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Abstract. We report on the new functionality of the open-source Mathematica package
FeynCalc relevant for multiloop calculations. In particular, we focus on such tasks as topology
identification by means of the Pak algorithm, search for equivalent master integrals and their
graph representations as well as automatic derivations of Feynman parametric representations
for a wide class of multiloop integrals. The functions described in this report are expected to
be finalized with the official release of FeynCalc 10. The current development snapshot of
the package including the documentation is publicly available on the project homepage. User
feedback is highly encouraged.

1. Introduction

There is a widespread consensus among particle theorists that in order to match the expected
experimental precision at the High Luminosity Large Hadron Collider (HL-LHC) we need new
ideas and algorithms for our analytical and numerical calculations. This is especially true for
the field of multiloop computations (cf. e.g. [1] for an overview of recent developments), where
analytic evaluations of hundreds, thousands and sometimes even millions of Feynman diagrams
often require the practitioners to expand the borders of what is feasible using computer algebraic
methods. Despite such remarkable advances that corroborate the healthy state of the field, one
should not forget that breakthrough calculations with many loops or legs are far from being
commonplace. In fact, the number of groups worldwide that possess the expertise, computational
resources and software tools to work at the forefront of the precision frontier is rather low.
Especially the role of computer programs in this context should not be underestimated. The
truth is that such codes are of utmost importance to the task of calculating multiloop amplitudes
in a straightforward and efficient fashion. Unfortunately, for various reasons many of such
powerful codes are not publicly available, which severely impedes the adoption of new and
efficient computational techniques among particle phenomenologists. After all, the number of
theorists that have time, motivation, diligence and programming skills to implement relevant
algorithms single-handedly for the project at hand, is not that high. Most people, therefore,
tend to rely on tools that are (i) freely available, (ii) well documented, (iii) easy to use and (iv)
are actively supported by their developer teams.

One of such programs is the open-source Mathematica package FeynCalc [2, 3, 4] that
has been available to the community since more than three decades. FeynCalc is known
as a tool that can be employed in highly nonstandard scenarios that require full control over
each calculational step. For example, a rather unique feature of the package that has been
added very recently, comprises the ability to automatize manifestly noncovariant calculations [5].

http://arxiv.org/abs/2112.14132v1


Although one might argue that nonrelativistic quantum field theories is a very small niche, this
functionality has been warmly embraced by the effective field theory (EFT) community and
helped to obtain interesting new research results [6, 7, 8, 9, 10, 11, 12, 13, 14]

However, the common perception of FeynCalc is that it is useful only for tree-level and one-
loop calculations, while everything at two loops and beyond should be handled using other tools.
In this conference note we intend to challenge this viewpoint by reporting on selected capabilities
of the upcoming FeynCalc 10 [15]. More explicitly, we will discuss the usage of FeynCalc
for the tasks of topology identification and manipulations of master integrals obtained after
a successful Integration-By-Parts (IBP) [16, 17] reduction. These two steps necessarily arise
in almost any multiloop calculation and can be usually handled using Mathematica codes
without hitting performance bottlenecks. Furthermore, they have been inspired by the author’s
multiloop-related research work [18, 19, 20, 21] and thus at least partially bench-tested on real-
life problems.

2. Topology identification

Topology identification is commonly understood as the procedure of assigning all loop integrals
occurring in the given calculation to a set of integral families. An integral family or topology
consists of a list of linearly independent propagators that form a basis. While the problem at
hand may easily contain tens of thousands of integrals, the number of topologies they belong
to is usually much smaller ranging from dozens to several hundreds.1 Topology identification is
also a necessary step for running IBP reduction using tools2 such as FIRE [24], KIRA [25, 26]
or LiteRed [27, 28].

The process of mapping integrals to topologies can be done on the level of graphs or analytic
amplitudes. In the former case each of the given Feynman diagrams or amplitudes is converted
to a graph, which transforms the initial problem to the task of finding subgraph isomorphisms.
In the latter case one works directly with symbolic propagators and tries to identify sets that
are equivalent upon applying suitable loop momentum shifts. Pure graph-based approach is
realized in the C++ programs q2e/exp [29, 30], while Mathematica package TopoID [31]
implements the analytic mapping procedure. Other codes such as Reduze (C++) [22, 23],
feynson (C++) [32], tapir (Python) [33] or pySecDec [34, 35, 36] combine multiple methods
in creative ways.

