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1. Introduction

The physics of the top quark is unique. Indeed, the lifetime of the top quark, the heaviest particle
of the Standard Model, is so short that it does not hadronise. As a consequence, non-perturbative
effects do not need to be considered to get accurate predictions for processes in which top quarks
are produced at colliders. In addition, since the top-quark coupling to the Higgs boson is close to
one, its study may provide important insights into the electroweak symmetry breaking.

At the LHC, top quarks are mostly produced in 𝑡𝑡 pairs. Nevertheless, single-top production
also happens frequently. Indeed, the total cross-section for single-top production is about four times
smaller than the one for 𝑡𝑡 pair production. The NLO QCD and NLO electroweak corrections to
single-top production with decay of the top quark are known since more than ten years now [1–6].
More recently the NNLO QCD corrections have been computed in the factorisable approxima-
tion [7–10]. The mixed QCD-electroweak corrections and soft-gluon resummation have also been
studied [11, 12].

The single-top quark production is interesting as it allows a direct determination of the CKM
matrix element 𝑉𝑏𝑡 [13–17]. This leads to an indirect determination of the decay rate of the top
quark as it will mostly decay into a bottom quark by emitting a W boson. In addition, it offers a
way to constrain the bottom-quark PDF.

At hadron collider, single top quarks can be produced in three different ways with rather
different rates. Indeed, 70% of the single-top quarks at the LHC originate from the so-called
𝑡-channel production mode. It will be the subject of our study.

In these proceedings, we discuss the non-factorisable corrections to the 𝑡-channel single-top
quark production. In the first part, we discuss the ostensible importance of such corrections and the
obtention of the different relevant amplitudes. In the second part, recently published results at the
energy of the LHC are compared to new results for proton-proton collisions at 100 TeV, the energy
of the FCC [18, 19].

2. Non-factorisable corrections

The Born amplitude for the 𝑡-channel single-top quark production is made of two fermion lines
connected by a 𝑊 boson. Non-factorisable corrections are described by diagrams where gluons
are exchanged between these two fermions line, see Fig. 1. On the left, the gluons are emitted and
absorbed by the same quark line and therefore the diagram is part of the factorisable corrections.
On the right, a diagram contributing to the non-factorisable two-loop amplitude is shown. The
non-factorisable corrections are usually neglected because they are colour-suppressed [7, 10]. It
is easy to compute the color factor of these two diagrams once they are projected on the Born
amplitude. The resulting color factors are 1

4 (𝑁
2
𝑐 −1)2 for the factorisable diagram and 1

4 (𝑁
2
𝑐 −1) for

the non-factorisable one respectively. Therefore, the non-factorisable corrections are suppressed by
a factor 𝑁2

𝑐 − 1 = 8. In addition, one cannot rely on an estimate of these corrections at NLO since
the different interferences vanish at this order because of colour conservation.

Nevertheless, there are several reasons to believe that the non-factorisable should not be ignored.
First of all, the NNLO QCD corrections to the 𝑡-channel single-top production in the factorisable
approximation have been computed recently and appear to be small, namely O(1%) [10]. In
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(a) Factorisable diagram contributing to the
double-virtual amplitude.
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(b) Non-factorisable diagram contributing to the
double-virtual amplitude.

Figure 1: In the factorisable approximation, diagrams made of a cross-talk between the two fermion lines
are neglected since they are suppressed by a factor 𝑁2

𝑐 − 1 = 8 at NNLO compared to diagrams where the
corrections are confined to the same quark line.

addition, there could also be a 𝜋2 enhancement due to the Glauber or Coulomb phase. This is a
virtual effect which is linked to the infinite perturbative interaction range between the two quark
lines exchanging gluons. In principle, it does not require a scattering to occur. This effect has
been studied in the context of two electrons exchanging an arbitrary number of photons in the limit
where the centre-of-mass energy is large compared to the momentum transfer [20]. We note that
the presence of the 𝜋2 enhancement has been explicitly shown for the non-factorisable NNLO QCD
corrections to the vector boson fusion in the eikonal approximation [21]. If this enhancement factor
𝜋2 ∼ 10 exist for the single-top production, it could clearly compensate for the colour suppression.

