints from DM direct detection experiments
[31] (see also section 3.4). The methods discussed in the following can in principle be applied
also to these kinds of experiments provided a sufficient angular resolution can be achieved.
However, we will focus on helioscopes in the remainder of this work, where data sets with
excellent angular resolution are already available.

3 Analysis

Having calculated the DP flux and oscillation probability, we can now turn to the question
which telescope is best suited to search for the predicted signal. In the following we will
identify the Hinode XRT as the best option to obtain data sets with good angular resolution.
We will then proceed to analyse two different data sets: one with long exposure from cali-
bration images with a shut telescope (so-called darks with an oscillation baseline of around
1m) and one corresponding to a very long oscillation baseline of around 380000 km from the
observation of a solar eclipse.

4Vacuum here means that the mean free path of photons is large compared to the oscillation length
λosc = ω/m2.
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Figure 3. Images from http://sdc.uio.no/search/form. Left: Typical calibration image (dark)
with 2048× 2048 pixels. Right: Solar eclipse from 2012 with 1024× 1024 pixels.

3.1 The Hinode solar X-Ray Telescope

In order to set the most stringent constraints, it is clear that the time of solar observation
should be as long as possible. For our purposes there are in fact two reasons: Firstly, long
observation increases the chance to witness a solar eclipse. Secondly, it gives more statistics
for the analysis of darks. Fortunately, there are a number of telescopes dedicated to solar
observations. Out of these, we are primarily interested in x-ray telescopes, because the lunar
and terrestrial x-ray albedos (and hence the probability to reflect x-rays from various sources)
are extremely small [48], ensuring that we operate in a region of minimal background. More-
over, compared to telescopes operating at lower frequencies, x-ray telescopes possess greater
sensitivity to higher DP masses, which renders them more interesting to us.

With this collection of requirements, we are left with a small list of telescopes, including
YOHKOH [38], Hinode [34] and the GOES series (see e.g. Ref. [39]). All these satellites
carried/carry an x-ray telescope with them, and the relevant data is publicly available. A key
difference between them is the height of the orbit, which varies between a few hundred kilo-
metres for the Sun-synchronous orbit of Hinode and around 36,000 km for the geostationary
orbit of GOES-12. These differences matter because the height of the orbit determines the
dominant background sources (see below for a more detailed discussion).

For reasons of exposure, availability, and documentation, we have decided to analyse
the Hinode XRT data [34, 49–53].5 Figure 3 shows two images representing the two different
data sets that we consider: a calibration image on the left and a solar eclipse on the right.
The original purpose of the calibration images was mainly to collect statistics for a proper
background subtraction, including time-varying effects. Nevertheless, they can be analysed
in complete analogy to Earth-based helioscopes with an oscillation baseline L of the order of
a few meters. Images of a solar eclipse are much rarer, but they allow to boost the oscillation
baseline by around 8 orders of magnitude. In the remainder of this section we will discuss in
detail how to analyse these two types of data sets.

5All images are available at http://sdc.uio.no/search/form which also offers very helpful search criteria.
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3.2 Analyzing the darks

We begin our analysis by collecting all full-resolution darks, i.e. 2048 × 2048 pixels on a
35 × 35 arcmin2 field of view (FOV).6 We then calibrate this data set using the “empiric”
version of the XRT standard routine [54] of SolarSoft [55] available at https://www.lmsal.
com/solarsoft/. We find that the calibration to the zero point is quite precise with an
uncertainty of about 1 data number (DN), which translates to a deposited energy of 208.05 eV.
For comparison, the uncalibrated images are scattered around 42DN. Finally, we apply a set
of quality requirements to remove damaged, incomplete or unsuitable images (see appendix B
for details) which identify 960 valid images with a combined exposure of texp = 9463 s.

