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We report on a recent computation of the non-factorisable contribution
to the two-loop helicity amplitude for t-channel single-top production [1].
This is the last missing piece of the two-loop virtual corrections to this
process. We perform analytic integration-by-parts reduction to master
integrals and use the auxiliary mass flow method for their fast numerical
evaluation. The impact of the non-factorisable corrections to single-top
production on experimentally measured observables is estimated.
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1 Introduction

In these proceedings we give a brief summary of the calculation of the non-factorisable
contribution to the two-loop helicity amplitude for t-channel single-top production
presented recently in Ref. [1].

The heaviest particle in the Standard Model, the top quark, is frequently produced
in hadron collisions at the LHC. As its mass is entirely due to the Higgs field, studying
top production can provide useful information about electroweak symmetry breaking
within and beyond the Standard Model.

At the LHC, top and anti-top quarks are primarily produced in pairs through the
strong interaction. Alternatively, single (anti-)top quarks can be produced through
charged electroweak interactions. The cross section of single-top production is ap-
proximately a quarter of the tt-pair cross section. This means that due to the high
luminosity of the LHC, tens of millions of top quarks have been produced through
this electroweak mechanism.

Single-top production offers many research opportunities, including the structure
of the tbW vertex [2, 3], CKM matrix elements [3, 4] and indirect determination of
the top quark width [5]. Furthermore, top mass measurements from single-top events
are becoming increasingly important [6].
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(a) Tree-level. (b) Factorisable. (c) Non-factorisable.

Figure 1: Representative Feynman diagrams for t-channel single-top production at
tree- and one-loop level. The pink, wavy line represents a W boson.

Single-top production proceeds primarily through the t-channel exchange of a W
boson [7]. The only contributing diagram to this channel at leading order (LO) is
given in Figure 1a. At loop level we distinguish between factorisable, Figure 1b,
and non-factorisable, Figure 1c, contributions. The non-factorisable contributions
are characterised by gluon exchanges between the quark lines. These contributions
are absent in the next-to-leading (NLO) cross section due to colour conservation. At
next-to-next-to-leading order (NNLO) non-factorisable two-loop diagrams are colour
suppressed and have, for this very reason, been neglected in previous studies [8, 9, 10].
However, as was recently shown in the context of VBF Higgs production [11], these
contributions can be enhanced due to the so-called Glauber phase, largely compen-
sating the colour suppression.
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(a) Abelian vertices only.
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(b) Non-abelian three-gluon vertex.

Figure 2: Examples of non-factorisable, two-loop diagrams for single-top production
in the t-channel. Non-factorisable diagrams with non-abelian vertices do not con-
tribute to the NNLO cross section due to colour conservation.

2 Non-factorisable contributions to two-loop he-

licity amplitudes

We study single-top production in the t-channel with the following assignment of
flavours and momenta,

u(p1) + b(p2)→ d(p3) + t(p4). (1)

All external particles are considered to be on mass-shell such that p24 = m2
t while

p2i = 0 for i = 1, 2, 3. We consider the CKM matrix to be diagonal. Mandelstam
variables are defined in a standard way,

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p2 − p3)2, (2)

with s + t + u = m2
t . We expand the amplitude in the renormalised strong coupling

constant αs = αs(µ) as follows

A({pi}) = g2wVudVtb

(
A(0) +

αs

4π
A(1)

nf +
(αs

4π

)2
A(2)

nf + ...+O
(
α3
s

))
. (3)

We have extracted the weak coupling constants as well as two CKM matrix elements.
We write only the non-factorisable amplitude up to two-loop order explicitly. Fac-
torisable contributions are represented by ellipses. At NNLO the cross section receives
contributions from the interference between the two-loop scattering amplitude, A(2)

nf ,

and the tree level diagram, A(0), as well as from the one-loop amplitude, A(1)
nf , squared.

Four box diagrams contribute toA(1)
nf . Figure 2 shows examples of non-factorisable,

two-loop diagrams. All diagrams with non-abelian vertices, such as the one in Fig-
ure 2b, or only a single gluon exchange between the quark lines vanish due to colour
conservation upon interference with the LO amplitude. Thanks to this colour con-
servation, only 18 double-box diagrams (planar and non-planar) contribute to A(2)

nf .
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We proceed by projecting the diagrams onto Lorentz invariant tensor structures.
At two loops we need 11 structures∗. The form factors are written as linear combi-
nations of Feynman integrals with coefficients of rational functions in the kinematic
invariants and masses. We perform analytic integration-by-parts reduction† using
Kira and Firefly [13]. This reduction allows us to express the two-loop amplitude in
terms of 18 integral families with a total of 428 master integrals.