There is another consequence of this effect; namely that the role of the virtual corrections
is expected to be dominant in non-factorisable corrections. This can be shown by expanding the
integrated cross section in the transverse momentum of the top quark 𝑝𝑡⊥

𝜎 = 𝜎0 +
𝑝𝑡⊥√
𝑠
𝜎1 + O

( (
𝑝𝑡⊥/

√
𝑠
)2)

. (1)

This expansion is valid for the 𝑡-channel single-top production as the typical value of the transverse
momentum of the top-quark is 𝑝𝑡⊥ ∼ 40 GeV and

√
𝑠 ∼ 300 GeV. As the 𝜋2 enhancement occurs

when 𝑝𝑡⊥ → 0, it will affect the term 𝜎0 in Eq. (1). However, in this limit, the real emission vanishes
up to corrections due to the mass of the top quark. Indeed, to contribute to 𝜎0, the emission has
to be collinear or soft. Since non-factorisable amplitude are free of collinear divergences, we only
need to consider emission of a soft gluon. In this limit, any amplitude factorises. For instance, the
five-point amplitude can be written as

lim
𝐸5→0

A (0) (1𝑞, 2𝑏, 3′
𝑞, 4𝑡 , 5𝑔) = − 𝑔2

𝑠𝐶𝐹 (
𝑝
`

1
𝑘 · 𝑝1

−
𝑝
`

3
𝑝5 · 𝑝3

+
𝑝
`

2
𝑝5 · 𝑝2

−
𝑝
`

4
𝑝5 · 𝑝4

)𝜖∗` (𝑝5)

× A (0) (1𝑞, 2𝑏, 3′
𝑞, 4𝑡 ) ,

(2)

where A (0) (1𝑞, 2𝑏, 3′
𝑞, 4𝑡 ) is the Born amplitude and 𝜖∗` (𝑝5) is the polarisation vector for the

emitted gluon 5𝑔. We see that, in the limit 𝑝𝑡⊥ → 0 and for massless momenta, the soft function
vanishes as 𝑝

`

1 = 𝑝
`

3 and 𝑝
`

2 = 𝑝
`

4 . In the case of single-top production, 𝑝`

4 is massive and this
argument holds only when the centre-of-mass energy is much larger than the top mass.
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3. Real-virtual amplitude

The calculation of the real-virtual amplitude turns out to be non-trivial due to the presence of
multiple mass scales. We generate the 24 diagrams with QGRAF and we treat them with FORM.
We work in the ’t Hooft-Veltman scheme where the external momenta live in four dimensions and
the internal ones live in 𝑑 = 4 − 2𝜖 . The 𝜖−dependence of the different spinor structures can be
extracted by splitting the gamma matrices into four-dimensional and 𝜖-dimensional parts

𝛾` = 𝛾 ¯̀ + 𝛾 ˜̀ , (3)

where
{𝛾 ¯̀ , 𝛾5} = 0 [𝛾 ¯̀ , 𝛾5] = 0 . (4)

It is now clear that one needs at least two gamma matrices living in −2𝜖 space to produce an 𝜖 term.
For instance, the following spinor structure

�̄�𝑡 (𝑝4)𝛾`𝛾a𝑢𝑏 (𝑝2) = �̄�𝑡 (𝑝4)𝛾 ¯̀𝛾 ā𝑢𝑏 (𝑝2) + 𝑔 ˜̀ ã�̄�𝑡 (𝑝4)𝑢𝑏 (𝑝2) , (5)

can be expressed as pure four dimensions spinor chains. We projected the two matrices 𝛾 ˜̀𝛾 ã on the
metric tensor 𝑔 ˜̀ ã as it is the only object that can be build from two indices living in −2𝜖 dimension
provided that all other momenta are purely four-dimensional.

