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Massive vector form factors to three loops
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We compute the three-loop non-singlet corrections to the photon-quark form factors taking into
account the full dependence on the virtuality of the photon and the quark mass. We combine the
method of differential equations in an effective way with expansions around regular and singular
points. This allows us to obtain results for the form factors with an accuracy of about eight to
twelve digits in the whole kinematic range.

Introduction. Form factors are fundamental objects
in Quantum Chromodynamics (QCD) with a variety of
applications. On the one hand, they are the simplest
objects which show a non-trivial infrared struture and
thus form factors are often used to develop and test all-
order theorems about the infrared singularities of scat-
tering amplitudes in QCD (see, e.g., Refs. [1–3]). On the
other hand, form factors play a crucial role as building
blocks in a number of observables which range from low
energies to cross sections at the Large Hadron Collider
(LHC) at CERN. They describe the universal structure
of the (Z?, γ?)→ Q̄Q vertex function, involving two on-
shell quarks Q and vector or axial-vector couplings of the
vector bosons. Massive form factors enter several pro-
cesses involving heavy quarks at hadron and e+e− col-
liders, such as t̄t production [4–6] and gauge and Higgs
boson decays [7–9], which clearly require the inclusion of
mass effects. Such processes can probe deviations of the
quark couplings from their values in the Standard Model.
Form factors contribute to the all-virtual corrections to
cross sections.

In Quantum Electrodynamics (QED) lepton masses
are often kept to regulate collinear singularities. There-
fore massive form factors take part also in the differen-
tial cross section of low-energy lepton scatterings as for
instance the elastic e-p scattering [10, 11], one of the
main avenues for proton radius measurements [12, 13],
or the µ-e scattering [11, 14], a process able to determine
the leading hadronic contribution to the muon anomalous
magnetic moment [15–18].

For massless quarks three-loop corrections to the
photon-quark form factor have been computed more than
10 years ago [19] (see also Refs. [20–23]) and only very
recently the complete four loop results became avail-
able [24, 25]. Massive quark form factors are known at
two-loop order from Refs. [26–33]. At three loops only
partial results are available, namely all planar contri-
butions needed for the large-Nc limit (where Nc is the
number of colours in QCD) [30, 34] and the fermionic
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contributions with closed massless quark loops [33]. For
the contribution involving massive closed fermion loops
a deep expansion with at least 2000 terms around the
on-shell photon limit has been computed in Ref. [35].

The available results show an involved analytic struc-
ture containing iterated integrals with the letters x, 1−x,
1+x and x−eiπ/3, where the relation between x and the
photon virtuality s = q2 is given by

q2

m2
= − (1− x)2

x
, (1)

with m the mass of the heavy quark. A numerical eval-
uation of the analytic expressions is possible using, e.g.,
ginac [36, 37]. However, depending on the phase space
point it might be time consuming and/or its numerical
accuracy is limited to a few digits only. Thus, in prac-
tice, one often resolves to the construction of approxima-
tions which enable a fast numerical evaluation. Moreover,
the three-loop results for the colour structures which are
not yet available in analytic form cannot be expressed
in terms of simple iterated integrals. Rather, so-called
elliptic integrals are present as the fundamental build-
ing blocks. Currently there is no ready-to-use approach
for the numerical evaluation of the corresponding mathe-
matical functions and thus especially here numerical ap-
proximations are needed.

In this Letter we present results for the three-loop form
factor with an external vector current. We consider QCD
with one massive and nl massless flavours and compute
the non-singlet contribution, where the external quarks
directly couple to the current, see also the sample Feyn-
man diagrams in Fig. 1. We perform the reduction to
master integrals and establish the differential equations
for the latter. They are used in order to construct expan-
sions around singular and regular points using analytic
results at s = 0 as initial condition. In our calculation
we keep the symbols for the Casimir operators of SU(Nc)
and thus obtain results for each individual colour factor.

