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Abstract: The energy dependence of the total hadroproduction cross section of pseudo-
scalar quarkonia is computed via matching Next-to-Leading Order (NLO) Collinear-
Factorisation (CF) results with resummed higher-order corrections, proportional to
αns lnn−1(1/z), to the CF hard-scattering coefficient, where z = M2/ŝ with M and ŝ being
the quarkonium mass and the partonic center-of-mass energy squared. The resummation
is performed using High-Energy Factorisation (HEF) in the Doubly-Logarithmic (DL) ap-
proximation, which is a subset of the leading logarithmic ln(1/z) approximation. Doing so,
one remains strictly consistent with the NLO and NNLO DGLAP evolution of the PDFs.
By improving the treatment of the small-z asymptotics of the CF coefficient function, the
resummation cures the unphysical results of the NLO CF calculation. The matching is di-
rectly performed in the z-space and, for the first time, by using the Inverse-Error Weighting
(InEW) matching procedure. As a by-product of the calculation, the NNLO term of the
CF hard-scattering coefficient proportional to α2

s ln(1/z) is predicted from HEF.
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1 Introduction: heavy-quarkonium cross-section instability at high en-
ergies

Historically, the discovery of charm quarks and charmonia has been one of the most impor-
tant milestones towards establishing QCD as the theory of strong interaction. Nowadays,
charmonia and bottomonia attract a lot of attention as tools to study the proton struc-
ture, spin physics and/or to probe the quark-gluon plasma, see e.g. recent reviews [1–5].
They have clean experimental signatures and the fact that the hard scale of their pro-
duction process is limited from below by the heavy-quark mass justifies the application of
perturbation theory. However, the usage of quarkonia as tools for precision studies is prob-
lematic because up to now there is no consensus in the community on what are the main
mechanisms of quarkonium production. The Non-Relativistic QCD(NRQCD) factorisation
approach [6] at NLO in the αs expansion and NNLO in the v2 expansion, which seems to
be the most systematic theoretical tool available so far, is able to describe the unpolarised
pT -differential hadroproduction cross sections of charmonia [7–13] and bottomonia [14–16].
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However, this approach has essentially failed all other phenomenological tests. It is inca-
pable [7–10] of describing the unpolarised photo- and hadroproduction data together with
the data on quarkonium polarisation observables using a single set of Long-Distance Matrix
Elements (LDMEs). This problem is known as the “polarisation puzzle”. Moreover, the
hadroproduction of ηc at the LHC has unexpectedly turned out to be dominated by the
color-singlet state cc̄[1S[1]

0 ], with no color-octet contribution needed to describe data [17].
This seems inconsistent with Heavy-quark spin symmetry relations between the LDMEs
of ηc and J/ψ. This inconsistency is often referred to as the “heavy-quark-spin-symmetry
puzzle”.

Alternative theoretical approaches, such as the (Improved) Colour-Evaporation
Model [18–21] have their own phenomenological problems, e.g. being incapable to de-
scribe the J/ψ-pair hadroproduction [22], single J/ψ hadroproduction at large pT [22] or
e+e− → J/ψ + c + c̄ cross section [3]. Moreover, recent theoretical developments, such as
potential-NRQCD [23] or soft-gluon factorisation [24–26] stay within the non-relativistic
paradigm for the bound-state and try to either reduce number of free parameters in NRQCD
or more accurately treat the kinematic effects of soft gluon emissions at hadronisation stage.

Given the situation described above, the logical way to proceed is to scrutinise all pos-
sible sources of numerically large higher-order corrections to the hard-scattering coefficient
function in the NRQCD approach beyond fixed-order NLO in αs computations and find
possible ways to resum them to all orders in perturbation theory. For example, at high pT ,
much larger than the quarkonium massM , such a resummation has already being achieved
via the fragmentation formalism which has been worked out up to the next-to-leading power
inM/pT [13, 27]. In the present paper, we focus on a class of higher-order QCD corrections,
which has been largely ignored so far in the CF heavy-quarkonium-production literature
and which become important when the hadronic collision energy,

√
s, is much larger than

any other scale of our process, i.e. M or pT .
For simplicity, we will focus on the case of the inclusive hadroproduction of the 1S

[1]
0 ,

3P
[1]
0 and 3P

[1]
2 NRQCD Fock states of a heavy-quark pair of mass M . These states can

be produced at LO in CF via a 2 → 1 process, namely by fusion of two on-shell gluons.
The NLO CF corrections to the total hadroproduction cross section at most involves 2→ 2
processes and can be computed in a closed form, which has been done long time ago [28, 29].
In CF, the total hadroproduction cross section of a state m = 2S+1L

[1,8]
J in a hA + hB

hadronic collision at a center-of-mass energy
√
s can be computed as a convolution:

σ[m],hAhB (
√
s) =

∑
i,j=q,q̄,g

1∫
zmin

dz

z
LhAhBij (z, µF )σ̂[m]

ij (z, µF , µR), (1.1)

over the variable z = M2/ŝ which represents the squared fraction of the energy of the
partons initiating the hard subprocess used to produce the observed final-state of mass M ,
with zmin = M2/s. The partonic luminosity for partons i, j = q, q̄, g, entering eqn. (1.1) is:

LhAhBij (z, µF ) =
+ymax∫
−ymax

dy f̃hAi

(
M√
sz
ey, µF

)
f̃hBj

(
M√
sz
e−y, µF

)
, (1.2)
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where ymax = ln
√
sz/M and1 f̃hi (x, µ2

F ) = xfhi (x, µ2
F ) are the collinear “momentum-

density” PDFs of the parton i in a hadron h, evaluated at the factorisation scale µF . The
quantity σ̂[m]

ij in eqn. (1.1) is the hard-scattering coefficient for the corresponding partonic
channel ij and state m.

The partonic luminosity is always decreasing when z →M2/s corresponding to ymax →
0. However, at µF � 1 GeV this decrease is more rapid than at µF ∼ 1 GeV, characteristic
of quarkonium physics, due to µF -evolution of the x-dependence of PDFs in eqn. (1.2). It
turns out that, at high scales, the contribution of small values of z to the integral (1.1) is
suppressed by the partonic luminosity. However, at smaller scales µF ∼M ∼ 1 GeV most
of the recent PDFs are relatively flat as functions of x, and the region of small z starts
to significantly contribute to the cross section at high energies

√
s � M , see the detailed

discussion in ref. [30]. For quarkonium-production cross sections at NLO in CF, the effect
of the small-z region is dramatic, as it was understood already in refs. [31, 32].

For our forthcoming discussion, let us express the CF coefficient function from
eqn. (1.1) as follows:

σ̂
[m]
ij = σ

[m]
0

[
A

[m]
0 δ(1− z) + Cij

αs(µR)
π

(
A

[m]
0 ln M

2

µ2
F

+A
[m]
1

)
+O(zαs, α2

s)
]
, (1.3)

where the first term in square brackets contributes only for the states QQ̄[m] which can
be produced in fusion of two on-shell gluons at O(α2

s). For such states, A[m]
0 = 1. For

all the other QQ̄[m] states, A[m]
0 = 0 so that σ̂[m]

ij starts at O(α3
s). The second term in

the square brackets of the eqn. (1.3) is the z → 0 asymptotics of the O(α3
s) part of the

coefficient function, while all the remaining terms are collected in the term O(αsz, α2
s).

Overall factors σ[m]
0 are defined in eqn. (2.12) below.

The Fock-state dependent constants A[m]
1 in eqn. (1.3) are collected, for the cases when

A
[m]
0 6= 0, in table 1 of ref. [30] and they turn out to be negative. The colour-factors Cij in

eqn. (1.3) are: Cgg = 2CA = 2Nc, Cqg = Cgq = CF = (N2
c − 1)/(2Nc) and Cqq̄ = 0 (with

Nc = 3 being the number of colours). If the series (1.3) is truncated at NLO in αs, then for
scale choices satisfying µF ≥M , the contribution of the region z � 1 to the integral (1.1)
becomes purely negative and, at sufficiently high energies, it may outweigh the positive
NLO contribution from the z → 1 limit and even the LO contribution.

For charmonium production characterised by M ' 3 GeV, this already happens at
√
s

as modest as several hundreds of GeV [30, 32] making NLO calculation completely unpre-
dictive at LHC energies. We find the problem described above very interesting because
similar instabilities plague the energy-dependence of rapidity-differential cross sections of
J/ψ hadroproduction in NRQCD factorisation at NLO [33] and could also affect the pT -
differential cross section at pT .M �

√
s.

As it was realised in ref. [30], authored by two of us, these negative cross sections in CF
at NLO stem from an oversubtraction of the collinear divergences inside the renormalised
PDFs within the MS scheme. In principle, such a subtraction should be compensated by the
evolution of the PDFs which progressively become steeper when µF increases. However, the

1In what follows, we will omit hA and hB when referring to PDFs.
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coefficients A1, which are related to the internal structure of the gg → QQ̄[m] form factor,
are process-dependent as opposed to the PDF evolution governed by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [34–36] equations. As such, the negative numbers cannot
be systematically compensated by the PDF evolution. This mismatch between the partonic
cross section and the PDFs is most dramatic for low scale processes for which the PDFs
are the flattest.

The small-z behaviour of the NLO partonic cross section of the type (1.3) is char-
acteristic of many hard processes, as it was shown for the first time in ref. [37] for the
cases of total open heavy-flavour hadro- and photoproduction as well as prompt-photon
hadroproduction. In these cases, the coefficients A1 turn out to be positive, whereas they
are negative for the hadroproduction of 1S0, 3P0 and 3P2-states of heavy quark–anti-quark
pairs as mentioned above, as well as for the photoproduction of 3S1 [38]. For Higgs-boson
hadroproduction, the sign of the coefficient A1 depends on the ratioMH0/mt (see ref. [30]).
These observations clearly point at the fact that it is impossible to absorb the impact of
A1 into the PDFs via the global scheme redefinition proposed in ref. [37]: the optimal
subtraction scheme for the open heavy-flavour hadroproduction will be worse than MS for
heavy quarkonia at high energies, and vice-versa.

