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1. Introduction

The successful start of the LHC Run 3 promises a rich harvest of new results that will further
stimulate searches for beyond the Standard Model (BSM) phenomena. In fact, the existing tensions
in the flavor sector and their growing statistical significance readily suggest that the long-awaited
new physics might be just around the corner. One of the main tasks of the theory is to ensure that
possible deviations between the existing predictions and experimental measurements can be indeed
attributed to new physics effects rather than uncalculated or neglected corrections. At higher orders
in perturbation theory such calculations may become highly nontrivial, requiring the expertise and
know-how of the multiloop community. Nevertheless, such laborious investigations are in no way
less important for the field than new advances in the model-building sector.

Oscillations of neutral 𝐵 mesons provide a prominent source of flavor observables, for which
higher order corrections are absolutely necessary to approach the existing experimental precision.
Experimental measurements of the 𝐵𝑠 − 𝐵̄𝑠 system give rise to three observables known as the
width difference between mass eigenstates, ΔΓ𝑠, their mass difference Δ𝑀𝑠 and the flavor-specific
CP asymmetry 𝑎𝑠fs. These quantities are related to Γ12, 𝑀12 and the physical CP-violating phase
𝜙12 as follows

Δ𝑀 = 𝑀𝐻 − 𝑀𝐿 ≈ 2|𝑀12 |, ΔΓ = Γ𝐿 − Γ𝐻 ≈ 2|Γ12 | cos(𝜙12), 𝑎fs =

���� Γ12

𝑀12

���� sin 𝜙12, (1)

where

𝑀12 = |𝑀12 |𝑒𝑖𝜙𝑀 , Γ12 = |Γ12 |𝑒𝑖𝜙Γ , cos(𝜙Γ − 𝜙𝑀 ) = − cos(−𝜋 + 𝜙Γ − 𝜙𝑀 ) ≡ − cos(𝜙12) (2)

and the perturbative parts of Γ12 and 𝑀12 can be obtained from suitable matching calculations.
In this proceeding we would like to focus on ΔΓ𝑠 which can be related to the dispersive part

of Feynman diagrams describing the process 𝑏𝑠 → 𝑏̄𝑠 and measured by looking at the lifetimes in
different decay modes. Combining [1] the measurements done by ATLAS [2], CMS [3], LHCb [4],
CDF [5], DØ [6] experiments one arrives at

ΔΓexp = (0.085 ± 0.005) ps−1 (3)

To put this number into perspective, let us also provide the most precise theoretical prediction
[7–12] as of 2020, which comprises the most relevant NLO contributions as well as the fermionic
𝑛 𝑓 -piece of the dominant NNLO corrections

ΔΓ𝑠 = (0.077 ± 0.015pert. ± 0.002𝐵,𝐵̃𝑆
± 0.017ΛQCD/𝑚𝑏

) × ps−1 (pole) (4)
ΔΓ𝑠 = (0.088 ± 0.011pert. ± 0.002𝐵,𝐵̃𝑆

± 0.014ΛQCD/𝑚𝑏
) × ps−1 (MS). (5)

Owing to the fact that 𝑏𝑠 → 𝑏̄𝑠 is a loop-induced flavor changing neutral current process in the SM,
NLO and NNLO in this context mean two- and three-loop accuracy respectively. By scrutinizing
the above numbers one can readily identify two main sources for the large theoretical uncertainties.
These are the missing QCD correction at leading power in the 1/𝑚𝑏 expansion (denoted as pert.)
as well as uncalculated terms that are subleading in 1/𝑚𝑏.
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In our work we addressed the former type of uncertainties by explicitly calculating all the
missing pieces at two and three loops [13–15] and finally presenting a new theory prediction for
ΔΓ𝑠 at NNLO accuracy [15]. In the following we would like to describe selected aspects of the
relevant calculations in more details.

2. Calculation

In order to calculate ΔΓ𝑠 (or 𝑎𝑠fs) one needs to perform a matching calculation between two
effective theories. In this setup the high-energy theory describing |Δ𝐵| = 1 transitions is obtained
from the SM by integrating out degrees of freedom heavier than the 𝑏 quark mass𝑚𝑏. For historical
reasons, this effective theory can be formulated using two different operator bases [16, 17], and we
choose to work in the so-called Chetyrkin-Misiak-Münz (CMM) [17] basis, as it is better suited for
automated higher-order calculations and avoids possible issues with 𝛾5

