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Three-loop non-singlet matching coefficients for heavy quark currents
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We compute the matching coefficients between QCD and non-relativistic QCD for external vector,
axial-vector, scalar and pseudo-scalar currents up to three-loop order. We concentrate on the non-
singlet contributions and present precise numerical results with an accuracy of about ten digits. For
the vector current the results from Ref. [1] are confirmed, increasing the accuracy by several orders
of magnitude.

I. INTRODUCTION

The construction of effective field theories with Quantum Chromodynamics (QCD) as a starting point is a very
successful approach in order to describe a number of different phenomena, which involve different energy scales follow-
ing a large hierarchy. A popular example in this context is non-relativistic QCD (NRQCD) which describes systems
with two heavy quarks moving with small relative velocity. Prominent applications are the threshold production of
top-quark pairs in electron-positron annihilation and properties of charmonium and bottomonioum bound states. For
comprehensive reviews we refer to Refs. [2, 3].

For the construction of the effective theories one considers Green functions in the full and effective theories and
requires that they are equal up to corrections in the small expansion parameter, which in the case of NRQCD are
power-suppressed terms in the inverse heavy quark mass m. Such calculations, usually referred to as matching
calculations, fix the couplings of the operators in the effective theory. These couplings are typically denoted as
matching coefficients.

In this paper we consider QCD and NRQCD as full and effective theories and compute the matching coefficients
of external vector, axial-vector, scalar and pseudo-scalar currents up to three-loop order in perturbation theory. For
this purpose it is necessary to compute vertex corrections involving one of the currents and a quark-anti-quark pair.
We concentrate on the non-singlet contributions where the external currents directly couple to the external quarks.
Sample Feynman diagrams up to three loops are shown in Fig. 1.

From the phenomenological point of view the vector current is certainly most important. It enters as building
block to the threshold production of top-quark pairs [4] and the decay width of the Υ(1S) meson [5, 6]. Its abelian
contribution is an important ingredient to the hyperfine splitting of positronium [7]. As possible applications of the
scalar and pseudo-scalar matching coefficient one could imagine the decay of CP-even or CP-odd Higgs bosons with
mass M into two quarks with mass m ≈M/2.

Starting point for the matching calculation are the vector, axial-vector, scalar and pseudo-scalar currents in QCD
which we define as

jµv = ψ̄γµψ ,

jµa = ψ̄γµγ5ψ ,

js = ψ̄ψ ,

jp = ψ̄iγ5ψ . (1)

Note that the anomalous dimensions of the vector and axial-vector current are zero whereas js and jp involve non-
trivial renormalization constants.

Expanding the spinors in Eq. (1) for |~p | � m, where ~p is the momentum of the anti-quark in the final state, one
finds the currents in the effective theory,

j̃kv = φ†σkχ ,

j̃ka =
1

2m
φ†[σk, ~p · ~σ]χ ,
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FIG. 1. Sample Feynman diagrams at one-, two- and three-loop order for the current-quark-anti-quark vertex corrections. Solid
and curly lines denote quarks and gluons, respectively. The cross represents the coupling to the external current. In this work
we only consider non-singlet contributions (a)-(g) and neglect the singlet contributions (h).

j̃s = − 1

m
φ†~p · ~σχ ,

j̃p = −iφ†χ , (2)

where φ and χ are two-component Pauli spinors.
The currents in Eqs. (1) and (2) are used to form renormalized vertex functions with two external on-shell quarks

which we denote by Γx(q1, q2) and Γ̃x with x ∈ {v, a, s, p}, respectively. q1 and q2 correspond to the momenta of the
quark and anti-quark with q21 = q22 = m2 where m is the quark mass. We apply an asymptotic expansion around
s = 4m2 [8, 9], where s is the momentum squared of the external current, which leads to

Z2ZxΓx(q1, q2) = cxZ̃2Z̃
−1
x Γ̃x + . . . . (3)