In agreement with Ref. [54] we make the interesting observation that the average number
of counts in a given dark is largely independent of the exposure, i.e. it does not depend on
how long the detector was active. Likewise, there is no significant variation of the number of
counts throughout the years of data taking. These findings suggest that external backgrounds
like solar wind charge transfer [56], which should increase for longer exposure and vary with
time, are subdominant and that the dominant contribution comes from internal sources. This
contribution is expected to be handled well by the calibration routine.

Because Hinode XRT has to sustain the stress of constant exposure to the solar x-ray
flux, its energy resolution cannot compete with more sensitive telescopes like XMM-Newton
[57] or Chandra [58]. In particular, Hinode’s x-ray telescope was not designed to resolve
individual photons but rather to measure a large flux of solar x-rays. Therefore, we only have
access to the total energy deposited in each pixel over the exposure time of an image, which
does not allow for directly distinguishing individual photon hits.7 Nevertheless, it is possible
to restore some sensitivity to the spectral distribution if the exposure time of each image is
small enough that one expects at most one photon hit per pixel under the signal hypothesis.
We have verified a posteriori that this assumption is consistent with the sensitivity that we
achieve.

Using the calibration routine and its zero-point adjustment we can thus pick out potential
hits that lie within the correct energy range.8 The situation is illustrated in figure 4, which
shows the distribution of energy deposition across all the pixels of a single dark. Thanks
to the calibration, the distribution has a relatively narrow peak at a data number of zero,
meaning that physical detector hits, i.e. external backgrounds and DP events, will show up
as an excess in the region marked by the two black lines. The upper bound of this region
(Emax = 3 keV ≈ 15 DN) is given by the sensitivity limit of Hinode XRT, whereas the lower
bound (Emin = 1 keV ≈ 5 DN) is chosen well above the nominal threshold of 200 eV in order
to suppress background while maintaining good sensitivity to a potential DP signal.

We also show in figure 4 the signal prediction of a 200 eV DP for ε = 2 · 10−11. We find
that the signal is below the background level, meaning that it will not be possible to exclude
the corresponding parameter point unless additional information on the spectral and angular
distribution of both signal and background are included in the analysis. In the following
we will discuss how this information can be included and show that this will enable us to
significantly improve our sensitivity to DP signals.

6In principle there are also darks with lower resolution, but the zero-point subtraction in the calibration
routine is optimised for the 2048× 2048 images [54].

7Note also the comment on photon counting in the data analysis guide https://xrt.cfa.harvard.edu/
resources/documents/XAG/XAG.pdf.

8See Ref. [59] for a different approach to extracting spectral information from the data.
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We will refer to each pixel with a data number in the correct range as an “event”. After
stacking all darks, we find that for the vast majority of pixels the number of events per pixel
follows a Poisson distribution with expectation value µ = 0.17. A small fraction of around
0.1% of the pixels, however, observes a much larger number of events, which can reach several
hundred. These pixels are likely not functional and will be removed from the subsequent
analysis (see appendix B for details).

As a first step, we can now sum up the observed events in all pixels that point at the
Sun (indicated by the white circle in the left panel of figure 3). This number, called S, should
be compared to the total signal prediction for the number of events

R = texp

∫ R�

0
dr

∫ Emax

Emin

dω
dΦ

dω

dX

dr
P (DP→ γ)Q(ω) , (3.1)

where dX/dr can be obtained from eq. (2.19) using dΩ ≈ 2πψdψ and ψ ≈ r/Re. Q(ω)
denotes the combined efficiency of the detector, i.e. the effective area, the quantum efficiency,
and the transmittivity of the filter [34]. This prediction depends on the DP mass m and the
mixing parameter ε.

Based on the discussion above, we expect the total number of observed events to follow a
Poisson distribution. Without any further information, we can therefore immediately exclude
any signal hypothesis at 90% confidence level, for which R− 1.28

√
R > S, which (given that

R,S � 1) is approximately equivalent to R > S + 1.28
√
S. The exclusion limit obtained in

this way is indicated by the dotted purple line in figure 5. We will refer to this method as
the SHIPS/CAST-like analysis as it does not include any radial or spectral information of
the signal prediction.

