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Abstract. Modern advances in particle physics depend strongly on the usage of reliable
computer programs. In this context two issues become important: The usage of powerful
algorithms to handle the amount of evaluated data properly, and a software architecture capable
to overcome the problems of maintainability and extendability. We present our approach to such
a computer program, called tapir. This tool assists computations in perturbative quantum
field theory in many ways. Such calculations often involve the evaluation of a large amount
of Feynman diagrams with multiple loops. tapir helps in reducing the number of diagrams,
and the resulting integrals thereof, by identifying and minimizing their topological structure.
We will focus on a three-loop calculation which is needed for the next-to-next-to leading order
predictions of neutral B-meson systems. We show how tapir can be utilized for this kind of
calculation.

1. Introduction
The outstanding experimental effort of recent years led to an unreached precision in flavor
observables. Among the most prominent ones is the mixing of neutral meson states such as the
Bs and Bd. We take in this work only Bs into account, the extension to Bd is straightforward.
A more elaborate overview for this topic is given in e.g. Ref. [1].
Bs can oscillate in its antiparticle state Bs via box diagrams. Therefore, the mass eigenstates

differ from the flavor eigenstates. A few observables for this flavor oscillation process are of
particular interest in connection to precision tests of the Standard Model. They can be derived
from the transition amplitude from one flavor eigenstate to another, which we denote as

−i(2π)4δ(4) (pi − pj) Σs
ij =

〈i| iT |j〉
2MBs

. (1)

i and j describe either a particle state Bs or an antiparticle state Bs. MBs is the average mass
of the meson.

Especially the off-diagonal elements of this amplitude are interesting for the mixing due to
the connection to the mass and decay width matrix:

M s
12 =

Σs
12 + (Σs

21)∗

2
≡ Disp(Σs

12) ,

Γs12 = i (Σs
12 − (Σs

21)∗) ≡ 2Abs(Σs
12) .

(2)

In order to compute these off-diagonal matrix elements, it is hence necessary to evaluate the
dispersive and the absorptive part of the process Bs → Bs. They correspond to the real and
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imaginary part of the scattering amplitude where the CKM matrix elements are factored out.
According to the optical theorem, only virtual particles contribute to Γs12 which can be produced
on-shell. For M s

12 exists no such restriction. Hence, Γs12 is straightforward to compute when
connected to the calculation of the discontinuity of the complex plane, and with it to Cutkosky’s
cutting rules [2].

From M s
12 and Γs12 we are able to compute three physical observables: The mass difference

between heavy (H) and light (L) mass eigenstates,

∆Ms = M s
H −M s

L = 2|M s
12| , (3)

the decay width difference,
∆Γs = ΓsL − ΓsH ≈ 2|Γs12| , (4)

and the CP asymmetry

asfs = Im

(
Γs12

M s
12

)
. (5)

asfs is a measure of CP breaking in the mixing by quantifying how much the mass eigenstates
differ from the CP eigenstates.

∆Γs is computed in an effective field theory with the effective interaction HamiltonianH∆B=1:

Γs12 =
1

2MBs

Abs

(
i 〈Bs|

∫
d4x H∆B=1(x)H∆B=1(0) |Bs〉

)
. (6)

For H∆B=1 we choose the basis of Ref. [3] which is closed under renormalization when
including QCD effects. It also has the advantage of preventing traces including γ5. The
numerically most relevant effective operators are the so-called current-current operators. Taking
only those into account, we have

H∆B=1 =
4GF√

2

∑
q1,q2

Vq1bV
∗
q2s (Cq1q21 P q1q21 + Cq1q22 P q1q22 ) . (7)

The sum iterates over q1, q2 ∈ {u, c}. The operators are given by

P q1q21 = (s T aγµPL q2) (q1 T
aγµPL b) ,

P q1q22 = (s γµPL q2) (q1 γ
µPL b) ,

(8)

with PL = (1− γ5)/2.
Equation (6) can be even further simplified by using the heavy quark expansion (HQE). This

is an operator product expansion around the small parameter Λ/mb. It translates the non-local
hadronic matrix element of eq. (6) to local operator insertions with new Wilson coefficients H
and H̃S . We hence get

Γs12 =
G2
Fm

2
b

24πMBs

(
H 〈Bs|Q |Bs〉+ H̃S 〈Bs| Q̃S |Bs〉

)
, (9)

with
Q = 4 (si γµPL bi) (sj γ

µPL bj) , Q̃S = 4 (si PL bj) (sj PL bi) . (10)

Corrections to eq. (6) including only current-current operators are currently known up to
O(αs) [4, 5, 6, 7] and only partially known to O(α2

s) [8, 9]. To complete the missing NNLO
contributions, diagrams as in fig. 1 have to be considered.



