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Abstract

Conformal symmetry of QCD is restored at the Wilson-Fisher critical point in noninteger 4−2ε space-time dimensions. Correlation
functions of multiplicatively renormalizable operators with different anomalous dimensions at the critical point vanish identically.
We show that this property allows one to calculate off-diagonal parts of the anomalous dimension matrices for leading-twist op-
erators from a set of two-point correlation functions of gauge-invariant operators which can be evaluated using standard computer
algebra techniques. As an illustration, we present the results for the NNLO anomalous dimension matrix for flavor-singlet QCD
operators for spin N ≤ 8.
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1. Introduction

The Electron-Ion Collider [1, 2] will allow one to access
generalized parton distributions (GPDs) [3, 4, 5] in a broad
kinematic range. In particular the possibility to study the three-
dimensional gluon distributions in the longitudinal and trans-
verse plane is new and very exciting. The scale dependence of
GPDs is governed by evolution equations that are more com-
plicated as compared to the usual parton distributions (PDFs).
In the language of the operator product expansion (OPE), the
added complication in this case is to take into account mix-
ing with operators containing total derivatives. Going over to
the momentum fraction space, this mixing translates to the evo-
lution kernels involving extra variables. The complete set of
the NLO (two-loop) evolution kernels is available for a long
time [6] and the NNLO (three-loop) evolution kernels for flavor-
nonsinglet operators were calculated more recently in [7]. Both
calculations use conformal symmetry constraints that allow one
to obtain the kernels for GPDs from the known NLO and NNLO
evolution kernels for PDFs and a computation of the so-called
conformal anomaly from conformal Ward identities at one or-
der less, i.e. a two-loop anomaly [8] is sufficient to obtain the
NNLO kernels. The NNLO flavor-singlet kernels can, in prin-
ciple, be obtained in the same way, but the calculation becomes
too large to be done without using computer algebra methods.
The required algorithmic implementation is, unfortunately, not
available.

In this letter we suggest an alternative approach that allows
one to calculate off-diagonal parts of the anomalous dimen-
sion (AD) matrices of local flavor-singlet operators from a set
of two-point correlation functions which can be evaluated us-
ing standard computer algebra software packages 1. The main

1A similar approach was used in [9] for the study of the 1/N expansion in
the nonlinear σ-model.

advantage of this technique as compared to the direct calcula-
tion is that gauge non-invariant Equation of Motion (EOM) and
BRST operators can be completely neglected. A disadvantage
as compared to the approach of [6, 7] is that the calculation is
done for local operators with given (not very high) spin, alias
for the first few moments of GPDs. The results can be used
to obtain a certain approximation for the NNLO evolution ker-
nels, but their construction is likely to be more complicated as
compared to the well-studied case of PDFs. This is a separate
problem that will not be considered here.

The starting point is that conformal symmetry of QCD at
quantum level is restored at the Wilson-Fisher critical point [10]
at noninteger space-time dimension d = 4 − 2ε∗ [11]

ε∗(a) = −β0a − β1a2 − . . . , a = αs/4π, (1)

where β0, β1,. . . are the first few coefficients of the QCD β-
function and αs is the strong coupling. At the critical point, the
two-point correlation functions of multiplicatively renormaliz-
able operators with different ADs vanish to all orders of pertur-
bation theory [12]

〈[O]n(x)[O]m(0)〉 ∼ δnm , x/=0 , (2)

where 〈. . .〉 stands for the vacuum expectation value. We will
show that this condition allows one to find the eigenvectors of
the renormalization group (RG) equation in the chosen opera-
tor basis from a calculation of the corresponding unrenormal-
ized correlation functions with m ≤ n. Since the eigenvalues
(ADs) are known, this information is sufficient to restore the
complete mixing matrix. Last but not least, the ADs of com-
posite operators in minimal subtraction schemes do not depend
on ε by construction and are the same for the physical d = 4
and the critical d = 4 − 2ε∗ space-time dimensions. Thus the
calculated mixing matrix for the leading-twist operators at the
critical point coincides identically with that in physical theory
in four dimensions [13, 8, 7].
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In this letter we will first explain application of this tech-
nique on a simple example in NLO, followed by a more system-
atic presentation for the most interesting case of flavor-singlet
operators. The NNLO mixing matrix (in the Gegenbauer ba-
sis) for flavor-singlet QCD operators for spin N ≤ 8 presents
our main result. As a byproduct of this calculation we re-derive
and confirm the corresponding results of Ref. [7] for the flavor-
nonsinglet operators.

