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The width difference in the B−B̄ system at next-to-next-to-leading order of QCD
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We extend the theoretical prediction for the width difference ∆Γq in the mixing of neutral B
mesons in the Standard Model to next-to-next-to-leading order in αs. To this aim we calculate three-
loop diagrams with two |∆B| = 1 current-current operators analytically. In the matching between
|∆B| = 1 and |∆B| = 2 effective theories we regularize the infrared divergences dimensionally and
take into account all relevant evanescent operators. Further elements of the calculation are the
two-loop renormalization matrix Zij for the |∆B| = 2 operators and the O(α2

s) corrections to the
finite renormalization that ensures the 1/mb suppression of the operator R0 at two-loop order. Our
theoretical prediction reads ∆Γs/∆Ms = (4.33± 0.93) · 10−3 if expressed in terms of the bottom
mass in the MS scheme and ∆Γs/∆Ms = (4.20± 0.95) · 10−3 for the use of the potential-subtracted
mass. While the controversy on |Vcb| affects both ∆Γs and ∆Ms, the ratio ∆Γs/∆Ms is not affected
by the uncertainty in |Vcb| .

Introduction. The weak interaction of the Standard
Model (SM) permits transitions between a neutral Bq
meson and its antiparticle B̄q, where q = d or s. The
corresponding transition amplitude is mediated by box
diagrams with W bosons and up-type quarks u, c, or t
on the internal lines. The time evolution of the two-state
system (|Bq〉, |B̄q〉) is governed by two hermitian 2×2 ma-
trices, the mass matrix Mq and the decay matrix Γq. By
diagonalizing Mq − iΓq/2 one finds the mass eigenstates
|BqL〉 and |BqH〉 expressed in terms of the flavour eigen-
states |Bq〉, |B̄q〉. The mass eigenstates differ in their
masses Mq

H,L and decay widths ΓqH,L with “L” and “H”
denoting “light” and “heavy”. There are three observ-
ables, the mass and width differences ∆Mq = Mq

H −M
q
L

and ∆Γs = ΓqL − ΓqH as well as the CP asymmetry in
flavor-specific decays, aqfs. Experimentally, ∆Mq is read
off from the Bq−B̄q oscillation frequency, ∆Γq is found by
measuring lifetimes in different decay modes, and aqfs is
usually measured through the time-dependent CP asym-
metry in semileptonic Bq decays. These observables are
related to the off-diagonal elements of Mq and Γq as fol-
lows:

∆Mq ' 2|Mq
12| ,

∆Γq
∆Mq

= −Re
Γq12
Mq

12

, aqfs = Im
Γq12
Mq

12

, (1)

with |∆Γq| ' 2|Γq12|. Mq
12 is sensitive to new physics

mediated by particles with masses well beyond 100 TeV.
On the contrary, Γq12, probes effects of light new parti-
cles with feeble couplings to quarks (see e.g. Refs. [1, 2]).
While this is one motivation for a more precise SM predic-
tion of Γq12, a better knowledge of Γq12 will also help to re-
veal new physics in Mq

12: Inclusive and exclusive semilep-
tonic B decays give different values for the element |Vcb|
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and
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this contoversy inflicts an O(15%) uncertainty onto the
overall CKM factor (VtbV

∗
tq)

2 of Mq
12. This uncertainty

drops out from the ratio ∆Γq/∆Mq in Eq. (1) and also
the 4% error from the hadronic matrix element in Mq

12

largely cancels. The measurements of LHCb [3], CMS [4],
ATLAS [5], CDF [6], and DØ [7] combine to

∆Γexp
s = (0.082± 0.005) ps−1[8] , (2)

while ∆Γexp
d is still consistent with zero. The precise

value in Eq. (2) calls for a better SM prediction of ∆Γs,
which is the topic of this Letter. We specify to q = s
from now on.