The ellipses denote terms suppressed by at least two inverse powers of the heavy quark mass. It is understood that
Γx(q1, q2) is expressed in terms of the heavy quark mass in the on-shell scheme and the strong coupling in the MS

scheme. Z2 and Z̃2 are the on-shell wave function renormalization constants. Z2 is needed up to three loops [10, 11]

whereas Z̃2 = 1 since the quantum corrections in NRQCD only involve scaleless integrals which are set to zero in
dimensional regularization. Also for Γ̃x only tree-level contributions are needed since the soft, potenial and ultrasoft
contributions are present on both sides of Eq. (3) and cancel such that only the hard contribution of Γx(q1, q2) has
to be computed. Zx is the renormalization constant of the current in full QCD which is given by Zv = Za = 1 and
Zs = Zp = Zm. Here Zm is the on-shell quark mass renormalization constant defined via m = Zmm

0, where m0 is

the bare heavy quark mass. Z̃x is the renormalization constant of the current in NRQCD which is determined from
the infrared divergences of cx. Z̃x deviates from 1 starting at order α2

s. The computation of the matching coefficient
cx is the main purpose of this work.

Two-loop corrections to cv have been computed for the first time in Refs. [12, 13] and in Ref. [14] two-loop corrections
to all four currents have been considered, including the singlet contributions. Three-loop corrections to cv have been
computed in Refs. [1, 15, 16]. In these works the reduction to master integrals has been performed analytically.
However, most of the master integrals have only been computed numerically with the help of FIESTA [17]. As a
consequence the coefficients of some colour structures are only know with an uncertainty of a few percent. This is
sufficient for most phenomenological applications. It is nevertheless desirable to have an independent cross check with
improved accuracy. This is provided in this work.

In the next Section we provide details on our calculation and describe our method to extract the matching coefficient
from results for the form factors. In Section III we present our results for the matching coefficients and the anomalous
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dimension of the currents in the effective theory. Section IV contains a brief summary.

II. TECHNICAL DETAILS

For the computation of the hard part of the vertex diagrams we apply the method developed in Ref. [18]. We profit
from the findings of Refs. [19, 20] where results for massive form factors with external vector, axial-vector, scalar and
pseudo-scalar currents have been computed. They can be decomposed into six form factors given by

Γvµ(q1, q2) = F v1 (s)γµ −
i

2m
F v2 (s)σµνq

ν ,

Γaµ(q1, q2) = F a1 (s)γµγ5−
1

2m
F a2 (s)qµγ5 ,

Γs(q1, q2) = mF s(s) ,

Γp(q1, q2) = imF p(s)γ5 , (4)

where σµν = i[γµ, γν ]/2 and s is the invariant mass of the external current. The quantity Γx(q1, q2) in Eq. (3) is
obtained from the hard part of the form factors evaluated at s = 4m2 through

Γv = (F v1 + F v2 )
∣∣
hard, s=4m2 ,

Γa = F a1
∣∣
hard, s=4m2 ,

Γs = F s
∣∣
hard, s=4m2 ,

Γp = F p
∣∣
hard, s=4m2 , (5)

which is discussed in more detail in the remainder of this section.
The basic idea of Ref. [18] is to construct expansions of the master integrals for various values of s/m2 with the help

of the corresponding differential equations. The unconstrained coefficients of the expansions are fixed by matching
two neighboring expressions at an intermediate point. The starting point in Refs. [19, 20] is s = 0 where all master
integrals can be computed analytically. In order to arrive at the threshold s = 4m2 we perform expansions for
s/m2 = 1, 2, 5/2, 3, 7/2 and 4.

The expansion around s/m2 = 4 uses the variable

x =

√
4− s

m2
. (6)

It contains both even and odd powers of x accompanied by ln(x) terms, since it comprises the contributions from all
regions present close to threshold. In particular, each loop momentum can have one of the following scalings [8]:1

• hard (h): k0 ∼ m, ki ∼ m ,

• potential (p): k0 ∼ x2 ·m, ki ∼ x ·m ,

• soft (s): k0 ∼ x ·m, ki ∼ x ·m ,

• ultrasoft (u): k0 ∼ x2 ·m, ki ∼ x2 ·m .