2. Simple example

As an example, consider the twist-two operator

O2(x) = ∂2
+ q̄1(x) C(3/2)

2

←D+ −
→

D+

←

D+ +
→

D+

 γ+q2(x), (3)

where q1 and q2 are quark fields of different flavor, ∂µ = ∂/∂xµ,

C(3/2)
2 (y) is the Gegenbauer polynomial and

←

D+,
→

D+ are left and
right covariant derivatives, respectively. The “plus” projection
corresponds to a multiplication by an arbitrary light-like vector
γ+ = γµnµ, n2 = 0.

In processes involving a momentum transfer between the
initial and the final states one needs to take into account mixing
of O2(x) with the (second) total derivative of the vector current

O1(x) = ∂2
+q̄1(x)γ+q2(x) , (4)

so that the renormalized operators in the MS scheme take the
form

[O2] = Z22O2 + Z21O1 , [O1] = Z11O1 . (5)

It is convenient to introduce matrix notation

O =

(
O1
O2

)
, Z =

(
Z11 0
Z21 Z22

)
. (6)

Renormalized operators satisfy the RG equation(
µ∂µ + β(a)∂a + γ

)
[O] = 0 . (7)

Here

γ =

(
γ11 0
γ21 γ22

)
(8)

is the AD-matrix and β(a) is the d-dimensional beta function

β(a) = µ
da
dµ

= −2a(ε + aβ0 + a2β1 + . . .), (9)

where

β0 =
11
3

CA −
2
3

n f , β1 =
2
3

[
17C2

A − 5CAn f − 3CFn f

]
. (10)

Since the vector current is conserved γ11 = 0 and Z11 = 1 to all
orders in perturbation theory. The γ22 entry is the usual AD of
the leading-twist operator with two derivatives. It is known to
five-loop order [14]. For Nc = 3

γ22 = aγ(1)
22 + a2γ(2)

22 + O(a3) , (11)

with

γ(1)
22 =

100
9

, γ(2)
22 =

34450
243

−
830
81

n f , (12)

etc. The advantage of using the Gegenbauer polynomial in (3)
is that the off-diagonal ADs start at order O(a2) in this basis:

γ21 = a2γ(2)
21 + O(a3) . (13)

In what follows we describe a simple method to calculate γ(2)
21 .

The mixing matrix (8) can be written in the following form(
γ11 0
γ21 γ22

)
=

(
1 0

A21 1

)−1 (
γ11 0
0 γ22

) (
1 0

A21 1

)
(14)

with A21 = γ21/(γ22 − γ11) = aA(1)
21 + a2A(2)

21 + . . ..
Let

O =

(
1 0

A21 1

)
[O] =

(
[O1]

[O2] + A21[O1]

)
(15)

and set the space-time dimension to its critical value (1) such
that the β-function (9) vanishes. With this choice, the RG equa-
tion in (7) decouples into separate equations for the “rotated”
operators(

µ∂µ + γ11
)
O1 = 0 ,

(
µ∂µ + γ22

)
O2 = 0 , (16)

and conformal symmetry requires that to all orders of perturba-
tion theory

〈O2(x)O1(0)〉 = 〈[O2](x)[O1](0)〉 + A21〈[O1](x)[O1](0)〉 = 0 .
(17)

Using (5) we can rewrite this equation in terms of bare correla-
tion functions

Z22〈O2(x)O1(0)〉 + Z21〈O1(x)O1(0)〉 + A21〈O1(x)O1(0)〉 = 0 .
(18)

This can be solved for A21 or, equivalently, γ21, if the other en-
tries are calculated to the sufficient accuracy. Let us note that
Eq. (17) implies that the correlation functions 〈[O1](x)[O1](0)〉
and 〈[O2](x)[O1](0)〉 have the same x-dependence. This prop-
erty is a consequence of conformal symmetry and is valid at the
critical point only, ε 7→ ε∗.

