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Same-hemisphere three-gluon-emission contribution to the zero-jettiness soft function

at N3LO QCD
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We complete the calculation of the three-gluon-emission contribution to the same-hemisphere part
of the zero-jettiness soft function at next-to-next-to-next-to-leading order in perturbative QCD.

I. INTRODUCTION

The goal of this paper is to present the result for
the same-hemisphere three-gluon-emission contribution
to the zero-jettiness soft function at next-to-next-to-next-
to-leading order in perturbative QCD. Computation of
such corrections needs to overcome several technical chal-
lenges that were discussed in Ref. [1]. These challenges
stem from the fact that an observable that defines the
soft function – the so-called jettiness – involves Heav-
iside functions. These Heaviside functions are needed
to distinguish between emissions of soft gluons into two
hemispheres, defined relative to directions of incoming
hard radiators.
Presence of Heaviside functions complicates applica-

tion of generalized unitarity [2] and integration-by-parts
identities [3] to phase-space integrals. We have discussed
in Ref. [1] how to overcome this problem and explained
how to derive useful integration-by-parts relations for in-
tegrals with Heaviside functions. To show the efficacy
of this method, we employed an eikonal function derived
in Ref. [4], which describes emissions of three soft glu-
ons, and integrated it over soft-gluon phase space subject
to zero-jettiness constraints. We restricted ourselves to
contributions where all gluons are emitted into the same
hemisphere.
Unfortunately, in Ref. [1], we have not completed the

computation of this “same-hemisphere” contribution. In-
deed, the representation of the eikonal function derived
in Ref. [4] involves four terms and in Ref. [1] we have
fully integrated three of them. The fourth contribution
can be written in the following way

Sd =

∫
dΦnnn

θθθ ω
(3),d
nn̄ (k1, k2, k3) , (1)

where k1,2,3 are four-momenta of final-state gluons, Φnnn
θθθ

is the phase space subject to zero-jettiness conditions,

cf. Eq. (3), and ω
(3),d
nn̄ (k1, k2, k3) is the eikonal function

defined in Eq. (5.49) in Ref. [1]. We note that the integral
in Eq. (1) is the the most complicated one, as it contains
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a propagator that depends on the relative orientation of
four-momenta of all three soft gluons.
Although we described a possible way to calculate

this contribution in Ref. [1], we did not complete its
computation there. The goal of this paper is to com-
pute the missing piece and to present the result for
the same-hemisphere three-gluon-emission contribution
to the zero-jettiness soft function.
The rest of the paper is organized as follows. In Sec-

tion II we explain the general strategy that we used to

integrate the function ω
3,(d)
nn̄ . In Section III we describe

the computation of the boundary condition for one of the
master integrals that provides a contribution that has un-
usual sensitivity to an analytic regulator. In Section IV
we discuss checks that we performed to ensure the cor-
rectness of the computation. In Section V we present the
result for the same-hemisphere three-gluon-emission con-
tribution to the zero-jettiness soft function and conclude
in Section VI.

II. INTEGRATING ω
3,(d)
nn̄

The missing part of the same-hemisphere contribution
to the zero-jettiness soft function, displayed in Eq. (1),

requires integration of the function ω
3,(d)
nn̄ , which contains

terms with a propagator 1/k2123, where k123 = k1+k2+k3.

To integrate the function ω
3,(d)
nn̄ , we consider a class of

integrals

Iθθθ =

∫
dΦnnn

θθθ

(k1n)
ν(k2n)

ν(k3n)
ν

k2123 (k1k2)(k1k3) · · ·
, (2)

where n and n̄ are two light-like four-vectors pointing
in the direction of incoming partons, ellipses stand for
eikonal propagators,1 and dΦnnn

θθθ is the normalized phase-
space measure. It is defined as follows [1]

dΦnnn
f1f2f3

= N−3
ǫ

(
3∏

i=1

[dki]fi(ki)

)
δ

(
1−

3∑

i=1

kin

)
, (3)

1 These are all possible scalar products q ·v, where q is a linear
combination of four-vectors of soft gluons and v is one of the two
light-cone vectors n or n̄.
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where the normalization factor is

Nǫ =
Ω(d−2)

4(2π)d−1
=

(4π)ǫ

16π2Γ(1− ǫ)
, (4)

the function fi is either θ(kin̄−kin) or δ(kin̄−kin), and

[dki] =
ddk

(2π)d
2πδ(k2i )θ(k

0
i ). (5)