For the matching coefficients we only need the region where all loop momenta are hard. Here only even powers of x
and no ln(x) terms are present.

Using the scalings from above, we see that in each region the integral is given as x−n ε multiplied by a Taylor
expansion in x, with an integer n which can be derived from the scaling of the loop momenta in the respective
region. Here ε = (4 − d)/2 where d is the space-time dimension. We can insert this ansatz into the system of
differential equations for the master integrals and obtain a system of linear equations for the expansion coefficients.
For each region the system is reduced to a small set of undetermined boundary constants with the help of a version of
Kira [21, 22] with FireFly [23, 24] optimized for solving systems without variables. After summing the contributions
from all regions we obtain again the results for the master integrals in full kinematics. We can therefore numerically

1 Note that in Ref. [8] the variable y = 1− s/(4m2) = x2/4 has been used.
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match the yet undetermined boundary constants with the numerical results computed in Ref. [19]. Substituting the
numerical solutions into the ansatz for the x−0 ε scaling provides the master integrals in the hard expansion.

Let us in the following discuss the calculation in more detail. At two-loop order we find the following scalings for
the different regions:

• x−0ε: (h-h),

• x−2ε: (h-p), (h-s),

• x−4ε: (h-u), (p-p), (s-s), (p-s),

• x−6ε: (p-u), (s-u),

• x−8ε: (u-u),

where the list on the right of the colon specifies the scaling of the two loop momenta. Some of the combinations might
vanish due to the presence of scaleless integrals. However, in our approach we do not have to pay attention to this.
Since only the spacial parts get continued into (d − 1) dimensions, potential and soft regions of the loop momenta
lead to the same ε-dimensional scalings. The pure ultrasoft region ∼ x−8ε does not contribute which we checked by
an explicit calculation. For the two-loop calculation we therefore have to consider four independent expansions. Note
that the individual regions contributing to one of the x−nε scalings might develop higher poles in the dimensional
regulator ε than the sum. These higher poles lead to Sudakov-like double logarithms which are not present in the
threshold expansion considered here. We therefore do not have to extend the ansatz to higher poles in ε compared to
the full calculation in Ref. [19].

At three loop order we have the scalings

• x−0ε: (h-h-h),

• x−2ε: (h-h-p), (h-h-s),

• x−4ε: (h-h-u), (h-p-p), (h-s-s), (h-p-s),

• x−6ε: (h-p-u), (h-s-u), (p-p-p), (p-p-s), (p-s-s), (s-s-s),

• x−8ε: (h-u-u), (u-p-p), (u-p-s), (u-s-s),

• x−10ε: (u-u-p), (u-u-s),

• x−12ε: (u-u-u),

which means that we have to construct six independent expansions since the pure-ultrasoft contribution vanishes.
After the reduction to boundary constants we are left with (568, 125, 248, 402, 236, 51) undetermined coefficients for
the scalings x−0ε, . . . , x−10ε. They can be reduced by utilizing information about the master integrals from the full
calculation. On the one hand, we know some integrals analytically, especially those which do not depend on s. They
can be fixed from the expansion around s = 0. Furthermore, some of the ε poles also do not have a s dependence
and thus also they are available from the calculation performed for s = 0. On the other hand, we know the leading
power in x for each integral from the full result. This knowledge implies relations between the boundary constants
from different regions which leads to a reduction of the number of independent boundary constants from 1630 to 578.
They are determined as follows: After obtaining the symbolic expansions for each region we equate the sum of all
regions with the numerical evaluation of the full result at s = 3.75m2 from Ref. [19] and solve the resulting linear
system for the 578 boundary constants. In particular all 568 coefficients from the pure-hard regions of all 422 master
integrals are obtained by this procedure, whereas the regions which scale as x−nε with n > 0 can not be disentangled.
This is sufficient for the application in the present paper.