In ref. [30], two of us have proposed a new scale prescription for the factorisation
scale to cure the mismatch between the partonic cross section and the PDF evolution (for
processes with A0 = 1):

µ̂F = M exp
[
A

[m]
1 /2

]
, (1.4)

which restores the positivity of quarkonium-production cross sections (see refs. [30, 38]).
As it will be explained in section 2.5, this scale choice corresponds to an attempt to resum
some higher-order QCD corrections proportional to:

αns lnn−1 1
z
, (1.5)

at leading power in z for z � 1 within σ̂ij . In what follows, we will refer to the all
order in αs resummation of the contributions of the type (1.5) as the Leading Logarithmic-
ln(1/z) Approximation or LL(ln(1/z)) for short. The advantage of the µ̂F -prescription in
comparison to the global scheme redefinition is that it is process-dependent, i.e. every
process is evaluated with its own scale (1.4).

However, beyond O(αs), the approximate resummation via the µ̂F -prescription does
not correctly capture the structure of QCD corrections of the type (1.5). For instance, as
we will see, the α2

s ln 1/z coefficient of the expanded expression of the NLO cross section
obtained with µF = µ̂F does not correspond to the one obtained from the resummation for-
malism. The systematic formalism for such a resummation requires the use of the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) evolution [39–41] of the partonic amplitude in the rapidity
Y ∼ ln(1/z)� 1 with its non-trivial transverse-momentum dynamics to correctly capture
higher-order QCD corrections even in the LL(ln(1/z)) approximation. Such a formalism is
known as High Energy Factorisation (HEF) and has been developed in refs. [42–45] in the
LL(ln(1/z)) approximation. In the past, this formalism has been successfully applied to
study the high-energy structure of hard-scattering coefficients of CF for many processes,
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such as Higgs [46, 47], Drell-Yan lepton-pair [48] and prompt-photon production [49]. In
particular, in ref. [48] the correctness of the resummation predictions up to NNLO in αs has
been verified. Recently, the NLL(ln(1/z)) resummation for lepton-hadron Deep-Inelastic
Scattering has been shown to significantly improve the quality of NNLO PDF fits [50, 51].

With the present paper, we fill the gap in the existing HEF literature, providing the first
NLO CF + LL(ln(1/z)) matched calculation of the energy-dependence of the total heavy-
quarkonium-hadroproduction cross section. The aforementioned HEF calculations [46–49]
use the representation of the resummed cross section in Mellin space, which is convenient
from the computational point of view, but is difficult to match with NLO CF results.
We therefore perform a matching between the HEF-resummed hard-scattering coefficient,
which is valid at z � 1, and the full NLO CF correction, which contains numerically
important O(z) power corrections, directly in z-space. Along the same lines as in ref. [52],
we propose a new matching procedure, described in section 3.2, which smoothly interpolates
between z → 0 and z → 1 limits.

The paper has the following structure. In section 2, we describe the LL(ln(1/z)) HEF
formalism, in particular the structure of the resummed partonic cross section in z-space
(section 2.1), the corresponding process-dependent coefficient functions (section 2.2) and
universal resummation factors (section 2.3). In section 2.4, we expand the resummed
cross section up to NNLO in αs to verify its consistency with NLO results [28, 29] and
provide predictions for future NNLO calculations of quarkonium production cross section.
In section 2.5, we explain the relation of the HEF formalism with the µ̂F scale prescription.
In section 3, we introduce two matching procedures in z-space, compare the corresponding
numerical results and discuss the uncertainties of our calculation. Finally, in section 4,
we summarise our conclusions and prospects for future studies. The paper contains three
appendices: in appendix A, we explain two methods which we have developed to calculate
the resummed cross section in z-space in a numerically-stable way. In appendix B, we show
the numerical effects of the O(α2

s) corrections to the anomalous dimension (2.20) on the
µF dependence of the resummed part of the cross section and, in appendix C, we discuss
the possible size of non-perturbative effects, due to the intrinsic transverse momentum of
gluons in the proton, on the value of the total quarkonium production cross section in our
approximation.

2 High-energy factorisation in the leading-logarithmic approximation

2.1 The resummed cross section in z-space

Considering the qg channel as an example, the corrections proportional to αns lnn−1 1/z to
the QCD hard subprocess for the production of the final-state of interest, QQ̄[m], with a
four-momentum p come from processes with at most n additional partons in the final state:

g(p1) + q(p2)→ g(k1) + g(k2) + . . .+QQ̄[m](p) + . . .+ g(kn−1) + q(kn), (2.1)

where the four-momentum labels are given in parentheses.
At leading-power in z and in the LL(ln(1/z)) approximation, only the final states with

a strong ordering in the corresponding light-cone components of momenta contribute, that
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P+
1 P−

2

k1 kn
q1 →

︸︷︷︸
H[m](qT1,qT2)

← q2

p

Y+ Y−

fg

(
x1

z+
, µF

)
fq

(
x2

z−
, µF

)
︸ ︷︷ ︸

Cgg(z+,qT1)

k2

︸ ︷︷ ︸
Cgq(z−,qT2)

kn−1

Figure 1. Typical diagrams contributing to the high-energy factorisation amplitude in the gq-
channel. The dashed lines denote Reggeised gluon exchanges, while solid circles denote Lipatov’s
vertices.

is when:

p+
1 ' k+

1 � k+
2 � . . .� p+ � . . .� k+

n−1 � k+
n ,

k−1 � k−2 � . . .� p− � . . .� k−n−1 � k−n ' p−2 ,

where k±i = k0
i ± k3

i , so that, for the four-momenta of the incoming protons, one has
P+

1 =
√
s, P−1 = 0 and P+

2 = 0, P−2 =
√
s. This limit is referred to as the Multi-Regge

Kinematics (MRK). In this limit and at this accuracy, the QCD amplitudes are known to
factorise into a product of gauge-invariant blocks: the Lipatov’s scattering, the production
vertices [39–41], the t-channel Reggeised gluon propagators and the effective vertex for
production of the QQ̄[m] state, see the figure 1. For a review, the reader can consult
the monographs [53, 54] or the lecture notes [55]. This factorisation at the amplitude
level allows one to factorise out the corresponding cross-section-level blocks: the universal
resummation factors Cgi, with i = g, q, q̄, and the process-dependent coefficient function
H [m].

The resummation factors are solutions of the BFKL equation, describing the rapidity-
evolution of the cascade of emissions from the rapidities of the most backward/forward
partons in the hard process to the rapidity of the observed final state. The corresponding
rapidity intervals (figure 1) can be estimated in the MRK as:

Y+ = 1
2

(
ln k

+
1
k−1
− ln p

+

p−

)
' ln

[
p+

1
p+

MT

|kT1|

]
= ln 1

z+
+ ln MT

|kT1|
, (2.2)

Y− = 1
2

(
ln p

+

p−
− ln k

+
n

k−n

)
' ln

[
p−2
p−

MT

|kTn|

]
= ln 1

z−
+ ln MT

|kTn|
, (2.3)

where M2
T = M2 + p2

T , z+ = p+/p
+
1 and z− = p−/p

−
2 are fractions of (+/-) light-cone

components entering the hard process, which are used up to produce the final state QQ̄[m].
In terms of z+ and z−, the “global” z variable introduced above is equal to:

z = M2

ŝ
= M2

p+
1 p
−
2

= M2

M2
T

z+z−. (2.4)

The LL BFKL evolution of the resummation factors Cgi in rapidity resums higher-
order corrections to the cross section proportional to αnsY n−1

± . If one is only interested in
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the resummation of the ln 1/z-corrections in the LL(ln(1/z)) approximation, as we do in
the present paper, then one solves the BFKL equation for resummation factors, neglecting
transverse-momentum logarithms in eqns. (2.2) and (2.3), i.e. putting Y± ' ln 1/z±, as it
has been done in the seminal papers [42–45].

If the transverse-momentum logarithms in eqns. (2.2) and (2.3) are not neglected,
then in addition to ln 1/z-corrections the HEF actually resums the LL αns ln2n(|pT |/M)
and part of the NLL αns lnn(|pT |/M) corrections, which are traditionally considered within
the framework of Transverse-Momentum Dependent (TMD) factorisation [56]. This overlap
between TMD and High-Energy factorisations has been explored in recent papers [57, 58].

Postponing a more detailed discussion of the resummation factors until section 2.3, let
us write down the factorisation formula for the rapidity-differential cross section in HEF:

dσ

dy
=

∑
i,j=g,q,q̄

∞∫
0

dq2
T1dq2

T2

1∫
x1

dz+
z+

f̃i

(
x1
z+
, µF

)
Cgi(z+,q2

T1, µF , µR)

×
1∫

x2

dz−
z−

f̃j

(
x2
z−
, µF

)
Cgj(z−,q2

T2, µF , µR)
2π∫
0

dφ

2
H [m](q2

T1,q2
T2, φ)

M4
T

, (2.5)

where x1 = MT e
y/
√
s and x2 = MT e

−y/
√
s with M2

T = M2 + (qT1 + qT2)2 and φ being
the azimuthal angle between qT1 and qT2. The HEF coefficient function H [m] non-trivially
depends on the transverse momenta qT1,2 of the Reggeised gluons entering it (figure 1), and
the procedure for its computation is described in section 2.2. As it will become clear below,
this transverse-momentum dependence is the key to the factorisation of higher-order terms
enhanced by ln 1/z in the QCD perturbative series in terms of the process-independent
resummation functions Cgj , encapsulating logarithms ln 1/z± and the process dependent
coefficients H [m], which are free from these large logarithms.

Integrating eqn. (2.5) over the rapidity and introducing the variables η = ln(z+/z−)/2
and z via eqn. (2.4), one can recast the total hadronic cross section in HEF into the form
of eqn. (1.1) with the partonic coefficient:

σ̂
[m], HEF
ij (z, µF , µR) =

∞∫
−∞

dη

∞∫
0

dq2
T1dq2

T2 Cgi
(
MT

M

√
zeη,q2

T1, µF , µR

)

× Cgj
(
MT

M

√
ze−η,q2

T2, µF , µR

) 2π∫
0

dφ

2
H [m](q2

T1,q2
T2, φ)

M4
T

, (2.6)

where the integration over η actually proceeds only over |η| ≤ ηmax = ln [M/(MT
√
z)],

because the arguments of the resummation functions z± should be smaller or equal than
one.