We note that we set the jettiness variable τ to one since
the final result is a uniform function of τ . We also note
that in the spirit of integration-by-parts, all propagators
that appear in the integrand in Eq. (2) can be raised to
arbitrary integer powers.
Finally, as can be seen from Eq. (2), we introduced

scalar products of the gluon four-momenta k1,2,3 with the
light-cone vector n raised to power ν into the integrand
of Iθθθ. As we explained in Ref. [1] they are required
because some integrals, that appear in the course of the
IBP reduction, contain divergences that are not regulated
dimensionally; the analytic regulator ν is introduced to
regulate them. To simplify the notation, we define the
regulated phase-space measure to be

dΦν
f1f2f3

= dΦnnn
f1f2f3

(k1n)
ν(k2n)

ν(k3n)
ν . (6)

Unfortunately, even after integrals defined in Eq. (2)
are reduced to master integrals, the master integrals with
1/k2123 propagators appear to be too complicated for di-
rect analytic integration. For this reason, as explained
in Ref. [1], we derive differential equations satisfied by
these integrals, and solve them numerically. To do that,
we introduce a mass parameter into the propagator that
contains the momenta of all three gluons2

1

k2123
→ 1

k2123 +m2
. (7)

The appearance of the mass parameter m allows us to
differentiate with respect to it and use integration-by-
parts to derive differential equations for relevant inte-
grals. We then fix boundary conditions at m → ∞, solve
differential equations numerically and determine relevant
integrals at m = 0. This can be done by matching the
numerical solution with the formal solution at m = 0 and
then taking the m → 0 limit in an appropriate manner.
Since, as we explained in Ref. [1], the differential equa-
tions can be solved to an arbitrary precision as a matter
of principle, and to more than 2000 digits in practice, we
have used the high-precision numerical results for mas-
ter integrals to find the analytic form of the solution by
fitting them to a basis of transcendental constants and
rational numbers.

2 Similar ideas that use auxiliary mass-scales have been presented,
for example, in Refs. [5–8].

To reiterate, once it is understood how to use gener-
alized unitarity to write down integration-by-parts iden-
tities for integrals with θ-functions, it becomes a fairly
standard problem to derive differential equations for rele-
vant integrals. However, great care is needed when choos-
ing the basis of master integrals because of the analytic
regulator ν; in essence, we need to find a basis that ad-
mits a simple ν → 0 limit. Ideally, this should happen
for master integrals that appear in the soft function Sd,
as well as in m-dependent differential equations that we
need to solve.
To find a suitable basis, we use the following consider-

ation. In spite of the fact that the reduction to master
integrals performed after setting ν = 0 in Eq. (2) is in-
correct, it gives us a good idea about integrals that are
independent of each other in the ν → 0 limit. Hence,
to find a suitable basis for master integrals, we start by
performing a reduction of integrals shown in Eq. (2) at
ν = 0. We then insist that the master integrals found in
the course of such a reduction should be also chosen as
master integrals for the reduction of integrals with ν 6= 0,
to an extent possible. We do this for integrals with and
without auxiliary mass parameter m. With this choice of
master integrals we find that the integral of the soft func-

tion ω
3,(d)
nn̄ written in terms of master integrals, as well as

the differential equations that these integrals obey, admit
a simple ν → 0 limit.
For example the result of the reduction of Sd to master

integrals can be written in the following way

Sd =
∑

α

cα(ν)I
ν
α + ν

∑

α

c̃α(ν)Ī
ν
α , (8)

where the coefficients cα and c̃α are regular in the ν → 0
limit. The list of integrals {Iνα} coincides with the list
of master integrals for Sd that one obtains performing a
reduction at ν = 0. New integrals that appear in the
reduction, which we denote as Īνα in the above equation,
are multiplied with the parameter ν and, therefore, dis-
appear if the naive ν → 0 limit is taken.
However, the naive ν → 0 limit in Eq. (8) cannot be

taken because some of Īνα integrals are 1/ν divergent and,
therefore, need to be retained. Examples of such integrals
without the 1/k2123 propagator can be found in Ref. [1].
Unfortunately, many integrals among Iνα and Īνα con-

tain the 1/k2123 propagator; to study these integrals, we
use Eq. (7) and turn them into integrals with the mass
parameterm. We construct a system of differential equa-
tions w.r.t. the mass parameter m by including every in-
tegral with the 1/k2123 propagator that appears in Eq. (8)
and other integrals that are needed to close it. Such a
system takes the following form

∂

∂m2
J

ν = M1(ν)J
ν + νN1(ν)J̄

ν
,

∂

∂m2
J̄

ν
= M2(ν)J̄

ν
+N2(ν)J

ν .