The renormalization factors in Eq. (18) take the form

Z22(a, ε) = 1 +
a
2ε
γ(1)

22 + O(a2) ,

Z21(a, ε) =
a2

4ε
γ(2)

21 + O(a3) (19)

and, since γ11 = 0, γ(2)
21 = A(1)

21 γ
(1)
22 . Thus in order to find

γ(2)
21 we need to calculate 〈O2(x)O1(0)〉 to O(a) (two-loop) and
〈O1(x)O1(0)〉 to O(1) (one-loop) accuracy. Since Z21 = O(a2),
the second term on the l.h.s. of (18) can be omitted. The rele-
vant Feynman diagrams are shown in Fig. 1. One obtains
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Figure 1: Feynman diagrams for the calculation of γ(2)
21 .

〈O1(x)O1(0)〉 = N
[
− 105 + O(a, ε)

]
,

〈O2(x)O1(0)〉 = N
[
63ε + 70a + O(a2, aε, ε2)

]
, (20)

where

N =
(n · x)6

(4π)d

(
4

−x2 + i0

)d+4

. (21)

Using these expressions and the one-loop result for Z22 (19),
expanding everything toO(a) accuracy and replacing ε 7→ −β0a
one obtains from Eq. (18)

A21 =
13
5
−

2
5

n f , γ(2)
21 =

260
9
−

40
9

nF , (22)

in agreement with the known result [6, 7]. This calculation is
much easier as compared to a direct calculation of γ(2)

21 from the
two-loop Green function of O2 and two quark fields.

3. General case

The approach sketched above can be generalized to all or-
ders in perturbation theory and also for flavor-singlet operators.
Let

O
q
n = i ∂n

+

n f∑
f =1

q̄ f C(3/2)
n

←D+ −
→

D+

←

D+ +
→

D+

 γ+q f , (23a)

O
g
n = 6 ∂n−1

+ Fµ,+ C(5/2)
n−1

←D+ −
→

D+

←

D+ +
→

D+

 Fµ,+. (23b)

These operators have spin N = n + 1 and mix with each other
under renormalization,

[Oαn ] = Zαβ
n O

β
n + total derivatives. (24)

Here and below [. . .] stands for a renormalization in MS scheme.
Since operators containing total derivatives do not contribute to
the forward matrix elements, these matrix elements satisfy the
RGE of the form((

µ∂µ + β(a)∂a
)
δαβ + γ

αβ
n (a)

)
〈p|[Oβn]|p〉 = 0. (25)

where α, β ∈ {q, g}. The anomalous dimensions

γ
αβ
n = −µ∂µZαα′

n (Z−1
n )α

′β, (26)

are 2 × 2 matrices

γn =

(
γ

qq
n γ

qg
n

γ
gq
n γ

gg
n

)
= aγ(1)

n + a2γ(2)
n + . . . . (27)

They are known to three-loop accuracy for all n [15] and to
four loops for n = 1, 3, 5, 7 [16]. In a theory in d = 4 − 2ε
dimensions the RGE (25) has the same form as in d = 4, but
with the d-dimensional β-function (9).

In processes involving matrix elements with nonzero mo-
mentum transfer the RGE becomes more complicated. In this
case mixing with operators containing total derivatives,

Oαmn = ∂n−m
+ Oαm , m = n − 2, n − 4, . . . , (28)

has to be taken into account. For definiteness, and having in
mind applications to two-photon reactions such as DVCS, we
will consider C-parity-even operators n = 1, 3, 5, . . . (even spin).
Taking into account that [∂n−m

+ Oαm] = ∂n−m
+ [Oαm] we can write

[Oαmn] =
∑

k=1,3,...,m

Zαβ
mkO

β
kn, (29)

which has the same form for all n, so that this subscript is es-
sentially redundant.

It is convenient to introduce matrix notation

~On =

(
O

q
n
O

g
n

)
(30)

and

On =


~O1n
~O3n
...
~Onn

 , Zn =


Z11 0 · · · 0
Z31 Z33 · · · 0
...

...
. . .

...
Zn1 Zn3 · · · Znn

 , (31)

where each entry Zmk is a 2×2 matrix Zαβ
mk. Note that the matrix

Zm for m < n is a principal submatrix of Zn: The subscript only
specifies the size of the matrix while the entries do not depend
on it. The RG equation for [On] = ZnOn takes the form(

µ∂µ + β(a)∂a + γn(a)
)
[On] = 0 , (32)

where

γn(a) =


γ11 0 · · · 0
γ31 γ33 · · · 0
...