Finally let us emphasise that, for the gg channel, the transverse-momentum integrals
in eqn. (2.6) can not be dealt with numerically unless the LO contribution σ[m]

0 δ(1− z) is
explicitly removed from eqn. (2.6):

σ̂[m], HEF
gg (z, µF , µR) = σ

[m]
0 δ(1− z) + σ̌[m], HEF

gg (z, µF , µR), (2.7)
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where σ̌[m], HEF
gg is the LO-subtracted resummed hard-scattering coefficient. The LO CF

contribution is contained in the σ̂[m], HEF
gg because the perturbative expansion for resum-

mation factors Cgg starts with the LO term δ(1 − z)δ(q2
T ), which corresponds to the case

with no additional emissions. The procedure (2.7) turns the integrals in eqn. (2.6) into
well-defined functions of z. We describe two methods which we have used to isolate the
LO contribution in the Appendix A. The method of the section A.1 relies on the form of
resummation factor in the Doubly-Logarithmic approximation, which we will introduce in
eqn. (2.30) in section 2.3, while the method in section A.2 is more general and is applicable
to the exact LL(ln(1/z)) resummation factor (2.18) and its generalisations.

2.2 HEF coefficient functions

For the following 2→ 1 processes:

R(q1) +R(q2)→ cc̄
[

1S
[1,8]
0 , 3S

[8]
1 , 3P

[1,8]
0,1,2

]
, (2.8)

the corresponding HEF coefficient functions are non-zero at LO in αs. In eqn. (2.8), the
incoming Reggeised gluons are denoted by the symbol R and their four-momenta can be
parametrised as qµ1 = x1P

µ
1 +qµT1 and qµ2 = x2P

µ
2 +qµT2 (figure 1) so that q2

1,2 = −q2
T1,2 < 0.

The Feynman rules of Lipatov’s gauge-invariant EFT for Multi-Regge processes in QCD [59]
are used for the computation of HEF coefficient functions for general QCD processes, as
it was done for quarkonia in Ref. [60]. The use of the High-Energy EFT is particularly
important for the gauge invariance2 of the computation of the coefficient function for
production of the 3S

[8]
1 -state. Essentially, the Lipatov’s vertex should be used instead of

the usual three-gluon vertex.3

In the present paper we take the explicit expressions for HEF coefficient functions,
which can be directly plugged into our eqn. (2.6), from ref. [64]. The HEF coefficient
functions satisfy the on-shell-limit normalisation condition:

2π∫
0

dφ

2π lim
q2
T1,2→0

H [m](q2
T1,q2

T2, φ) = 1
4(N2

c − 1)2

∑
λ1,2=±

∣∣∣M(gλ1gλ2 → QQ̄[m])
∣∣∣2 , (2.10)

with the corresponding CF squared amplitude M averaged over colours and helicities
λ1,2 of the initial-state gluons. It is convenient to separate out the corresponding colour

2With respect to gauge choice of internal gluon propagator.
3Indeed, for the states listed in eqn. (2.8), except for 3S

[8]
1 , the EFT computation is equivalent to the

use of the following “nonsense” polarisation prescription for the initial-state gluons:

εµ(q1,2) →
qµT1,2

|qT1,2| , (2.9)

due to Slavnov-Taylor identities of QCD. However, for more complicated processes containing final-state
gluons coupling to initial-state ones, or otherwise essentially non-Abelian, as e.g. double color-octet channels
in heavy-quarkonium pair production [61], the full set of Feynman rules of the EFT [59] have to be used
instead of the prescription (2.9). The coefficient functions for the processes (2.8) have been computed for
the first time in [62–64] using the prescription (2.9) and later have been reproduced in the ref. [60] using
Lipatov’s EFT.
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factors, the LDMEs of NRQCD 〈O[m]〉 and the CF spin-orbital factors from the coefficient
functions as follows:

H [m](q2
T1,q2

T2, φ) = M4σ
[m]
0

π
F [m](q2

T1,q2
T2, φ), (2.11)

where the σ[m]
0 factors are:

σ
[1S[1]

0 ]
0 = 2

9π
3α2

s

〈O[1S[1])
0 ]〉

M5 , (2.12)

σ
[1S[8]

0 ]
0 = 5

12π
3α2

s

〈O[1S[8])
0 ]〉

M5 ,

σ
[3S[8]

1 ]
0 = 1

2π
3α2

s

〈O[3S[8])
1 ]〉

M5 ,

σ
[3P [1]

0 ]
0 = 8

3π
3α2

s

〈O[3P [1])
0 ]〉

M5 ,

σ
[3P [1]

1 ]
0 = 16

3 π
3α2

s

〈O[3P [1]
1 ]〉

M7 ,

σ
[3P [1]

2 ]
0 = 32

45π
3α2

s

〈O[3P [1]
2 ]〉

M7 ,

σ
[3P [8]

0 ]
0 = 5π3α2

s

〈O[3P [8]
0 ]〉

M7 ,

σ
[3P [8]

1 ]
0 = 10π3α2

s

〈O[3P [8]
1 ]〉

M7 ,

σ
[3P [8]

2 ]
0 = 4

3π
3α2

s

〈O[3P [8]
2 ]〉

M7 .

The functions F [m] in the eqn. (2.11) do not depend on the colour state of the QQ̄ pair
and depend only on its spin and orbital momentum. For the S-states they are:

F [1S0](t1, t2, φ) = 2
(
M2 + p2

T

)2
(M2 + t1 + t2)2 sin2 φ, (2.13)

F [3S1](t1, t2, φ) =
(
M2 + p2

T

) [
(t1 + t2)2 +M2 (t1 + t2 − 2

√
t1t2 cosφ

)]
M2(M2 + t1 + t2)2 , (2.14)

with p2
T = (qT1 + qT2)2 = t1 + t2 + 2

√
t1t2 cosφ with t1,2 = q2

T1,2. For the P -wave states,
one has:

F [3P0](t1, t2, φ) = 2
9

(
M2 + p2

T

)2 [(3M2 + t1 + t2) cosφ+ 2
√
t1t2

]2
(M2 + t1 + t2)4 ,

F [3P1](t1, t2, φ) = 2
9

(
M2 + p2

T

)2 [(t1 + t2)2 sin2 φ+M2 (t1 + t2 − 2
√
t1t2 cosφ

)]
(M2 + t1 + t2)4 ,

F [3P2](t1, t2, φ) = 1
3

(
M2 + p2

T

)2
(M2 + t1 + t2)4

{
3M4 + 3M2(t1 + t2) + 4t1t2

+ (t1 + t2)2 cos2 φ+ 2
√
t1t2

[
3M2 + 2(t1 + t2)

]
cosφ

}
. (2.15)
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The on-shell limits (2.10) of the functions F [m] are equal to one or zero, depending
on whether the corresponding state is allowed to be produced in a fusion of two on-shell
gluons by the Landau-Yang theorem, i.e. they are equal to constants A0 first introduced
in eqn. (1.3).

2.3 Resummation factor in the doubly-logarithmic approximation and beyond

Following the original refs. [42–45], we introduce the Mellin transform with respect to the
z-dependence of the resummation factor as follows:

C(N,qT , µF , µR) =
1∫

0

dz zN−1C(z,qT , µF , µR), (2.16)

so that the logarithms which we aim to resum are mapped to poles at N = 0 in Mellin
space:

lnk−1 1
z
↔ (k − 1)!

Nk
. (2.17)

The emissions of additional partons at higher orders in αs generate collinear diver-
gences in the resummation factor which have been removed in ref. [44] using a transverse-
momentum cut off and using dimensional regularisation and the MS-subtraction prescrip-
tion in ref. [45]. After the subtraction of the collinear divergences, the dependence on
factorisation scale µF arises in the resummation factor. The Mellin-space result [42–45] for
the subtracted resummation factor is:

Cgg(N,q2
T , µF , µR) = R(γgg(N,αs))

γgg(N,αs)
q2
T

(
q2
T

µ2
F

)γgg(N,αs)

, (2.18)

where α̂s = αs(µR)CA/π. The choice of the scale at which the αs is evaluated in the
Cgg function is not strictly dictated by the LL(ln(1/z)) resummation or NLO CF results.
However, since both Cgg functions and HEF coefficient function belong to the coeffcient
function of CF σ̂

[m]
ij (see eqn. (2.6)), we opt to choose the same scale µR of the αs in all

these quantities. The anomalous dimension γgg is the solution of the algebraic equation
first derived in the ref. [65]:

α̂s
N
χ(γgg(N,αs)) = 1, (2.19)

where χ(γ) = 2ψ0(1) − ψ0(γ) − ψ0(1 − γ) is he Lipatov’s LO characteristic function and
ψn(γ) = dn ln Γ(γ)/dγn is the Euler’s ψ function. The first few terms of the perturbative
solution of eqn. (2.19) are:

γgg(N,αs) = γN + 2ζ(3) α̂
4
s(µR)
N4 + 2ζ(5) α̂

6
s(µR)
N6 +O(α7

s), where γN = α̂s(µR)
N

. (2.20)

Eqn. (2.18) and the anomalous dimension (2.20) resum the series of higher-order cor-
rections proportional to αns /Nn. These corrections by virtue of the mapping (2.17) are
equivalent to the LL(ln(1/z))-approximation (1.5). While the LL(ln(1/z)) anomalous di-
mension (2.20) is scheme-independent in a wide class of MS-like schemes [45], the factor
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R(γ) encapsulates the subtraction-scheme dependence. For the MS scheme, its perturba-
tive expansion starts at N3LO [45, 66]:

R(γgg(N,αs)) = 1 +O(α3
s). (2.21)

Let us now define the resummation factors for the quark-induced channels. As depicted
in figure 1, in the LL(ln(1/z))-approximation, only Reggeised gluons can propagate in the
t-channel. Hence, the quarks can only participate in so-called LO partonic impact factors.
The corresponding expression for the squared amplitude in the LL(ln(1/z)) approximation
differs from the similar squared amplitude with gluon substituted by the quark only by
an overall colour factor. This picture leads to the simple relation between the quark and
gluon-induced resummation factors in the LL(ln(1/z)) approximation:

Cgq(z,q2
T , µF , µR) = CF

CA

[
Cgg(z,q2

T , µF , µR)− δ(1− z)δ(q2
T )
]
, (2.22)

where the subtraction term in square brackets removes the contribution of the direct g → R

transition in the on-shell limit. The latter is absent in case of quarks due to the fermion-
number conservation.