We now divide the signal region into 50 annuli [rj , rj+1] of equal width, which enables
us to perform a radial binning of the events. Each radial bin will be further divided into 10
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the previous paragraphs with emphasis on the improvements between naive and full analysis.

energy bins [Ei, Ei+1] of equal size. The observed total counts will be denoted by S(Ei, rj),
while the signal prediction is given by

R(Ei, rj) = texp

∫ rj+1

rj

dr

∫ Ei+1

Ei

dω
dΦ

dω

dX

dr
P (DP→ γ)Q(ω) . (3.2)

This binning enables us to exclude any signal hypothesis for which the predicted number of
events in any bin significantly exceeds observations. Assuming S(Ei, rj)� 1 for all bins, we
can define the test statistic

χ2(m, ε) =
∑
i,j

max (R(Ei, rj)− S(Ei, rj), 0)2

S(Ei, rj)
, (3.3)

where we take the maximum to ensure that only bins with R(Ei, rj) > S(Ei, rj) contribute
to the sum. We make this choice as the “background-only” hypothesis χ2(ε = 0) would give
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Figure 6. 2D plot of the data in the signal region (top left) and the signal prediction for 400 eV (top
right), 15 eV (bottom left), and 1 eV (bottom right) DP masses.

a very large χ2 otherwise. We can then calculate an upper bound on the mixing parameter
by solving

∆χ2 ≡ χ2(ε)− χ2(ε = 0) = 1.64 , (3.4)

at 90% confidence level.
The exclusion limit obtained in this way is indicated by the dash-dotted purple line

in figure 5 and is found to be substantially stronger than the one obtained without angular
and radial information. The reason is of course that the shape of signal and background
distribution are very different, as demonstrated in figure 6. In the top-left panel we show
the rather simple distribution of the data (in terms of events per pixel per second) across the
signal bins. We see a clear decrease of the event rate towards larger energies, while the rate
is relatively constant in the radial direction.

For comparison we show signal predictions for three different DP masses (1 eV (sup-
pressed), 15 eV (resonant), 400 eV (unsuppressed)) in the remaining panels of figure 6. The
values of the kinetic mixing parameter ε are chosen to lie close to the exclusion limit obtained
above. Clearly, in each of these cases, the total predicted number of signal events is signif-
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traction and thus, they do not have any physical significance.

icantly smaller than the total number of observed events, but an exclusion is possible using
the differential information.

Another key observation from figure 6 is that the background is flat up to large radii,
whereas the signal peaks at smaller radii. This feature makes it possible to perform back-
ground subtraction in order to obtain even stronger bounds. In the following, we will discuss
two possible approaches for background subtraction: using a fitting approach to the data in
the signal region and a data-driven approach using the background counts in a control region.

Indeed, we can see in figure 3 that there are a large number of pixels that do not point at
the Sun. Since no DP signal is expected in these pixels, we can use them as a control region
(CR) to determine the background rate. Denoting the number of events in the control region
in a given energy bin by B(Ei), we can obtain a background prediction for a given signal bin
by rescaling with the number of pixels:

BS(Ei, rj) = B(Ei)
Npix(Ei, rj)

Npix,CR
. (3.5)

Since the number of pixels in the control region is large compared to any signal region, we
can neglect the systematic uncertainty of the background prediction resulting from Poisson
fluctuations in the control region in the following.

In figure 7 we compare the background prediction obtained in this way to the actual
observations as a function of radius (i.e. summed over all energy bins) and the corresponding
signal predictions for the three benchmark points considered above. Again, we observe that
the radial dependence of the signal is very different from the predicted background and the
observed signal. The resonant region leads to a very distinct peak at the resonance very

– 15 –



similar to figure 2 while suppressed and unsuppressed regions again have a smoother radial
dependence.9 The vacuum-like case predicts a strong signal at small radii due to the high
temperatures and densities, while for the suppressed scenario the prediction is more stretched
out.

