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Abstract

In this work we address the issue of large perturbative uncertainties in the theory prediction
for ∆Γs, the width difference in the B0

s − B̄0
s mixing process. To this aim we complete impor-

tant steps towards the full analytic result for the previously unknown Wilson coefficients
from the matching between |∆B| = 1 and |∆B| = 2 effective Hamiltonians at next-to-next-
leading order (NNLO) in the strong coupling constant. We provide a thorough discussion of
technical and conceptual difficulties behind this computation and give an outlook regarding
the availability of the new NNLO theory prediction for ∆Γs.
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1 Introduction

Oscillations of neutral meson systems such as K0− K̄0, D0− D̄0 and B0
q − B̄0

q with q = s, d between
their matter and antimatter states are an exciting manifestation of a genuine quantum mechani-
cal phenomenon that can be experimentally observed in collider experiments. In the case of the
B0

s − B̄0
s mixing there are three relevant physical observables for which theoretical predictions can

be confronted with experimental measurements. These are ∆Ms, ∆Γs and aq
fs, which denote the

oscillation frequency, the width difference and the flavor-specific CP-asymmetry respectively. In
this work our main interest is devoted to∆Γs, which is related to the imaginary part of the box di-
agrams describing the process bs̄→ b̄s. Owing to the absence of tree-level flavor changing neutral
currents (FCNCs) in the Standard Model (SM), we are dealing with a loop-induced process, where
the leading-order (LO) contribution starts at one loop. One of the motivations to consider ∆Γs in
more details concerns its role as a precision probe of the SM. In the Feynman diagrams relevant for
this quantity possible new physics contributions may arise only in form of light beyond Standard
Model (BSM) particles that are weakly coupled to the SM sector. This is very different from ∆Ms
which is on the contrary extremely sensitive to hypothetical heavy particles contributing through
loops. For this reason∆Γs is universally regarded as an important indicator for our understanding
of the SM flavor sector. As such, it has attracted wide interest from theory and experiment, where
the latter [1–3] has already achieved the per-cent level accuracy [4] with

∆Γ exp
s = (0.085± 0.004) ps−1. (1)

Unfortunately, the present day situation on the theory side is less favorable. The current most
up-to-date theoretical predictions [5–10]

∆ΓMS
s = (0.088± 0.011pert. ± 0.002B,B̃S

± 0.014ΛQCD/mb
) ps−1, (2)

∆Γ pole
s = (0.077± 0.015pert. ± 0.002B,B̃S

± 0.017ΛQCD/mb
) ps−1 (3)

exhibit large uncertainties from uncalculated QCD corrections to the Wilson coefficients (denoted
as “pert.”) that arise in the perturbative matching between H|∆B|=1

eff and H|∆B|=2
eff effective weak

Hamiltonians at two and three loops. The determination of these corrections by means of an
explicit analytic calculation is the main goal of this work.

2 Calculation

On the |∆B|= 1 side of the matching we employ the operator basis from [11] given by

H|∆B|=1
eff =

4GFp
2

�

−λs
t

�

6
∑

i=1

CiQ i + C8Q8

�

−λs
u

2
∑

i=1

Ci(Q i −Qu
i ) (4)

+V ∗usVcb

2
∑

i=1

CiQ
cu
i + V ∗csVub

2
∑

i=1

CiQ
uc
i

�

+ h.c.,

with λs
a = V ∗asVab, where Vi j denote CKM matrix elements and GF stands for the Fermi constant.

The Wilson coefficients Ci arise from the matching between SM diagrams and the |∆B|= 1 effec-
tive theory, where all energy modes heavier than the b quark mass mb are integrated out. We refer
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to [12] for the explicit definitions of the dimension-six operators Q i . Of these, Q1,2 are usually
denoted as current operators, while Q3−6,8 belong to the penguin category. In addition to that,
the operator basis also contains evanescent operators E[Q i] [13, 14] whose matrix elements are
of O(ε) (from d = 4 − 2ε) reflecting the fact that certain Dirac algebra relations such as Fierz
identities are ambiguous in dimensional regularization.