To clarify the physical meaning of the anomalous dimension γgg in eqn. (2.18), let us
observe that, since the Mellin transform turns z±−convolutions in eqn. (2.5) into products,
the µF independence of the cross section order by order in αs is achieved provided that:

∑
i=q,q̄,g

∂

∂ lnµ2
F

[
f̃i(N,µF )Cgi(N,q2

T , µF , µR)
]

= 0, (2.23)

at any qT . Substituting eqns. (2.18) and (2.22) one finds that eqn. (2.23) is indeed satisfied
due to the following form of DGLAP equations at LL(ln 1/z) accuracy:

∂f̃g(N,µF )
∂ lnµ2

F

= γgg(N,αs)

f̃g(N,µF ) + CF
CA

∑
i=q,q̄

f̃i(N,µF )

 , (2.24)

∂f̃q(N,µF )
∂ lnµ2

F

= 0. (2.25)

In other words, the γgg(N,αs) is the LL(ln(1/z)) approximation to the anomalous dimen-
sion of the DGLAP equations, governing the scale dependence of the gluon momentum
density distribution, while CFγgg/CA determines the feed down from quarks to gluon in
this approximation. Indeed, the corresponding LO DGLAP splitting functions have the
following z → 0 asymptotics:

αs
2πzPgg(z) = α̂s +O(z), (2.26)

αs
2πzPgq(z) = CF

CA
α̂s +O(z). (2.27)

Eqn. (2.26) is equivalent to the first term of the solution (2.20) via the mapping (2.17),
while eqn. (2.27) is related in the same way to the first term of the expansion of CFγgg/CA
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in αs. The coefficients in front of αs ln(1/z) and α2
s ln2(1/z) terms in the NLO and NNLO

contributions to zPgg(z) are zero in QCD, consistently with eqn. (2.20). The first non-zero
contributions at leading power in z beyond LO in αs in QCD are O(α2

s) and O(α3
s ln(1/z)).

They belong to the NLL(ln(1/z)) approximation and their consistency with NLL(ln(1/z))
BFKL predictions has been verified in ref. [67], while the consistency of the LL(ln(1/z))
series (2.20) with the DGLAP anomalous dimension in N = 4-supersymmetric Yang-Mills
theory in the large-Nc limit has been checked in ref. [68] up to five loops using integrability-
based methods.

The connection with the DGLAP anomalous dimension, outlined above, is very im-
portant for the phenomenological strategy of the usage of the LL(ln(1/z)) resummation.
Most of the common PDF sets4 use the fixed-order approximation for the DGLAP split-
tings/anomalous dimensions, i.e. no ln(1/z)-resummation is performed in the evolution.
In particular, it means that existing LO, NLO and NNLO PDFs contain information only
about the γN term in the series (2.20). Including further terms of this series into the
CF coefficient function via the resummation will only increase the mismatch between the
µF dependence of PDFs and the resummation factors and, hence, blow up our µF -scale
uncertainty at high energy.

The goal of the present paper is to use HEF to cure the unphysical behaviour of the
CF coefficient function at small z in a way consistent with the NLO DGLAP evolution of
PDFs. Therefore, we will use the following Doubly-Logarithmic approximation (DLA) for
resummation factor, which is obtained by neglecting all terms of the series (2.20) except
the first one:

CDLA
gg (N,qT , µF , µR) = γN

q2
T

(
q2
T

µ2
F

)γN
. (2.28)

In the DLA, only terms ∝
(
αs
N ln q2

T

µ2
F

)n
↔ αns lnn−1 1

z lnn q2
T

µ2
F

are included in the resum-
mation factor. One also takes R(γ) = 1 in the eqn. (2.28) for the same reason: the
corresponding scheme-dependence starts at N3LO, eqn. (2.21), and is not taken into ac-
count in the NLO or even NNLO PDFs. The inclusion of this factor to the resummation
function C would only lead to an unphysical subtraction-scheme mismatch between the
PDFs and the CF coefficient function.

The inverse Mellin transform:

C(z,q2
T , µF , µR) =

+i∞∫
−i∞

dN

2πiz
−NC(N,q2

T , µF , µR), (2.29)

of the resummation factor in the DLA can be computed straightforwardly, e.g. order-by-
order in αs with the use of relation (2.17), leading to the following result:

CDLA
gg (z,q2

T , µF , µR) = α̂s(µR)
q2
T


J0

(
2
√
α̂s(µR) ln

(
1
z

)
ln
(
µ2
F

q2
T

))
if q2

T < µ2
F ,

I0

(
2
√
α̂s(µR) ln

(
1
z

)
ln
(

q2
T

µ2
F

))
if q2

T > µ2
F ,

(2.30)

4With the notable exception of the sets obtained in refs. [50, 51].
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where J0/I0 are Bessel functions of first/second kind. Eqn. (2.30) is known in the HEF
community5 as the (Collins-Ellis-)Blümlein formula, and first appears in ref. [70] where
the solution of the evolution equation written in ref. [44] has been studied.

The DLA resummation function (2.28), or equivalently (2.30), has a very important
normalisation property:

µ2
F∫

0

dq2
T CDLA

gg (N,q2
T , µF , µR) = 1↔

µ2
F∫

0

dq2
T CDLA

gg (z,q2
T , µF , µR) = δ(1− z), (2.31)

which will be used extensively in the rest of the paper. The similar normalisation condition
for Cgq in the DLA follows form eqn. (2.22):

µ2
F∫

0

dq2
T CDLA

gq (z,q2
T , µF , µR) = 0. (2.32)

2.4 Small-z hard-scattering coefficient at NLO and NNLO from resummation

As a consistency check, the LL(ln(1/z)) resummation described above should reproduce
the small-z behaviour (1.3) of the known NLO result for the coefficient function [28–30].
To this end, one has to expand the resummed CF coefficient functions (2.6) at least up
to NLO in αs. In this section, we perform such an expansion up to NNLO in order to
provide predictions for the α2

s ln(1/z) NNLO terms in the CF coefficient functions. The
results of this section will also be employed in sec. 3.2 to construct the weight functions
needed for our matching procedure. The DLA resummation factor (2.28) is appropriate
for the expansion up to NNLO because the exact LL(ln(1/z))-resummation factor (2.18)
differs from it only starting at O(α3

s).
To perform such an expansion, it is convenient to work in Mellin space, plugging in the

inverse Mellin transform (2.29) of eqns. (2.28) into eqn. (2.6). Passing to the dimensionless
transverse momenta nT1 = qT1/M and nT2 = qT2/M , one can rewrite the resummed CF
coefficient functions as:

σ̂
[m], HEF
ij = σ

[m]
0

∞∫
−∞

dη

+i∞∫
−i∞

dN+dN−
(2πi)2 z−

N++N−
2 eη(N+−N−)G

[m]
ij

(
γN+ , γN− ,

N+ +N−
2 ,

M2

µ2
F

)
,

(2.33)
where

G[m]
gg

(
γ1, γ2, ν,

M2

µ2
F

)
=
(
M2

µ2
F

)γ1+γ2 ∞∫
0

γ1γ2dn2
T1dn2

T2
(n2

T1)1−γ1(n2
T2)1−γ2

2π∫
0

dφ

2πf
[m](n2

T1,n2
T2, φ, ν),

(2.34)

5See e.g. Ref. [69] for its application to the inclusive jet production at the LHC.
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for the gluon channel, while for quark-induced channels, one takes into account eqn. (2.22)
to obtain

G[m]
qg =

(
M2

µ2
F

)γ2
CF
CA

∞∫
0

γ2dn2
T2

(n2
T2)1−γ2

∞∫
0

dn2
T1

[(
M2

µ2
F

)γ1

γ1(n2
T1)−1+γ1 − δ(n2

T1)
]

×
2π∫
0

dφ

2πf
[m](n2

T1,n2
T2, φ), (2.35)

and

G
[m]
qq̄ =

(
CF
CA

)2 ∞∫
0

dn2
T1dn2

T2

[(
M2

µ2
F

)γ1

γ1(n2
T1)−1+γ1 − δ(n2

T1)
]

×
[(

M2

µ2
F

)γ2

γ2(n2
T2)−1+γ2 − δ(n2

T2)
] 2π∫

0

dφ

2πf
[m](n2

T1,n2
T2, φ), (2.36)

where, in eqns. (2.34), (2.35) and (2.36), the dimensionless function

f [m](n2
T1,n2

T2, φ, ν) = πH [m](M2n2
T1,M

2n2
T2, φ)

σ
[m]
0 M4(1 + (nT1 + nT2)2)2+ν

= F [m](M2n2
T1,M

2n2
T2, φ)

(1 + (nT1 + nT2)2)2+ν , (2.37)

encapsulates the HEF coefficient function H [m] (or F [m] of eqn. (2.11)) and the kinematic
factor 1/M4

T from eqn. (2.6).
The only quantity depending on αs in eqn. (2.33) is γN = α̂s/N . One thus only

has to Taylor-expand the function G[m]
ij with respect to its arguments γN+ and γN− . The

corresponding poles in N+ and N− map to the following functions of z via eqn. (2.33):

1 → δ(1− z),
1
N+

and 1
N−
→ θ(1− z),

1
N2

+
,

1
N2
−
, and 1

N+N−
→ θ(1− z) ln 1

z
. (2.38)

The expansion of the n2
T1,2 integrand of the function G

[m]
ij in γ1 and γ2 however has

to be done in a distributional sense because otherwise the order-by-order integrals will
just diverge at n2

T1,2 → 0. To this end, one isolates the n2
T1,2 → 0 behaviour of the f [m]

function6 in the integrands of eqns. (2.34), (2.35) and (2.36) as follows:

f [m](n2
T1,n2

T2, φ, ν) ={
f [m](n2

T1,n2
T2, φ, ν)− f [m](0,n2

T2, φ, ν)θ(1− n2
T1)

−f [m](n2
T1, 0, φ, ν)θ(1− n2

T2) + f [m](0, 0, φ, ν)θ(1− n2
T1)θ(1− n2

T2)
}

+
[
f [m](n2

T1, 0, φ, ν)− f [m](0, 0, φ, ν)θ(1− n2
T1)
]
θ(1− n2

T2)