Figure 7 also shows that the background prediction obtained from the control region is
not perfect, in the sense that there is a slight decrease in the observed event rate towards
the centre, such that the inferred background rate overpredicts the observation. To ensure
that this effect does not introduce a bias in our analysis, we implement an alternative way
to estimate the background, in which we simply fit the observed rate by a constant for
each energy bin and multiply with texp and Npix(Ei, rj) to obtain the predicted number of
background events called Bfit

S (Ei, rj).10 Again, the systematic uncertainty of the background
prediction is negligible compared to the statistical uncertainty in each signal bin.

Given a background estimate for each signal bin, we can define the test statistic

χ2(m, ε) =
∑
i,j

(
R(Ei, rj) +B

(fit)
S (Ei, rj)− S(Ei, rj)

)2

S(Ei, rj)
. (3.6)

Since we now have a background model, this test statistic can in principle be used to search
for a preference over the background-only hypothesis (ε = 0). However, here we will limit
ourselves to setting exclusion limits according to eq. (3.4). Since the signal prediction simply
scales proportional to ε4, we can solve eq. (3.4) analytically for fixed DP mass.

The exclusion limits obtained when using the data-driven (best-fit) background are given
by the solid (dashed) purple line in figure 5. As expected, performing a background subtrac-
tion leads to bounds that are stronger by more than an order of magnitude in terms of ε (i.e.
by more than four orders of magnitude in terms of the signal strength) compared to the naive
approach. The two different methods to estimate the background give very similar results,
confirming that our approach is robust.11 We conclude that using angular and spectral in-
formation to distinguish signal from background is essential to maximize the sensitivity of
Hinode XRT.

3.3 Analyzing the eclipse

Having analyzed the darks, let us now exchange large exposure for long oscillation baseline by
considering solar eclipses in order to become more sensitive to smaller masses. In principle one
could try to increase the exposure by stacking images of eclipses, but the rarity of these events
does not leave us with many choices. After going through all eclipses in Hinode’s lifetime,
we identify the eclipses on March 19, 2007 and November 13, 2012 as the best candidates.
We will focus on the latter as the corresponding images have better resolution (1024× 1024
vs. 512 × 512). Given the very similar solid angle covered by the Moon and Sun, there are

9Note that the signal predictions look somewhat different from figure 2 because they are now given per pixel
and not per radial bin. Furthermore, the non-resonant predictions are estimated via eq. (2.18) which means
the angular distribution is weighted with the sensitivity of Hinode XRT and thus is instrument-dependent.

10In principle, one could also fit more complicated functions that capture the slight radial dependence of
the observed rate. We have checked that doing so has no significant effect on our results.

11For the data-driven background estimate, the background prediction is larger than the observed number of
events in all bins, such that there is never a preference for a DP signal. For the best-fit background prediction,
on the other hand, there are a few small excesses (see figure 7), which can potentially be fitted by DPs in the
resonant region, leading to slightly weaker exclusion limits.
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very few images where the Sun is fully covered. The most central of these images is shown in
figure 3 (right).12

It is clear from figure 3 (right) that both the control region and parts of the signal
region are “polluted” by solar activity. Clearly, we can no longer rely on the control region
for background subtraction. Looking at both raw and calibrated data, we observe a generic
increase of events towards the outer regions of the image. This effect has also been observed
in Ref. [60], where it is used for the calibration of the telescope’s point spread function. As a
result it becomes necessary to remove the outermost parts of the signal region in our analysis.

In appendix C, we discuss how the eclipse image can be prepared for a statistical analysis
analogous to the one applied to the darks. In principle, we could now perform the same
binning in radius and energy as above. However, because of the short exposure, doing so
would result in many empty bins, indicating that such a binning is unnecessarily fine. We
therefore simply consider a single bin up to half of the solar radius to minimise the pollution
from the solar corona. While we expect this selection to have very good signal efficiency in the
suppressed and unsuppressed regime, we lose some sensitivity in the parameter region where
the resonant peak occurs at large radius. We have checked that this decrease in sensitivity
only mildly weakens our limits. The signal region contains 389 events, many of which can
potentially be attributed to physical backgrounds or internal noise. Here we will not attempt
to construct a background model and instead simply perform a SHIPS/CAST-like analysis
without background subtraction as discussed above. Despite this simplification it is crucial
to know the radial distribution of the DP signal in order to calculate the fraction of events
that end up in the signal region.