The treatment of 𝛾5 within ’t Hooft-Veltman scheme is generally difficult. However, the case of
the single-top production is convenient. Indeed, the left-handed projector from the quark-quark-W
boson vertex can be moved to the external states from the beginning. Then, we decide to remove
these projectors and to work with helicity amplitudes in 𝑑 dimension. Finally, we select only the
left-handed external state.

The next step is to decompose the massive momentum 𝑝4 into a reference vector 𝑟 and a new
massless momentum 4♭

𝑃𝐿𝑢𝑡 (𝑝4) = |4♭] + 𝑚𝑡

〈4♭𝑟〉
|𝑟〉 𝑃𝑅𝑢𝑡 (𝑝4) = |4♭〉 + 𝑚𝑡

[4♭𝑟]
|𝑟] , (6)

where 𝑃𝐿 =
1−𝛾5

2 stands for the left-handed projector and 𝑃𝑅 =
1+𝛾5

2 the right-handed one. The
reference vector 𝑟 is an arbitrary massless momentum. It can be choosen conveniently to simplify the
expressions. After simplification, we are left with two spinor structures per helicity configuration.
There are four of them as both the emitted gluon and the top quark can be left- or right-handed.

On the other hand, one needs to treat the form factors. The challenge comes from the reduction
of five-point rank-three integrals. As an example, we consider a rank 𝑟 ≤ 3 tensor pentagon integral∫

𝑑𝑑𝑘

(2𝜋)𝑑
𝑘`1 . . . 𝑘`𝑟∏5

𝑖=1
[
(𝑘 + 𝑞𝑖)2 − 𝑚2

𝑖

] , (7)

where all momenta are considered to be incoming, so that
∑5

𝑖=1 𝑝𝑖 = 0, and the flowing momenta
are defined as 𝑞𝑖 =

∑𝑖
𝑗=1 𝑝 𝑗 . We introduce the van Neerven-Vermaseren basis {𝑣𝑖}𝑖=1...4 which

spans the physical momentum space. We refer the reader to the following reference for a detailed
discussion [22]. The basis vectors are defined to fulfill the following relation

𝑣𝑖 · 𝑝 𝑗 = 𝛿𝑖 𝑗 . (8)
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We emphasise that, since the five incoming momenta are not independent, the dot product of the
vector 𝑣𝑖 to the left-over momentum is fully-defined by the four others. The loop momentum can
be expressed in this new basis as

𝑘` =

4∑︁
𝑖=1

(𝑘 · 𝑝𝑖)𝑣`𝑖 + 𝑘 ˜̀ , (9)

where 𝑘 ˜̀ stands for the −2𝜖-dimension part of the loop momentum 𝑘`. Since five-point rank-three
integrals do not contain rational terms, the former can be dropped. The factor 𝑘 · 𝑝𝑖 can be expressed
as

𝑘 · 𝑝𝑖 =
1
2
[
(𝑘 + 𝑞𝑖)2 − 𝑚2

𝑖

]
− 1

2
[
(𝑘 + 𝑞𝑖−1)2 − 𝑚2

𝑖−1
]
+ 1

2
[
𝑚2

𝑖 − 𝑚2
𝑖−1 − 𝑝2

𝑖 − 2𝑝𝑖 · 𝑞𝑖−1
]
. (10)

The first two terms in Eq. (10) lead to two rank 𝑟 − 1 boxes which we can treat with a standard
Passarino-Veltman reduction. The last term corresponds to a pentagon of rank 𝑟 − 1; to deal with it,
one can repeat this procedure. Once we reached the point of scalar pentagon, they can be expressed
as a combination of five scalar box integrals, one for each pinched propagator of the pentagon
integrals up to O(𝜖) terms [23].