+
[
f [m](0,n2

T2, φ, ν)− f [m](0, 0, φ, ν)θ(1− n2
T2)
]
θ(1− n2

T1)

+f [m](0, 0, φ, ν)θ(1− n2
T1)θ(1− n2

T2). (2.39)
6Which can be understood as a test function, on which functionals (2.34), (2.35) and (2.36) depend.
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The expression in curly brackets in eqn. (2.39) tends to zero when n2
T1 → 0 and/or

n2
T2 → 0, so the factors (n2

T1)−1+γ1 and (n2
T2)−1+γ2 in front of it in eqns. (2.34) – (2.36)

can be safely Taylor-expanded in γ1,2. The expression in the fourth line of eqn. (2.39)
tends to zero when n2

T1 → 0 while its dependence on n2
T2 is just a step function. As a

consequence, when this expression is substituted to eqns. (2.34) – (2.36), the dependence on
n2
T2 can be integrated out, while the factor (n2

T1)−1+γ1 can be Taylor-expanded in γ1. For
the term in the fifth line of eqn. (2.39), the situation is symmetric, up to the replacement
nT1 ↔ nT2. Finally, with the last term in eqn. (2.39), the integrations over n2

T1 and n2
T2

can be performed straightforwardly. The resulting expansions for the functions G[m]
ij in γ1

and γ2 at ν = 0 are:

G[m]
gg =

(
M2

µ2
F

)γ1+γ2 [
A

[m]
0 + (γ1 + γ2)A[m]

1 + (γ2
1 + γ2

2)A[m]
2 + γ1γ2B

[m]
2 +O(γ3)

]
. (2.40)

G[m]
qg = CF

CA

(
M2

µ2
F

)γ2 {[(
M2

µ2
F

)γ1

− 1
]
A

[m]
0 +

(
M2

µ2
F

)γ1

(γ1A
[m]
1 + γ2

1A
[m]
2 ) (2.41)

+
[(

M2

µ2
F

)γ1

− 1
]

(γ2A
[m]
1 + γ2

2A
[m]
2 ) +

(
M2

µ2
F

)γ1

γ1γ2B
[m]
2 +O(γ3)

}
,

G
[m]
qq̄ =

(
CF
CA

)2
{[(

M2

µ2
F

)γ1

− 1
] [(

M2

µ2
F

)γ2

− 1
]
A

[m]
0 (2.42)

+
[(

M2

µ2
F

)γ2

− 1
](

M2

µ2
F

)γ1

(γ1A
[m]
1 + γ2

1A
[m]
2 )

+
[(

M2

µ2
F

)γ1

− 1
](

M2

µ2
F

)γ2

(γ2A
[m]
1 + γ2

2A
[m]
2 ) +

(
M2

µ2
F

)γ1+γ2

γ1γ2B
[m]
2 +O(γ3)

 ,
where the Taylor expansion of the factors (M2/µ2

F )γ1,2 up to the second order have to be
done as well. The coefficients A[m]

0,1,2 entering this expansion are:

A
[m]
0 =

2π∫
0

dφ

2πf
[m](0, 0, φ, 0), (2.43)

A
[m]
1 =

∞∫
0

dn2
T1

n2
T1

2π∫
0

dφ

2π
[
f [m](n2

T1, 0, φ, 0)− f [m](0, 0, φ, 0)θ(1− n2
T1)
]
, (2.44)

A
[m]
2 =

∞∫
0

dn2
T1

n2
T1

ln n2
T1

2π∫
0

dφ

2π
[
f [m](n2

T1, 0, φ, 0)− f [m](0, 0, φ, 0)θ(1− n2
T1)
]
, (2.45)

while, for the coefficient B[m]
2 , one has

B
[m]
2 =

∞∫
0

dn2
T1dn2

T2
n2
T1n2

T2

2π∫
0

dφ

2π
{
f [m](n2

T1,n2
T2, φ, 0)− f [m](0,n2

T2, φ, 0)θ(1− n2
T1)

−f [m](n2
T1, 0, φ, 0)θ(1− n2

T2) + f [m](0, 0, φ, 0)θ(1− n2
T1)θ(1− n2

T2)
}
. (2.46)
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State A
[m]
0 A

[m]
1 A

[m]
2 B

[m]
2

1S0 1 −1 π2

6
π2

6
3S1 0 1 0 π2

6
3P0 1 −43

27
π2

6 + 2
3

π2

6 + 40
27

3P1 0 5
54 −1

9 −2
9

3P2 1 −53
36

π2

6 + 1
2

π2

6 + 11
9

Table 1. Coefficients entering into eqns. (2.47) – (2.49) for several states m = 2S+1LJ of a QQ̄
pair. The highlighted numbers coincide with the corresponding results from the table 1 in ref. [30].

Substituting the expansion (2.40) to eqn. (2.33) due to the mappings (2.38), one obtains
the following result for the z-dependent CF coefficient function in gg channel:

σ̂[m], HEF
gg = σ

[m]
0

{
A

[m]
0 δ(1− z) + αs

π
2CA

[
A

[m]
1 +A

[m]
0 ln M

2

µ2
F

]
(2.47)

+
(
αs
π

)2
C2
A ln 1

z

[
2A[m]

2 +B
[m]
2 + 4A[m]

1 ln M
2

µ2
F

+ 2A[m]
0 ln2 M

2

µ2
F

]
+O(α3

s)
}
,

where σ[m]
0 has been defined in eqn. (2.12). The coefficients A[m]

0,1,2 and B
[m]
2 can be computed

for various spin-orbital states m = 2S+1LJ by substituting the HEF coefficient functions
from eqn. (2.15) to eqns. (2.43), (2.44), (2.45) and (2.46). The results of this computation
are listed in the table 1.

Similarly, from the expansions (2.41) and (2.42), one obtains the following predictions
for the small-z behaviour of the quark-induced channels at NLO and NNLO:

σ̂[m], HEF
qg = σ

[m]
0

{
αs
π
CF

[
A

[m]
1 +A

[m]
0 ln M

2

µ2
F

]
+
(
αs
π

)2
CACF ln 1

z

×
[
A

[m]
2 +B

[m]
2 + 3A[m]

1 ln M
2

µ2
F

+ 3
2A

[m]
0 ln2 M

2

µ2
F

]}
, (2.48)

σ̂
[m], HEF
qq̄ = σ

[m]
0

(
αs
π

)2
C2
F ln 1

z

[
B

[m]
2 + 2A[m]

1 ln M
2

µ2
F

+A
[m]
0 ln2 M

2

µ2
F

]
. (2.49)

Where the same coefficients A[m]
0,1,2 and B

[m]
2 appear as in the gg case. The NLO parts

of eqns. (2.47) and (2.48) coincide with the z → 0 asymptotics of the full NLO results,
obtained in refs. [30, 32], which is yet another non-trivial cross-check of the HEF formalism.

Let us emphasise that the specific transverse-momentum dependence of the HEF co-
efficient functions is crucial for the consistency of the HEF results with the high-energy
limit of the QCD scattering amplitudes. This is very different from the case of TMD fac-
torisation, which is applicable only at p2

T �M2. The NLO coefficient A[m]
1 is determined

by the behaviour of the coefficient function for p2
T ' q2

T1,2 ∼ M2 as follows. In the in-
tegrand of eqn. (2.44), the step-function θ(1 − n2

T1) is subtracted from the dimensionless
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Figure 2. Dimensionless integrand function (2.37) averaged over φ, at n2
T 2 = 0, as a function

of n2
T 1 = q2

T 1/(4m2
Q), normalised on its value at n2

T 1 = 0. The three dashed curves correspond to
the coefficient functions for production of QQ̄[m]-states with m = 1S0,

3P0 and 3P2 (section 2.2).
The solid curve depicts the coefficient function for the unbound QQ̄-pair production [37], integrated
over the phase space of the QQ̄ pair. The short-dashed line represents the MS subtraction term
θ(1− n2

T 1).

function f [m](n2
T1, 0, φ, 0), which describes the coefficient function in the case when one

gluon is off-shell with momenta qT,1 and the second one is on-shell q2
T,2 = 0. In the case

of quarkonia, the latter function starts to decrease already for n2
T1 = q2

T1/M
2 < 1, so the

subtraction leads to a large negative contribution, as illustrated by the plot in the figure 2.
For comparison, the coefficient function for open heavy flavour production, integrated over
the phase-space of the final-state heavy quarks, given by eqns. (4.8) – (4.10) in ref. [37],
is also plotted in figure 2. From this figure, one immediately realises that the bound state
is easily broken by the transverse-momentum imbalance between the incoming off-shell
gluons, which leads to a quickly decreasing HEF coefficient function. This dependence is
quite different from the “expectation” of the MS scheme7, according to which the coefficient
function should behave roughly like θ(1− q2

T1,2/M
2) thus leading to the consequent over-

subtraction of the collinear behaviour. For the case of open heavy flavour, integrated over
its invariant mass, the situation is opposite and the coefficient function has a substantial
tail at q2

T1,2 > M2, which leads to large positive NLO corrections at high energy.

2.5 Resummation by a µF choice

The connection between the HEF resummation and the µF -scale optimisation approach
(the µ̂F prescription) proposed in ref. [30] is most easily illustrated by eqn. (2.34). Substi-

7See e.g. section 3.4 of ref. [56] for the relation of the MS subtraction of 1/ε singularity with the
transverse momentum cut off.
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tuting the scale choice (1.4), one obtains:

G[m]
gg

(
γN+ , γN− , ν,

M2

µ̂2
F

)
= exp

[
−A[m]

1 (γN+ + γN−)
]

(2.50)

×
∞∫
0

γN+γN−dn2
T1dn2

T2
(n2

T1)1−γN+ (n2
T2)1−γN−

2π∫
0

dφ

2πf
[m](n2

T1,n2
T2, φ, ν).