...
. . .

...
γn1 γn3 · · · γnn

 . (33)

The diagonal entries γnn are nothing else as the forward ADs (26),
γnn ≡ γn, and our task is to find the off-diagonal entries γkm,
k > m. In the chosen (Gegenbauer polynomial) operator basis
the off-diagonal entries are O(a2):

γmm(a) = aγ(1)
mm + a2γ(2)

mm + a3γ(3)
mm + . . . ,

γkm(a) = a2γ(2)
km + a3γ(3)

km + . . . , k > m . (34)
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The AD matrix (33) can be brought to the block-diagonal form

γ̂n(a) = An(a)γn(a)A−1
n (a) , (35)

where γ̂n(a) = diag{γ1(a), . . . , γn(a)} and

An(a) =


1l 0 · · · 0

A31 1l · · · 0
...

...
. . .

...
An1 An3 · · · 1l

 , (36)

where all entries are 2 × 2 matrices in quark-gluon space, cf.
(27). Next, define a rotated operator

On = An(a)[On] (37)

and set the space-time dimension to the critical value ε 7→ ε∗,
β(a)|ε=ε∗ = 0. The RGE for On (at the critical point) takes the
form

(
µ∂µ + γ̂n

)
On = 0 and decouples in n independent equa-

tions,
(
µ∂µ + γm

)~Omn = 0. Further, since ~Omn = ∂n−m
+

~Omm, the
dependence on n is trivial and it is sufficient to consider the case
n = m: (

µ∂µ + γm

)
~Omm = 0 , ~Omm ≡ ~Om. (38)

This equation means that the operators Oα
mm, α = q, g at ε = ε∗

can be written as linear combinations of two operators with cer-
tain scaling dimensions, which transform in a proper way un-
der conformal transformations (dubbed conformal operators).
Since correlation functions of conformal operators with differ-
ent scaling dimensions vanish, we conclude that

〈Oα
nn(x)Oβ

mm(0)〉 = 0 (39)

for m/=n and x , 0. For definiteness we assume n > m.
It proves to be convenient to write the operators Oα

nn in a
slightly different form,

Oα
nn = [Oαnn] +

∑
m=1,3,...,n−2

Aαβ
nm[Oβmn]

= [Oα
nn] +

∑
m=1,3,...,n−2

BαβnmO
β
mn. (40)

The matrices A and B are related to each other as

A = (1l − B)−1. (41)

Then it follows from Eq. (39)

〈[Oα
nn](x)Oβ

mm(0)〉 = −
∑

k=1,3,...,n−2

Bαγnk 〈O
γ
kn(x)Oβ

mm(0)〉

= −Bαγnm〈O
γ
mn(x)Oβ

mm(0)〉 . (42)

Note that only one term with k = m survives in the sum on the
r.h.s. We will show that this equation allows one to determine
the coefficients Bαγnk .

In practice, it is more convenient to do calculations in mo-
mentum representation. We consider the correlation functions
of bare operators

i
∫

dd x eipx〈Oαkk(x)Oβmm(0)〉 =
(ip+)k+m+2

(4π)d/2 µ−2εTαβ
km(s, ab, ε),

(43)

where ab is the bare coupling and s = µ2/(−p2 − i0). A pertur-
bative expansion for Tαβ

km can be written as

Tαβ
km(s, ab, ε) =

∑
`≥1

a`−1
b sε`(D`)

αβ
km, (44)

where ` is the number of loops. The renormalized correlation
functions [Tαβ

km](s, a, ε) are given by

[Tαβ
km](s, a, ε) =

∑
k′,m′,α′,β′

Zαα′

kk′ Tαβ
k′m′ (s,Zaa, ε)Zββ′

mm′ , (45)

or, in matrix notation, [T](s, a, ε) = Z T(s,Zaa, ε) ZT . These
functions still have a 1/ε pole coming from the integration
around x = 0 (recall that Eq. (42) holds only for x , 0). This
divergent contribution can be removed applying the derivative
in s:

T
αβ
km(s, a, ε) = s

d
ds

[Tαβ
km](s, a, ε)

= ε
∑
`≥1

`a`−1sε`Zαα′

kk′ (D`)
α′β′

k′m′Z
ββ′

mm′ . (46)

This object is finite and we can put the space-time dimension
to its critical value ε 7→ ε∗. In what follows we use a shorthand
notation T∗(s, a) = T(s, a, ε∗).