At one-loop level the SM predictions for Γs12 is calcu-
lated from the dispersive part of the Bs ↔ B̄s amplitude.
One must therefore only consider diagrams with light in-
ternal u, c quarks; i.e. diagrams with one or two t quarks
only contribute to Ms

12. To properly accomodate strong
interaction effects associated with different energy scales
one employs two operator product expansions (OPE). In
the first step one matches the SM to an effective theory
with |∆B| = 1 operators [9], where B is the beauty quan-
tum number. The most important operators, i.e. those
with the largest coefficients, are the current-current op-
erators Q1,2 describing tree-level b decays. The effective
|∆B| = 1 hamiltonian is known to next-to-leading (NLO)
[10–12] and next-to-next-to-leading order (NNLO) [13–
15] of Quantum Chromodynamics (QCD). The OPE em-
ployed in the second step of the calculation is the Heavy
Quark Expansion (HQE) [16–24] (cf. also [25] for a re-
view), which expresses the Bs ↔ B̄s transition amplitude
as a series in ΛQCD/mb, where ΛQCD ∼ 400 MeV is the
fundamental scale of QCD and mb is the b quark mass.
The HQE involves local |∆B| = 2 operators; to find the
corresponding Wilson coefficients one must calculate the
∆B = 2 amplitude in both the |∆B| = 1 and |∆B| = 2
theories to the desired order in αs.

The state of the art is as follows: QCD corrections to
Γs12 are only known for the leading term of the ΛQCD/mb

expansion (“leading power”). These include NLO QCD
corrections to the contributions with current-current and
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chromomagnetic penguin operators [26–29], the corre-
sponding NNLO corrections (and NLO corrections in-
volving four-quark penguin operators) enhanced by the
number Nf of active quark flavours [30–32] as well as
NLO results with one current-current and one penguin
operator [33] or two penguin operators [34]. The lat-
ter paper also presents two-loop results with one or two
chromomagnetic penguin operators which are part of the
NNLO and N3LO contributions. (The four-quark pen-
guin operators Q3−6 have Wilson coefficients which are
much smaller than those of Q1,2 and the chromomagnetic
penguin operator contributes with a suppression factor of
αs.) The corrections of Refs. [30] and Refs. [33, 34] have
been calculated in an expansion in mc/mb to first and
second order, respectively. ∆Γs/∆Ms further involves
a well-computed ratio of two hadronic matrix elements
[35–37]. The contribution to Γs12 being sub-leading in
ΛQCD/mb is only known to LO of QCD [38] and the
hadronic matrix elements still have large errors [39].

Both the described perturbative contribution and the
power-suppressed term have theoretical uncertainties ex-
ceeding the experimental error in Eq. (2). In this Let-
ter we present NNLO QCD corrections to the numeri-
cally dominant contribution with two current-current op-
erators and reduce the perturbative uncertainty of the
leading-power term to the level of the experimental er-
ror.

Calculation. To obtain ∆Γs/∆Ms we use the known
two-loop QCD corrections to Ms

12 from Ref. [11]. It
is convenient to decompose Γs12 according to the CKM
structures

Γs12 = −(λsc)
2Γcc12 − 2λscλ

s
uΓuc12 − (λsu)2Γuu12 , (3)

where λsa = V ∗asVab with a = u, c. Γs12 is obtained with
the help of a tower of effective theories. In a first step
we construct a theory where all degrees of freedom heav-
ier than the bottom quark mass mb are integrated out
and the dynamical degrees of freedom are given by the
five lightest quarks and the gluons. We adopt the oper-
ator basis of the |∆B| = 1 theory from Ref. [40]. The
matching to the Standard Model happens at the scale
µ0 ≈ 2mW ≈ mt(mt). Afterwards, renormalization
group running is used to obtain the couplings of the ef-
fective operators at the scale µ1 which is of the order
mb.

