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Abstract. The width di↵erence ∆Γs that can be extracted from lifetime mea-
surements of the two mass eigenstates of the B0

s − B̄0
s system is one of the key

flavor precision observables and has been experimentally measured at per cent
level accuracy. The current theory prediction is much less accurate and a siz-
able reduction of scale uncertainties can only be achieved by means of eval-
uating the uncalculated 2- and 3-loop QCD corrections. This is precisely the
issue addressed in this work where we report on the results that have been ob-
tained so far and explain some of the technical and conceptual challenges that
we encountered in the course of our calculations.

1 Introduction

Precision flavor observables constitute an important tool in the task of probing our under-
standing of the Standard Model (SM) and thus constraining discrepancies between theory
and experiments that may be interpreted as manifestations of beyond Standard Model (BSM)
physics. The B0

s − B̄0
s system happens to be an ideal laboratory for such investigations, where

we can extract three relevant physical quantities that are equally well accessible to theoretical
calculations and experimental measurements. These are the oscillation frequency ∆ms, the
width di↵erence ∆Γs and CP asymmetry in flavor-specific decays as

fs.
Theoretical investigations of ∆Γs allow us to quantify how well our perturbative calcu-

lations describe the physics that arises from the SM flavor sector. In principle, light BSM
particles that feebly interact with SM model fields could induce a shift in the SM value of the
width di↵erence. However, one normally tends to regard ∆Γs as a SM precision probe, since
its sensitivity to BSM physics (in particular the e↵ects of heavy particles) is rather limited.

The current status quo is that the experimental value [1–3] for ∆Γs from [4]

∆Γ
exp
s = (0.085 ± 0.004) ps−1. (1)

is much more precise than the most up-to-date theory prediction [5–10]

∆ΓMS
s = (0.088 ± 0.011pert. ± 0.002B,B̃S

± 0.014⇤QCD/mb ) ps−1, (2)

∆Γ
pole
s = (0.077 ± 0.015pert. ± 0.002B,B̃S

± 0.017⇤QCD/mb ) ps−1, (3)
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where we would like to attract the attention of the reader to the first uncertainty (denoted
as “pert.”) that stems from the uncalculated perturbative QCD corrections to the Bs-meson
mixing at 2 and 3 loops. Our project aims at calculating these corrections analytically and
providing new theory predictions for ∆Γs that should hopefully reduce the existing pertur-
bative uncertainties and allow for more meaningful comparisons between experimental and
theoretical values.

2 Calculation

Let us begin by explaining the procedure needed to obtain ∆Γs. The main ingredient is a
matching calculation between two e↵ective theories, where on the |∆B| = 1 side we have [11]

H|∆B|=1
e↵ =

4GFp
2

2
6666664− λ

s
t

⇣ 6X
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CiQi +C8Q8

⌘
− λs

u
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i )

+V⇤usVcb

2X
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CiQcu
i + V⇤csVub

2X
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CiQuc
i

3
7777775 + h.c., (4)

with λs
a = V⇤asVab, where Vi j are CKM matrix elements. The Wilson coefficients Ci are cal-

culated from matching SM to the |∆B| = 1 e↵ective Hamiltonian and are known at NNLO
accuracy [12]. Eq. (4) does not include evanescent operators E[Qi] [13, 14], although they
are of course properly taken into account in our calculation. Evanescent operators formally
vanish in 4 dimensions, as they are of O("), where " is the dimensional regularization pa-
rameter from d = 4 − 2". Their presence encodes the ambiguous nature of 4-dimensional
identities such as the Chisholm identity

γµγ⌫γλ = gµ⌫γλ + g⌫λγµ − gµλγ⌫ + i"µ⌫λσγσγ5 (5)

or Fierz relations in d dimensions. The fact that a matrix element of an evanescent operator
multiplying an " pole yields something of O("0) explains why the treatment of such operators
in higher order perturbative calculations requires great care. This is also one of the reasons
why the present calculation turns out to be highly nontrivial from the conceptual point of
view. We refer to our upcoming publication for the complete list of the |∆B| = 1 operators
relevant for our project at 3 loops. The operator basis at 2 loops is given in [15].