The resulting limits are shown in blue in figure 5. As expected, the exclusion limits
obtained from the eclipse are subdominant for heavy DP masses, where the oscillation length
is tiny compared to the size of the telescope. Nevertheless, the limit from the eclipse data
is comparable to the one obtained from the darks without angular and spectral information
and without background subtraction. This finding illustrates that the additional refinements
discussed in section 3.2 are necessary in order to benefit from the large exposure of the darks.
On the other hand, for DP masses below around 1 meV, the limits from the eclipse become
stronger than the ones obtained from the darks, because the latter are suppressed as soon as
the oscillation length becomes comparable to the size of the telescope.

3.4 Discussion

In figure 8, we put our constraints into a broader context. The two limits labeled Hinode XRT
correspond to the most optimistic analysis of the darks (i.e. using data-driven background
subtraction) and the analysis of the eclipse data and correspond to the solid purple and blue
line in figure 5. We use the excellent database and layout from Ref. [61] (available through
Ref. [62]) to compare our results to a wide range of existing constraints. As mentioned in
section 2.3, the best limit in our region of interest is given by the longitudinal production,
here shown in terms of the solar cooling argument (“solar”) and the searches for absorption
in DM direct detection experiments discussed above (“XENON1T longitudinal absorption”)
[32] which we have added by hand. Nevertheless, we conclude that Hinode XRT clearly
outperforms lab experiments like spectroscopy searches [63].13

12There also exists a movie of this eclipse: https://www.youtube.com/watch?v=XNzleYZL6u8.
13Note that this work also includes a very nice discussion of the subtle reason why many lab searches become

insensitive to the DP for smaller masses.
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Experiment CAST SHIPS Darks Eclipse
Typical energy in eV 5000 3 1000 1000
Length in m 9.26 5 ∼ 1 ∼ 3.8 · 108

Kink mass in eV 7 · 10−3 2 · 10−3 3 · 10−2 2 · 10−6

Exposure times in s 709200 1188000 9500 1
Sensitivity to ε at m = 1 eV 6 · 10−10 3 · 10−10 1 · 10−9 4 · 10−8

Table 1. Specifications of different solar DP searches.

Further, we observe that LSW experiments, here represented by ALPS [64], become
important for small DP masses because they do not need to track the Sun and therefore can
construct larger instruments. The next generation of experiments, including ALPS II [65], will
be able to explore even more parameter space. An additional advantage of these experiments
is the control over the initial state, thus eliminating the astrophysical uncertainties that
helioscope searches potentially suffer from.

In comparison with dedicated helioscope experiments, namely CAST and SHIPS, the
constraints obtained from Hinode XRT are slightly weaker. This difference stems from a
combination of the precise instruments and the unmatched exposure used by CAST and
SHIPS (see table 3.4). Nevertheless, the fact that Hinode XRT can be competitive with
much smaller exposure shows that additional sensitivity to angular and spectral information
is a similarly important asset for a helioscope.

The largest DP mass accessible by the different helioscopes is set by the maximum energy
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that can be probed by each instrument. As CAST is sensitive up to 15 keV, it wins in this
comparison, especially compared to SHIPS, which operated in the visible region and therefore
loses sensitivity already at eV scales. We also note the clear bump structure observed for the
two x-ray experiments for DP masses in the range ∼ 5–300 eV, corresponding to resonant
DP production in the Sun. The loss of sensitivity at small DP masses, on the other hand,
depends on the typical oscillation length. The kink in the exclusion limit corresponds to the
point when the argument of the sine in eq. (2.2) becomes O(1):

m2L

4ω
∼ 1⇔ m ∼

√
4ω

L
. (3.7)

The relevant scales for each experiment can be found in table 3.4. Clearly, the eclipse data
offers an unparalleled reach in terms of small DP masses.