To obtain ∆Γs ≈ 2|Γ s
12| we need to evaluate

Γ s
12 =

1
2MBs

Abs〈Bs|i
∫

d4 x T H∆B=1
eff (x)H∆B=1

eff (0)|B̄s〉 , (5)

where T denotes time-ordering, MBs
stands for the meson mass and “Abs” specifies the absorptive

part of the bilocal matrix element. The quantity Γ s
12 can be decomposed into [5]

Γ s
12 = −(λs

c)
2Γ cc

12 − 2λs
cλ

s
uΓ

uc
12 − (λ

s
u)

2Γ uu
12 , (6)

Applying Heavy Quark Expansion (HQE) [15–23] one can express Γ ab
12 as

Γ ab
12 =

G2
F m2

b

24πMBs

�

Hab(z)〈Bs|Q|B̄s〉+ eHab
S (z)〈Bs|eQS|B̄s〉

�

+O(ΛQCD/mb), (7)

with z ≡ m2
c/m

2
b and |∆B = 2| operators

Q = s̄iγ
µ (1− γ5) bi s̄ jγµ (1− γ5) b j , eQS = s̄i (1− γ5) b j s̄ j (1− γ5) bi , (8)

where i, j stand for the color indices of the fermions. In addition to that, in intermediate expres-
sions one encounters color-switched versions of the operators given in Eq. (8) denoted as eQ and
QS . Notice that the NLO |∆B| = 2 operator basis also includes evanescent operators. Last but
not least, a particular linear combination of the operators Q, QS and Q̃S yields a 1/mb-suppressed
operator R0 [5,24] given by

R0 =
1
2

Q+QS + eQS +O
�

1
mb

�

. (9)

Beyond LO the matrix element of R0 develops corrections in αs that would not be 1/mb-suppressed
unless R0 is correctly renormalized. Further details regarding the |∆B|= 2 effective operators are
provided in [12] and [25].

In order to achieve the NNLO accuracy in the theory prediction for ∆Γs we need to extend the
knowledge of the Wilson coefficients Hab(z) and eHab

S (z) to O(α2
s ). This implies the evaluation

of all two-loop diagrams with two insertions of |∆B| = 1 operators Q1−6,8 and the computation
of the current-current correlator Q1−2 ×Q1−2 at 3-loops. Notice that the two-loop contribution
to Q8 ×Q8 is actually O(α3

s ), but in our framework it does not pose any additional difficulties to
obtain this result as a byproduct. All the above-mentioned diagrams on the |∆B| = 1 side are
then matched to one- and two-loop diagrams in the |∆B| = 2 effective theory (cf. Fig. 1). In the
matching we put the b quark external momenta on-shell, while setting the masses and external
momenta of the s quarks to zero. The two-loop diagrams are expanded in the charm mass up to
O(z), while at 3-loops we content ourselves with the z = 0 limit.

In general, we employ dimensional regularization to handle both UV and IR divergences. How-
ever, as a cross check at two loops we also introduce a finite gluon mass mg as an IR regulator. This
is needed to ensure that all subtleties [6] related to the treatment of evanescent operators with
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Figure 1: Sample ∆B = 1 and ∆B = 2 Feynman diagrams contributing to the process
bs̄ → b̄s. Here (a) and (b) represent ∆B = 1 contributions from Q2 ×Q8 (two loops)
and Q1 ×Q2 (three loops), while (c) and (d) show one- and two-loop matrix elements
of ∆B = 2 operators Q̃s and Q.

εUV = εIR (e. g. keeping O(ε2) and O(ε) contributions at LO and NLO for the NNLO matching)
are properly taken into account. The full agreement between the two-loop matching coefficients
obtained from mg 6= 0 and mg = 0 calculations provides a nontrivial consistency check of our
computations.