The momentum-space version of Eq. (42) takes the form

T∗AT = −BAT∗AT , (47)

so that

B = −V R−1, (48)

where

Vαβ
nm = (T∗AT )αβnm , Rγβ

km = (AT∗AT )γβkm . (49)

Note that B and V (for n > m) are lower block-triangular and
R is a block-diagonal matrix. The matrices V and R depend on
B through A = (1l − B)−1 and implicitly through off-diagonal
elements in the renormalization factors Z.

It remains to expand Eq. (48) in powers of the coupling
constant. Note that V = O(a) since the correlation functions
〈Oαn (x)Oβm(0)〉 with n , m vanish in d = 4 at leading (one-loop)
order. As a consequence, terms of order ak in the expansion
of Eq. (48) only contain the B-matrix dependent terms of one
order less on the r.h.s., so that it can be solved iteratively, order-
by-order. Write

V = a V1 + a2 V2 + . . . , R = R0 + aR1 + . . . ,

B = a B1 + a2 B2 + . . . (50)

Then

B1 = −V1R−1
0 , (51)

where V1 and R0 are obtained from two-loop correlation func-
tions (D2)αβkm (44) and do not depend on B. Once B1 is found,
one can calculate the two-loop AD matrix

γ(2) = γ̂(2)
− [B1, γ̂

(1)] (52)
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and the two-loop renormalization factor

Z = 1 +
a
2ε
γ(1) +

a2

4ε
γ(2) +

a2

8ε2 (γ(1))2 −
a2

4ε2 β0γ
(1) + · · · (53)

As the next step, we obtain V2 and R1 with the input from three-
loop correlation functions (D3)αβkm. This allows one to calculate
B2 as

B2 = −V2R−1
0 + V1R−1

0 R1R−1
0 (54)

and determine the three-loop AD matrix

γ(3) = γ̂(3)
− [B2, γ̂

(1)] − [B1, γ̂
(2)] − [B1, γ̂

(1)] B1. (55)

This procedure can be continued iteratively to any order, O(ak),
provided the correlation functions (43), (44) are calculated to
the ` = k loops accuracy.

Finally, note that one can consider correlation functions of
the operators (23) defined with two different auxiliary light-
cone vectors n and n̄, schematically 〈O(n)(x)O(n̄)(0). We have
checked that this freedom does not produce new constraints
while choosing n , n̄ complicates the calculations.

4. Flavor-singlet operators with spin N ≤ 8

We have calculated the correlation functions (D`)
qq
km, (D`)

qg
km,

(D`)
gq
km, (D`)

gg
km as defined in Eqs. (43), (44) for k,m = 1, 3, 5, 7

to three-loop accuracy in d − 2ε dimension for a generic gauge
group. All the diagrams were generated with the help of QGRAF
[17] and evaluated with FORM [18] programs MINCER [19]
and COLOR [20].

The results are collected in the ancillary file. Using these
expressions we determined the off-diagonal parts of the AD
(mixing) matrices for C-parity even flavor-singlet operators. The
complete expressions with all color structures are lengthy and
are given in the second ancillary file. Here we present the re-
sults for Nc = 3, separating contributions with the different n f

dependence

γ(2) = γ(2,0) + n fγ
(2,1) ,

γ(3) = γ(3,0) + n fγ
(3,1) + n2

fγ
(3,2) . (56)

For the two-loop ADs we obtain

γ(2,0)
31 =

 8668
243 0

− 2728
27 198

 , γ(2,0)
51 =

 120692
8505 0

− 968
9

22825
84

 ,
γ(2,0)

53 =

 261232
7875 0

− 18052
225

42867
350

 , γ(2,0)
71 =

 226526
35721 0

− 617252
5103

15631
45

 ,
γ(2,0)

73 =

 982399
55125 0

− 118364
1575

539
5

 , γ(2,0)
75 =

 7320742
250047 0

− 68445364
893025

10766899
110250

 (57)

and

γ(2,1)
31 =

− 400
81 − 131

81

− 176
27 − 176

27

 , γ(2,1)
51 =

− 224
81 − 259

108

− 3520
567 − 3520

567

 ,
γ(2,1)