(9)

In Eq. (9) matricesM1,2 andN 1,2 are regular in the ν →
0 limit, Jν integrals are the master integrals that need
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to be considered for computing {Iνα} integrals and J̄
ν
are

integrals that are needed for computing {Īνα} integrals.
From the structure of differential equations in Eq. (9) it

is clear that taking the limit ν → 0 at the early stages of
the computation is beneficial since this makes the system
of differential equations significantly simpler. However,
this is only possible if we know which master integrals are
singular in the ν → 0 limit and which master integrals
are not. Unfortunately, it is not trivial to answer this
question and we use several approaches to clarify it.
First, from the computation of integrals of the eikonal

functions ωa,b,c reported in Ref. [1], we know 1/ν-
divergent integrals that appear in cases when the prop-
agator 1/k2123 is absent. Upon inspection, we find that
the only m-independent 1/ν-divergent integral that ap-
pears in the amplitude Sd and in the differential equa-
tions reads

Īν1 = J̄ν
1 =

∫
dΦν

θδθ

(k1 · k3)(k1 · n)(k12 · n)(k3 · n)
. (10)

This integral was computed in Ref. [1] and for this reason
we do not discuss it here.
Second, to determine which of the integrals with the

propagator 1/k2123 are singular in the ν → 0 limit, we can
study these integrals at finite values of m and then em-
ploy differential equations to determine the 1/ν behavior
of the corresponding Īνα integrals. To this end, we em-
ployed Mellin-Barnes representation of the relevant inte-
grals and used public programs MB [9] and MBresolve [10]
to numerically compute all m-dependent integrals that
appear in the differential equations at finite values of m.
We also used the program pySecDec [11, 12] for cross-
checks of the numerical computation. Upon doing that,
we discovered yet another integral that is singular in the
ν → 0 limit. It reads

J̄ν
2 =

∫
dΦν

θδθ

(k2123 +m2)(k1 · k3)(k1 · n)(k12 · n)
. (11)

This integral is quite peculiar and we explain in the next
section why this is the case and how to compute it.
To proceed further, we re-scale J̄

ν
integrals that ap-

pear in Eq. (9) by a factor ν. Since, as we just explained,
only two integrals J̄ν

1 and J̄ν
2 diverge in the ν → 0 limit,

we need to keep them in O
(
ν0
)
part of the differential

equations. Therefore, we combine J
ν integrals together

with νJ̄ν
1 and νJ̄ν

2 integrals into a vector J ν and use re-
maining J̄ν integrals, rescaled by a parameter ν, to define
a new vector J̄

ν

J ν =
(
J

ν , νJ̄ν
1 , νJ̄

ν
2

)
,

J̄
ν
=
(
νJ̄ν

3 , · · ·
)
.

(12)

We then obtain a new system of differential equations

∂

∂m2
J ν = M1(ν)J

ν +N 1(ν)J̄
ν
,

∂

∂m2
J̄

ν
= M2(ν)J̄

ν
+ νN 2(ν)J

ν .

(13)

It is straightforward to solve the above equation expand-
ing in ν → 0 because all the matrices that appear there
have smooth ν → 0 limits and because the integral vec-
tors satisfy J ν ∼ O

(
ν0
)
, J̄

ν ∼ O(ν).

Working to order O
(
ν0
)
, we can drop J̄

ν
integrals and

set ν to zero in Eq. (13). This leads to a significant reduc-
tion in the number of integrals that appear in Eq. (13)
and allows for solving the system of differential equations
in a more efficient way.
As follows from the differential equation satisfied by

νJ̄ν
1 and νJ̄ν

2 , these integrals are independent of m
through O

(
ν0
)
. In addition, they also have to obey the

following relation

lim
ν→0

νJ̄ν
1 =

1 + 6ǫ

1 + 4ǫ
lim
ν→0

νJ̄ν
2 , (14)

to cancel the 1/ν singularity which is naively present in
the rescaled differential equation. We will show in the
following section that this condition is indeed satisfied.
We note that the above discussion applies to differ-

ential equations at finite values of m whereas, even-
tually, we are interested in the solutions at m = 0.
This limit is, potentially, non-trivial. Indeed, to find re-
quired values of integrals at m = 0, we need to compute
master integrals using the following sequence of limits:
m → 0, ν → 0, ǫ → 0.
However, as explained above, we would like to simplify

differential equations by taking the ν → 0 limit first and
there are two problems that may arise if the order of
limits is changed. First, since the mass parameter m can
also serve as a regulator of collinear and soft singularities,
m → 0 and ν → 0 limits should not necessarily commute.
Second, additional contributions can mix into the Taylor
m0-branch of the solution that we require, if the ν → 0
limit is taken before the m → 0 limit. We will discuss
these two problems now.
Suppose we take the ν → 0 limit for finite m-integrals

but the resulting integrals are still not regulated dimen-
sionally at m = 0. This feature can be detected in the
following way. The dependence of the integral on m and
ǫ at small m has the following form

J ∼
∑

n1,n2,n3

cn1n2n3
mn1+n2ǫ lnn3(m). (15)