Let us mention that in case one wants to construct results for each individual region further information is needed.
It can be obtained by determining for each region of every master integral the leading power in x. Here the program
asy.m [25, 26] can be used. In this way one obtains relations for each individual region instead of only for the sum of
all of them.

Next we insert the hard regions of the master integrals into the amplitudes for the form factors. It contains terms
scaling with inverse powers of (s − 4m2) from the reduction of the master integrals with full kinematics. It is a
non-trivial check that the limit s → 4m2 exists. In fact we have checked that all inverse powers of (s − 4m2) have
coefficients below 3 · 10−11 which is the precision of our calculation. Inserting the form factors into Eq. (5) we finally
obtain the vertex functions Γx entering the matching equation (3). As a further check we keep the QCD gauge
parameter ξ and observe that it vanishes after renormalization.
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III. THREE-LOOP MATCHING COEFFICIENTS

Once all ingredients for the left-hand-side of Eq. (3) are available we can solve it for cx order-by-order in αs. At
one-loop order all quantities with a tilde on the right-hand-side are equal to 1. At order α2

s infrared divergences are

left on the left-hand-side which are absorbed into Z̃x. Finally, at order α3
s one has to take care of the interference

term of Z̃−1x and the one-loop result of cx, which is needed up to order ε. The remaining infrared divergences are

again absorbed into Z̃x. We parametrize the perturbative results in this section by the strong coupling in the effective

theory with nl active quark flavours which we denote by α
(nl)
s .

Let us in a first step provide the results for the renormalization constants which are obtained by subtracting the
remaining infrared divergences in a minimal way. For the vector current we have

Z̃v = 1 +

(
α
(nl)
s (µ)

π

)2
CFπ

2

ε

(
1

12
CF +

1

8
CA

)
+

(
α
(nl)
s (µ)

π

)3

CFπ
2

{
C2
F

[
5

144ε2
+

(
43

144
− 1

2
l2 +

5

48
Lµ

)
1

ε

]
+ CFCA

[
1

864ε2
+

(
113

324
+

1

4
l2 +

5

32
Lµ

)
1

ε

]
+ C2

A

[
− 1

16ε2
+

(
2

27
+

1

4
l2 +

1

24
Lµ

)
1

ε

]
+ Tnl

[
CF

(
1

54ε2
− 25

324ε

)
+ CA

(
1

36ε2
− 37

432ε

)]
+ CFTnh

1

60ε

}
+O(α4

s) , (7)

which agrees with the explicit calculations in the effective theory from Refs. [13, 15, 27, 28]. In Eq. (7) CF =
(N2

c − 1)/(2Nc) and CA = 2TNc are the quadratic Casimir operators of the SU(Nc) gauge group in the fundamental
and adjoint representation, respectively, nl is the number of massless quark flavors, and T = 1/2. Furthermore we
have Lµ = ln(µ2/m2) and l2 = ln(2).

For the remaining three currents our results read

Z̃a = 1 +

(
α
(nl)
s (µ)

π

)2
CFπ

2

ε

(
1

24
CA +

5

48
CF

)
+

(
α
(nl)
s (µ)

π

)3

CFπ
2

{
C2
F

(
215

864
− l2

3

)
1

ε

+CFCA

[
− 25

576ε2
+

(
1

18
l2 +

35

576
Lµ +

1433

5184

)
1

ε

]
+ C2

A

[
− 1

48ε2
+

(
5

36
l2 +

1

72
Lµ +

17

324

)
1

ε

]
+Tnl

[
CF

(
5

216ε2
− 83

1296ε

)
+ CA

(
1

108ε2
− 53

1296ε

)]}
,

Z̃s = 1 +

(
α
(nl)
s (µ)