There are other methods which are based on difference
or differential equations accompanied by expansions [38–
45]. However, some of them have only been applied to
individual master integrals and they are still lacking the
proof that they can handle non-trivial physical problems
with a few hundred master integrals. In this paper we
apply the method of Ref. [46] to a non-trivial physical
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(a) (b) (c)

FIG. 1. Sample Feynman diagrams for the vector form factors
at three loops. Solid and curly lines denote quarks and gluons,
respectively. The external photon is represented by a wavy
line.

quantity and show that numerically precise results can
be obtained in the whole parameter space.

Calculation. We consider the photon-quark vertex
and define the Dirac and Pauli form factors as

Γµ(q1, q2) = F1(q2)γµ −
i

2m
F2(q2)σµνq

ν , (2)

with incoming momentum q1, outgoing momentum q2
and q = q1 − q2. The external quarks are on-shell and
we have σµν = i[γµ, γν ]/2. The colour factor is a simple
Kronecker delta in the fundamental colour indices of the
external quarks and it is suppressed for convenience. F1

and F2 can easily be obtained by applying appropriate
projectors.

Sample Feynman diagrams are shown in Fig. 1. We
generate the amplitudes with qgraf [47] and use q2e
and exp [48–50] to rewrite the output to FORM [51] no-
tation and map each diagram to a predefined integral
family. In this way we can express F1 and F2 as a lin-
ear combination of scalar functions with twelve indices
where nine correspond to the exponents of propagators
and the remaining three to the exponents of irreducible
numerators.

For each integral family we use Kira [52, 53] with
Fermat [54] to reduce the scalar functions to master in-
tegrals. In this step we take care to choose a good basis
such that for each entry in our integral tables the depen-
dence on the space-time dimension d = 4 − 2ε and the
kinematic variables s and m2 factorizes in the denomina-
tors. This is done with the help of an improved version
of the program developed in Ref. [55]. Kira is also used
to minimize the number of master integrals over all fam-
ilies. This allows us to express F1 and F2 in terms of 422
master integrals.

In a next step we establish differential equations for
the master integrals using LiteRed [56, 57] and Kira and
use the results for s → 0 as initial conditions. In fact,
the construction of the solution can be organized such
that the naive limit s = 0 of a subset of the 422 master
integrals is sufficient to fix all unknown constants.

In the limit s = 0 the vertex integrals reduce to
two-point on-shell integrals, which have been studied in
Refs. [58, 59]. We use the results for the corresponding
master integrals from Ref. [20] which are available up to
weight 7. Due to spurious poles in ε some of the on-shell
master integrals are needed to higher weight which can
be constructed with the help of Ref. [60] and PSLQ [61]
(see also Ref. [35]). For the current calculation a subset
of integrals was needed up to weight 9.

After fixing the initial conditions we can use the dif-
ferential equations to obtain for each master integral an
expansion in s/m2 up to (s/m2)75. For all other expan-
sions described below we have computed 50 expansion
terms. In this context the use of finite fields with a spe-
cial version of Kira and FireFly [62, 63] was essential
for our calculation. Starting from s = 0 we move both
to negative and positive values of s. To do so we choose
values s0/m

2 = 1 and s0/m
2 = −4 and construct generic

expansions with the help of the differential equations.
They are matched to the s = 0 expansion by evaluating
the latter numerically at s/m2 = 1/2 and s/m2 = −2,
respectively. This provides initial conditions for the s0
expansions. In total we construct expansions around the
following 30 values1

s0
m2
∈{−∞,−32,−28,−24,−16,−12,−8,−4, 0, 1, 2, 5/2,

3, 7/2, 4, 9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40}
(3)

and perform the matching step-by-step starting from s =
0. In this way we can cover the whole s/m2 plane. For
more details on the “expansion and matching” method
we refer to Ref. [46].

At first sight it seems that the variable x introduced in
Eq. (1) is the proper variable to perform the expansions,
since the characteristic points s/m2 = 0, 4,∞ correspond
to x = 1,−1, 0. However, in practice it is more advanta-
geous to work in s/m2. This is also connected to the new
threshold at s/m2 = 16 which appears for the first time

at three loops. It is mapped to x = 4
√

3 − 7 ≈ −0.072
which limits the radius of convergence of the variable x.