We are interested in taking the m → 0 limit of this so-
lution at fixed ǫ. However, this is only possible if the
coefficients cn10n3

with n1 < 0 and n1 = 0, n3 > 0 van-
ish so that there are no 1/m and logm terms that are
not multiplied by additional powers of mǫ or sufficiently
high powers of m. We have checked that this condition
is satisfied for all ν = 0 integrals that we considered; this
implies that the m → 0 limit does not lead to divergen-
cies in integrals that are not regulated dimensionally. It
follows that indeed Īν1,2 are the only integrals in Īνα that
contribute to the amplitude, all other integrals can be
safely discarded.
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The second problem concerns possible mixing between
different branches of integrals if the ν → 0 limit is taken
too early. To see how this comes about, consider a general
solution in the limit m → 0, ν → 0, ǫ → 0

J ∼
∑

n1,n2,n3,n4

cn1n2n3n4
mn1+n2ǫ+n4ν lnn3(m). (16)

If there are terms that correspond to n1 = 0, n2 = 0, n3 =
0, n4 6= 0, they will mix with the contribution n1 =
0, n2 = 0, n3 = 0, n4 = 0, i.e. the m0-branch that we are
interested in.

Hence, we need to understand if such contributions
exist and, if they are there, how to isolate and remove
them. This can be done by studying exact differential
equation Eq. (13) at small values of m but with full ν-
and ǫ-dependence, and checking if mn4ν solutions with-
out additional dependencies of exponents on ǫ and addi-
tional powers of m are possible. We find that this does
not happen at m = 0 and, therefore, the Taylor branch
does not receive any unwanted contributions.

In summary, we can solve the differential equations
Eq. (13) as an expansion in ν. As discussed in Ref. [1],
we can compute the boundary conditions at m = ∞ and
then find values of integrals J at m = 0 by discarding
all terms that have non-analytic dependencies on m at
m = 0. We present the results of such a computation in
Section V; in the next section we describe computation
of a peculiar boundary condition which illustrates that
our worry about potential mixing of a Taylor- and mn4ν -
branches is not unfounded.

III. INTEGRAL J̄ν
2 WITH 1/ν DIVERGENCE

We can illustrate some points discussed in the previous
section by considering the integral J̄ν

2 and its contribu-
tion to differential equations. As mentioned there, this
integral is singular in the limit ν → 0. Multiplied by a
factor ν, it appears in the differential equations for two
sets of ν-regular integrals. We will consider one of them
for the sake of example

Jν
a1

=

∫
dΦν

θδθ

(k2123 +m2)(k1 · k3)(k23 · n̄)
,

Jν
a2

=

∫
dΦν

θδθ

(k2123 +m2)(k1 · k3)(k23 · n̄)2
. (17)

To compute these integrals from differential equations,
we require a boundary condition for νJ̄ν

2 , which we com-
pute at m = ∞. It follows from the analysis of the dif-
ferential equation for νJ̄ν

2 at m = ∞ that the required
boundary condition can be determined from the leading,
mass-independent term in the 1/m-expanison. Upon in-
specting the various contributions to the asymptotic be-
haviour of the integral J̄ν

2 discussed in Ref. [1], we find
that they do not produce mass-independent terms that
are 1/ν-divergent.
It turns out that the integral J̄ν

2 provides an example
of a situation where the analysis of different regions that
contribute to m → ∞ asymptotic behaviour of integrals,
performed in Ref. [1], is incomplete and that there is an-
other region that needs to be considered. In fact we have
found that the following scaling of integration variables

k3 · n̄ = α3 ∼ m2 ≫ 1,

k1 · n̄ = α1 ∼ 1, (18)

k1 · n = β1 ∼ m−2 ≪ 1,

leads to a 1/ν-divergent O
(
1/m0

)
contribution to J̄ν

2 .
To show this, we write an approximation to the inte-

grand of J̄ν
2 -integral in the region defined by Eq. (18)

J̄ν
2 ∼ J̃ν

2 =

∫
dΦν

θδθ

((k3 ·n̄) (k2 ·n) +m2)(k1 ·k3)(k1 ·n)(k12 ·n̄)
. (19)

We use the Sudakov variables αi and βi (see Ref. [1]
for details) and take into account the condition β1 ≪ 1

to remove β1 from the “jettiness” delta-function δ(1 −
β1 − β2 − β3) → δ(1 − β2 − β3). We then extend the
integration over β1 to infinity. We find

J̃ν
2 = 2

∞∫

0

dβ1

∫
dβ2dβ3 dα1dα3 β−ǫ+ν

1 β−2ǫ+ν
2 β−ǫ+ν

3 α−ǫ
1 α−ǫ

3

δ(1− β23)θ(α1 − β1)θ(α3 − β3)

(α3β2 +m2)β1(α1 + β2)
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×
[
θ(β1/α1 − β3/α3)

β1α3
2F1

(
1, 1 + ǫ; 1− ǫ;