As far as the |∆B| = 2 side of the matching is concerned, the quantity we need to consider
is Γ12 from the relation ∆Γs ⇡ 2|Γ12| which depends on the absorptive part of a bilocal matrix
element constructed from time-ordered insertions of two H|∆B|=1

e↵ . Involving Heavy Quark
Expansion (HQE) [16–24] one can rewrite Γ12 as [8]

Γ12 = −(λs
c)2Γcc

12 − 2λs
cλ

s
uΓ

uc
12 − (λs

u)2Γuu
12 , (6)

with

Γab
12 =

G2
Fm2

b

24⇡MBs

h
Hab(z)hBs|Q|B̄si + eHab

S (z)hBs|eQS |B̄si
i
+ O(⇤QCD/mb), (7)

where z ⌘ m2
c/m

2
b. Our main interest is devoted to the matching coefficients Hab(z) and

eHab
S (z) which we want to determine at NNLO accuracy by calculating contributions from

perturbative QCD corrections to the relevant operators on both sides of the matching. The
4-fermion operators Q and Q̃S are defined as

Q = s̄iγ
µ (1 − γ5) bi s̄ jγµ (1 − γ5) b j , eQS = s̄i (1 − γ5) b j s̄ j (1 − γ5) bi, (8)
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Figure 1. Some of the |∆B| = 1 and |∆B| = 2 diagrams entering the bs̄ ! b̄s matching calculation.
Here (a) and (b) denote |∆B| = 1 contributions from Q2 ⇥ Q8 (2 loops) and Q1 ⇥ Q2 (3 loops), while (c)
and (d) represent 1- and 2-loop matrix elements of |∆B| = 2 operators Q̃s and Q.

where i and j denote the fundamental color indices of the b and s quarks. At intermediate
stages of our calculation tree-level matrix elements of further |∆B| = 2 arise so that it is useful
to mention them here

eQ = s̄iγ
µ (1 − γ5) b j s̄ jγµ (1 − γ5) bi QS = s̄i (1 − γ5) bi s̄ j (1 − γ5) b j. (9)

Apart from that we also must properly account for the 1/mb suppressed operator R0

R0 =
1
2

Q + QS + Q̃S , (10)

since, as has already been observed in [5], the unrenormalized matrix element of this operator
does not exhibit the 1/mb suppression. We would like to stress that the proper treatment of
these contributions from R0 is crucial to obtain correct matching coefficients at NLO and
beyond.

Finally, it is worth mentioning that the |∆B| = 2 NLO operator basis also comprises a
suitable set of evanescent operators which can be found in [15]. The NNLO operator basis
will be given in [25].

We choose to carry out our matching calculation on-shell, i. e. with p2
b = m2

b and p2
s =

m2
s . Since the s quark is taken massless we can choose a kinematics that allows us to set

ps = 0, which reduces our calculation to the evaluation of 2-point functions. Even though
we do not have external charm legs, mc still enters our calculation due to internal charm
lines induced by |∆B| = 1 operators and gluon self-energy subloops. From the calculational
point of view, the simplest situation arises in the massless charm limit which makes our
integrals depend only on a single scale mb. This is indeed the path we choose at 3 loops,
where our matching coefficients are accurate up to O(z0). At 2 loops we, however, perform
an asymptotic expansion in z up to first order.

At 2 loops we consider all possible insertions of |∆B| = 1 operators, i. e. permutations
of Q1,2, Q3−6 and Q8 in either of the two vertices. This also comprises the 2-loop double
insertion of Q8 that, strictly speaking, contributes to NNNLO. As far as the 3 loop calcula-
tion is concerned, only the double insertion Q1,2 (as the dominant contribution) it taken into
account. We then match the so-obtained 2- and 3-loop |∆B| = 1 amplitudes to the 1- and
2-loop |∆B| = 1 amplitudes respectively, as can be inferred from Fig. 1.

3 Technical details

Let us briefly comment on the calculational setup employed in this computation. All |∆B| =
1 and |∆B| = 2 Feynman diagrams are generated with Qgraf [26], while the insertion of
Feynman rules and the topology identification are done using our in-house codes q2e/exp
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[27, 28] or tapir [29]. Then, our well-tested calc framework written in FORM [30] takes
care of the amplitude evaluation, asymptotic expansions and further simplifications.

We follow two di↵erent strategies to deal with tensor multi-loop integrals appearing in
this calculation. In the one case we construct a set of suitable Dirac and color projectors (cf.
appendix of [15]) that leave us with scalar loop integrals only. In the other case we calcu-
late all required tensor reduction formulas [31] using FeynCalc [32–34] and Fermat [35] and
export them to FORM. We explicitly verify that both approaches lead to the same results,
including cases of diagrams with Dirac structures featuring a high number of Dirac matrices
(complicated projectors) and diagrams with multiple gluon propagators with a generic gauge
parameter (high rank tensor integrals). The implementation of the Feynman rules for various
4-fermion operators was also cross checked (on the level of selected diagrams) using Feyn-
Rules [36], FeynArts [37] and FeynCalc. The IBP reduction [38, 39] of the occurring loop
integrals is carried out using FIRE [40] and LiteRed [41].