3 Technical details

Let us elaborate on the technical aspects behind this calculation. The generation of diagrams
with genuine 4-fermion operators always requires additional care due to the relative signs arising
from the corresponding vertices. These signs are usually not handled by the diagram generator
itself and need to be fixed by the code evaluating the corresponding amplitudes. A popular way
to sidestep this issue consists of introducing an auxiliary field (often called σ-particle cf. e. g.
[26]) that connects two fermion-fermion-σ vertices with each other. The Feynman rule for the
propagator of this particle contains no denominator, while the numerator must be chosen such,
that it reproduces the original color structure of the corresponding 4-fermion operator. In this case
the relative sings between diagrams containing the so prepared 4-fermion operators automatically
come out right. In our calculation we decided to employ both methods which serves as a cross
check for the correctness of the generated amplitudes.

For the purpose of creating diagrams with explicit 4-fermion vertices we implemented suitable
models in FEYNRULES [27] and exported them to FEYNARTS [28]. Notice that the inclusion of oper-
ators containing chains with more than 3 Dirac matrices requires some modifications of the FEYN-
RULES source code. By default, FEYNRULES chooses to simplify such chains using the Chisholm
identity for 3 Dirac matrices, which is highly undesirable in our calculation. This minor techni-
cal issue can be circumvented by commenting out the corresponding routine in the Processing
section of the file FeynArtsInterface.m. FEYNARTS does not fix the relative signs of 4-fermion
operators on its own, so in our case this task is handled by FEYNCALC [29–31]. This allows us to
generate representative diagrams at tree- and 1-loop level and compare the resulting amplitudes
to the expressions obtained using the σ-particle trick.

While FEYNARTS and FEYNCALC are mainly employed for doing cross checks and reproducing
selected 1-loop results from the literature, the actual calculation relies on a FORM-based [32]
framework. In the first stage we generate the required diagrams with QGRAF [33] (using σ-
particles) and process them via the C++ programs Q2E/EXP [34, 35]. Here Q2E is responsible
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Figure 2: Some of the nonfactorizing on-shell 3-loop master integrals occurring in our
matching calculation. A solid line denotes a massive propagator with mb, while a dashed
line corresponds to a massless propagator.

for inserting Feynman rules into the output of QGRAF and extracting the form of the graph rep-
resenting each of the generated diagrams. The latter information is needed for the graph-based
topology identification implemented in EXP. As an alternative to Q2E and the topology identifi-
cation routines of EXP we also employ a new PYTHON-based framework called TAPIR [36]. The
resulting amplitudes are processed using the FORM-based in-house CALC setup. The presence
of products of two Dirac chains resulting from the 4-fermion operators necessitates a dedicated
treatment of these algebraic structures. Here again we follow two different approaches that con-
sist of constructing a set of suitable Dirac and color projectors or performing tensor reductions.
More details on the construction of the projectors can be found in the appendix of [12]. For
the generation of tensor reduction identities applicable to 2- and 3-loop integrals with one exter-
nal momentum and tensor ranks up to 10, we employ the Tdec function available in FEYNCALC.
Motivated by the performance bottlenecks encountered during this project, the symmetrization
procedure for tensor indices implemented in Tdec has been rewritten from scratch using the al-
gorithm from [37]. Furthermore, to speed up the process of solving the resulting symbolic linear
equations, we augmented the public collection of interfaces between FEYNCALC and other HEP
tools, known as FEYNHELPERS [38], with a link to FERMAT [39], implemented as a new function
called FerSolve. Using these publicly available tools we were able to generate and validate all
the required tensor reduction rules and export them to FORM. For the purpose of the IBP reduc-
tion [40,41] we make use of FIRE 6 [42] and LITERED [43]. Owing to the excellent performance
of FIRE 6, the reduction itself does not pose any difficulties neither at two nor at three loops. For
example, the reduction of about 59,000 single scale on-shell three-loop integrals appearing in our
calculation can be performed in less than an hour on a laptop equipped with an 8-core CPU (AMD
Ryzen 4750U) and 32 GB of RAM. All master integrals encountered in this calculation are on-shell
two-point functions or tadpoles. The set of the master integrals at one- and two-loops resulting
from diagrams with massless gluons does not contain anything that is not already available in the
literature (cf. e. g. [46]). In particular, analytic results for all propagator-type two-loop on-shell
integrals with one mass scale can be found in [47].