α1β3

α3β1

)
+

θ(β3/α3 − β1/α1)

β3α1
2F1

(
1, 1 + ǫ; 1− ǫ;

α3β1

α1β3

)]
. (20)

We change integration variables α1 = β1/ξ1 and α3 = β3/ξ3 and obtain

J̃ν
2 = 2

∫
dβ2dβ3dξ1dξ3β

−2ǫ+ν
2 β−2ǫ+ν

3 ξǫ−1
1 ξǫ−1

3

δ(1 − β23)θ(1 − ξ1)θ(1 − ξ3)

β3β2 +m2ξ3

×
(
ξ3θ(ξ1 − ξ3) 2F1

[
{1, 1 + ǫ}, {1− ǫ}; ξ3

ξ1

]
+ ξ1θ(ξ3 − ξ1) 2F1

[
{1, 1 + ǫ}, {1− ǫ}; ξ1

ξ3

])
(21)

×
∞∫

0

dβ1
β−2ǫ+ν−1
1

β1 + β2ξ1
.

Integrating over β1, we find

∞∫

0

dβ1
β−2ǫ+ν−1
1

β1 + β2ξ1
= (β2ξ1)

−2ǫ+ν−1Γ(−2ǫ+ ν)

× Γ(2ǫ− ν + 1). (22)

We use this result in Eq. (21), change variables ξ1 =
rξ3, and arrive at

J̃ν
2 = 2Γ(−2ǫ+ ν)Γ(2ǫ− ν + 1)

×
∫

dβ2dβ3β
−4ǫ+2ν−1
2 β−2ǫ+ν

3 δ(1− β23) (23)

×
∫ 1

0

dξ3ξ
ν−1
3 J(ν, ξ3)

β3β2 +m2ξ3
,

where

J(ν, ξ3) =

∫ 1

0

dr
[
θ(1− ξ3/r)r

ǫ−ν + r−ǫ+ν−1
]

× 2F1[{1, 1 + ǫ}, {1− ǫ}; r] . (24)

It follows from the above expression that the ν-pole orig-
inates from a singularity at ξ3 = 0. It is straightforward
to compute it since J(ν, ξ3) is regular at ξ3 = 0.3 We
find

∫ 1

0

dξ3
ξν−1
3 J(ν, ξ3)

β3β2 +m2ξ3
=

J(0, 0)

ν
(β3β2)

−1 +O(ν0) . (25)

Upon further integration, we obtain a 1/ν-divergent

contribution to J̃ν
2 . It reads

J̃ν
2 =

C2

ν
, (26)

where

C2 =
2Γ2(−2ǫ)Γ(−4ǫ− 1)Γ(2ǫ+ 1)

Γ(−6ǫ− 1)

×
(

3F2[{1, 1 + ǫ, 1 + ǫ}, {1− ǫ, 2 + ǫ}; 1]
1 + ǫ

− 3F2[{1,−ǫ, 1 + ǫ}, {1− ǫ, 1− ǫ}; 1]
ǫ

)
. (27)

Using the result of the explicit computation of the 1/ν
pole of J̄ν

2 and the result for J̄ν
1 reported in Ref. [1], we

find that they satisfy the relation shown Eq. (14). As we
pointed out earlier, this relation is needed to ensure the
smooth ν → 0 limit of the differential equations.
The above result provides the required boundary con-

dition atm = ∞ and allows us to start solving differential

3 As with any analytic regulator, the ν → 0 limit should be com-
puted keeping ǫ fixed.

equations numerically. However, it is interesting to point
out that, from the perspective of the differential equa-
tions, integral J̄ν

2 provides an example of a contribution
proportional to m−2ν which, therefore, can mix with the
Taylor branch of the required integrals if the ν → 0 limit
is taken first.
Indeed, if we first apply the scaling defined in Eq. (18)

to the integration variables in Eq. (20), we find that this
integration region leads to an overall factor (1/m)2ν

νJ̄ν
2 ∼ (1/m)

2ν [
C2 +O(ν1)

]
. (28)
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We note that in the limit ν → 0, this region looks like
a “normal” Taylor region 1/m0

νJ̄ν
2 ∼ (1/m)

0
C2 +O(ν1) , (29)

and, once the ν → 0 limit is taken, the two regions cannot
be distinguished. This is an illustration of the problem of
mixing between differentm-branches that we discussed in
the previous section; however, in contrast to the discus-

sion there, our example in this section refers to m → ∞
limit.