Let us in the following comment on the choice of
s0 in Eq. (3). Some values correspond to a particu-
lar kinematic situation: s/m2 = 4 and 16 correspond
to the two- and four-particle thresholds and m2/s = 0
to the high energy limit. Furthermore, as mentioned
above, we compute the initial conditions for s = 0.
To guarantee sufficient accuracy over the whole s/m2

range we have introduced further expansions for pos-
itive and negative values of s. In the differential
equations we observe further singularities for s/m2 ∈
{−4,−2,−1,−1/2, 1/2, 1, 2, 3, 16/3}. However, they are
spurious since the form factors are regular for these values

1 Note that only one expansion for large absolute values of s is
necessary to cover the limits s→ ±∞.
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of s. Nevertheless, for some of them we have constructed
an expansion of the master integrals.

For all expansions the convergence around a given
value s0 is only guaranteed up to the next singular point
in the complex s plane. For example for s0/m

2 = 22 we
have convergence for 16 < s/m2 < 28 and for s0/m

2 =
−4 for −12 < s/m2 < 4. Note that s/m2 = 4, 16
and ∞ are singular points of the differential equation
which require a power-log expansion. Furthermore, for
s/m2 = 4 and 16 we have an expansion in

√
4− s/m2

and
√

16− s/m2, respectively. For all other points sim-
ple Taylor expansions are sufficient.

Often the convergence of a series expansion can be en-
hanced by switching to a different expansion parameter.
One powerful method is based on Möbius transforma-
tions as has already been discussed in Ref. [42]. Assume,
we want to expand around the point xk and there are
singular points of the differential equations at xk−1 and
xk+1 with xk−1 < xk < xk+1. Naively the radius of con-
vergence is limited by the distance to the closer singular
point. However, the variable transformation

yk =
(x− xk)(xk+1 − xk−1)

(x− xk+1)(xk−1 − xk) + (x− xk−1)(xk+1 − xk)
(4)

maps the points xk−1, xk, xk+1 to −1, 0, 1. The reach
of the series expansion is therefore extended in the di-
rection of the farthest singularity although the conver-
gence at the boundaries can be quite slow. We find this
mapping indispensable when constructing regular series
expansions close to singular points.

The form factors F1 and F2 develop both ultraviolet
and infrared divergences. The former are taken care of
by counterterms for the wave functions and mass of the
heavy quarks, which we renormalize on-shell. Further-
more, the strong coupling constant is renormalized in the
MS scheme. The remaining infrared poles are described
by a universal function independent of the external cur-
rent, the cusp anomalous dimension Γcusp, which has
been computed to three-loop accuracy in Refs. [64, 65].
It is used to construct a Z factor (see, e.g., Ref. [66]) such
that the combination

F1,2 = ZF f1,2 (5)

leads to the ultraviolet and infrared finite form factors
F f1,2. We introduce their perturbative expansion as

F f1,2 =
∑
n≥0

F
f,(n)
1,2

(αs
π

)n
, (6)

where F
f,(0)
1 = 1 and F

f,(0)
2 = 0. Since Z is expressed

in terms of the strong coupling in the effective nl-flavour

theory we have αs ≡ α
(nl)
s (µ) in Eq. (6). In the next

Section we discuss results for F
f,(3)
1 and F

f,(3)
2 .

Results. The results from our calculation are expan-
sions around the values s0 in Eq. (3). Thus, we can define
the form factors F1 and F2 piecewise by these expansions.
We choose for the renormalization scale µ2 = m2.

In the following we concentrate on F1 and present re-
sults for the renormalized and infrared-subtracted form
factor. In Fig. 2 we illustrate the results for the three non-
fermionic colour structures C3

F , C2
FCA, CFC

2
A, where CF

and CA are the Casimir operators of the fundamental and
the adjoint representation, respectively, and present re-
sults for s < 0 and s > 4m2. For s = 0 we have F1 = 0
as can be seen in plot (a). In plot (b) one observes the
influence of the Coulomb singularity even for s/m2 ≈ 10.
The four-particle threshold is much less pronounced. In
the high-energy region, both for s > 0 and s < 0 the
form factor contains logarithms up to sixth order.