1. The |Δ𝐵| = 1 effective
Hamiltonian is given by

H |Δ𝐵 |=1
eff =

4𝐺𝐹√
2

[
−𝜆𝑠𝑡

( 6∑
𝑖=1

𝐶𝑖𝑄𝑖 + 𝐶8𝑄8

)
− 𝜆𝑠𝑢

2∑
𝑖=1

𝐶𝑖 (𝑄𝑖 −𝑄𝑢
𝑖 )

+𝑉∗
𝑢𝑠𝑉𝑐𝑏

2∑
𝑖=1

𝐶𝑖𝑄
𝑐𝑢
𝑖 +𝑉∗

𝑐𝑠𝑉𝑢𝑏

2∑
𝑖=1

𝐶𝑖𝑄
𝑢𝑐
𝑖

]
+ h.c., (6)

with CKM matrix elements 𝑉𝑖 𝑗 , 𝜆𝑠𝑎 = 𝑉∗
𝑎𝑠𝑉𝑎𝑏 and the Fermi constant 𝐺𝐹 . Explicit definitions of

the current-current operators 𝑄1−2, four-quark penguin operators 𝑄3−6 and the chromomagnetic
penguin operator𝑄8 can be found in Ref. [17]. The subscripts 𝑐𝑢, 𝑢𝑐 and 𝑢 signify that one or both
of the 𝑐 quarks in the operator definition should be replaced with 𝑢 quarks (cf. e. g. Ref. [18]). The
Wilson coefficients 𝐶𝑖 are known at three-loop order [19–21]. Apart from the physical operators
𝑄𝑖 the effective Hamiltonian also comprises evanescent operators 𝐸 [𝑄𝑖] [22, 23] that capture
ambiguities of purely 4-dimensional algebraic relations (e. g. Chisholm or Fierz identities) in 𝑑-
dimensions. They become relevant at NLO and beyond, and, more importantly, they mix with the
physical operators under renormalization.

Using optical theorem we can relate imaginary2 parts of the amplitudes calculated on the
|Δ𝐵| = 1 side of the matching to Γ12, which can be conveniently written as [10]

Γ12 = −(𝜆𝑠𝑐)2Γ𝑐𝑐
12 − 2𝜆𝑠𝑐𝜆𝑠𝑢Γ𝑢𝑐

12 − (𝜆𝑠𝑢)2Γ𝑢𝑢
12 , (7)

However, to this aim we also need to consider contributions (including loop corrections) from
the low-energy theory. This so-called |Δ𝐵| = 2 effective theory emerges from the Heavy Quark
Expansion (HQE) [24–33] of the real part of a time-ordered bilocal matrix element induced by two
insertions of |Δ𝐵| = 1 effective Hamiltonians. We find

Γ𝑎𝑏
12 =

𝐺2
𝐹𝑚

2
𝑏

24𝜋𝑀𝐵𝑠

[
𝐻𝑎𝑏 (𝑧)⟨𝐵𝑠 |𝑄 |𝐵̄𝑠⟩ + 𝐻𝑎𝑏

𝑆 (𝑧)⟨𝐵𝑠 |𝑄𝑆 |𝐵̄𝑠⟩
]
+ O(ΛQCD/𝑚𝑏), (8)

1In our calculation we do not encounter any chiral traces, and so we employ the naive dimensional regularization
(NDR) scheme with anticommuting 𝛾5 in 𝑑-dimensions.

2In the literature one often writes “absorptive” and “dispersive” instead of real and imaginary to stress the fact that
the CKM matrix element multiplying the corresponding amplitudes are complex quantities. In this sense, when talking
about real and imaginary parts we explicitly mean parts of the relevant loop integrals.
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where 𝑀𝐵𝑠 denotes the 𝐵𝑠 meson mass and 𝑧 ≡ 𝑚2
𝑐/𝑚2

𝑏. The physical operators are defined as

𝑄 = 𝑠𝑖𝛾
𝜇 (1 − 𝛾5) 𝑏𝑖 𝑠 𝑗𝛾𝜇 (1 − 𝛾5) 𝑏 𝑗 , 𝑄𝑆 = 𝑠𝑖 (1 + 𝛾5) 𝑏 𝑗 𝑠 𝑗 (1 + 𝛾5) 𝑏𝑖 , (9)

with 𝑖, 𝑗 being quark color indices in the fundamental representation. At intermediate stages of the
calculation and especially when doing comparisons to the existing literature results one also needs
to consider the operators