In a next step we perform a HQE which allows us to
write Γs12 as an expansion in 1/mb. At each order Γs12
is expressed as a sum of Wilson coefficients multiplying
respective operator matrix elements. The latter has to
be computed using lattice gauge theory [35] or QCD sum
rules [36, 37]. To leading order in the 1/mb expansion we
have

Γab12 =
G2
Fm

2
b

24πMBs

[
Hab(z)〈Bs|Q|B̄s〉+ H̃ab

S (z)〈Bs|Q̃S |B̄s〉
]

+O(ΛQCD/mb) , (4)

where ab ∈ {cc, uc, uu}. GF is the Fermi constant and
MBs

is the mass of the Bs meson. The main purpose

(a) (b)

(c) (d)

FIG. 1. Representative Feynman diagrams in the ∆B = 1
theory with f = u, d, s, c, b. Solid and curly lines represent
quarks and gluons, respectively. The (orange) blob indicates
an operator insertion.

(a) (b) (c)

FIG. 2. Representative Feynman diagrams in the ∆B = 2
theory. Solid and curly lines represent quarks and gluons,
respectively. The (blue) blob indicates an operator insertion.

of this Letter is the computation of the matching co-

efficients Hab and H̃ab
S to next-to-next-to-leading order

(NNLO) in the strong coupling constant αs. They de-
pend on z = m2

c/m
2
b . For the ∆B = 1 theory one distin-

guishes current-current and penguin operators. At lead-
ing and next-to-leading orders the current-current op-
erators provide about 90% of the total contribution to
Γab12 [34]. Thus, in this work we restrict ourselves to the
current-current contributions.

For the calculation of the NNLO corrections one has to
overcome several challenges. First, it is necessary to per-
form a three-loop calculation of the amplitude bs̄ → b̄s
in the ∆B = 1 theory. Sample Feynman diagrams are
shown in Fig. 1. In total about 20,000 three-loop di-
agrams have to be considered which requires an auto-
mated setup for the computation. In our case the com-
bination of qgraf [41], tapir [42] and q2e/exp [43, 44]
turned out to be useful. For the leading term in the
HQE we are allowed to set the momentum of the strange
quark to zero. Furthermore, we expand in the charm
quark mass up to second order,1 which reduces the in-
tegrals to on-shell two-point functions with external mo-
mentum q2 = m2

b . The propagators inside the loop di-
agrams are either massless or carry the mass mb. We

1 Up to this order a naive Taylor expansion of the amplitude is
possible except for the fermionic corrections with a closed charm
quark loop. These contributions are taken over from Ref. [30, 31].
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use FIRE [45] combined with LiteRed [46, 47] to reduce
all occurring integrals to 23 genuine three-loop master
integrals. For the latter analytic results have been ob-
tained with the help of FeynCalc [48–51], HyperInt [52],
PolyLogTools [53] and HyperlogProcedures [54].

On the ∆B = 2 side a two-loop calculation is nec-
essary; sample Feynman diagrams are shown in Fig. 2.
From the technical point of view the calculation is sig-
nificantly simpler. However, in the practical calculation
one has to consider three physical and 17 evanescent op-
erators, cf. Ref. [34]). It is necessary to compute the
corresponding renormalization constants for the opera-
tor mixing up to two-loop order.

The calculation of the ∆B = 2 matrix elements entails
a field theoretical subtlety. In fact, in four dimensions
there are only two physical operators whereas for the
calculation in d dimensions three have to be taken into
account. For our calculation it is convenient to choose
Q, Q̃S and R0 where (i and j are colour indices)

Q = s̄iγ
µ (1− γ5) bi s̄jγµ (1− γ5) bj ,

Q̃S = s̄i (1 + γ5) bj s̄j (1 + γ5) bi , (5)

and

R0 = QS + α1Q̃S +
1

2
α2Q , (6)

with

QS = s̄i (1 + γ5) bi s̄j (1 + γ5) bj . (7)