We estimate the accuracy of our result from the numer-
ical pole cancellations of the renormalized and infrared
subtracted form factor. For s > 4m2 the quadratic and
linear 1/ε poles cancel with a relative precision of 10−12

and 10−10, respectively. Assuming a similar progression
we estimate that for the finite term we have at least eight
significant digits for the coefficients of each colour factor.
In the regions 0 < s < 4m2 and s < 0 the accuracy is sig-
nificantly higher and in general exeeds twelve significant
digits. Also for the fermionic colour structures a notably
higher accuracy is reached.

In a next step we consider the special kinematic points
s = 0, 4m2, 16m2 and ±∞ and present (numerical) ex-
pansions using the genuine results of our approximation
methods. In this Letter we restrict ourselves to the non-
fermionic colour factors. In the supplemenatry material
we present results for the contributions which contain a
closed heavy quark loop. The remaining fermionic con-
tributions are available in the literature [33, 66].

In the static limit we construct an analytic expansion
up to s67 from the boundary values at s = 0. The first
two expansion terms are given by
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FIG. 2. The colour structures C3
F , C2

FCA, CFC
2
A of F f

1 as a
function of s. We show results for s < 0 (a) and s > 4m2 (b).
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F
f,(3)
1

∣∣∣
s→0

=

{
CAC

2
F

[
19a4

2
− π2ζ3

9
+

17725ζ3
3456

− 55ζ5
32

+
19l42
48
− 97

720
π2l22 +

29π2l2
240

− 347π4

17280
− 4829π2

10368
+

707

288

]

+ C2
ACF

[
− a4 +

7π2ζ3
96

+
4045ζ3
5184

− 5ζ5
64
− l42

24
+

67

360
π2l22 −

5131π2l2
2880

+
67π4

8640
+

172285π2

186624
− 7876

2187

]

+ C3
F

[
− 15a4 −

17π2ζ3
24

− 18367ζ3
1728

+
25ζ5

8
− 5l42

8
− 19

40
π2l22 +

4957π2l2
720

+
3037π4

25920
− 24463π2

7776
+

13135

20736

]}
s

m2

+O
(
s2

m4

)
+ fermionic contributions , (7)

where l2 = log(2), a4 = Li4(1/2) and ζn is Riemann’s
zeta function evaluated at n.

The first two terms for the high-energy expansion of
the non-fermionic colour structures read

F
f,(3)
1

∣∣∣
s→−∞

= 4.7318C3
F − 20.762C2

FCA + 8.3501CFC
2
A +

[
3.4586C3

F − 4.0082C2
FCA − 6.3561CFC

2
A

]
ls

+
[
1.4025C3

F + 0.51078C2
FCA − 2.2488CFC

2
A

]
l2s +

[
0.062184C3

F + 0.90267C2
FCA − 0.42778CFC

2
A

]
l3s

+
[
− 0.075860C3

F + 0.20814C2
FCA − 0.035011CFC

2
A

]
l4s +

[
−0.023438C3

F + 0.019097C2
FCA

]
l5s

+
[
−0.0026042C3

F

]
l6s +

{
− 92.918C3

F + 123.65C2
FCA − 47.821CFC

2
A +

[
− 10.381C3

F + 2.3223C2
FCA

+ 17.305CFC
2
A

]
ls +

[
4.9856C3

F − 19.097C2
FCA + 8.0183CFC

2
A

]
l2s +

[
3.0499C3

F−6.8519C2
FCA + 1.9149CFC

2
A

]
l3s

+
[
0.67172C3

F − 0.91213C2
FCA + 0.24069CFC

2
A

]
l4s +

[
0.13229C3

F − 0.051389C2
FCA + 0.0043403CFC

2
A

]
l5s

+
[
0.0041667C3

F − 0.0010417C2
FCA − 0.00052083CFC

2
A

]
l6s

}m2

s
+O

(
m4

s2

)
+ fermionic contributions , (8)

with ls = log(m2/(−s − iδ)). The leading logarith-
mic contributions of the order αns log2n(m2/s) are given
by the Sudakov exponent [67, 68] exp[−CFαs/(4π) ×
log2(m2/s)] which is reproduced by our expansions. In
fact, in our calculation we can even reconstruct the ana-
lytic results of the coefficients which are given by