4 Conclusions

The Sun as a laboratory for light and weakly coupled BSM physics has been studied exten-
sively. In the context of dark photons (DPs), there are barely any other constraints that can
compete with the ones obtained from solar DP production in the eV to keV mass range. In
this work we have studied how the sensitivity to such DPs can be maximised by exploiting the
available information on the angular and spectral distribution of DPs produced in the Sun.
For this purpose, we have developed a new way to estimate the angular distribution of DPs
in the case that resonant production in the Sun is not possible. We have then used publicly
available data from the solar x-ray telescope Hinode XRT with excellent angular resolution
to reveal the potential to improve constraints on DPs.

First we have considered so-called darks, i.e. calibration images with closed shutter,
which effectively make the telescope a space-based helioscope. Given the very low count
rates, we were able to generate spectral information from these images by using the standard
calibration procedure. We then developed and applied selection cuts to remove damaged
images and pixels with large intrinsic background and identified two possible procedures for
background subtraction. We find that the combination of including angular and spectral
information and subtracting backgrounds leads to an improvement upon naive constraints
from “event counting” by more than an order of magnitude in terms of the kinetic mixing
parameter.

Furthermore, we have demonstrated that solar x-ray telescopes can also act as a giant
helioscope when observing a solar eclipse. Doing so increases the sensitivity to much smaller
DP masses at the expense of substantially reducing the exposure. Using a single image of a
total eclipse, we have obtained an exclusion limit that outperforms existing helioscopes for
DP masses below 1 meV, although it cannot compete with exclusions from LSW experiments
like ALPS, because the production of very light DPs in the Sun is suppressed due to the large
plasma frequency.

We emphasise that for this proof-of-principle analysis we have used very simple back-
ground models, which do not fit all trends in the data and could easily be refined, in particular
for the case of the eclipse data. Improving the analysis routine further and including also
partial eclipses should make it possible to increase the exposure by an order of magnitude or
more. Increasing the exposure even further appears challenging due to the rareness of solar
eclipses. An exciting possibility would be to use a telescope on a lunar-centric orbit, thereby
sacrificing some of the oscillation baseline for much longer exposures.
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The analysis routine that we have developed can also be used to study the angular
distribution of solar DPs in the most recent version of the CAST experiment and in the
future helioscopes BabyIAXO and IAXO [66, 67]. In this context, it would also be warranted
to further improve the calculation of the DP angular distribution, including an update of
the solar model [68, 69], and estimating the corresponding uncertainties. Given the plans to
measure the polarisation of solar x-rays with the CUSP project [70], it would also be highly
interesting to obtain predictions for the polarisation of DPs produced in the Sun, which would
offer a completely new lever to improve the limits (see also Ref. [61]). The combination of all
of these efforts will enable us to probe new parameter space for the transverse components of
dark photons in the near future.
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A Details on the production of solar DPs

In this appendix we present some more technical details regarding the calculation of the solar
DP flux.

In order to derive the full distribution in the resonant case we begin with the derivation
of the spectral part, i.e. we have to explicitly perform the calculation in eq. (2.11) using the
narrow resonance approximation:

P (ω, r, θ) =
ε2m4

(m2
γ(r)−m2)2 + (ωΓ(ω, r))2

∆r∗�R�−−−−−−→ πε2m4δ(r − r∗)
ωΓ(ω)

∣∣∣dm2
γ

dr

∣∣∣ , (A.1)

where ∆r∗ = ωΓ(ω, r∗)
∣∣dm2

γ/dr
∣∣−1

r∗
defines the sharpness of the peak.14 Using this approxi-

mation, we find

dΦ

dω
≈ω
√
ω2 −m2

2π2R2
e

∫ R�

0
r2dr

∫ 1

−1
d cos θ

Γ(ω, r)

eω/T (r) − 1

πε2m4δ(r − r∗)
ωΓ(ω, r∗)

∣∣∣dm2
γ

dr

∣∣∣
r∗

=ε2m4 r
2
∗
R2
e

√
ω2 −m2

π
(
eω/T (r∗) − 1

) ∣∣∣dm2
γ

dr

∣∣∣
r∗

. (A.2)

This expression agrees with Ref. [14] except for a factor of π2 resulting from a mistake in the
implementation of the narrow resonance approximation.