Figure 1. Sample diagrams which contribute at NNLO to ∆Γs within the effective ∆B = 1
theory.

2. Diagram and topology analysis
Analyzing the diagrams of fig. 1 gives a hint which problems may occur. In order to allow
for one-particle reducible diagrams (diagram 1), we have to use the options “notadpoles” and
“onshell” of qgraf [10] during diagram generation. Unfortunately, “onshell” also discards
diagram 2. Therefore, we define a second diagram class where only the option “offshell” is
specified. We then use a special diagram filter of tapir [11] to remove the unwanted diagrams.
We do this by specifying the following in the config file:

* tapir.filter external_self_energy_bridge : false

This filter excludes all diagrams whose external legs have self-energy corrections. Flavor mixing
of the self-energy, as in diagram 2, is explicitly not effected.

qgraf generates O(4500) three-loop diagrams for the first diagram class. Unfortunately,
qgraf can only distinguish between interactions with different particles, i.e. P cc1 and P cc2 cannot
be differentiated. The separation is first applied if symbolic graph representations (dia/edia)
are generated. Then, tapir iterates over all possible interaction combinations as stated in the
vrtx file. Thus, the number of diagrams increases to O(17000) if all current-current operators
of eq. (8) are regarded. The second class starts with O(3000) diagrams generated by qgraf, but
reduces to O(2000) when applying the described diagram filter. The actual number of remaining
diagrams of the second class with distinguished operators is O(8000).

A further simplification concerns the specific kinematics of the process b(q1)s(q2) →
s(q3)b(q4). Since we match the results of two effective field theories to get H and H̃S , the result
must not depend on the kinematics of the external particles. Thus, we can choose the three-
momenta of the s-quarks as ~q2 = ~q3 = 0. In the limit ms → 0, this kinematic is topologically
equal to diagrams where the external s-lines are removed. We can make use of this in tapir

with

* tapir.external_momentum q2:0

* tapir.external_momentum q3:0

The external momenta are labeled according to the order of how the external particles were
declared in qgraf.dat. Additionally, we specify that the b- and c-quarks are massive:

* tapir.mass fb:M1

* tapir.mass fc:M2

After specifying a prop and vrtx file with all symbolic Feynman rules, we analyze and
minimize the occurring topologies. We call tapir with the following command line options:

$ /path/to/tapir -c class1.conf -q qlist.3 -m -t class1.top -k 8

The “-c” argument specifies the config file. The argument of “-q” defines the qgraf output file
that was generated using the style file which comes with tapir. “-m” minimizes the topologies
of the diagrams and tries to map them onto each other. The option “-t” outputs the remaining



topologies as a topsel file. This file format was adopted from q2e and exp [12, 13, 14] and
serves as the standard format for graph topologies around tapir. The last command line option
“-k” demands tapir to use 8 cores for parallel evaluation. The execution per diagram class
takes O(10 s) on a modern desktop PC.

3. Topology minimization
The implemented minimization starts with extracting the topological features of each diagram.
This includes the connections of the underlying graph, i.e. which vertices are connected by which
edge. It also takes the edge coloring into account, i.e. the mass of the propagating particle. This
information is then encoded in a label which is unique for a given Feynman graph topology:
the Nickel index [15]. With this index at hand it is straightforward to identify a priori different
graphs, by using it as a hash function and comparing the generated hashes. This procedure
enables a minimization in a highly parallelized manner.

The two diagram classes defined above lead minimized to O(1000) and O(400) remaining
topologies, respectively. In the next step we want to combine both topology sets, and reduce
them even further. For this purpose, we create a new config file with the following entries:

* tapir.topo_ignore_bridges

* tapir.topo_remove_duplicate_lines

Here, we use a set of destructive topology filters, i.e. they change the graph topology, but
do not affect the underlying integral families. The option “tapir.topo ignore bridges”
removes lines from a topology which do not carry a loop momentum, so-called bridges.
“tapir.topo remove duplicate lines” removes lines which have the exact same momentum
and mass as another line.