π

)2
CFπ

2

ε

(
1

24
CA +

1

6
CF

)
+

(
α
(nl)
s (µ)

π

)3

CFπ
2

{
C2
F

(
65

216
− 1

3
l2

)
1

ε

+CFCA

[
− 7

96ε2
+

(
461

1296
+

1

18
l2 +

25

288
Lµ

)
1

ε

]
+ C2

A

[
− 1

48ε2
+

(
17

324
+

5

36
l2 +

1

72
Lµ

)
1

ε

]
+Tnl

[
CF

(
1

27ε2
− 29

324ε

)
+ CA

(
1

108ε2
− 53

1296ε

)]}
,

Z̃p = 1 +

(
α
(nl)
s (µ)

π

)2
CFπ

2

ε

(
1

8
CA +

1

4
CF

)
+

(
α
(nl)
s (µ)

π

)3

CFπ
2

{
C2
F

[
5

144ε2
+

(
31

144
− 1

2
l2 +

5

48
Lµ

)
1

ε

]
+CFCA

[
− 5

96ε2
+

(
199

432
+

1

4
l2 +

29

96
Lµ

)
1

ε

]
+ C2

A

[
− 1

16ε2
+

(
2

27
+

1

4
l2 +

1

24
Lµ

)
1

ε

]
+Tnl

[
CF

(
1

18ε2
− 11

108ε

)
+ CA

(
1

36ε2
− 37

432ε

)]
+ CFTnh

1

60ε

}
. (8)

Note that our method only provides numerical results for the pole parts. However, the precision is sufficiently high
such that the analytic results can be reconstructed using the PSLQ algorithm [29].

The renormalization constants are related to the anomalous dimensions via

γx =
d ln(Z̃x)

d ln(µ)
, (9)
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which leads to

γx = −4

(
α
(nl)
s

π

)2

Z̃(2,−1)
x − 6

(
α
(nl)
s

π

)3

Z̃(3,−1)
x +O(α4

s) , (10)

where Z̃
(a,b)
x denotes the contribution to Z̃ at order αasε

b.
For the perturbative expansion of cx we set the renormalization scale of the strong coupling constant to µ2 = m2

and write

cx = 1 +
α
(nl)
s (m)

π
c(1)x +

(
α
(nl)
s (m)

π

)2

c(2)x +

(
α
(nl)
s (m)

π

)3

c(3)x +O(α4
s) . (11)

The three-loop coefficient is further decomposed according to the color structures as

c(3)x = CF
[
C2
F c

x
FFF + CFCAc

x
FFA + C2

Ac
x
FAA + Tnl (CF c

x
FFL + CAc

x
FAL + Tnhc

x
FHL + Tnlc

x
FLL)

+ Tnh (CF c
x
FFH + CAc

x
FAH + Tnhc

x
FHH)

]
+ singlet terms . (12)

In the following we present result for cx where for completeness also the one- and two-loop results are shown. For
the vector current our results read:

c(1)v = −2CF ,

c(2)v =

(
−151

72
+

89

144
π2 − 5

6
π2l2 −

13

4
ζ(3)

)
CACF +

(
23

8
− 79

36
π2 + π2l2 −

1

2
ζ(3)

)
C2
F

+

(
22

9
− 2

9
π2

)
CFTnh +

11

18
CFTnl −

1

2
π2

(
1

2
CA +

1

3
CF

)
CFLµ ,

cvFFF = 36.49486246 +

(
− 9

16
+

3

2
l2

)
π2Lµ −

5

32
π2L2

µ ,

cvFFA = −188.0778417 +

(
− 59

108
− 3

4
l2

)
π2Lµ −

47

576
π2L2

µ ,

cvFAA = −97.73497327 +

(
−2

9
− 3

4
l2

)
π2Lµ +

1

6
π2L2

µ ,

cvFFL = 46.69169291 +
25

108
π2Lµ −

1

18
π2L2

µ ,

cvFAL = 39.62371855 +
37

144
π2Lµ −

1

12
π2L2

µ ,

cvFHL = −557

162
+

26

81
π2 ,

cvFLL = −163

162
− 4

27
π2 ,

cvFFH = −0.8435622912− 1

20
π2Lµ ,

cvFAH = −0.1024741615 ,

cvFHH = −427

162
+

158

2835
π2 +

16

9
ζ(3) , (13)