14We note that there is a hierarchy in length scales here: while the plasma changes slowly on scales of the
oscillation length lplasma, the region where the resonance condition is met is small in comparison to the full
radial extent of the Sun, i.e. lplasma � ∆r∗ � R�.
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With this result at hand, we can now evaluate eq. (2.12):

dΦ

dωdΩ
≈ω
√
ω2 −m2

4π3

∫ R�

rmin

2rdr√
r2 − r2

min

Γ(ω, r)

eω/T − 1

πε2m4δ(r − r∗)
ωΓ(ω)

∣∣∣dm2
γ

dr

∣∣∣
=

ε2m4 r
2
∗
R2
e

√
ω2 −m2

π(eω/T − 1)
∣∣∣dm2

γ

dr

∣∣∣
( 1

2π

Re
r∗

1√
ψ2
∗ − ψ2

Θ(r∗ − rmin)

)
, (A.3)

which leads to the factorisation given in eq. (2.14). To conclude this appendix, we confirm
that our result is correctly normalised:∫

dΩ
dX

dΩ
≈ 2π

2π

∫ ψ∗

0

Re
r∗

sinψdψ√
ψ2
∗ − ψ2

=
Re
r∗
ψ∗ = 1 , (A.4)

where we have used that ψ � 1 over the whole range of integration. In contrast, the cor-
responding expression from Ref. [15] is not correctly normalised, although the shape of the
distribution is similar to ours.

B Discussion of image selection and choice of cuts

In this appendix, we will discuss the details of how to select events from the calibrated images.
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Figure 9. Scatter plot of all darks in the plane of exposure versus median count rate. We show the
sign of the median in red/blue to allow for a logarithmic plot. High-quality images with successful
calibration can be selected by applying the two cuts indicated by the horizontal and vertical line.
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Figure 10. Images from http://sdc.uio.no/search/form. Left: Image with an enormous number
of empty pixels. Right: Image that is obviously damaged but not necessarily empty. Both images are
removed by our quality selection cuts.

First of all, we need to identify potentially damaged images. As damaged or oversatu-
rated pixels are given the value −999 in the calibration process, it is rather simple to discard
strongly damaged images. We implement this by confirming that the absolute value of the
median is smaller than 1DN/pix/s which acts as a solid indicator for mostly intact images.
Furthermore, we throw away images with exposure below 1.5 s as these tend to fluctuate more
than images with long exposure. We use this combination of cuts because only for images
with more than 1.5 s exposure the median is consistently and clearly below the median cutoff
if we ignore obvious outliers, see figure 9. We also note that removing these images from the
analysis only reduces the total exposure by a few percent. Figure 3 shows a viable image
(left) and figure 10 (left) shows an image that is rejected due to missing pixels.

We find that these cuts still let some obviously damaged images like the one in figure 10
(right) pass. These can be removed by constraining the maximum allowed number of events
per image, which acts as a relatively secure method to identify strongly damaged images. We
allow at most 9900 counts in the background bin and at most 990 in any of the radial signal
bins.

Even with these extensive measures, we still observe some systematic trends in these
images. For example, the number of events in the inner radial bins contain (on average)
significantly fewer events per pixel than the outer and background bins. Part of this effect
can be attributed to a small number of pixels with anomalously high number of counts. This
is illustrated in the 2D histogram figure 11, which shows the number of events in each pixel
when summing up all 960 viable images. In the upper left and lower right corner, there
are clearly visible streaks with several hundred of events in only a few pixels (compared to
an average of 0.17 events per pixel). Several more such unexpected substructures can be
identified across the image.