𝑄 = 𝑠𝑖𝛾
𝜇 (1 − 𝛾5) 𝑏 𝑗 𝑠 𝑗𝛾𝜇 (1 − 𝛾5) 𝑏𝑖 , 𝑄𝑆 = 𝑠𝑖 (1 + 𝛾5) 𝑏𝑖 𝑠 𝑗 (1 + 𝛾5) 𝑏 𝑗 . (10)

In practice, we work in the basis of three operators being 𝑄, 𝑄𝑆 and the 1/𝑚𝑏-suppressed operator
𝑅0 [7, 10] defined as

𝑅0 = 𝑄𝑆 + 𝛼1𝑄𝑆 + 1
2
𝛼2𝑄. (11)

For the renormalization of the |Δ𝐵| = 2 operators one needs the three operators𝑄,𝑄𝑆 and 𝑅0. Then,
𝛼1,2 are perturbative coefficients required to ensure that the MS-renormalized matrix element ⟨𝑅0⟩ is
indeed 1/𝑚𝑏 suppressed. If, furthermore, dimensional regularization is used for IR regularization,
subtleties occur, which can lead to incorrect matching coefficients [14]. Definitions of |Δ𝐵| = 2
evanescent operators can be found in Ref. [13]. The hadronic matrix elements ⟨𝐵𝑠 |𝑄 |𝐵̄𝑠⟩ and
⟨𝐵𝑠 |𝑄𝑆 |𝐵̄𝑠⟩ can be calculated on the lattice [34, 35] or using QCD/HQET sum rules [36–43].

In order to improve the theory prediction for ΔΓ𝑠 we need to calculate the Wilson coefficients
𝐻𝑎𝑏 (𝑧) and 𝐻𝑎𝑏

𝑆 (𝑧) by taking into account different operator insertions on the |Δ𝐵| = 1 side of the
matching together with the relevant QCD corrections. To simplify the calculation it is convenient
to make use of the good convergence of the Wilson coefficients in 𝑧. Therefore, in this work, we
expand in 𝑧 and restrict ourselves to the accuracy of O(𝑧).

We carry out the matching by taking the 𝑏 quark momenta on-shell (i. e. 𝑝2
𝑏 = 𝑚2

𝑏) and
neglecting the 𝑠 quark mass while setting 𝑝𝑠 = 0. Dimensional regularization is employed both for
UV and IR divergences, using the procedure described in [8]. At each order in 𝛼𝑠 in the matching
we need to calculate one more loop on the |Δ𝐵| = 1 side compared to the |Δ𝐵| = 2 side. This
is because LO in the former theory is given by one-loop diagrams, while in the latter the leading
contribution is a tree-level one.

At two loops we consider all possible combinations of two |Δ𝐵| = 1 operator insertions (e. g.
𝑄1,2 × 𝑄1,2, 𝑄1,2 × 𝑄3−6, 𝑄3−6 × 𝑄8 etc.). At three loops we calculate only the insertions of two
current-current operators 𝑄1,2 (including their 𝑢, 𝑢𝑐 and 𝑐𝑢 varieties). It is worth noting that for
many of the above operator insertions 𝑧-exact results proportional to the number of flavors 𝑛 𝑓 are
available in the literature. The reason for this is that such fermionic pieces are simpler to compute
as compared to the nonfermionic contributions. A summary comparing our results with what was
previously known is given in Table 1.

3. Technical details

The technical side of our matching calculation is handled by a well tested setup employing
Qgraf [45] (diagram generation), q2e/exp [46, 47] or tapir [48, 49] (insertion of Feynman rules
and topology identification), and the in-house FORM-based [50] calc-code (amplitude evaluation).
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Contribution Literature result This work
𝑄1,2 ×𝑄3−6 two loops, 𝑧-exact, 𝑛 𝑓 -part only [11] two loops, O(𝑧), full
𝑄1,2 ×𝑄8 two loops, 𝑧-exact, 𝑛 𝑓 -part only [11] two loops, O(𝑧), full
𝑄3−6 ×𝑄3−6 one loop, 𝑧-exact, full [44] two loops, O(𝑧), full
𝑄3−6 ×𝑄8 one loop, 𝑧-exact, 𝑛 𝑓 -part only [11] two loops, O(𝑧), full
𝑄8 ×𝑄8 one loop, 𝑧-exact, 𝑛 𝑓 -part only [11] two loops, O(𝑧), full
𝑄1,2 ×𝑄1,2 three loops, O(√𝑧), 𝑛 𝑓 -part only [12] three loops, O(𝑧), full

Table 1: Overview of the existing and new results required for the NNLO theory prediction of ΔΓ𝑠 that were
considered in this work. With “𝑛 𝑓 -part only” we signify that the corresponding literature result provides
only fermionic contributions, while “full” means that both fermionic and nonfermionic pieces are included.