53 =

− 172
75

371
250

− 352
105 − 968

1575

 , γ(2,1)
71 =

− 344
189 − 67357

34020

− 1480
243 − 1480

243

 ,

γ(2,1)
73 =

− 521
315

83501
189000

− 148
45 − 407

675

 , γ(2,1)
75 =

− 168272
99225

37316851
41674500

− 3848
1701 − 10582

59535

 . (58)

These expressions coincide with those obtained in [6, 21]. The
three-loop mixing matrix presents our main result:

γ(3,0)
31 =

 36623912
54675 0

− 2430374
3645

261063
50

 ,
γ(3,0)

51 =

 8049304723
31255875 0

− 26632998209
112521150

2829671009
329280

 ,
γ(3,0)

53 =

 320657981731
520931250 0

− 29333397389
20837250

14378664569
6860000

 ,
γ(3,0)

71 =

 7192640196053
56710659600 0
52031947546
506345175

49155659027
3969000

 ,
γ(3,0)

73 =

 159898280729473
525098700000 0

− 5108698450661
3750705000

832037077
441000

 ,
γ(3,0)

75 =

 220023775251709
396974617200 0

− 10780083012803
7088832450

16149051685793
9724050000

 , (59)

γ(3,1)
31 =

− 8730029
54675 − 332059

24300
5490814
18225 − 300187

675

 ,
γ(3,1)

51 =

− 28845421
357210 − 243735889

14817600
335801338
1250235 − 224376685

333396

 ,
γ(3,1)

53 =

 − 2153638
21875

144714911021
8334900000

3312237599
17364375 − 20587053491

69457500

 ,
γ(3,1)

71 =

− 55283376439
1080203040 − 546050628929

54010152000
993217273
3857868 − 172371032413

192893400

 ,
γ(3,1)

73 =

− 2741596879177
50009400000

1181185770041
300056400000

1249920631
7441875 − 277307247263

1071630000

 ,
γ(3,1)

75 =

− 540390286778953
6616243620000

40476782277763
4725888300000

3992643276739
23629441500 − 5479061294213

23629441500

 , (60)

and

γ(3,2)
31 =

 1547
675

3877
4050

628
45

628
45

 , γ(3,2)
71 =

− 1533233
12859560

47089801
128595600

15641
2187

15641
2187

 ,
γ(3,2)

51 =

 165364
416745

17006749
20003760

112304
11907

112304
11907

 , γ(3,2)
73 =

 21577379
23814000 − 80173297

476280000
23041
4050

253451
243000

 ,
γ(3,2)

53 =

 597476
385875 −

141661001
138915000

10072
1225

27698
18375

 , γ(3,2)
75 =

 3052708451
2250423000 −

28293919771
63011844000

3472391
535815

38196301
75014100

 .
(61)

As a byproduct of this calculation we have considered flavor-
nonsinglet operators as well, and confirm the corresponding re-
sults of Ref. [7].

The size of the three-loop corrections for a ∼ 1/40 and
n f = 4 is typically of the order of 20% of the two-loop results,
with a few exceptions. The γgq and γgg entries are in all cases
much larger than γqg and γqq.
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5. Conclusions

We have presented a method to calculate off-diagonal parts
of the mixing matrices of leading-twist operators with the oper-
ators including total derivatives based on conformal symmetry
of QCD at the Wilson-Fisher critical point in noninteger dimen-
sions. In this approach, the calculation of the ADs to `-loop
accuracy, O(a`), is reduced to a calculation of `-loop gauge-
invariant correlation functions of leading-twist operators. As an
illustration, we have calculated three-loop ADs of flavor-singlet
operators for spin N ≤ 8 which contribute, e.g., to the mo-
ments of generalized parton distributions. The main advantage
of this technique is that mixing with non-gauge-invariant oper-
ators can be ignored altogether and also the number of Feyn-
man diagrams is much smaller as compared to the standard ap-
proach. An extension to higher moments and to four loops is
straightforward but will require significant computer resources.
Restoration of the off-forward evolution kernels in momentum
fraction space from the results for a given set of moments is a
nontrivial problem which goes beyond the task of this letter.
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