The exponent in the first line of eqn. (2.50), which arose from the scale choice (1.4), re-
sums a series of corrections proportional to γnN±

= α̂ns /N
n
±, which belong to the LL(ln(1/z))-

approximation. This resummation would be equivalent to that performed by the HEF only
if this exponent is able to cancel the γN± dependence of the integral in the second line of
eqn. (2.50). If this was the case then all LL(ln(1/z)) corrections would be removed from
the CF coefficient function and absorbed into the scale evolution of PDFs. However, such
a perfect cancellation is possible only if the dimensionless function f [m] complies to the
relation:

2π∫
0

dφ

2πf
[m](n2

T1,n2
T2, φ, ν) = θ

(
eA

[m]
1 − n2

T1

)
θ

(
eA

[m]
1 − n2

T2

)
, (2.51)

which when substituted to the eqn. (2.50) leads to G[m]
gg
(
γN+ , γN− , ν,M

2/µ̂2
F

)
= 1. Neither

the coefficient functions for quarkonium production listed in the section 2.2, nor any other
coefficient functions for physical processes known to the authors provide a sharp cut-off
in the transverse momentum as in eqn. (2.51). Instead, they always smoothly depend on
transverse momenta, as e.g. in the figure 2. Therefore, the HEF is not equivalent to the µ̂F
prescription. By construction, the µ̂F prescription takes into account the coefficient A[m]

1
and, hence, it is correct up to NLO in αs. However, already at NNLO in αs, the results of
HEF and the µ̂F prescription differ. This is clear because the NNLO coefficients obtained
from HEF (table 1) contain the transcendental number π2/6, which can not arise from the
expansion of the exponent in the first line of eqn. (2.50).

3 NLO+DLA matching in z-space

Before discussing various approaches to match the DLA HEF and NLO CF contributions
into a single prediction for the total cross section, let us set the baseline by showing how
the NLO CF cross section with the “canonical” scale choice µF = µR = M depends on the
energy and how large the associated scale uncertainty is. The plots of figure 3 show the
LO and NLO CF predictions for the total cross section of the production of 1S

[1]
0 states

with masses of 3 and 9.4 GeV. The scale uncertainties, depicted as solid or shaded bands
in all these plots, has been estimated using the five-point scale-variation procedure. The
latter procedure consists in evaluating the cross section for each value of the energy with
the scale choice µF = 2ζ1M and µR = 2ζ2M for (ζ1, ζ2) ∈ {(0,±1), (±1, 0)} and taking,
as an uncertainty estimate, the largest positive or negative deviation of the obtained value
form the cross section with the default scale choice.
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Figure 3. Comparison of the energy dependence of the hadroproduction cross sections of a
QQ̄[1S(1)

0 ] state with M = 3 GeV (left panel) and M = 9.4 GeV (right panel) in CF at LO
(grey curve) and NLO(blue curve). The central member of the CT18NLO PDF set [71] has been
used. The dashed line depicts the central prediction of the NLO calculation using the µ̂F prescrip-
tion (Equation 1.4) [30]. The LDME 〈O[1S(1)

0 ]〉 was set to 1 GeV3 in both cases for illustration
purposes.

From the left panel of figure 3, one can see that, for cc̄ states, the instability of the
cross section at high energy is dramatic. Above

√
s = 1 TeV, such a computation does not

show any more predictive power and, above
√
s = 100 GeV, the NLO K factor, defined as

the ratio of the NLO to the LO cross section, decreases with energy, which is very different
from the behaviour of the matched result as we will see. For bottomonia (see the plot
in the right panel of figure 3), the situation is much better: the scale uncertainty of the
NLO calculation is significantly smaller than the LO one all the way up to

√
s ∼ 100 TeV.

However, the decrease of the NLO K factor is evident even at this scales. The dependence
of this behaviour on the PDF choice has been analysed in detail in ref. [30].

A specific factorisation scale choice (1.4) has been proposed in ref. [30] as a possible
resolution of the problem of high-energy instability of quarkonium hadroproduction cross
sections. As we have shown in section 2.5, this prescription is equivalent to the resummation
of some LL(ln 1/z)-terms, which is correct at NLO but fails at higher orders. In practice,
this procedure leads to significantly smaller cross section at high energies, shown by dashed
lines in figure 3, than that predicted by LO CF at the default scale.

The DL HEF resummation proposed in section 2.3 is compatible with the factorisation
scheme and the evolution of the usual NLO and NNLO PDFs and correctly reproduces the
LL(ln 1/z) terms in the CF coefficient function up to NNLO in αs, as it was shown in
sections 2.3 and 2.4. However this resummation is applicable only in the region of z � 1.
Power corrections O(z) to the CF coefficient function are missing in the HEF calculation
with any NkLL accuracy, while they are equally importantas the logarithmic terms at
z ∼ 1. For the value of the total cross section, the whole range of z from 0 to 1 contributes
due to the integration over z in eqn. (1.1). In the following subsections, we will propose
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two approaches to match these DL HEF and NLO CF results in z space and will compare
the corresponding numerical results.

3.1 The subtractive-matching prescription

The simplest matching prescription between NLO CF and DLA HEF calculations consists
in the subtraction of the z → 0 asymptotics of the NLO CF coefficient function, to avoid
double-counting it with the HEF contribution:

σ
[m]
NLO+HEF = σ

[m]
LO CF+

∑
i,j=q,q̄,g

1∫
zmin

dz

z

[
σ̌

[m],ij
HEF (z) + σ̂

[m],ij
NLO CF(z)− σ̂[m],ij

NLO CF(0)
]
Lij(z), (3.1)

where σ̌[m],gg
HEF is defined in eqn. (2.7) while, for other partonic channels, σ̌[m],ij

HEF = σ̂
[m],ij
HEF and

σ̂
[m],ij
NLO CF(z) includes only the O(αs) CF terms from the original papers [28, 29].

The corresponding numerical results for QQ̄[1S(1)
0 ] states with masses of 3 and 9.4 GeV

are shown in the figure 4. One can see that the high-energy instability of the NLO cross
section has gone away and the ratio of the matched cross section to the LO one becomes
almost constant at high energy, which signal that energy dependence is now mostly driven
by the PDFs, not by the hard-scattering coefficient.
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Figure 4. Comparison of the energy dependence of the hadroproduction cross sections of a
QQ̄[1S[1]

0 ] state with M = 3 GeV (left panel) and M = 9.4 GeV (right panel) for the matched
NLO CF + DLA HEF calculations using the subtractive (orange curve and right-shaded band) and
InEW matchings with κCF = 0 and κHEF = 0 (red curve and left-shaded band). The dashed line
depicts the central prediction of the NLO calculation using the µ̂F prescription (Equation 1.4) [30].
The LDME 〈O[1S[1]

0 ]〉 was set to 1 GeV3.

3.2 The inverse-error-weighting matching

The InEW matching method has been proposed in ref. [52] to match the |pT l+l− | spectrum
of Drell-Yan lepton pairs predicted by the TMD factorisation for |pT l+l− | � Ml+l− with
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the NLO CF calculation of the same spectrum, which is free from large logarithms of
|pT l+l− |/Ml+l− for |pT l+l− | & Ml+l− . Following the same ideas, we introduce smooth
weight functions wHEF(z) and wCF(z) into our cross section formula as follows:

σ
[m]
NLO+HEF = σ

[m]
LO CF+ (3.2)

+
∑

i,j=q,q̄,g

1∫
zmin

dz

{[
σ̌

[m],ij
HEF (z)Lij(z)

z

]
wijHEF(z) +

[
σ̂

[m],ij
NLO CF(z)Lij(z)

z

]
wijCF(z)

}
,

where we emphasise that the weights are introduced on the level of the z integrand of the
cross section, so that the distributions 1/(1− z)+ and ln(1− z)/(1− z)+, contained in the
σ̂

[m]
NLO CF,ij , have already “acted” on the function Lij(z)/z. The weights should suppress

one of the contributions in the region where it is unreliable, so naturally they are chosen
to be proportional to the inverse squared errors of each contribution and to add up to one:

wijHEF(z) = [∆σijHEF(z)]−2

[∆σijHEF(z)]−2 + [∆σijCF(z)]−2
, wijCF(z) = 1− wijHEF(z), (3.3)

where, by ∆σijHEF/CF, we refer to an estimate of the theoretical uncertainty of the corre-
sponding contributions to the z integrand of the total cross section, which should correctly
capture the fact that the HEF or the CF contributions respectively become unreliable in
the z → 1 or z → 0 limits. The integrand uncertainty due to the matching procedure then
follows from:

∆σijMatch.(z) =
(
[∆σijHEF(z)]−2 + [∆σijCF(z)]−2

)−1/2
, (3.4)

which, upon integration over z, gives the total cross-section uncertainty.
The errors entering eqns. (3.3) and (3.4) can be estimated as follows. The NLO CF

cross section contains no information about the small-z behaviour of σ̂[m],ij(z) beyond
O(αs), while HEF provides this information. Hence one can take the O(α2

s) expansion
of the HEF cross section, obtained in Sec. 2.4 as an estimate for the error of NLO CF
integrand:

∆σijCF(z) = σLO

(
αs
π

)2 [
CijLL ln 1

z
+ (1− z)κCF

] Lij(z)
z

, (3.5)

where

CggLL = C2
A

[
2A2 +B2 + 4A1 ln M

2

µ2
F

+ 2A0 ln2 M
2

µ2
F

]
, (3.6)

CqgLL = CACF

[
A2 +B2 + 3A1 ln M

2

µ2
F

+ 3
2A0 ln2 M

2

µ2
F

]
, (3.7)

Cqq̄LL = C2
F

[
B2 + 2A1 ln M

2

µ2
F

+A0 ln2 M
2

µ2
F

]
, (3.8)

and the coefficients A0, A1,2, B2 can be found in table 1, while the coefficient κCF stands
for the constant part of the z → 0 behaviour of the NNLO partonic cross section, which is
currently unknown because it belongs to the NLL approximation of HEF.
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Conversely, the HEF coefficient function contains no information about the O(z) power
corrections, while the LO CF coefficient function contains this corrections at NLO in αs.
Hence one can take the NLO CF hard-scattering coefficient with its z → 0 asymptotics
subtracted, as an estimate of the missing O(z) power corrections in HEF, i.e. of its error:

∆σijHEF(z) =
[
σ̂

[m],ij
NLO CF(z)− σ̂[m],ij

NLO CF(0) + σLO

(
αs
π

)2
zκHEF

]
Lij(z)
z

, (3.9)

where the parameter κHEF stands for the unknown z → 1 behaviour of the coefficient
function in CF at NNLO in αs.