The real-virtual amplitude is now expressed in terms of 109 scalar box, triangle and bubble
integrals. To improve the numerical stability of the amplitude, we want to reduce the size of the
integral coefficients. The most complicated ones come with the box integrals. We decided to switch
to a basis of finite box integrals in order to set the dimensional regulator present in their coefficient
to zero. As an example, we consider the following box integral

𝐼4,1 =

∫
d𝑑𝑘
(2𝜋)𝑑

1
𝑘2(𝑘 − 𝑝1)2(𝑘 − 𝑝1 − 𝑝2)2(𝑘 − 𝑝1 − 𝑝2 + 𝑝5)2 . (11)

This integral is divergent as any of the propagator goes on-shell. It can be regulated through a
numerator insertion which vanishes in these same limits

tr
(
(−/𝑝1) (/𝑘 − /𝑝1) (/𝑘 − /𝑝1 − /𝑝2) (/𝑝5)

)
= − 𝑠12 (𝑠12 + 𝑠15 − 𝑠34) + (𝑠12 + 𝑠15 − 𝑠34) 𝑘2

− (𝑠12 − 𝑠34) (𝑘 − 𝑝1)2 + (𝑠12 + 𝑠15) (𝑘 − 𝑝1 − 𝑝2)2

− 𝑠12 (𝑘 − 𝑝1 − 𝑝2 + 𝑝5)2 . (12)

After the trace is calculated, we observe that four terms on the right-hand side of Eq. (12) correspond
to the four different propagator of the considered box integrals Eq. (11). These terms will lead to
triangle integrals. The last term is independent of 𝑘 . This factor multiplies the initial divergent
box integral. Using this relation, we can therefore express the divergent box integral as a sum of
one finite box integral that involves the trace that appear on the left-hand side of Eq. (12) and four
divergent triangle integrals. This redefinition can be done for any of the divergent boxe integrals
present in the amplitude.

As all the divergences are now in the triangle integrals and since the pole structure for non-
factorisable corrections at NNLO is very simple, we observe that the coefficients of the triangle
integrals either become independent of the dimensional regulator 𝜖 or simply vanish.
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𝜖−2 𝜖−1

〈A (0) |A (2)
nf 〉 −229.0940408654660 − 8.978163333241640𝑖 −301.1802988944764 − 264.1773596529505𝑖

IR poles −229.0940408654665 − 8.978163333241973𝑖 −301.1802988944791 − 264.1773596529535𝑖

Table 1: Comparison of the poles of the two-loop amplitude with the ones predicited using Catani’s operator.

4. Double-virtual amplitude

The double-virtual amplitude is obtained numerically through the auxiliary mass flow method.
We refer the reader to Ref. [24] for a detailed explanation. The analytic reduction of the two-loop
amplitude keeping the full dependence on the two Mandelstam variables 𝑠 and 𝑡 and the two masses
𝑚𝑊 and 𝑚𝑡 is possible within 4 days on 20 cores. We end up with 428 masters integrals split into
18 families. The evaluation of the master integrals through the auxiliary mass flow method can be
performed to any desired accuracy. We were able to evaluate the 428 master integrals at a typical
phase space point to 20 digits accuracy within 30 minutes on a single core. In table Tab.1, we
present the poles obtained for the two-loop amplitude compared to the one predicted by Catani’s
operator [25]. We observe that we have about 15 digits match at 𝜖−2 and 14 digits match at 𝜖−1. We
expect therefore that the finite part is correct to about 13 digits, as we lose one digit per 𝜖 order.

To evaluate the cross section, we prepare a Vegas grid starting with the Born squared cross
section. We extract then 10 sets of 104 points from this grid and we evaluate the amplitude for
each of these points. Since we have 10 independent sets, we can use the spread of the NNLO
double-virtual correction to estimate the accuracy of our result, namely O(2%).