As a next step, we want to use the topological information to build symbolic integral families.
For this, we generate a FORM [16] file that combines the scalar loop-dependent factors to a
topology function. This topology file can be embedded in a FORM-based setup, as it is common
for multi-loop calculations. Before including this file, some kind of tensor reduction has to be
applied to the symbolic expressions of the diagrams generated by tapir. The generation of the
topology file can be varied by several options. For our case, we may use

* tapir.topo_complete_momentum_products

to replace numerator functions of the integral family by a standard propagator function. For
example, it may happen that the product q.k cannot be expressed through the remaining
propagators. Thus, q.k would be part of the integral family. The presented option replaces
the product with

q.k =
1

2

(
(q + k)2 − q2 − k2

)
. (11)

The combination q+k is then replaced by an ancillary momentum P1, and 1/(−P 2
1 )n is included

in the integral family. The minus sign is used for convenience.
We finally can call tapir once again with

$ /path/to/tapir -c combine.conf -i class12.top -m -t final.top -f include/ -k 8

-pf

This time, we read a concatenation of the previously created topsel files. One has to
make sure that the topologies of the different classes can be distinguished using the option
“tapir.topology name” beforehand. The option “-f” creates a folder with the topology files
in addition to a topology list file containing all integral family definitions in a Mathematica

readable format. The latter can be used as input for reduction programs like FIRE [17].



Additionally, we use the option “-pf” which usually performs a partial fraction decomposition
of the final integral families. Thus, we ensure to get only integral families with linear independent
denominator functions. This is a necessary pre-condition for integration-by-parts algorithms.
The combination of both diagram classes with the mentioned topology filters results in O(900)
topologies. It turns out, the partial fraction decomposition does not apply since the options
topo ignore bridges and topo remove duplicate lines already remove all occurring linear
dependencies in the integral families. Nevertheless, using “-pf” is always a good precaution.

The remaining O(900) topologies are the result of only a coarse minimization. A program
like exp can map the diagrams on even less topologies. Thus, our naive minimization procedure
can be regarded as a relatively fast “pre-filtering”.

The generated topology files, e.g. for the topology of diagram 4 in fig. 1, have the following
form:

* Reducible numerator momentum replacements

id p3 = -p4 - q1;

id p1 = p4 - p5 + p6;

id p2 = p4 - p5 + p6 + q1;

id P1 = p5 + p6;

id P2 = p4 + p6;

id P3 = p5 + q1;

.sort

* Numerator momentum product replacements

id p6.q1 = -p1.p1/2 + p2.p2/2 - p3.p3/2 + p4.p4/2 + p5.q1;

id p4.q1 = p3.p3/2 - p4.p4/2 - q1.q1/2;

id p4.p5 = -p1.p1/2 + p4.p4/2 + p4.p6 + p5.p5/2 - p5.p6 + p6.p6/2;

id p5.p6 = (P1.P1 - p5.p5 - p6.p6)/2;

id p4.p6 = (P2.P2 - p4.p4 - p6.p6)/2;

id p5.q1 = (P3.P3 - p5.p5 - q1.q1)/2;

.sort

* Define massive propagators

id p2.p2 = -1/s2m1 + M1^2;

id p4.p4 = -1/s4m1 + M1^2;

id p5.p5 = -1/s5m2 + M2^2;

id p6.p6 = -1/s6m2 + M2^2;

.sort

* Combine to scalar topology function

id s6m2^n0? * s5m2^n1? * s4m1^n2? * s2m1^n3? * 1/p1.p1^n4? * 1/p3.p3^n5? * 1/P1.

P1^n6? * 1/P2.P2^n7? * 1/P3.P3^n8? =

(-1)^n4 * (-1)^n5 * (-1)^n6 * (-1)^n7 * (-1)^n8 *

DB1TopoNNLOdr3l4380(n0 ,n1 ,n2 ,n3 ,n4 ,n5 ,n6 ,n7 ,n8);

.sort

Herewith a tensor reduced, symbolic diagram is straightforwardly replaced by an integral
family in FORM. The corresponding topology list entry is given by

{"DB1TopoNNLOdr3l4380", {M2^2 - p6^2, M2^2 - p5^2, M1^2 - p4^2, M1^2 - (p4 - p5

+ p6 + q1)^2, -(p4 - p5 + p6)^2, -(p4 + q1)^2, -(p5 + p6)^2, -(p4 + p6)^2,

-(p5 + q1)^2}, {p4, p5, p6}}

which is in the form of

{"Family name", List of denominators , List of loop momenta}



4. Conclusion
We have shown how the program tapir can be used to simplify Feynman graph topologies
and how they can be expressed as symbolic integral families. We have considered the example
of Bs − Bs mixing at three-loop order. The program was already used in similar two-loop
calculations [18, 19].

The program and an extensive documentation are freely available at the gitlab page:
https://gitlab.com/F.Herren/tapir.
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