Using formulas (3.5) and (3.9), one can construct weights wCF and wHEF with expected
behaviour: e.g. wCF(z) goes to 1 when z → 1 and to 0 when z → 0 and conversely for
wHEF. The latter property is ensured by the behaviour of errors (3.5) and (3.9). The CF
error (3.5) is 0 for z = 1 and increases towards z → 0, while HEF error (3.9) is zero at
z = 0, and increases towards z = 1.

In figures 5, 6 and 7 several plots of the z integrand of eqn. (3.2) are shown as red
solid lines, using weights obtained above with κHEF = 0 and κCF = 0. One can see that
the aforementioned procedure provides a smooth interpolation between the HEF curves
at z � 1 and the CF curves at z closer to 1. Curiously, the matching of HEF and CF
contributions happens approximately at the point of intersection of HEF and CF curves.

The corresponding curves for the subtractive matching are shown for comparison by
the red dotted lines. From figures 5, 6 and 7, the problem of subtractive matching is
evident: it subtracts the z → 0 asymptotics of the NLO CF coefficient function at all
values of z, thus introducing the unphysical modification of the z → 1 behaviour. The
InEW matching, on the other hand, smoothly connects the asymptotic regions.

The sensitivity of the weights on the parameters κCF and κHEF is shown in the Fig. 8.
The curves corresponding to the maximal variation of weights for κHEF/CPM = ±1 are
plotted as dashed lines. The variation of wggCF is quite moderate, while larger variations of
other weights are observed, they are not important for the value of the total cross section,
because these contributions are small.

The results for the matched cross section in the InEW procedure with κCF = 0 and
κHEF = 0 are shown by red solid curves on figure 4. The matching uncertainty, estimated
by eqn. (3.4), combined with the uncertainty due to the variation of κCPM/HEF ∈ [−1, 1]
amounts to about 10% compared to the central LO cross section, so it is negligible in
comparison with the scale uncertainties shown on figure 4. The scale uncertainty band is
slightly smaller in the InEWmatching case. Probably the better measure of the uncertainty
due to the matching procedure is the difference between central results obtained in the
subtractive and InEW matching approaches and it turns out to be non-negligible only for√
s < 100 GeV.

Finally, figure 9 illustrates how the matched cross section varies depending on the choice
of the collinear PDF. Since our computations are rather computer intensive, only the cen-
tral members of the CT18NLO [71], MSHT20nlo_as118 [72], NNPDF31_nlo_as_0118 [73] and
NNPDF31sx_nlonllx_as_0118 [50] PDF sets, as implemented in the LHAPDF library [74]
has been used for the comparison. The first three PDFs evolve according to the usual
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Figure 5. Matching plots for the gg-channel contribution to the 1S
[1]
0 -state hadroproduction with

M = 3 GeV. The solid curve depicts the z-integrand of eqn. (3.2), the dashed curve the HEF
contribution (without the InEW weight), the dash-dotted curve the NLO CF contribution (without
the InEW weight), and the dotted red line the integrand of eqn. (3.1), i.e. the result of the
subtractive matching prescription for comparison. The plots of the InEW weights are shown in
the bottom inset, while the matching uncertainty (3.4) is shown as the solid band. The LDME
〈O[1S[1]

0 ]〉 was set to 1 GeV3.
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Figure 6. Matching plots for qg-channel to the 1S
[1]
0 -state hadroproduction with M = 3 GeV.

The integrand of eqn. (3.1), i.e. subtractive matching prescription is shown for comparison by the
dotted red line. The plots of InEW weights are shown in the bottom inset, while the matching
uncertainty (3.4) is shown as the solid band. The LDME 〈O[1S[1]

0 ]〉 was set to 1 GeV3.
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Figure 7. Matching plots for qq̄-channel to the 1S
[1]
0 -state hadroproduction with M = 3 GeV.

The integrand of eqn. (3.1), i.e. subtractive matching prescription is shown for comparison by the
dotted red line. The plots of InEW weights are shown in the bottom inset, while the matching
uncertainty (3.4) is shown as the solid band. The LDME 〈O[1S[1]

0 ]〉 was set to 1 GeV3.
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Figure 8. Dependence of the InEW weights for µF = µR = M on the parameters κCF and κHEF.
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NLO DGLAP splitting functions and thus fit seamlessly into our NLO+DLA matching
scheme. The last PDF set [50] contains the NLL(ln(1/z)) resummation and is included in
figure 9 to show that the corresponding cross section, obtained in the NLO+DLA ln(1/z)-
resummation scheme, is consistent with the other results within uncertainties.

On one hand, figure 9 shows that there is a significant spread in the charmonium
production cross sections at high energy, due to the PDF uncertainties at small values of
x. At

√
s = 13 TeV, the central values of NLO+LL(ln(1/z)) predictions obtained with

different PDFs vary as much as by factor 1.5 up and down from our default CT18NLO-based
estimations. This demonstrates a potential usefulness of this observable to constrain PDFs
at small x. On the other hand, the theoretical uncertainties of our predictions, dominated
by the scale-variation uncertainties shown in figure 9, are still larger than the spread
between central curves, so to reliably discriminate between them, the scale uncertainties
have to be significantly reduced which we expected to be realised once a NLL computation
is available.
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Figure 9. Dependence of the matched cross section on the choice of collinear PDF. The LDME
〈O[1S(1)

0 ]〉 was set to 1 GeV3.

4 Conclusions and outlook

In the present paper, we have performed an exploratory study of the effects of High-
Energy resummation on heavy-quarkonium hadroproduction cross sections. We have in-
troduced the DLA for the resummation contributions, which is consistent with the fixed-
order DGLAP evolution of PDFs and have shown that matching the NLO CF and the DL
resummed HEF results solves the problem of the negative NLO CF cross sections at high
energy. This opens up the possibility to use this observable to constrain PDFs at small-x,
however the scale uncertainties of our predictions have to be significantly reduced. To this
end, advancing such calculation to a complete NLO+NLL(ln(1/z)) accuracy is required,
which is a work in progress.
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A Numerics in z-space

A.1 Method 1: regularised resummation factor

This method is based on the following regularised form of the resummation factor, where
the small-qT oscillations are replaced by a constant in qT -behaviour for q2

T < q2
T0 in such

a way that the normalisation condition (2.31) still holds exactly:

C̃ DLA
gg (z,q2

T , µ
2
F ) =

 1
q2
T0

[
δ(1− z)−F

(
q2
T0
µ2
F
, z

)]
, if q2

T < q2
T0,

CDLA
gg (z,q2

T , µ
2
F ), if q2

T > q2
T0,

(A.1)

where

F
(

q2
T0
µ2
F

, z

)
=

Lmax∫
0

dL J0

(
2
√
L ln 1

z

)
= Lmax 0F̃1

(
2,−Lmax ln 1

z

)
, (A.2)

with Lmax = α̂s ln(q2
T0/µ

2
F ) and 0F̃1, which is the regularised confluent hypergeometric

function. In the q2
T0 → 0 limit, the function F turns into δ(1 − z) but this limit is

approached very slowly. So, for all reasonable values of |qT0|, even as small as 10−3 GeV,
the function (A.2) is still rather smoothly dependent on z and does not cause any numerical
problems. For the quark-induced channel, the regularised resummation factor:

C̃ DLA
gq (z,q2

T , µ
2
F ) = CF

CA

− 1
q2
T0
F
(

q2
T0
µ2
F
, z

)
, if q2

T < q2
T0,

CDLA
gg (z,q2

T , µ
2
F ), if q2

T > q2
T0,

(A.3)

satisfies the normalisation condition (2.32).
After substituting the regularised resummation factors (A.1) or (A.3) into eqn. (2.6),

one splits the q2
T1,2-integrations into regions with q2

T1,2 < q2
T0 and q2

T1,2 > q2
T0. If, for

example q2
T1 < q2

T0, then this transverse momentum can be neglected in all the rest of the
integrand in eqn. (2.6) because the dependence of the HEF coefficient function as well as
the dependence of the factor 1/M4

T on q2
T1 is smooth. This approximation allows one to
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trivially integrate out q2
T1 in the region q2

T1 < q2
T0 introducing the error which scales as

O(q2
T0/M

2) and can be made negligible by choosing a reasonably small value of q2
T0. In the

region q2
T1 > q2

T0 no approximations are made. The q2
T2-integration can be decomposed

in the same manner and the region where both q2
T1 < q2

T0 and q2
T2 < q2

T0 produces the
LO CF term in eqn. (2.7), while the LO-subtracted partonic cross section in the method
under consideration is decomposed as follows:

σ̌[m], HEF
gg = σ̌

[m]
2UI + σ̌

[m]
2F + 2

[
σ̌

[m]
1UI−C − σ̌

[m]
1UI−CF − σ̌

[m]
F

]
, (A.4)

where the separate contributions depend on the value of the cut qT0 but this dependence
should cancel in their sum for sufficiently small q2

T0 �M2. For the quark-induced channels,
the resummed partonic coefficient can be calculated in terms of the same contributions as:

σ̂[m], HEF
gq = CF

CA

[
σ̌

[m]
2UI + σ̌

[m]
2F + σ̌

[m]
1UI−C − 2σ̌[m]

1UI−CF − σ̌
[m]
F

]
, (A.5)

σ̂
[m], HEF
qq̄ =

(
CF
CA

)2 [
σ̌

[m]
2UI + σ̌

[m]
2F − 2σ̌[m]

1UI−CF

]
. (A.6)

The doubly-unintegrated contribution, σ̌[m]
2UI, entering eqns. (A.4), (A.5) and (A.6) is just

eqn. (2.6) with both q2
T1,2 > q2

T0 and the resummation factor (2.30). Other contributions
are calculated as follows:

σ̌
[m]
1UI−CF =

+∞∫
−∞

dη

∞∫
q2
T0

dq2
T1CDLA

gg

(√
z
MT1
M

eη,q2
T1, µF , µR

)

× F
(

q2
T0
µ2
F

,
√
z
MT1
M

e−η
) 2π∫

0

dφ

2
H(q2

T1, 0, φ)
M4
T1

, (A.7)

σ̌
[m]
1UI−C =

∞∫
q2
T0

dq2
T1 CDLA

gg

(
z
M2
T1

M2 ,q
2
T1, µF , µR

) 2π∫
0

dφ

2
H(q2

T1, 0, φ)
M4
T1

, (A.8)

σ̌
[m]
2F =

∞∫
−∞

dη F
(

q2
T0
µ2
F

,
√
zeη
)
F
(

q2
T0
µ2
F

,
√
ze−η

) 2π∫
0

dφ

2
H(0, 0, φ)

M4 , (A.9)

σ̌
[m]
F = F

(
q2
T0
µ2
F

, z

) 2π∫
0

dφ

2
H(0, 0, φ)

M4 , (A.10)

where M2
T1 = M2 + q2

T1.