Note that at lowest order in αs we have α1 = α2 = 1
and the matrix element of R0 is 1/mb suppressed in
four dimensions. At higher orders the quantities α1 and
α2 are chosen such, that the 1/mb-suppression is main-
tained. The one-loop corrections are known since more
than twenty years [26] and the fermionic two-loop terms
are available from Ref. [30]. For the NNLO calculation
performed in this Letter the α2

s corrections to α1 and α2

are needed.
The 1/mb-suppression of R0 beyond tree-level is man-

ifest only if one is able to distinguish between ultraviolet
(UV) and infrared (IR) divergences, e.g., by regularizing
the latter using a gluon mass mg. Otherwise, R0 devel-
ops an unphysical evanescent piece ER0 that scales as
m0
b [34] and hence must be included into the definition of

R0 to obtain correct matching coefficients. One cannot
isolate ER0 from R0 at the operator level, but one can
distinguish evanescent and physical pieces in the matrix
elements: We use R0 from Eq. (6) including the finite
UV renormalization encoded in α1 and α2 in our match-
ing calculation. To this end we have first calculated the
linear combination of the renormalized two-loop matrix
elements 〈Q〉(2), 〈QS〉(2) and 〈Q̃S〉(2) as given in Eq. (6).
After introducing a gluon mass along the lines of Ref. [55]
and using Feynman gauge we observe that each of the in-
dividual matrix elements becomes manifestly finite upon
UV renormalization. α1 and α2 to order α2

s are extracted
from the requirement that the linear combination must
vanish in the limit mb →∞.

αs(MZ) = 0.1179± 0.001 [58]

mc(3 GeV) = 0.993± 0.008 GeV [59]

mb(mb) = 4.163± 0.016 GeV [59]

mpole
t = 172.9± 0.4 GeV [58]

MBs = 5366.88 MeV [58]

BBs = 0.813± 0.034 [35]

B̃′S,Bs
= 1.31± 0.09 [35]

fBs = 0.2307± 0.0013 GeV [60]

TABLE I. Input parameters for the numerical analysis. The

matrix elements of Q and Q̃S are parametrized in terms of
fBs , BBs , and B̃′S,Bs

. The values of the quark masses imply

z̄ = 0.04956, mpole
b = 4.75 GeV, and mPS

b = 4.479 GeV (for a
factorization scale µf = 2 GeV) at NNLO. Numerical results
for the matrix elements of the 1/mb suppressed corrections
can be found in Ref. [39].

The matching between the |∆B| = 1 and |∆B| = 2
effective theories is conceptually simple in case IR diver-
gences are not regularized dimensionally. In this case the
UV renormalization renders amplitudes of both theories
manifestly finite, allowing us to take the limit d → 4,
where all matrix elements of evanescent operators van-
ish. However, for technical reasons we prefer to use
ε = εUV = εIR, which simplifies the evaluation of the
amplitudes but complicates the matching. Following [56]
we need to extend the leading order (LO) matching to
O(ε2) and the NLO matching to O(ε) in order the deter-
mine the NNLO matching coefficients. Furthermore, we
need to determine the matching coefficients of both physi-
cal and evanescent operators: Since the UV-renormalized
amplitudes still contain IR poles, we must keep all ma-
trix elements of evanescent operators until the very end.
A powerful cross check of this procedure is the explicit
cancellation of the remaining IR ε poles and of the QCD
gauge parameter ξ in the matching.

Results. For our numerical analysis we use the input
values listed in Tab. I and the |∆B| = 1 Wilson coeffi-
cients from Refs. [13–15] and calculate the running and
decoupling of quark masses and αs with RunDec [57].