5. Results at the LHC

We consider proton-proton collisions at 13 TeV. We use the PDF set CT14. The leading-
order cross section is computed with then leading-order PDFs whereas the NNLO cross section is
computed with NNLO PDFs. We present the integrated cross section at a fixed factorisation scale
`𝐹 = 𝑚𝑡

𝜎𝑝𝑝→𝑋+𝑡
1 pb

= 117.96 + 0.26
(
𝛼𝑠 (`𝑅)
0.108

)2
. (13)

At `𝑅 = 𝑚𝑡 , the non-factorisable corrections to the leading-order cross section amount to 0.2%.
The non-factorisable cross section displays a trivial dependence on the renormalisation scale. As
the non-factorisable corrections appear for the first time at NNLO, they are independent of LO,
NLO and NNLO factorisable contributions. As a consequence, at this order, there is no indication
of a good scale choice. Analogously to deep inelastic scattering, the renormalisation scale may
be chosen to be the typical transverse momentum of the top quark, `𝑅 = 40 GeV. In this case,
the non-factorisable corrections become close to 0.35%. In comparison, the NNLO factorisable
corrections to the NLO cross section are about 0.7% [10].

The impact of the non-factorisable corrections on the top-quark transverse momentum distri-
bution is presented on the left pane in Fig. 2. The blue solid line represents the Born cross section.
The red dashed line corresponds to the non-factorisable corrections at ` ≡ `𝐹 = `𝑅 = 𝑚𝑡 . The
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Figure 2: The top quark transverse momentum distribution. The blue solid line represents the Born cross
section. The red dashed line corresponds to the non-factorisable corrections at ` ≡ `𝐹 = `𝑅 = 𝑚𝑡 . The
variation of ` by a factor 2 is depicted by the red region around the red dashed line. We also present with a
green dotted line at the scale ` = 40 GeV.

variation of ` by a factor 2 is depicted by the red region around the red dashed line. A green dotted
line shows NNLO corrections computed with the scale ` = 40 GeV. We observe that the non-
factorisable corrections exhibit a significant dependendence on the transverse momentum of the top
quark. Another interesting feature is that the non-factorisable corrections vanish around at 50 GeV
for any scale value. On the other hand, the factorisable corrections vanish at 30 GeV [10]. The con-
sequence is that there is a part of the phase space at low 𝑝⊥𝑡 , close to the peak of the 𝑝⊥𝑡 distribution,
where the non-factorisable corrections are dominant compared to factorisable corrections.

6. Non-factorisable corrections at the FCC

In this section, we present results for proton-proton collision at 100TeV. We use the same PDF
set as in the previous section. The integrated cross-section reads

𝜎𝑝𝑝→𝑋+𝑡
1 pb

= 2367.0 + 3.8
(
𝛼𝑠 (`𝑅)
0.108

)2
. (14)

At 100 TeV, we observe that at `𝑅 = 𝑚𝑡 , the NNLO corrections amount to 0.16%. At `𝑅 = 40 GeV,
these corrections become 0.25%.

In the right pane of Fig. 2, the distribution of the top-quark transverse momentum is plotted.
We emphasise that we change unit from fb at 13 TeV to pb on this figure at 100 TeV. The shape
of the distribution is similar. The peak of the distribution is still centred around 𝑝⊥𝑡 = 40 GeV.
The NNLO non-factorisable corrections change sign around 70 GeV whereas at 13 TeV, it was at
50 GeV.