The existence of (1/m)2ν branch in the integral νJν
2

leads to the appearance of similar contributions in other
integrals that νJν

2 couples to through differential equa-
tions. For the sake of example, we consider the differ-
ential equation for the so-called Jν

a sector, cf. Eq. (17).
The differential equations take the following form

∂

∂m2

(
Jν
a1

Jν
a2

)
=

(
− 2ǫ

m2 − 2(1+2ǫ)
4m2+1

1
4m2+1

2ǫ(1+2ǫ)
m2 − 8ǫ(1+2ǫ)

4m2+1
1+4ǫ
m2 − 28ǫ

4m2+1

)(
Jν
a1

Jν
a2

)
−




(1+4ǫ)
(1+6ǫ)

(
1
m2 − 4

4m2+1

)

(1+4ǫ)
(1+6ǫ)

(
4ǫ
m2 − 16ǫ

4m2+1

)


 νJ̄ν

2 (30)

+ contributions from other Jν integrals.

It follows from the above equation that the integral νJ̄ν
2

plays a role of an inhomogeneous contribution to the dif-
ferential equation that Jν

a1
and Jν

a2
satisfy. In fact, an-

alyzing the homogeneous terms of the above equation
in the m → ∞ limit, we find that we do not need to
compute the boundary conditions for these integrals and
that the solution of the differential equation in this limit
are obtained by integrating the inhomogeneous part. We
obtain

Jν
a1

= m−2

(
4ǫ+ 1

4(6ǫ+ 1)
C2

)
+ . . . , (31)

Jν
a2

= m−2

(
ǫ(4ǫ+ 1)

6ǫ+ 1
C2

)
+ . . . , (32)

where ν → 0 limit has already been taken where appro-
priate and dots stand for other contributions, including
homogeneous and inhomogeneous ones.
We emphasize one more time that from the point of

view of the differential equation, the contribution shown
in the above equation scales as ∼ (1/m)2ν but, once the
ν → 0 limit is taken it becomes indistinguishable from a
regular Taylor part of the integral. If a similar situation
occurs at m = 0, we should have identified and removed
all the mn4ν regions in all integrals since the correct se-
quence of limits that is needed is m → 0, ν → 0, ǫ → 0.
However, as we mentioned earlier, an analysis of the dif-
ferential equation at m → 0 leads to the conclusion that
there are no eigenvalues that vanish if ν → 0 limit is taken
so that the problem described above does not occur.

IV. CHECKS

Given the highly unusual nature of the integrals that
need to be computed to obtain the zero-jettiness soft
function and the complex interplay of the various infra-
red regulators it is important to perform as many checks

as possible to ensure correctness of the result.
The most comprehensive check that can be performed

is the numerical computation of all m-dependent inte-
grals which appear in the differential equations, as well
as their derivatives. We constructed Mellin-Barnes repre-
sentation of the relevant integrals using public programs
MB [9] and MBresolve [10] for this purpose. We also used
the program pySecDec [11, 12] as an alternative for the
numerical computation. Using these programs, we have
computed all integrals that appeared in the differential
equations at finite values of m and checked them against
numerical solutions of the differential equations.

Next, we compared the solutions of the differential
equations at m = 0 and ν = 0 with the results of the
direct numerical computation. Unfortunately, although
this can be done for some integrals that contribute to Sd,
there are many integrals for which the numerical integra-
tion becomes next to impossible. To enlarge the set of
integrals at m = 0 that can be checked, we have derived
linear relations between various integrals at m = 0 using
the integration-by-parts identities and checked that inte-
grals obtained from m-dependent differential equations
and extrapolated to m = 0, satisfy them.

V. RESULTS

Solving differential equations and separating the Tay-
lor branch at m = 0, we obtain numerical result for the

integral of the function ω
3,(d)
nn̄ . Since we can determine

the solution of the differential equation to, essentially, ar-
bitrary precision, we can try to obtain the analytic result
for Sd by fitting the numerical results to a linear combina-
tion of various transcendental and rational numbers. By
making use of the PSLQ [13] and LLL [14] algorithms,
and choosing appropriate basis of transcendental num-
bers [15], we find the following result
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Sd =

∫
dΦnnn

θθθ ω
(3),d
nn̄ (k1, k2, k3) =

12

ǫ5
+

142

3ǫ4
+

1

ǫ3

(
46π2

3
+

628

3

)
+

1

ǫ2

(
196ζ3 +

650π2

9
+

18161

27

)

+
1

ǫ

(
397π4

45
+ 1380ζ3 +

6808π2

27
+

165323

81

)
+

(
8982ζ5 −

2146ζ3π
2

3
+

191π4

9
+ 4224 Li4

(
1

2

)

+ 3696ζ3 ln(2)− 176π2 ln2(2) + 176 ln4(2) +
46184ζ3

9
+

66614π2

81
+ 96 ln(2) +

413971

81

)

+ ǫ

(
2304 ζ−5,−1 − 4464ζ5 ln(2)− 8380ζ23 +

46934π6

2835
− 6336GR(0, 0, r2, 1,−1)