In this report we would like to focus on the task of finding a set of unique integral topologies
for the given amplitude. This amplitude can equally represent a single Feynman diagram or a
sum thereof. The first step is always to look at all the occurring sets of loop integral denominators
and try to detect which of them can be mapped into each other. At this stage we do not need
to look at the numerators. This is because for a set of propagators forming a basis, each scalar
product involving loop momenta can be always expressed as a linear combination of inverse
propagators.

Naively, one might try to search for equivalences between different topologies by applying
all possible loop momentum shifts in the hope that a right combination of shifts will produce
a match. While this procedure works in principle, the combinatorial growth of complexity
effectively prohibits its application to most realistic multiloop problems. A much more efficient
algorithm for this special problem was devised by Alexey Pak in [37]. A very detailed and
pedagogical summary of Pak’s ideas can be found in the doctoral thesis of Jens Hoff [38], which
was enormously useful for the presented implementation.

The main idea behind the Pak algorithm is to compare topologies represented in form of the
so-called graph or Symanzik polynomials U and F (cf. [39] for an extensive review). These two

1 Of course, the exact number highly depends on the considered process and the number of relevant scales.
2 Reduze [22, 23] is somewhat special in this respect, as it has built-in topology identification routines.



quantities naturally arise when converting a loop integral into a Feynman parametric integral
using the well-known formula (cf. e.g. [40])
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where Pi denote quadratic or eikonal propagators and Nm =
∑N

i=1
mi. Notice that this formula

is valid only for positive propagator powers i.e. mi ≥ 0. Nevertheless, it can be easily extended
to negative powers and even tensor structures in the numerators (cf. e.g. doctoral thesis of
Stefan Jahn [41] for a nice summary). From here one can start comparing topologies by looking
at their characteristic polynomials defined as P ≡ U × F . The usage of these polynomials
removes ambiguities arising from momentum shifts that often make equivalent topologies seem
very different. However, the given characteristic polynomial still cannot be regarded as a unique
representation of the corresponding loop integral. This is because P is not invariant under
arbitrary renamings of Feynman parameters (e.g. x1 → x3, x2 → x1 etc.). Each such renaming
yields a new polynomial that differs from the old one, even though both of them describe the
same integral. Pak algorithm removes this ambiguity by introducing the notion of canonical
oreding for the given P. This means that by comparing two canonical polynomials P1 and P2

one can unambiguously answer the question whether the corresponding topologies T1 and T2 are
identical or not.

Let us now come to the implementation of this technology in FeynCalc. In order to avoid
cluttering the text we will abstain from including code examples in the body of this report.
Those examples can be found in the ancillary file accompanying this work.

First of all, FeynCalc 10 introduces two new symbols representing single loop integrals
and loop integral topologies. These are GLI and FCTopology. For example, GLI[topo,

{1,0,1,1,2}] is a placeholder for some generic loop integral that belongs to the integral
family topo containing 5 propagators. Our integral contains only 4 lines, with one of the
propagators being raised to a quadratic power. FCTopology, on the contrary, features a
richer structure that consists of 6 arguments as in FCTopology[topo, {propagators}, {loop
momenta}, {external momenta}, {kinematics}, {}]. The first 5 arguments should be self-
explanatory, while the last argument (an empty list) is reserved for additional information such
as cuts or symmetries but is currently ignored by the existing functions. The majority of new
multiloop-related routines expect their first two arguments to be a list of GLIs and a list of
the corresponding FCTopology objects. In many cases it is also possible to input loop integrals
in the traditional (S)FAD-notation that uses explicit D-dimensional scalar products (SPDs) and
propagators (FADs or SFADs3). Furthermore, it is always possible to convert an integral in the
GLI-notation to the SFAD-notation using FCLoopFromGLI.

We now want to proceed to the characteristic polynomials and the Pak algorithm.
Traditionally, many FeynCalc routines that perform complicated manipulations on symbolic
expressions (e.g. TID or DiracSimplify) are actually built on top of numerous auxiliary functions
that are equally accessible to the user. This modular approach is one of the reasons why
FeynCalc easily integrates into different workflows. Instead of being a black box that forces
the user to follow specific paths and patterns, FeynCalc is designed to adapt itself to the user’s
needs. The multiloop extension of the package strictly follows this philosophy.