In the following we present the NNLO predictions in
three different renormalization schemes for the overall
factor m2

b (cf. Eq. (4)) whereas the quantity z and the

strong coupling constant are defined in the MS scheme.
The overall factor m2

b is defined in the MS scheme, as a
pole mass, or as a potential-subtracted (PS) mass [61].
The latter is an example of a so-called threshold mass,
with similar properties as the pole mass, but is nev-

ertheless of short-distance nature. Hab(z) and H̃ab
S (z)

are adapted accordingly, so that the scheme dependence
of Γs12 is O(α3

s). Several renormalization and matching
scales enter the prediction for the width difference. We
choose µ0 = 165 GeV for the matching scale between
the SM and the |∆B| = 1 theory. Varying µ0 barely
affects ∆Γs/∆Ms and we can keep it fixed. In our nu-
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merical analysis we identify the matching scale µ1 and
µb and µc, the renormalization scales at which mb and
mc are defined. We simultaneously vary µ1 = µb = µc
between 2.1 GeV and 8.4 GeV with a central scale
µ1 = 4.2 GeV. That is, z enters the coefficients as
z̄ = (mc(µ1)/mb(µ1))2. The |∆B| = 2 operators are
defined at the scale µ2 which has to be kept fixed, be-
cause the µ2 dependence only cancels in the products

of Hab(z) and H̃ab
S (z) with their respective matrix ele-

ments. In our analysis we set µ2 = 4.75 GeV which is

the bottom quark pole mass mpole
b obtained from mb(mb)

with two-loop accuracy. The terms of order ΛQCD/mb in
Γs12 are only known to LO, so that the µ1-dependence of
these terms is non-negligible.

We now discuss the results for ∆Γs/∆Ms. In our three
schemes we have

∆Γs
∆Ms

=
(

3.79+0.53
−0.58scale

+0.09
−0.19scale, 1/mb

± 0.11BB̃S

±0.781/mb
± 0.05input

)
× 10−3 (pole) ,

∆Γs
∆Ms

=
(

4.33+0.23
−0.44scale

+0.09
−0.19scale, 1/mb

± 0.12BB̃S

±0.781/mb
± 0.05input

)
× 10−3 (MS) ,

∆Γs
∆Ms

=
(

4.20+0.36
−0.39scale

+0.09
−0.19scale, 1/mb

± 0.12BB̃S

±0.781/mb
± 0.05input

)
× 10−3 (PS) , (8)

where the subscripts indicate the source of the various
uncertainties. The dominant uncertainty comes from
the matrix elements of the power-suppressed corrections
(“1/mb”) [35, 39]) followed by the renormalization scale
uncertainty from the variation of µ1 in the leading-power
term (“scale”). The uncertainties from the leading-power

bag parameters (“BB̃S”) and from the scale variation in
the 1/mb piece (“scale, 1/mb”) are much smaller and the
variation of the remaining input parameters (“input”) is
of minor relevance.

In Fig. 3 we show the dependence of ∆Γs/∆Ms on
the simultaneously varied renormalization scales µ1 =
µb = µc for the MS and PS schemes. The small contri-
butions involving four-quark penguin operators are only
included at NLO in both the NLO and NNLO curves.
Dotted, dashed, and solid curves correspond to the LO,
NLO, and NNLO results, respectively. In both schemes
one observes a clear stabilization of the µ1 dependence
after including higher orders. Furthermore, we observe
that the NNLO predictions (solid lines) in both schemes
are close together which demonstrates the expected re-
duction of the scheme dependence. In the MS scheme we
observe that the LO and NLO curves intersect close to
the central scale. As a consequence the NLO corrections
are relatively small and the NNLO contributions are of
comparable size. Close to 9 GeV the NNLO contribution
is zero and the NLO corrections amount to about +21%.
At the same time the NNLO predictions for µ1 = 4.2 GeV
and µ1 = 9 GeV differ only by +5% and +9% in the
MS and PS schemes, respectively. Note that in the MS

2 3 4 5 6 7 8 9 10
𝜇1 = 𝜇𝑏 = 𝜇𝑐 [GeV]

3

4

5

6

7

8

ΔΓ
𝑠/

Δ𝑀
𝑠

w
ith

fix
ed

1/
𝑚

𝑏

×10−3

MS LO
MS NLO
MS NNLO
PS LO
PS NLO
PS NNLO
Pole NNLO

FIG. 3. Renormalization scale dependence at LO, NLO and
NNLO for the MS and PS scheme. The scale in the power-
suppressed terms is kept fixed. The gray band represents the
experimental result.