− 6336GR(0, 0, 1, r2,−1)− 3168GR(0, 0, 1, r2, r4)− 6336GR(0, 0, r2,−1) ln(2) +
324215ζ5

3
(33)

− 45056 Li5

(
1

2

)
− 45056 Li4

(
1

2

)
ln(2) + 176Cl4

(π
3

)
π − 1056ζ3 Li2

(
1

4

)
− 9634ζ3π

2

3

− 21824ζ3 ln
2(2) + 2112ζ3 ln(2) ln(3)− 1584Cl22

(π
3

)
ln(3)− 4400Cl2

(
π
3

)
π3

27
+

88π4 ln(2)

45

− 616π4 ln(3)

27
+

11264π2 ln3(2)

9
− 22528 ln5(2)

15
+ 8576 Li4

(
1

2

)
+ 7504ζ3 ln(2) +

4646π4

27

− 1072π2 ln2(2)

3
+

1072 ln4(2)

3
+

496592ζ3
27

− 32π2 ln(2) +
587380π2

243
− 384 ln2(2) + 832 ln(2)

+
7857076

729
+

√
3

(
192ℑ

{
Li3

(
exp(iπ/3)

2

)}
+ 160Cl2

(π
3

)
ln(2)− 16π ln2(2)− 560π3

81

))

+O
(
ǫ2
)
,

where ζ−5,−1 ≈ −0.029902 is a multiple zeta value, and
Cln(x) are Clausen functions. GR(a1, . . . , aw) is the real
part of the multiple polylogarithm G(a1, . . . , aw; z) eval-
uated at z = 1 [15]

GR(a1, . . . , aw) = ℜ{G(a1, . . . , aw; 1)} . (34)

Finally, r2 = exp(−iπ/3) and r4 = exp(−i2π/3). We

note that we have computed the master integrals to more
than two thousand digits to check the validity of the an-
alytic result.
Having obtained the result for the integral of the func-

tion ω
3,(d)
nn̄ we are now in position to present the complete

result for the same-hemisphere three-gluon-emission con-
tribution to the N3LO soft function. To this end, we
write

Snnn =

∫
dΦnnn

θθθ |J(k1, k2, k3)|2 = τ−1−6ǫN
3
ǫ

3!

[
C3

aS
nnn
1+1+1 + C2

aCAS
nnn
1+2 + CaC

2
AS

nnn
3

]
, (35)

where we re-introduced the dependence on τ , recovered
the symmetry factor 1/3! and the normalization factor
N3

ǫ (cf. Eq. (3)), and split the integral into three color
factors following Eq. (7.10) in Ref. [4]. We also note that
Ca = CF,A for the quark (gluon) soft function, respec-

tively.
The computation of the Abelian contributions Snnn

1+1+1

and Snnn
1+2 is described in Appendix A. We obtain the

maximally non-Abelian contribution Snnn
3 by adding re-

sults obtained in Ref. [1] and the result of this paper
given in Eq. (33). We find

Snnn
1+1+1 =

48Γ3(1 − 2ǫ)

ǫ5Γ(1− 6ǫ)
, (36)
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Snnn
1+2 = −9 Γ(1− 4ǫ) Γ(1− 2ǫ)

ǫ2Γ(1 − 6ǫ)
×
[
8

ǫ3
+

44

3ǫ2
+

1

ǫ

(
268

9
− 8ζ2

)
+

(
1544

27
+

88

3
ζ2 − 72ζ3

)

+ ǫ

(
9568

81
+

536ζ2
9

+
352

3
ζ3 − 300ζ4

)
+ ǫ2

(
55424

243
+

3520ζ2
27

+
2144ζ3

9
+ 352ζ4 + 96ζ2ζ3 − 1208ζ5

)

+ ǫ3
(
297472

729
+

22592ζ2
81

+
14080ζ3

27
+

2144

3
ζ4 −

4576

3
ζ2ζ3 + 3696ζ5 + 424ζ23 − 3596ζ6

)
+O

(
ǫ4
) ]

, (37)

Snnn
3 =

24

ǫ5
+

308

3ǫ4
+

1

ǫ3

(
−12π2 +

3380

9

)
+

1

ǫ2

(
−1000ζ3 +

440π2

9
+

10048

9

)

+
1

ǫ

(
−2377π4

45
+

440ζ3
3

+
7192π2

27
+

253252

81

)

+

(
−28064ζ5 +

1972ζ3π
2

3
− 638π4

15
+ 4224 Li4

(
1

2

)
+ 3696ζ3 ln(2)− 176π2 ln2(2) + 176 ln4(2)

+
13208ζ3

3
+

78848π2

81
+ 96 ln(2) +

1925074

243

)

+ ǫ

(
2304 ζ−5,−1 − 4464ζ5 ln(2) + 25784ζ23 − 67351π6

567
− 6336GR(0, 0, r2, 1,−1)