The coefficient of the logaritmic contributions and the coefficients cvFHL and cvFLL have been reconstructed using our
numerical expressions. They agree with the results presented in Ref. [1]. Our numerical precision is not sufficient
to obtain the analytic expressions for cvFHH which we take from Ref. [1]. For all coefficients presented in numerical
form we have a precision of at least ten digits, which is a significant improvement. For example, for the non-fermionic
coefficients the results in Ref. [1] read cvFFF = 36.55(0.53), cvFFA = −188.10(0.83) and cvFAA = −97.81(0.38).

For the remaining three currents we have

c(1)a = −CF ,

c(2)a =

(
−9

8
ζ(3) +

35

144
π2 − 101

72
− 7

12
π2l2

)
CACF +

(
−27

16
ζ(3)− 9

8
π2 +

23

24
+

19

24
π2l2

)
C2
F

+

(
20

9
− 2

9
π2

)
CFTnh +

7

18
CFTnl + π2

(
− 1

12
CA −

5

24
CF

)
CFLµ ,
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caFFF = −4.764274486 +

(
−155

288
+ l2

)
π2Lµ ,

caFFA = −83.88648515 +

(
−1289

1728
− 1

6
l2

)
π2Lµ +

115

1152
π2L2

µ ,

caFAA = −63.00619439 +

(
− 17

108
− 5

12
l2

)
π2Lµ +

1

18
π2L2

µ ,

caFFL = 28.13543651 +
83

432
π2Lµ −

5

72
π2L2

µ ,

caFAL = 23.17119085 +
53

432
π2Lµ −

1

36
π2L2

µ ,

caFHL = −415

162
+

20

81
π2 ,

caFLL = − 65

162
− 2

27
π2 ,

caFFH = 0.8971357511 ,

caFAH = −0.2169123942 ,

caFHH = −0.01136428050 , (14)

c(1)s = −1

2
CF ,

c(2)s =

(
−5

4
ζ(3) +

1

48
π2 +

49

144
− 1

2
π2l2

)
CACF +

(
−11

4
ζ(3)− 37

48
π2 +

5

16
+

1

2
π2l2

)
C2
F

+

(
121

36
− 1

3
π2

)
CFTnh −

5

36
CFTnl + π2

(
− 1

12
CA −

1

3
CF

)
CFLµ ,

csFFF = −11.17444530 +

(
−53

72
+ l2

)
π2Lµ ,

csFFA = −83.13918787 +

(
−443

432
− 1

6
l2

)
π2Lµ +

101

576
π2L2

µ ,

csFAA = −67.24288900 +

(
− 17

108
− 5

12
l2

)
π2Lµ +

1

18
π2L2

µ ,

csFFL = 30.10118322 +
29

108
π2Lµ −

1

9
π2L2

µ ,

csFAL = 21.41321398 +
53

432
π2Lµ −

1

36
π2L2

µ ,

csFHL = −157

81
+

5

27
π2 ,

csFLL =
73

324
− 1

27
π2 ,

csFFH = 1.879249909 ,

csFAH = −0.3740808359 ,

csFHH = 0.007237324266 , (15)