3 The main difference between FADs and SFADs is that the former can encode only quadratic propagators, while
the latter allow for both quadratic and eikonal propagators cf. Sec. 4.3 in [5].



One of the most fundamental routines related to the handling of multiloop integrals is
FCFeynmanPrepare. The main task of this function is to compute the U and F polynomials of
the given integral using the algorithm from the famous UF.m program [40] that is currently part
of FIESTA [42]. In addition to that, FCFeynmanPrepare also returns other important building
blocks such as the matrix M with U = detM as well as J and Qµ from F = detM(QM−1Q−J).
These quantities are not really needed for the topology identification but can be very useful for
other purposes e.g. when constructing Feynman parametric representations.

The characteristic polynomial P can be obtained from FCLoopToPakForm, where we would like
to stress that the polynomial returned by this function is already canonically ordered. Of course,
it is also possible to determine the canonical ordering of a user-defined polynomial that does not
necessarily has to be related to a particular loop integral. The corresponding function is called
FCLoopPakOrder. It is worth noting that by analyzing P it is possible to detect scaleless loop
integrals that vanish in dimensional regularization. This also concerns cases where one cannot
readily recognize the scalelessness by merely looking at the integral. Here we refer to Sec. 2.3
of ref. [38] for a description of the underlying algorithm. This functionality is implemented in
FeynCalc in form of the functions FCLoopPakScalelessQ (for characteristic polynomials) and
FCLoopScalelessQ (for loop integrals).

The actual task of performing the topology identification is handled by FCLoopFindTopology-
Mappings. The function takes a list of FCTopology objects as an input and searches for
equivalent integral topologies among the elements of this list. In the case of success, it returns
a set of mapping rules that contain loop momentum shifts and replacement rules for the GLIs.
Using the option PreferredTopologies one can specify a set of target topologies that should
be primarily considered during the construction of the mapping rules. Notice that in its current
form FCLoopFindTopologyMappings can only find equivalent topologies with the same number
of propagators. However, in real life calculations one often encounters topologies that do not have
enough propagators to form a basis. Such incomplete topologies often fit into larger complete
topologies, sometimes also denoted as supertopologies. This issue can be addressed in the
current development snapshot of FeynCalc as follows. Provided that one has some candidate
supertopologies, one would first employ FCLoopFindSubtopologies to identify all nonvanishing
subtopologies of the given supertopology. Then, one would add the list of subtopologies to
the list of preferred topologies when running FCLoopFindTopologyMappings. Finally, using the
function FCLoopCreateRuleGLIToGLI one can generate replacement rules that would eliminate
the subtopologies in favor of the corresponding supertopology.

To apply this machinery to amplitudes FeynCalc also features two dedicated functions
called FCLoopFindTopologies and FCLoopApplyTopologyMappings. The former identifies
all distinct topologies present in the given amplitude, while the latter applies the mappings
uncovered by FCLoopFindTopologyMappings to this amplitude. However, for practical reasons
we would recommend against the idea of doing multiloop calculations entirely in Mathematica.
The number of intermediate expressions in such computations can easily go into hundreds
of thousands or even millions of terms even for a single diagram. Unlike FORM [43],
Mathematica is simply not optimized to handle that level of complexity and any attempts
to ignore this fact would most likely result into frustration as well as wasted time and efforts.
The proper way to approach such calculations is to use QGRAF [44] and FORM. Having
extracted the list of distinct topologies from FORM one can readily employ FeynCalc to
carry out the topology identification and then export the obtained mappings back into FORM.
This is essentially how we envisage the usage of the new multiloop capabilities of FeynCalc
in loop calculations. Of course, one might also think of situations where it should be admissible
to do the full calculation in a single notebook. One of such scenarios would be asymptotic [45]
expansions of single loop integrals in conjunction with asy [46] and FeynHelpers [47]. Here
we would like to refer to the upcoming version of the FeynHelpers [48] extension that would



feature dedicated routines for automatizing such expansions.

3. Master integrals

After having completed all relevant IBP reductions, one usually starts to analyze the resulting
master integrals. One of the first things to do is to create a list of master integrals from all
integral families and check whether all of them are distinct. Just as in the case of equivalent
topologies, equivalent integrals often cannot be recognized by eye. Here FeynCalc offers a
function called FCLoopFindIntegralMappings that works similarly to FindRules in FIRE.
The PreferredIntegrals option allows to map (if possible) the given list of integrals to a set
of some predefined master integrals.