F
f,(3)
1 =−C

3
F

384
l6s +

m2

s

(
C3
F

240
− C2

FCA
960

− CFC
2
A

1920

)
l6s+ . . .

(9)

In Eq. (8) they are shown in numeric form. Note that
also the leading logarithms of the mass corrections m2/s
perfectly agree with Ref. [69] where the results in Eq. (9)
have been obtained using an involved asymptotic expan-
sion of the three-loop vertex diagrams. Our approach
provides the whole tower of logarithms and also higher
order m2/s contributions. We estimate the accuracy of
the non-logarithmic term in Eq. (8) to ten digits. For the
subleading terms the accuracy decreases. Note, however,
that we use the s → ∞ expansion only for |s/m2| >∼ 45

and that 1/453 ≈ O(10−5).
Let us next discuss the thresholds at s = 4m2 and s =

16m2. Close to the two-particle threshold F1 develops
the famous Coulomb singularity with negative powers in
the velocity of the produced quarks, β =

√
1− 4m2/s,

up to third order multiplied by log(β) terms. Close to
threshold it is interesting to consider the combination of
F1 and F2

3

2
∆ = |F1 + F2|2 +

|(1− β2)F1 + F2|2

2(1− β2)
, (10)

which is closely related to the cross section of heavy
quark production in electron positron annihilation via
σ(e+e− → QQ̄) = σ0β3∆/2 with σ0 = 4πα2Q2

Q/(3s),
where α is the fine structure constant and QQ is the
fractional charge of the massive quark Q. For β → 0 real
radiation is suppressed by two powers of β which allows
us to provide the first two terms in the expansion for each
colour factor. Our result for the third order correction
∆(3) reads

∆(3) = C3
F

[
−32.470

β2
+

1

β

(
14.998− 32.470l2β

)]
+ C2

ACF
1

β

[
16.586l22β − 22.572l2β + 42.936

]
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+ CAC
2
F

[ 1

β2

(
−29.764l2β − 7.770339

)
+

1

β

(
−12.516l2β − 11.435

)]
+O(β0) + fermionic contributions , (11)

with l2β = log(2β). Our numerical results reproduce the
analytic expressions from Ref. [70] (see also Refs. [71, 72])
with at least 13 digits accuracy.

Four-particle thresholds are present in diagrams which
contain a closed heavy quark loop but also in purely glu-
onic diagrams like the one in Fig. 1(b). Interestingly it
has a smooth behaviour. In fact, we observe the first non-
analytic terms at order (β4)9 with β4 =

√
1− 16m2/s.

Note that the massive four-particle phase-space, which
is one of our master integrals, already provides a factor
(β4)7. Furthermore, our expansions of F1 and F2 up to
(β4)50 do not contain any log β4 terms although many of
the master integrals contain such terms.

Finally, we want to mention that we have performed
the calculation for general QCD gauge parameter ξ and
have checked that ξ cancels in the renormalized form
factors. Note that both the bare three-loop expressions
and the quark mass counterterm contributions depend
on ξ. Furthermore, we can specify our result to the
large-Nc limit and compare against the exact results from
Ref. [30]. In this limit only about 90 planar master inte-
grals contribute and we observe a significantly increased
precision of our result. In fact, in the whole s/m2 region
we can reproduce the exact result with at least 14 digits.