c(1)p = −3

2
CF ,

c(2)p =

(
−3ζ(3) +

17

48
π2 − 17

48
− π2l2

)
CACF +

(
−9

2
ζ(3)− 79

48
π2 +

29

16
+ π2l2

)
C2
F

+

(
43

12
− 1

3
π2

)
CFTnh +

1

12
CFTnl + π2

(
−1

4
CA −

1

2
CF

)
CFLµ ,

cpFFF = −16.65729478 +

(
5

48
+

3

2
l2

)
π2Lµ −

5

32
π2L2

µ ,

cpFFA = −181.0487647 +

(
−145

144
− 3

4
l2

)
π2 +

1

192
π2L2

µ ,
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cpFAA = −104.3591595 +

(
−2

9
− 3

4
l2

)
π2Lµ +

1

6
π2L2

µ ,

cpFFL = 51.93841187 +
11

36
π2Lµ −

1

6
π2L2

µ ,

cpFAL = 39.92104383 +
37

144
π2Lµ −

1

12
π2L2

µ ,

cpFHL = −76

27
+

7

27
π2 ,

cpFLL = − 41

108
− 1

9
π2 ,

cpFFH = 3.081762039− 1

20
π2Lµ ,

cpFAH = −0.8953812450 ,

cpFHH = 0.06984121227 . (16)

For the axial-vector, scalar and pseudo-scalar current the terms proportional to nl and n2l can be found in Ref. [30].
There, the non-logarithmic terms of the coefficients cxFFL and cxFAL only have a precision of two significant digits
whereas we have a precision of at least ten digits. Our analytic results for cxFHL and cxFLL agree with [30].

After specifying the number of colours to three we have for µ2 = m2 and nh = 1

cv ≈ 1− α
(nl)
s

π
· 2.66667 +

(
α
(nl)
s

π

)2

[−44.5510 + 0.407407nl] +

(
α
(nl)
s

π

)3 [
−2090.33 + 120.661nl − 0.822779n2l

]
+ singlet terms ,

ca ≈ 1− α
(nl)
s

π
· 1.33333 +

(
α
(nl)
s

π

)2

[−29.3816 + 0.259259nl] +

(
α
(nl)
s

π

)3 [
−1214.40 + 71.3101nl − 0.377439n2l

]
+ singlet terms ,

cs ≈ 1− α
(nl)
s

π
· 0.666667 +

(
α
(nl)
s

π

)2

[−30.2266− 0.0925926nl] +

(
α
(nl)
s

π

)3 [
−1275.89 + 69.5462nl − 0.0467441n2l

]
+ singlet terms ,

cp ≈ 1− α
(nl)
s

π
· 2 +

(
α
(nl)
s

π

)2

[−52.1381 + 0.0555556nl] +

(
α
(nl)
s

π

)3 [
−2256.42 + 125.924nl − 0.492084n2l

]
+ singlet terms . (17)

For all four currents the quantum corrections are quite sizable. For applications in the top quark sector, i.e. for nl = 5,
the two- and three-loop corrections have the same order of magnitude as the one-loop term. For nl = 3 and nl = 4
the higher order corrections are even larger. Since the matching coefficients on their own are no physical quantities
this is no principle problem. However, it shows the importance of the three-loop corrections to cx, in particular for
cv which has important applications in the bottom [5, 6] and top sector [4].

IV. CONCLUSIONS

In this work we have computed the three-loop corrections to the QCD-NRQCD matching coefficients for external
vector, axial-vector, scalar and pseudo-scalar currents. We consider the corresponding quark form factors and compute
the pure-hard part of each master integral using the method of Ref. [18] supplemented with the information from
expansions by regions [8]. We obtain precise numerical results for the three-loop coefficients. For the vector current
we provide the first independent cross check for cv which has a significant numerical impact to the N3LO predictions
for top-quark-pair production in electron-positron annihilation close to threshold and the leptonic decay width of the
Υ(1S) meson. Our new result is several orders of magnitude more precise. The three-loop results for ca, cs and cp
are new.

Acknowledgements. This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under grant 396021762 — TRR 257 “Particle Physics Phenomenology after the Higgs Discovery”.
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The Feynman diagrams were drawn with the help of Axodraw [31] and JaxoDraw [32].
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