A.2 Method 2: small-qT subtraction

The approach described in this section has been inspired by the treatment of the same
problem in the ref. [44]. The method relies on the same kind of decomposition of the
transverse-momentum dependence of the integrand as in eqn. (2.39), but now we perform
it to isolate the LO contribution, using the normalisation condition (2.31). To save space,
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let us introduce the short-hand notation for the integrand of eqn. (2.6) :

J (ξ1, ξ2) = Cgg
(√

z
MT (ξ1, ξ2)

M
eη,q2

T1, µF , µR

)
Cgg

(√
z
MT (ξ1, ξ2)

M
e−η,q2

T2, µF , µR

)
× H(ξ2

1q2
T1, ξ

2
2q2

T2, φ)
M4
T (ξ1, ξ2)

, (A.11)

where M2
T (ξ1, ξ2) = M2 + (ξ1qT1 + ξ2qT2)2 and variables ξ1,2 = {0, 1} are introduced for

us to be able to turn on and off the “smooth part” of the dependence of the integrand on
transverse momenta, while the dependence of J on q2

T1,2, φ and η is implicit. Similarly to
eqn. (2.39) we decompose

J (1, 1) = J1 + J2 + J3 + J (0, 0)θ(µ2
F − q2

T1)θ(µ2
F − q2

T2),

where the last term of this decomposition, when substituted to eqn. (2.6) gives us σ[m]
LOδ(1−

z) due to normalisation condition (2.31), while the terms J1,2,3 are:

J1 = J (1, 1)− J (0, 1)θ(µ2
F − q2

T1)
− J (1, 0)θ(µ2

F − q2
T2) + J (0, 0)θ(µ2

F − q2
T1)θ(µ2

F − q2
T2),

J2 =
[
J (1, 0)− J (0, 0)θ(µ2

F − q2
T1)
]
θ(µ2

F − q2
T2),

J3 =
[
J (0, 1)− J (0, 0)θ(µ2

F − q2
T2)
]
θ(µ2

F − q2
T1).

Using these expressions, the doubly-unintegrated contribution σ̌
[m]
2UI−S in this method

is defined as eqn. (2.6) with integrand J1 and without any low-qT1,2 cuts. The single-
unintegrated contribution is obtained by substituting J2 into eqn. (2.6) and integrating out
q2
T2 via eqn. (2.31):

σ̌
[m]
1UI−S =

∞∫
0

dq2
T1

2π∫
0

dφ

2

[
Cgg

(
z
M2
T1

M2 ,q
2
T1, µ

2
F , µ

2
R

)
H(q2

T1, 0, φ)
M4
T1

− Cgg
(
z,q2

T1, µ
2
F , µ

2
R

) H(0, 0, φ)
M4 θ(µ2

F − q2
T1)
]
. (A.12)

The LO subtracted resummed cross section for the gg channel is calculated as:

σ̌[m], HEF
gg = σ̌

[m]
2UI−S + 2σ̌[m]

1UI−S, (A.13)

while, for the quark-induced channels, one has:

σ̂[m], HEF
gq = CF

CA

[
σ̌

[m]
2UI−S + σ̌

[m]
1UI−S

]
, (A.14)

σ̂
[m], HEF
qq̄ =

(
CF
CA

)2
σ̌

[m]
2UI−S. (A.15)

For the DLA resummation factor, the numerical results obtained in both methods agree
within the integration accuracy. However, the subtraction method allows one to work with
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resummation factor given in the numerical form. The only requirement is that it should
satisfy the normalisation condition (2.31), which is true for example for the resummation
factor (2.18) with full LL(ln(1/z)) anomalous dimension, obtained as numerical solution of
eqn. (2.19), but with R(γ) = 1, as discussed in Appendix B, or for the Gaussian-smeared
resummation factor discussed in Appendix C.

B Effects of the anomalous dimension beyond LO

In this appendix, we study the effects of terms beyond LO in αs in the anomalous dimension
(2.20) on the resummed cross section, while still omitting the scheme-transformation factor
R(γ) from the eqn. (2.18). We have obtained the numerical solution of eqn. (2.19), which
in terms of the variable ρ = N/α̂s has the form:

χ(γgg(ρ)) = ρ. (B.1)

This equation has already been studied numerically in refs. [70, 75]. The perturbative
branch of the solution has a cut-discontinuity depicted in the figure 10, and inverse Mellin
transform integral (2.29) can be written as an integral over the contour in ρ-plane which
should avoid crossing this cut. Our numerical results for the real and imaginary parts of
the solution agree with results of ref. [70] and are also shown on figure 10.

Plots of the resummation factor resulting from the numerical inverse Mellin transform
are shown on figure 11. At moderately small values of z, it is close to the DLA, but at
smaller values of z it deviates from DLA and the most numerically important region of
q2
T ∼ 1 GeV2 features a significant peak in the negative direction.

On figure 12, the
√
s-dependence of the HEF-resummed part of the total cross section

of production of the QQ̄[1S(1)
0 ] state in the gg channel is plotted. The central lines as well

as uncertainty bands resulting from the variation of µF by a factor of 2 above and below
the default value µF = M are presented. Two approximations for the resummation factor
are compared on figure 12: the DLA, introduced in the section 2.3, and the approximation
described above in this appendix, which includes effects beyond LO in γgg(N,αs). The LO
CF central curve and the µF uncertainty is also shown on figure 12 for comparison. One
can see that, while DLA significantly reduces the scale uncertainty in comparison to the
LO CF result, the inclusion of higher-order corrections to γgg(N,αs) blows up the scale
uncertainty at high energies so much that, for

√
s > 4 TeV (left panel of the figure 12) or√

s > 7 TeV (right panel of the figure 12), the resummed part of cross section can become
negative.

This catastrophic factorisation-scale uncertainty is a consequence of the mismatch
between the µF -dependence of the resummation factor and one of the collinear PDFs used.
For the left plot on figure 12, we have employed the central eigenset of the NNPDF31_nlo
_as_0118 [73] PDFs and, in the right panel, the NLL(ln(1/z))-resummed version of the
NNPDF31 PDFs has been used [50]. Figure 12 serves as a numerical illustration of our
statement in section 2.3 that one should not increase the accuracy of the resummation
factors in HEF beyond DLA if collinear PDFs result from a fixed-order DGLAP evolution,
as in the left plot of figure 12. In the case of the NLL(ln(1/z))-resummed PDFs (right
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0 ]〉 was set to 1 GeV3.

panel of figure 12), the addition of the full LL(ln(1/z)) correction to γgg is also not justified
because in this case the formal perturbative accuracy of the PDFs is greater that that of
the resummation factor and the NLL resummed version γgg is significantly [50, 76] different
from the full LL(ln(1/z))-resummed one, so even in this case we have a mismatch of the
µF -dependence between the PDFs and the resummation factor.

C Higher-twist effects

It may be argued that the oscillatory behaviour of the resummation factors at q2
T � 1 GeV2,

depicted on figure 11, is un-physical and that in this domain the resummation factor is
dominated by non-perturbative effects. In this context, one would like to understand
how much the total cross section depends on the detailed behaviour of the resummation
factor at small values of q2

T . As a toy model to study this question, we have performed
a convolution of the DLA resummation factor (2.28) with Gaussian of the width σT in
transverse momentum which can be done analytically with the Mellin-space result (2.28):

CDLA,σ
gg (N,q2

T , µF , µR) =
∫
d2kT
πσ2

T

exp
[
−k2

T

σ2
T

]
CDLA
gg (N, (qT + kT )2, µF , µR)

= 1
σ2
T

(
σ2
T

µ2
F

)γN
e
−

q2
T
σ2
T 1F1

(
γN , 1,

q2
T

σ2
T

)
, (C.1)

and then converted it to the z-space numerically. Eqn. (C.1) still satisfies the normali-
sation condition (2.31) up to corrections suppressed as e−µ2

F /σ
2
T , so the method from the
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section A.2 can be used to calculate the cross section if σT . 1 GeV. Several plots of the
|qT |-dependence of the smeared resummation factor (C.1), transformed numerically to the
z-space are presented in the left panel of figure 13.

In the right panel of figure 13, the ratio of the matched cross section obtained with the
Gaussian-smeared resummation factor to the cross section without kT -smearing is plotted
as a function of

√
s for σT = 0.5 and 1 GeV. The results with σT = 0.5 and 1 GeV differ

from the matched cross section calculated without a Gaussian by at most ten percent for
µF = 0.5M and 2M , while the results at the default scale are even closer.

From the detailed consideration of the small-qT subtraction method, described in
section A.2, one can see that the effect of the kT -smearing on the total cross section is
suppressed as O(σ2

T /M
2) ∼ O(Λ2

QCD/M
2) if σT ∼ ΛQCD. In other words, these effect

follow a subleading power in our hard scale M ; it is a higher-twist effect.
The width of the “intrinsic” kT -distribution is expected to be increasing with energy,

due to increasing saturation scale (see e.g. ref. [77] and references therein), so that, at
high enough energies, the twist expansion will completely break down due to the effect
discussed above. However, as one can see from figure 13 this effects are unlikely to be the
main source of uncertainty in our calculation at LHC energies and even beyond.
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Figure 13. Left panel: the qT -dependence of the Gaussian smeared DLA resummation factor for
two values of σT (dashed curves). The DLA resummation factor without smearing (2.30) is shown
by solid curve for comparison. Right panel: the energy-dependence of the ratio of the matched
cross section obtained in the DLA with Gaussian smearing with σT = 0.5 and 1 GeV to the result
without smearing and its µF -scale variation.
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