Conclusions. In this Letter we present for the
first time results for the non-singlet three-loop massive
photon-quark form factors taking into account all colour
structures. We use the methods based on “expansion
and matching” as introduced in Ref. [46] and obtain nu-
merical approximations in the whole s/m2 range. Based
on the comparison to the partially known exact results
and on internal cross checks of the method we estimate
the accuracy to at least eight significant digits above the
s = 4m2 threshold and to about twelve digits below.
Note that, if required, a systematic improvement is pos-
sible by adding more intermediate matching points. The
application to a physical quantity with a non-trivial an-
alytic structure shows the effectiveness of our method.
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SUPPLEMENTARY MATERIAL

To complete the presentation of the main part of the Letter we provide in the following results for F1 involving a
closed heavy quark for s→ 0, s→ −∞ and s→ 4m2. For such contributions one often introduces the tag nh, which
means that we present result for the colour factors C2

FTFnh, CFCATFnh, CFT
2
Fn

2
h and CFT

2
Fnhnl.

For s→ 0 we have

F
f,(3),nh

1

∣∣∣
s→0

=

{
CACFTFnh

(
17a4

6
− π2ζ3

18
+

1775ζ3
864

+
5ζ5
12

+
17l42
144
− 17

144
π2l22 −

149π2l2
108

+
803π4

51840

+
4813π2

5184
− 23089

5184

)
+ C2

FTFnh

(
− 32a4

9
+

1441ζ3
1728

− 4l42
27

+
4

27
π2l22 −

2π2l2
9
− 13π4

1620
+

1057π2

2430
− 2273

1296

)

+ CFT
2
Fnhnl

(
7ζ3
48
− 1

24
π2l2 −

71π2

1296
+

1261

1944

)
+ CFT

2
Fn

2
h

(
− 28ζ3

27
+

4π2

135
+

11257

11664

)}
s

m2
+O

(
s2

m4

)
. (12)

In the high-energy limit the nh contributions are given by

F
f,(3),nh

1

∣∣∣
s→−∞

= −1.54208CFT
2
Fn

2
h − 4.1144CFT

2
Fnhnl − 3.2872C2

FTFnh + 10.425CFCATFnh

+
[
− 1.2844CFT

2
Fn

2
h − 2.8537CFT

2
Fnhnl − 2.8785C2

FTFnh + 7.6917CFCATFnh

]
ls

+
[
− 0.40466CFT

2
Fn

2
h − 0.80931CFT

2
Fnhnl − 1.8900C2

FTFnh + 2.2962CFCATFnh

]
l2s

+
[
− 0.058642CFT

2
Fn

2
h − 0.11728CFT

2
Fnhnl − 0.55727C2

FTFnh + 0.33008CFCATFnh

]
l3s

+
[
− 0.0046296CFT

2
Fn

2
h − 0.0092593CFT

2
Fnhnl − 0.086806C2

FTFnh + 0.025463CFCATFnh

]
l4s

+
[
− 0.0069444C2

FTFnh

]
l5s +

{
11.898CFT

2
Fn

2
h + 18.981CFT

2
Fnhnl − 5.2612C2

FTFnh +−52.115CFCATFnh

+
[
7.2323CFT

2
Fn

2
h + 8.7158CFT

2
Fnhnl + 3.3633C2

FTFnh +−25.912CFCATFnh

]
ls

+
[
1.8056CFT

2
Fn

2
h + 2.5000CFT

2
Fnhnl + 8.4570C2

FTFnh − 7.8739CFCATFnh

]
l2s +

[
0.27778CFT

2
Fn

2
h

+ 0.33333CFT
2
Fnhnl + 2.3758C2

FTFnh − 1.4464CFCATFnh

]
l3s +

[
0.48843C2

FTFnh

− 0.067130CFCATFnh

]
l4s +

[
0.0069444C2

FTFnh − 0.0034722CFCATFnh

]
l5s

}m2

s
+O

(
m4

s2

)
. (13)

For β → 0 the results read

∆(3),nh = C2
FTFnh

[2.4792

β
− 1.3159l2β − 2.0339

]
− CACFTFnh

[
0.082247β + 0.20495

]
+ 0.10248CFT

2
Fn

2
h

+ CFT
2
Fnhnl

[
0.87730β − 0.54050

]
+ . . . , (14)

where the ellipses denote higher order terms in β.
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