The numerators of multi-loop integrals are handled using two independent approaches, where we
either make use of suitable Dirac and color projectors (cf. appendix of Ref. [13]) or employ explicit
tensor-reduction formulas obtained with the aid of FeynCalc [51–54] and Fermat [55]. In order
to reduce the occurring loop integrals by means of IBP techniques we use FIRE [56] and LiteRed
[57].

At two loops the naive Taylor expansion in 𝑧 is equivalent to the proper asymptotic expansion
[58, 59] up to O(𝑧). At three loops this is true for most diagrams, except for those containing a
closed charm loop. Since those fermionic contributions are already known, we can take them from
Ref. [11, 12] while still employing naive expansion for the rest of the diagrams. Therefore, the
master integrals appearing in the final results are single scale propagator-type on-shell integrals,
which can always be cut without touching a massive line. This is because integrals with continuous
massive lines have no imaginary parts and hence cannot contribute to Γ12. All integrals up to two
loops are either already known [60] or can be trivially computed using standard techniques [61].
The three-loop master integrals turn out to be more challenging in the sense that only few of them
can be readily found in the literature [12]. In total, we have four massless three-loop integrals that
can be taken over from Mincer [62] and 23 genuine masters with internal massive lines.

The new master integrals can be calculated using HyperInt [63], where we first employ Feyn-
calc to derive the Feynman parametrization of each integral and check that it is projective. Then,
the integrand is handed over to HyperInt, regularized using the built-in analytic regularization
routines [63–65] and directly integrated in the Feynman parameters. This way we obtain inter-
mediate results in terms of Goncharov Polylogarithms (GPLs) [66] containing 6th root of unity.
Using HyperLogProcedures [67] and ultimately also PolyLogTools [68] the imaginary parts of
these integrals can be significantly simplified and expressed in terms of familiar constants such as
𝜋, ln(2), 𝜁2, 𝜁3, 𝜁4,Cl2(𝜋/3),

√
3,Li4(1/2) and ln

(
(1 +

√
5)/2

)
. Notice that the golden ratio stems

only from the first integral in Fig. 1 as well as its variety with a dot on one of the massless lines.
The appearance of this constant in the final result for ΔΓ𝑠 has already been observed in Ref. [12].
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prop3L2topo000110000(1, 0, 1, 1, 1, 0, 1, 1, 0) prop3L3topo011000000(1, 1, 1, 0, 0, 1, 1, 1, 0) prop3L3topo011000000(1, 1, 1, 0, 1, 0, 1, 1, 0) prop3L3topo011000000(1, 1, 1, 1, 0, 1, 1, 0, 0)

prop3L3topo011000000(1, 1, 1, 1, 1, 0, 1, 0, 0)

Figure 1: Some of the nonfactorizing on-shell three-loop master integrals occurring in our matching
calculation. A solid line denotes a massive propagator with 𝑚𝑏 , while a dashed line corresponds to a
massless propagator.

4. Results

Having obtained all the necessary ingredients to predict ΔΓ𝑠 with NNLO accuracy, we finally
were able to provide the long-awaited numbers in Ref. [15]. Let us start by explaining the scheme
dependence of the matching coefficients that enters through the heavy quark masses3. In the
matching we employ the on-shell scheme, i. e. 𝑧 = (𝑚pole

𝑐 /𝑚pole
𝑏 )2. These results can be readily

converted to the MS scheme by introducing 𝑧 = (𝑚𝑐 (𝜇𝑐)/𝑚𝑏 (𝜇𝑏))2. Here we set 𝜇𝑐 = 𝜇𝑏 = 𝑚𝑏

since this choice leads to a cancellation of potentially large 𝑧 log 𝑧-terms [69]. Apart from 𝐻𝑎𝑏 (𝑧)
and 𝐻̃𝑎𝑏

𝑆 (𝑧) that now contain only MS quantities, we still have the 𝑚2
𝑏 prefactor in Eq. (8), where

different scheme choices are possible. Apart from leaving the prefactor untouched (“pole” scheme)
we may also convert it to the MS or e. g. to the potential subtracted (PS) [70] scheme. We refer to
Refs. [14, 15] for further information on the choice of the input parameters.