scheme the scale dependence of the leading-power term
drops from +0

−29% at NLO to +5
−10% at NNLO and is now

of the same order of magnitude as the ±6% experimental
error in Eq. (2). In the PS scheme the scale uncertainty
is of the same order of magnitude as in the MS scheme.
Note that the scheme dependence inferred from the MS
and PS central values in Eq. (8) is only 3%. Eq. (8)
clearly shows that one needs better results for the 1/mb

matrix elements. A meaningful lattice-continuum match-
ing calls for NLO corrections to the power-suppressed
terms, which will further reduce the uncertainty labeled
with “scale, 1/mb”.

For the pole scheme we only show the NNLO prediction
in Fig. 3. While we also see a relatively mild dependence
on µ1, the corresponding solid curve lies significantly be-
low the predictions in the MS and PS schemes. This
feature can be traced back to the large two-loop correc-
tions in the relation between the MS and the pole bottom
quark mass affecting NNLO contributions as much as the
genuine NNLO corrections, underpinning the well-known
issues with quark pole masses [62–64]. For this reason we
recommend to not use the pole scheme for the prediction
of ∆Γs.

The most precise prediction for ∆Γs is obtained from
the results in Eq. (8) combined with the experimental re-
sult [65] ∆M exp

s = 17.7656 ± 0.0057 ps−1. Upon adding
the various uncertainties in quadrature, symmetrizing
the scale dependence and averaging the results from the
MS and PS schemes we obtain

∆Γs = (0.076± 0.017) ps−1 . (9)

The comparison to Eq. (2) shows that the uncertainty is
only about a factor three bigger than from experiment
and dominated by the 1/mb corrections.

With our NNLO result for Γq12 we can also improve the
predictions for width difference in the Bd − B̄d system
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FIG. 4. ∆Γs versus ∆Ms. The |Vcb| controversy (red vs. blue
vertical and orange vs. purple horizontal strips) prevents any
conclusion on possible new physics in ∆Ms. A combined anal-
ysis of ∆Ms and ∆Γs adds important information, because
the SM prediction of ∆Γs/∆Ms (green wedge) is independent
of |Vcb|.

and the CP asymmetries asfs and adfs in Eq. (1), whose
experimental results are still consistent with zero. We
postpone this to a future publication [66].

In Fig. 4 we confront our predictions for the ratio
∆Γs/∆Ms in the MS scheme (green band) with the in-
dividual predictions of ∆Γs and ∆Ms. The latter are
dominated by the uncertainty in the CKM matrix el-
ement Vts which is obtained from Vcb through CKM
unitarity and cancels in the ratio. Fig. 4 illustrates
this feature with |V incl

cb | = 42.16(51)10−3 from [67] and

|V excl
cb | = 39.36(68)10−3 from [68]. The current exper-

imental results for ∆Γs and ∆Ms are indicated by the
black bar. Once the prediction of ∆Γs/∆Ms is improved
further, it will be possible to test the SM without CKM
uncertainty, and with progress on |Vcb| one will be able
to constrain new physics in ∆Ms and ∆Γs individually.

Conclusions. The SM prediction of ∆Γs/∆Ms based
on the long-standing NLO calculation has two sources
of uncertainty which exceed the experimental error: the
hadronic matrix elements of the power-suppressed oper-
ators and the perturbative coefficients, as inferred from
the scale and scheme dependences of the calculated re-
sult. With the NNLO calculation presented here we have
brought the latter uncertainty to the level of the accu-
racy of the experimental result. For this we had to calcu-
late 20,000 three-loop diagrams and to solve subtle prob-
lems related to the interplay of infrared divergences and
evanescent oprators. We have pointed out that ∆Γs adds
information to the usual study of ∆Ms, because both
quantities probe different new-physics scenarios and |Vcb|
drops out in the ratio ∆Γs/∆Ms.
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