As far as the master integrals are concerned, we mainly need to deal with single scale
propagator-type on-shell integrals. Up to 2 loops the corresponding analytic results can be
readily extracted from the literature [42, 43]. At 3 loops we encountered many integrals that
do not seem to be known in the literature. Luckily, all of them can be evaluated by directly
integrating the Feynman parametric representation (derived using Feyncalc) with the aid of
HyperInt [44]. To further simplify the HyperInt-results written in terms of Goncharov Poly-
logarithms (GPLs) [45] containing 6th root of unity, we made use of HyperLogProcedures
[46] and PolyLogTools [47]. Finally, every analytic result has been extensively checked
numerically with the aid of pySecDec [48–50] and FIESTA [51, 52].

Some new FeynCalc functions that were purposely developed during author’s work
on this project will become an official part of the upcoming FeynCalc 10 [53]
but are already publicly available and documented in the development version of
the package. These include FCFeynmanParametrize (Feynman parametrization of
loop integrals), FCLoopIntegralToGraph (graphical representation of loop integrals),
FCLoopFindIntegralMappings (mappings between master integrals similar to FindRules
in FIRE) or FCMatchSolve (extraction of matching coefficients or renormalization con-
stants).

4 Renormalization and matching

The renormalization of the bare amplitudes on both sides of the matching is rather involved
due to the large number of sources of UV-divergences. First of all, we employ the usual QCD
renormalization of quark fields, masses, ↵s and the gauge parameter ⇠, where the latter two
are relevant only at 3 loops for the |∆B| = 1 and at 2 loops for the |∆B| = 2 amplitudes. In
addition to that, we must also take care of the Wilson coefficients of the e↵ective operators
that, as it is customary in EFTs, happen to mix under the renormalization. More explicitly,
for each of the two e↵ective theories we have

( ~Wbare, ~Wbare
E ) = ( ~W ren, ~W ren

E )Z ⌘ ( ~W ren, ~W ren
E )
 
ZQQ ZQE

ZEQ ZEE

!
, (11)

where Wi denote the Wilson coefficients, while the renormalization matrix Z consists of four
submatrices describing the mixing of di↵erent operator types. In the case of ZQQ and ZEE we
have the mixing of physical and evanescent operators among themselves, while ZEQ governs
the mixing of evanescent operators into the physical ones. The submatrix ZQE is special in
the sense that it contains not only poles but also finite pieces. Those are chosen such, that in
the limit d ! 4 the contributions of evanescent operators to the renormalized amplitude must
vanish.
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the sense that it contains not only poles but also finite pieces. Those are chosen such, that in
the limit d ! 4 the contributions of evanescent operators to the renormalized amplitude must
vanish.

TheO(↵2
s) results for Z |∆B|=1 can be found in [54]. On the |∆B| = 2 side of the matching we

work with di↵erent sets of physical operators and investigate di↵erent choices of evanescent
operators. Each choice leads to a di↵erent 2-loop renormalization matrix, so that we find it
more convenient to compute Z |∆B|=2 in a separate calculation for each relevant operator basis.

While the renormalization procedure renders the bare amplitudes UV-finite, in general
they still contain IR divergences. Those can be regularized either dimensionally or by giving
the gluon a finite mass. The former makes the evaluation of the amplitudes simpler but
complicates the matching procedure. The main reason for this is the appearance of tree
level matrix elements of evanescent operators multiplying IR poles, e. g. hE(1)

1 i
(0)
/", in the

renormalized amplitudes. Such quantities are formally of O("0) so that they do not vanish in
the limit d ! 4. However, if the matching procedure is carried out in a proper way, these
terms will cancel in the matching as they should. To this end one has to write down the
|∆B| = 2 matching coefficients as an expansion not only in ↵s but also in ", i. e.

HO =
X

i, j≥0

H(i, j)
O ✏

j
✓
↵s

4⇡

◆i
. (12)

Notice that this applies not only to the physical but also to the evanescent operator coeffi-
cients. For an NNLO calculation, at LO the matching has to be carried out up to O("2), while
at NLO the O("1) accuracy is required. Finally, when matching the O(↵2

s) amplitudes, it suf-
fices to determine the Wilson coefficients at O("0). This procedure is explained in [6] and we
have explicitly verified that it works not only at 2 but also at 3 loops.