3 Integral evaluation

At this stage we are left with the challenge of evaluating the master integrals. Due to
their dependence on Mandelstam variables and masses we deem an analytic computa-
tion currently unfeasible. Instead we use the auxiliary mass flow method [14, 15, 16]
for fast numerical evaluation. We construct a system of differential equations for the
master integrals with respect to the squared W boson mass, m2

W . Using boundary
conditions at m2

W → −i∞ we can solve the system at the physical W boson mass.
This approach is very similar to the one employed in earlier work [17, 18]. However,

the present situation is complicated by the fact that not all boundary integrals are
known analytically or are not known to sufficiently high order in the dimensional
regulator, ε. We calculate these boundary integrals numerically by continuation of
internal m2

t to the complex plane and taking the limit m2
t → −i∞ for the internal

top quark propagators only.
The master integrals for a specific phase space point can now be evaluated by first

solving the system of differential equations in (internal) m2
t and then using this result

as boundary condition to solve the system of differential equations in m2
W .

Using this approach we are able to evaluate the 428 master integrals to a precision
of 20 digits for the bulk of phase space. Evaluation of a single point for all master
integrals takes approximately 30 minutes on a single core.

4 Pole structure of the non-factorisable contribu-

tions to the scattering amplitude

Since we only consider non-factorisable contributions, we find that their divergences
are remarkably simple. In fact, there are no divergences of ultraviolet origin and
renormalisation amounts to relating the bare and renormalised MS couplings at lead-
ing order. The amplitude does, however, contain poles of infrared origin.

∗Our tensor structures differ slightly from the ones used in Ref. [12] and are given explicitly in
Ref. [1].

†The very first reduction of the non-factorisable contributions to single-top production to master
integrals was performed using the approximation m2

t = 14m2
W /3 in Ref. [12].
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The infrared pole structure for amplitudes at the two-loop level is well understood.
We follow [19, 20, 21] to predict and subtract infra-red poles in order to obtain a finite
remainder, F . This is achieved through the application of a colour-space operator

A = ZF . (4)

The general expression for the infra-red poles reduces to a remarkably compact expres-
sion when the contributions to the non-factorisable part of the amplitude are singled
out and interfered with the LO amplitude. In particular, there are no contributions
from collinear divergences and the expansion starts at ε−2 instead of ε−4.

The pole structure prediction provides an important cross-check of our calculation.
Indeed, for the two-loop amplitude we find that the ε-poles agree to more than 10
digits for the bulk of phase space, see Table 1 for an example.

ε−2 ε−1

A(0) ?A(2)
nf −229.0940408654660− 8.978163333241640i −301.1802988944764− 264.1773596529505i

IR poles −229.0940408654665− 8.978163333241973i −301.1802988944791− 264.1773596529535i

Table 1: Comparison of colour-summed interference between the tree-level and non-
factorisable, two-loop amplitudes with the infrared pole prediction. The chosen phase
space point is given by s ≈ 104337 GeV2 and t ≈ −5179.68 GeV2. We find agreement
to 13 - 15 digits.

5 Results

We estimate the impact of the non-factorisable, two-loop contribution on single-top
production by computing the double virtual cross section. It is important to em-
phasise that this is not a physical cross section as we did not include the correction
from real emissions. However, since we have used a numerical method to evaluate
the master integrals, it is important to demonstrate that our results can be used in
phenomenological studies.

For the evaluation of the non-factorisable contribution to the cross section we
first construct a reliable grid for the evaluation of the LO cross section and simple
kinematic distributions. We randomly draw points from this grid in order to obtain
an estimate for the cross section, and find

σub
pp→dt =

(
90.3 + 0.3

(
αs(µnf)

0.108

)2
)

pb. (5)
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(a) The top-quark rapidity
distribution.
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(b) The top-quark rapidity
distribution.
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(c) Partonic invariant energy√
ŝ distribution.

Figure 3: Distributions of the top-quark transverse momentum distribution (left), ab-
solute value of the top-quark rapidity (middle), and the partonic centre of mass energy√
ŝ (right). Upper panes show leading order distributions as well as distributions with

non-factorisable corrections included. Lower panes show the non-factorisable correc-
tions relative to LO distributions. See text for further details.

The first term is the LO cross section, while the second is the non-factorisable NNLO
contribution. We have used the renormalisation scale µ = mt, but indicate that the
scale for the non-factorisable contribution, µnf , can be varied independently since
this contribution first appears at NNLO. With our scale choice the correction is
around 0.3% and is hence smaller albeit comparable to the factorisable contribution.
A different scale choice can enhance the importance of this contribution (e.g. the
transverse momentum of the top quark).

We finish by presenting a few kinematic distributions. In Figure 3a the transverse
momentum of the top quark pt,top is plotted and compared to LO. The correction is
small but, interestingly, the factorisable correction has a stronger dependence on the
transverse momentum [8, 9, 10, 22] than the non-factorisable. Hence, the relative
importance of these contributions varies across phase space.

In Figure 3b, we compare the impact of the non-factorisable contribution to the
LO cross section for the rapidity of the top quark, ytop. We show the distribution of

the partonic centre-of-mass energy,
√
ŝ, in Figure 3c. Also in these distributions the

corrections are small, but, as mentioned above, inclusion of real emission contributions
is necessary for a complete analysis.
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