Fortunately, pixels with anomalously high count rates can be readily identified by looking
at the 1D histogram of event counts in figure 12. In addition to the Poisson distribution with
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Figure 11. If we collect all viable events in a 2D histogram we can clearly observe two strong streaks
(encircled) that will systematically lead to larger event rates in the background region (light red
shading) than in the signal region (light yellow shading).
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Figure 12. Histogram of the number of events observed in each pixel after stacking all darks. The
distribution extends up to almost 600 events per pixel. This is to be contrasted with the (expected)
Poisson distribution shown in the inset.
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µ = 0.17 we observe a long-stretched tail of events up to a very large number of events.
Given that the Poisson distribution predicts that there should be no pixels with more than
five events, we remove any such pixels from the stacked image. This cut is quite efficient in
that it removes only about 0.1% of all pixels while reducing the total number of observed
events by 23%.

Removing anomalous pixels reduces the systematic trend in the data but does not elimi-
nate it completely. Even with the distribution now being close to Poissonian, we still observe
on average a larger number of events in the outer bins. It is conceivable that this trend in
fact reflects a physical effect that should be included in a more refined background model. A
deeper analysis of this issue is beyond the scope of the present work.

C Calibration for the eclipse analysis

In this appendix, we discuss how to prepare the eclipse data such that it can be analysed
using the same statistical methods as for the darks. We find that for the image of the eclipse
the calibration routine is not successful, such that we end up with a clear deviation from
the expected scattering around zero (see figure 13). Unfortunately, it is also not possible to
simply subtract a dark taken on the same day and with the same resolution, because the
zero-point calibration yields very different results for the two images.15

15Moreover, a direct subtraction of a dark would also subtract any potential DP signal in the mass range
where the closed telescope acts as a helioscope, i.e. when the oscillation length is short.
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Figure 13. Normalized histogram of the DN/s for the eclipse (red) and a dark with the same
resolution taken on the same day (blue). We observe that the zero-point calibration failed for both
images and led to very different results. In the image of the eclipse one can clearly see the non-Gaussian
tail from the solar x-rays on top of the Gaussian internal noise.
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Figure 14. Plot of the event rate as a function of radius for the eclipse image. We only use the signal
region for our zero-point determination.

Nevertheless, we can use the inner regions of the image to determine the physical zero
point of the data number. To this end, we observe that the distribution of DNs for the dark
(blue histogram in figure 13) looks Gaussian to good approximation, whereas the image of
the eclipse exhibits a clear non-Gaussian tail of pixels with large energy depositions due to
the solar x-rays from the regions of the Sun not covered by the Moon (red histogram). Nev-
ertheless, in the central region of the image, where the solar x-rays are completely blocked by
the Moon, the dominant contribution arises from internal noise leading to the approximately
Gaussian peak.

When considering only pixels within the inner 50% of the solar radius, we find that the
distribution is Gaussian to good approximation. We can thus use these pixels to determine
the zero point to be at −5.16 DN/s. We show the radial dependence of the event rate after
performing the manual zero-point calibration in figure 14, which clearly shows the strong
increase of the event rate towards large radii. Comparing this figure to figure 7 one can also
immediately see that the overall event rate (and the error bars) are orders of magnitude larger
as a result of the contamination with solar x-rays and the limited statistics.

After this dedicated calibration, we perform a consistency check on the effectivity of the
cuts. Even if we identify pixels with a deposited energy larger than 3000 eV as hits by at least
two background photons of any energy within the sensitivity range of the detector then the
fraction of pixels with potential pollution stays below 5% even in the most outer radial bin.
In general, such a large energy deposition is very unlikely to originate from internal noise and
is therefore interpreted as the physical background from the solar corona. We conclude that
our cuts remove the problematic region and leave us with a data set which is effectively free
of external backgrounds.
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