On the other hand, one might also choose to work with a finite gluon mass, which is
unproblematic for diagrams of operator insertions that do not contain 3- and 4-gluon vertices
i. e. for most of the 2-loop |∆B| = 1 and for all 1-loop |∆B| = 2 diagrams. In this case we
need to deal with an additional scale mg appearing in our master integrals but the matching
itself becomes much simpler. This is due to the fact that the UV-renormalized amplitudes are
manifestly free of " poles, so that one can immediately take the limit d ! 4, in which all
matrix elements of evanescent operators vanish. Furthermore, it is worth noting that it is not
necessary to compute 2-loop master integrals with full the mg dependence, as we are only
interested in the logarithms of mg that capture the IR divergences. Here it is fully sufficient
to perform an asymptotic expansion in mg, where we make use of the program asy.m [55, 56]
to reveal the contributing regions of each integral under consideration.

In our calculation we have explicitly verified that for selected 2-loop |∆B| = 1 correlators
the matching with mg = 0 and mg , 0 leads to exactly the same matching coefficients. In
the 3-loop case we contented ourselves with the dimensional regularization of IR divergences
and the fact that all IR poles explicitly cancel in the matching.

5 Results

An overview of the new matching coefficients that were obtained in our calculation is given
in Table 1, where the first column denotes relevant operator insertions on the |∆B| = 1 side of
the matching, the second column provides the existing literature result, and the third column
highlights our contribution. As one can easily see, in most cases only the so-called n f -
piece, i. e. the fermionic contributions, are currently known in the literature. In this sense
our work constitutes an important milestone in the task of obtaining complete predictions
that necessarily must incorporate both fermionic and nonfermionic contributions. We would
also like to stress that up to O(z) at 2 loops and O(z0) at 3 loops we explicitly confirm the
correctness of all previously computed matching coefficients. This is also true for the n f -
piece of the 3-loop correlator Q1,2 ⇥Q1,2 computed in [9], where the check required us to use
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Contribution Literature result This work
Q1,2 ⇥ Q3−6 2 loops, z-exact, n f -part only [10] 2 loops, O(z), full
Q1,2 ⇥ Q8 2 loops, z-exact, n f -part only [10] 2 loops, O(z), full

Q3−6 ⇥ Q3−6 1 loop, z-exact, full [57] 2 loops, O(z), full
Q3−6 ⇥ Q8 1 loop, z-exact, n f -part only [10] 2 loops, O(z), full
Q8 ⇥ Q8 1 loop, z-exact, n f -part only [10] 2 loops, O(z), full

Q1,2 ⇥ Q1,2 3 loops, O(
p

z), n f -part only [9] 3 loops, O(z0), full

Table 1. Overview of the results obtained in the course of this work.

the |∆B| = 1 basis transformation formulas at O(↵2
s) from [12] in order to convert our result

in the operator basis of [11] to the operator basis from [58]. Due to the still ongoing analytic
and numerical cross checks of the obtained results, we are not yet in the position to provide
an updated theory prediction for ∆Γs at NNLO accuracy. The 2-loop matching coefficients
for the Q1,2 ⇥ Q3−6 insertions have been recently made public [15], while the remaining 2-
and 3-loop contributions are expected to appear in the near future [25, 59].

In [15] we have shown that the inclusion of nonfermionic contributions to the 2-loop
result for Q1,2 ⇥ Q3−6 induces a sizable shift of ∆Γs as compared to the 1-loop result. To
this end it is sufficient to consider the ratio between full ∆Γs (comprising Q1,2 ⇥ Q1,2 and
Q1,2 ⇥ Q3−6 contributions up to O(↵s) and Q3−6 ⇥ Q3−6 contributions up to O(↵0

s)) and the
Q1,2 ⇥ Q3−6 piece only. With the 1-loop result for Q1,2 ⇥ Q3−6 we find

∆Γ
p,12⇥36,↵0

s
s

∆Γs
= 7.6% (pole),

∆Γ
p,12⇥36,↵0

s
s

∆Γs
= 6.1% (MS), (13)

while when adding the 2-loop Q1,2 ⇥ Q3−6 piece we obtain

∆Γ
p,12⇥36,↵s
s

∆Γs
= 0.3% (pole),

∆Γ
p,12⇥36,↵s
s

∆Γs
= 1.4% (MS). (14)

More details on the numerical ingredients of these comparisons can be found in [15]. The
captions “MS” and “pole” refer to the way how we treat the m2

b prefactor in Eq. (7). Here
we have the choice between regarding it as an MS or an on-shell mass. We would like to
stress that in both cases all masses apart from this m2

b prefactor are always treated in the MS
scheme.