When presenting results from new multiloop calculations to the community, it is customary
to visualize the relevant master integrals in form of graphs with styled edges. For example,
edges representing massless propagators are often drawn as dashed lines, while a solid line
stands for a massive denominator and a dot or a cross means that the corresponding propagator
appears raised to an integer power (usually squared). Owing to the fact that the reconstruction
of the graph representation from the propagator representation is not entirely trivial, it may
take some time and effort to generate such figures for a new set of integrals. This task can be
partially automatized using the functionality available in AZURITE [49], PlanarityTest [50],
LiteRed [27, 28] and now also FeynCalc. Our implementation consists of two functions
called FCLoopIntegralToGraph (for obtaining the graph) and FCLoopGraphPlot (for plotting
the graph). Notice that the output of FCLoopIntegralToGraph can be, in principle, visualized
using other tools e.g. GraphViz [51].

When it comes to the analytic evaluation of master integrals, currently the methods of
differential equations [52, 53, 54, 55, 56, 57] and Mellin-Barnes [58, 59, 60, 61] seem to be
the most popular techniques to attack this problem. Yet in this report we would like to
advocate another method that often turns out to be very successful when applied to integrals
with only few scales. What is meant is the direct analytic integration starting from the Feynman
parameter representation of the integral. In this context we would like to mention the Maple
package HyperInt [62] that currently constitutes the most advanced publicly available tool
for automatizing such integrations. Multiscale integrals often might require a suitable variable
transformation to eliminate square roots that hinder the integration sequence. To this end we
found the package RationalizeRoots [63] (available both for Maple and Mathematica)
to be very handy. Let us also remark that the results obtained by HyperInt in terms of
complicated Goncharov Polylogarithms (GPLs) [64] often can be further simplified using the
packages HyperLogProcedures [65] and PolyLogTools [66].

FeynCalc function FCFeynmanParametrize can obtain Feynman parametric representation
for a wide range of loop integrals with quadratic or eikonal propagators. Possible types of
supported integrals range from expressions with unit numerators over integrals with scalar
products to tensor integrals with open indices. Furthermore, FCFeynmanParametrize can handle
not only Minkowskian but also Cartesian and Euclidean integrals, which essentially covers almost
everything one might encounter in various Standard Model and EFT calculations. In addition
to that, the function FCFeynmanParameterJoin allows the user to apply Feynman’s formula for
joining denominators sequentially. This means that instead of joining all propagators at once
one may also split them into smaller subsets and join the propagators in those subsets first. The
joining of the resulting propagators stemming from each subset is then done at the very last
step. This procedure generates several sets of Feynman parameter variables that can be often
integrated in a simpler way owing to the additional freedom when exploiting the Cheng-Wu [67]
theorem. In our experience, choosing a smart way to join the propagators sequentially often can
enable an analytic integration that would otherwise seem hopeless without introducing a proper
sequence of Feynman variable transformations.



4. Summary

We presented a set of new FeynCalc functions that improve the usefulness of the package
in multiloop calculations. The ideas and algorithms behind the routines are readily available
in the literature [37, 38, 41] and we gratefully acknowledge that the new way of dealing with
multiloop integrals in the package draws many inspirations from such well-established tools
as FIRE, FIESTA, LiteRed, TopoID and pySecDec. Nevertheless, we believe that our
implementation of the relevant methods should be very useful not only to the existing FeynCalc
users but also to the whole particle physics community. Although FeynCalc 10 has not yet
been officially released, all the functions described in this report are publicly available through
the so-called development version of the package4. We would also like to draw the attention
of the reader to the new documentation system5 that already includes descriptions of all new
functions and features helpful examples.

In general, it is very gratifying to see the progress in the functionality of the package as
compared to the situation some years ago when FeynCalc 9 was announced during the ACAT
2017 [68]. It would be far from correct, however, to claim that the package is now feature
complete. Two main directions we would like to see FeynCalc go are helicity amplitude
methods and a FORM-based library for computationally heavy tasks. Only time will tell to
which extent those can be realized in future versions of the program.
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