− 6336GR(0, 0, 1, r2,−1)− 3168GR(0, 0, 1, r2, r4)− 6336GR(0, 0, r2,−1) ln(2) +
268895ζ5

3

− 45056 Li5

(
1

2

)
− 45056 Li4

(
1

2

)
ln(2) + 176Cl4

(π
3

)
π − 1056ζ3 Li2

(
1

4

)
− 3982ζ3π

2

− 21824ζ3 ln
2(2) + 2112ζ3 ln(2) ln(3)− 1584Cl22

(π
3

)
ln(3)− 4400Cl2

(
π
3

)
π3

27
+

88π4 ln(2)

45

− 616π4 ln(3)

27
+

11264π2 ln3(2)

9
− 22528 ln5(2)

15
+ 8576 Li4

(
1

2

)
+ 7504ζ3 ln(2) +

4174π4

27

− 1072π2 ln2(2)

3
+

1072 ln4(2)

3
+

554032ζ3
27

− 32π2 ln(2) +
730378π2

243
− 384 ln2(2) + 832 ln(2)

+
1408681

81
+

√
3

(
192ℑ

{
Li3

(
exp(iπ/3)

2

)}
+ 160Cl2

(π
3

)
ln(2)− 16π ln2(2)− 560π3

81

))
+O

(
ǫ2
)
. (38)

VI. CONCLUSIONS

In this paper, we have discussed the computation of
the same-hemisphere three-gluon-emission contribution
to the zero-jettiness soft function at N3LO in perturba-
tive QCD. We have used the approach of Ref. [1], which
allows us to apply integration-by-parts technology and
the method of differential equations to phase-space in-
tegrals that contain Heaviside functions. While the ap-
pearance of integrals that are not regulated dimensionally
requires an analytic regulator and thus complicates the
use of differential equations, we have described a way to
bypass this problem in an efficient way.
Finally, we note that the missing kinematic configura-

tion, in which one of the three gluons is emitted into the
opposite hemisphere can be computed in a similar fash-
ion. Once a complete result for the three-gluon-emission
contribution is known, the contribution that arises from
the emission of a soft qq̄-pair and a soft gluon can be
computed in a straightforward way. Similarly, we expect
that virtual corrections to the double real emissions can
be dealt with using the same method. We leave both

problems to future investigations.
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Appendix A: Computation of abelian contributions

In this appendix we describe how to compute Abelian
contributions to the zero-jettiness soft function, i.e. the
first two terms in Eq. (35). The first, so-called fully-
Abelian contribution Snnn

1+1+1 reads

Snnn
1+1+1 =

∫
dΦnnn

θθθ ω
(1)
nn̄ (k1)ω

(1)
nn̄ (k2)ω

(1)
nn̄ (k3) , (A1)
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where [4]

ω
(1)
nn̄ (q) =

4

(nq) (n̄q)
. (A2)

Thanks to its fully-factorized structure, the integral in
Eq. (A1) is straightforward to compute. Using Sudakov
variables αi and βi, we find

Snnn
1+1+1 = 64

∞∫

0

(
3∏

i=1

dαi dβi (αiβi)
−1−ǫ

θ(αi − βi)

)

× δ(1− β123) =
64

ǫ3
Γ3(−2ǫ)

Γ(−6ǫ)
. (A3)

Making the 1/ǫ-poles in the above equation explicit yields
Eq. (36).
The second Abelian contribution reads

Snnn
1+2 =

∫
dΦnnn

θθθ

[
ω
(1)
nn̄(k1)ω

(2)
nn̄ (k2, k3)

+ (k1 ↔ k2) + (k1 ↔ k3)

]

= 3

∫
dΦnnn

θθθ

[
ω
(1)
nn̄ (k1)ω

(2)
nn̄ (k2, k3)

]
. (A4)

We write it as

Snnn
1+2 = 3N−1

ǫ

∫
[dk1] θ(k1n̄− k1n) ω

(1)
nn̄ (k1)

×N−2
ǫ

∫ ( 3∏

i=2

[dki] θ(kin̄− kin)

)

× δ(1− k123n)ω
(2)
nn̄ (k2, k3) . (A5)

The inner integral in Eq. (A5) over [dk2][dk3] can be
obtained from the same-hemisphere double-real gluon
emission contribution to the NNLO soft function. We
find

Snnn
1+2 = 3

∫ ∞

0

dα1 dβ1 θ(α1 − β1)
4(α1β1)

−ǫ

α1β1

× Cnn
2 (1 − β1)

−1−4ǫ =
12

ǫ

Γ(−4ǫ) Γ(−2ǫ)

Γ(−6ǫ)
Cnn

2 , (A6)

where the factor Cnn
2 can be extracted from Refs. [1,

16]. Upon doing so, we obtain the result displayed in
Eq. (37).
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