6 Summary

We reported on the current status of our project which aims to achieve a sizable reduction
of the perturbative uncertainties in ∆Γs. This is needed to match the current experimental
precision of the width di↵erence in B0

s − B̄0
s mixing and can be accomplished by extending

the available matching calculations between |∆B| = 1 and |∆B| = 2 e↵ective theories to 2 and
3 loops for the relevant operator insertions.

At the first stage of this work we have already carried out the corresponding calculations
analytically by considering an expansion z ⌘ m2

c/m
2
b up to O(z) and O(z0) at 2 and 3 loops

respectively. While a part of our results has already been published in [15], we still need to
do more checks on the remaining contributions, especially at 3 loops. In the near future we
plan to publish full analytic results [25, 59] for all of the new matching coefficients obtained
in the course of this work and to provide a new update of the theory prediction for ∆Γs.
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Contribution Literature result This work
Q1,2 ⇥ Q3−6 2 loops, z-exact, n f -part only [10] 2 loops, O(z), full
Q1,2 ⇥ Q8 2 loops, z-exact, n f -part only [10] 2 loops, O(z), full

Q3−6 ⇥ Q3−6 1 loop, z-exact, full [57] 2 loops, O(z), full
Q3−6 ⇥ Q8 1 loop, z-exact, n f -part only [10] 2 loops, O(z), full
Q8 ⇥ Q8 1 loop, z-exact, n f -part only [10] 2 loops, O(z), full

Q1,2 ⇥ Q1,2 3 loops, O(
p

z), n f -part only [9] 3 loops, O(z0), full

Table 1. Overview of the results obtained in the course of this work.

the |∆B| = 1 basis transformation formulas at O(↵2
s) from [12] in order to convert our result

in the operator basis of [11] to the operator basis from [58]. Due to the still ongoing analytic
and numerical cross checks of the obtained results, we are not yet in the position to provide
an updated theory prediction for ∆Γs at NNLO accuracy. The 2-loop matching coefficients
for the Q1,2 ⇥ Q3−6 insertions have been recently made public [15], while the remaining 2-
and 3-loop contributions are expected to appear in the near future [25, 59].

In [15] we have shown that the inclusion of nonfermionic contributions to the 2-loop
result for Q1,2 ⇥ Q3−6 induces a sizable shift of ∆Γs as compared to the 1-loop result. To
this end it is sufficient to consider the ratio between full ∆Γs (comprising Q1,2 ⇥ Q1,2 and
Q1,2 ⇥ Q3−6 contributions up to O(↵s) and Q3−6 ⇥ Q3−6 contributions up to O(↵0

s)) and the
Q1,2 ⇥ Q3−6 piece only. With the 1-loop result for Q1,2 ⇥ Q3−6 we find

∆Γ
p,12⇥36,↵0

s
s

∆Γs
= 7.6% (pole),

∆Γ
p,12⇥36,↵0

s
s

∆Γs
= 6.1% (MS), (13)

while when adding the 2-loop Q1,2 ⇥ Q3−6 piece we obtain

∆Γ
p,12⇥36,↵s
s

∆Γs
= 0.3% (pole),

∆Γ
p,12⇥36,↵s
s

∆Γs
= 1.4% (MS). (14)

More details on the numerical ingredients of these comparisons can be found in [15]. The
captions “MS” and “pole” refer to the way how we treat the m2

b prefactor in Eq. (7). Here
we have the choice between regarding it as an MS or an on-shell mass. We would like to
stress that in both cases all masses apart from this m2

b prefactor are always treated in the MS
scheme.

6 Summary

We reported on the current status of our project which aims to achieve a sizable reduction
of the perturbative uncertainties in ∆Γs. This is needed to match the current experimental
precision of the width di↵erence in B0

s − B̄0
s mixing and can be accomplished by extending

the available matching calculations between |∆B| = 1 and |∆B| = 2 e↵ective theories to 2 and
3 loops for the relevant operator insertions.

At the first stage of this work we have already carried out the corresponding calculations
analytically by considering an expansion z ⌘ m2

c/m
2
b up to O(z) and O(z0) at 2 and 3 loops

respectively. While a part of our results has already been published in [15], we still need to
do more checks on the remaining contributions, especially at 3 loops. In the near future we
plan to publish full analytic results [25, 59] for all of the new matching coefficients obtained
in the course of this work and to provide a new update of the theory prediction for ∆Γs.
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