In Tab. 2, we present the leading-order cross section and the NNLO non-factorisable cross
section subject to different cuts on the transverse momentum of the top quark. The factorisation
scale is fixed to `𝐹 = 𝑚𝑡 . In the first two columns, we present the leading-order cross section at
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`𝑅 = 𝑚𝑡 `𝑅 = 40 GeV
𝑝
𝑡 ,cut
⊥ 𝜎LO (pb) 𝜎nf

NNLO (pb) 𝛿NNLO [%] 𝜎nf
NNLO (pb) 𝛿NNLO [%]

0 GeV 2367.02 3.79−0.63
0.84 0.16−0.03

0.04 5.95 0.25
20 GeV 2317.03 3.89−0.64

0.86 0.17−0.03
0.04 6.11 0.26

40 GeV 2216.61 4.14−0.69
0.92 0.19−0.03

0.04 6.50 0.29
60 GeV 2121.88 4.28−0.71

0.95 0.20−0.03
0.04 6.71 0.32

Table 2: Born and NNLO non-factorisable cross-sections computed with a cut on the transverse momentum
of the top quark at fixed factorisation scale `𝐹 = 𝑚𝑡 at 100 TeV. The first column corresponds to the value of
the cut. The second column gives the leading-order cross section. The third and the fourth column present
the NNLO non-factorisable corrections at scale `𝑅 = 𝑚𝑡 with its variation by a factor 2. The two last column
describes the same quantities at renormalisation scale `𝑅 = 40 GeV.
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Figure 3: Distribution of the rapidity of the top quark (left pane) and of the leading jet (right pane) at 100
TeV. The red dashed line corresponds to the scale ` ≡ `𝐹 = `𝑅 = 𝑚𝑡 . The green dotted line to ` = 40 GeV.

four different cut values. The third and the fourth column corresponds to `𝑅 = 𝑚𝑡 . We vary the
renormalisation scale by a factor 2. The last two columns corresponds to `𝑅 = 40 GeV.

In Fig. 3, we present the rapidity of the top quark on the left pane and the rapidity of the leading
jet on the right pane. The corrections are nearly constant around 0.2%. On the right pane, one can
read the distribution of the leading-jet rapidity. The corrections to this observable turn out to be also
almost flat and amount to 0.35%. The behaviour of these two rapidity distributions is different from
the ones at 13 TeV. Indeed, at this centre-of-mass energy, the corrections are drastically decreasing
around 𝑦 = 2 and even negative for rapidities above 𝑦 = 3.5 [26].

In Fig. 4, we present the distribution of the leading jet transverse momentum on the left pane
and the sum of the transverse momenta

𝐻 =

𝑛jet∑︁
𝑖=1

𝑝
jet,𝑖
⊥ , (15)

on the right pane. The shape of the NNLO non-factorisable corrections on these two observables is
similar to the ones at 13 TeV. It is interesting to note that the hierarchy between the different scales
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Figure 4: Distribution of the transverse momentum of the leading jet (left pane) and of the sum of the
transverse momenta defined in Eq. (15) (right pane) at 100 TeV. The red dashed line corresponds to the scale
` ≡ `𝐹 = `𝑅 = 𝑚𝑡 . The green dotted line to ` = 40 GeV.

is inverted compared to 13 TeV results. Indeed, in Fig. 4, the corrections at ` = 40 GeV represented
by a green dotted line are smaller than the ones at ` = 𝑚𝑡/2, ` = 𝑚𝑡 and ` = 2𝑚𝑡 in red dashed
line.

7. Conclusions

We report on the computation of non-factorisable corrections to the 𝑡-channel single-top
production. The double-virtual amplitude has been numerically evaluated using the auxiliary mass
flow method. This procedure is sufficiently robust to produce phenomenologically relevant results.
Due to multiple mass scales appearing in the one-loop five-point amplitude, its reduction to master
integrals and its stable and efficient numerical evaluation turn out to be non-trivial. Since the
NNLO factorisable corrections to the NLO cross section are small, the non-factorisable corrections
are found to be quite comparable. We provide new results for non-factorisable corrections for
proton-proton collisions at 100 TeV. The integrated cross-section is changed by few permilles and
the corrections to the different distributions have the tendency to be much flatter than at 13 TeV.
It is hard to estimate how the factorisable corrections will be affected by such an increase in the
beam energy through an heuristic argument. Such results would be desirable to understand the
enhancement of the non-factorisable corrections when the centre-of-mass energy becomes large.
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