In view of the existing tensions between inclusive and exclusive |𝑉𝑐𝑏 | determinations, it is
useful to consider the ratio ΔΓ𝑠/Δ𝑀𝑠, which does not depend on the CKM parameters 𝑉𝑡𝑠 and 𝑉𝑡𝑏,
while the dependence on the hadronic bag parameters cancels to a large extent. In this sense the
ratio is a theoretically much cleaner observable than ΔΓ𝑠 alone. Here our predictions read

ΔΓ𝑠
Δ𝑀𝑠

= (3.79+0.53
−0.58 LP

scale
+0.09
−0.19NLP

scale
± 0.11𝐵𝐵̃𝑆

± 0.781/𝑚𝑏
± 0.05input) × 10−3 (pole) ,

ΔΓ𝑠
Δ𝑀𝑠

= (4.33+0.23
−0.44 LP

scale
+0.09
−0.19NLP

scale
± 0.12𝐵𝐵̃𝑆

± 0.781/𝑚𝑏
± 0.05input) × 10−3 (MS) ,

ΔΓ𝑠
Δ𝑀𝑠

= (4.20+0.36
−0.39 LP

scale
+0.09
−0.19NLP

scale
± 0.12𝐵𝐵̃𝑆

± 0.781/𝑚𝑏
± 0.05input) × 10−3 (PS), (12)

where “LP scale” and “NLP scale” refer to the variations of the renormalization scale 𝜇 at leading and
subleading powers in the 1/𝑚𝑏 expansion. The subscripts “1/𝑚𝑏”, “𝐵𝐵̃𝑆” and “input” denote the
uncertainties in the matrix elements entering the 1/𝑚𝑏-corrections, leading-power bag parameters
and the remaining input parameters respectively. As one can see, the former type of uncertainties
now dominate the error budget, while the scale uncertainty at leading power is under much better
control than before. This can be also inferred from Fig. 2. Evidently, both MS- and PS-scheme
results feature an improved 𝜇-dependence at NNLO as compared to NLO, while at 𝜇 ≈ 9 GeV the
NNLO correction vanishes altogether. Another interesting observation is the obvious failure of the
pole scheme at NNLO in the sense that the predicted value is much smaller than that of the other

3The Wilson coefficients of all operators are always renormalized in the MS scheme. The same is true also for the
coupling constants, gauge parameter 𝜉 and the quark field renormalization constant 𝑍2.
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𝜇1 = 𝜇𝑏 = 𝜇𝑐 [GeV]
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PS LO
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Figure 2: Dependence of the ratio ΔΓ𝑠/Δ𝑀𝑠 on the renormalization scale at LO, NLO and NNLO for
the MS and PS schemes from [15]. To illustrate the impact of our work, we keep the 𝜇-dependence of the
subleading power terms fixed. The gray band denotes the experimental value.

schemes. Technically, this behavior can be linked to large perturbative corrections present in the
two-loop conversion formula between MS and the pole bottom quark mass. Therefore, we conclude
that this scheme is poorly suited for predicting ΔΓ𝑠 at NNLO.

Finally, we can use the experimentally measured value for Δ𝑀𝑠 [71]

Δ𝑀exp
𝑠 = 17.7656 ± 0.0057 ps−1, (13)

to extract ΔΓ𝑠 from our prediction for the ratio. Our final prediction obtained from taking the
average of the MS and PS results, adding the uncertainties in quadrature and symmetrizing the scale
dependence reads

ΔΓ𝑠 = (0.076 ± 0.017) ps−1 . (14)

Comparing this number to Eq. (3) we see that the theory uncertainty is now only three times
bigger than the experimental one. Furthermore, as already explained above, the perturbative QCD
corrections at leading power are not anymore the main obstacle on the way to a more precise
determination of ΔΓ𝑠.
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5. Summary

Using matching coefficients calculated in a series of related publications [13–15] we were
finally able to achieve the NNLO accuracy in our theory prediction for ΔΓ𝑠. Our results in MS and
PS schemes are in good agreement with the experimental measurements and feature significantly
reduced uncertainties as compared to the previous predictions. More importantly, the main source
for the remaining theoretical errors now lies in the 1/𝑚𝑏-contributions to ΔΓ𝑠, where missing
perturbative corrections and poorly known hadronic matrix elements severely impact the achievable
theory precision.

All two-loop matching coefficients were made available in a computer-readable format [13, 14],
while a further publication providing analytic three-loop matching coefficients and related building
blocks (e. g. two-loop |Δ𝐵| = 2 operator renormalization matrix) is currently in preparation. While
our current results are accurate at O(𝑧), the calculation of higher orders in the 𝑧-expansion at two
and three loops is already in progress.
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