The three-loop on-shell integrals with one mass scale (cf. Fig. 2) turn out to be sufficiently sim-
ple to be integrated directly from the Feynman parametric form using HYPERINT [48]. To visualize
the relevant integrals and derive their Feynman parametrizations we made use of the new FEYN-
CALC routines FCLoopIntegralToGraph and FCFeynmanParametrize that were specifically
developed for this project. A more thorough description of these functions will be provided with
the official release of FEYNCALC 10 [49], although the routines themselves are already publicly
available. For most of our integrals the analytic results obtained with HYPERINT involve com-
plicated Goncharov Polylogarithms (GPLs) [50] containing 6th root of unity that require further
simplification. To this aim we employed the packages HYPERLOGPROCEDURES [51] and POLY-
LOGTOOLS [52], which allowed us to arrive at very simple and compact results, at least for the
imaginary parts relevant for our computation. The constants entering our expressions for the
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imaginary parts of the integrals are

π, ln(2), ζ2, ζ3, ζ4, Cl2
�π

3

�

,
p

3, Li4

�

1
2

�

, ln

�

1+
p

5
2

�

, (10)

with Cl2(x) =
i
2

�

Li2(e−i x)− Li2(ei x)
�

. Explicit analytic results for all three-loop integrals entering
the NNLO prediction for∆Γs will be given in [25]. All the obtains results for master integrals have
been validated numerically using PYSECDEC [53–55] and FIESTA [56].

4 Renormalization and matching

The renormalization of the bare |∆B| = 1 and |∆B| = 2 amplitudes is done in the MS scheme.
However, the QCD renormalization constants alone are not sufficient to render the amplitudes UV
finite. In addition to that, one must also include the operator renormalization. In general, when
renormalizing Wilson coefficients Wi of our operators we have

( ~W bare, ~W bare
E ) = ( ~W ren, ~W ren

E )Z ≡ ( ~W
ren, ~W ren

E )

�

ZQQ ZQE
ZEQ ZEE

�

. (11)

Here the submatrices ZQQ and ZEE describe the mixing of physical and evanescent operators among
themselves, while the mixing of evanescent operators into the physical ones and vice versa is
governed by ZQE and ZEQ respectively. For the |∆B| = 1 theory in the CMM basis, the NNLO
renormalization matrix Z has been computed in [57]. As far as the |∆B|= 2 theory is concerned,
we are not aware of a reference that provides full Z including all four submatrices. For this reason
we computed the required |∆B| = 2 renormalization matrix in a separate calculation, where the
external momenta of b and s quarks were put off-shell and set to zero, while both quarks were
given the same mass to regulate IR divergences. The so-obtained matrices for NLO and NNLO will
be given in [58] and [25].

For calculations performed with a finite gluon mass, the UV-renormalization renders the |∆B|= 1
and |∆B| = 2 amplitudes manifestly finite i. e. free of ε-poles. In the case of massless gluons the
renormalized amplitudes still contain IR poles which, however, cancel out in the matching as they
should.

Upon putting everything together we obtain final contributions to the matching coefficients
for all operator insertions at two loops at O(z) and preliminary (up to the finite renormalization
of R0) results for the three-loop correlator Q1,2 ×Q1,2 at O(z0). Regarding the two-loop results
we observe full agreement between our mg = 0 and mg 6= 0 calculations. To put our work into
perspective, let us briefly enumerate the existing results and explain how they are related to the
corrections obtained here.

The two-loop Q1,2 ×Q1,2 contribution with full z-dependence is known since many years [5]
and was initially computed in the historical |∆B| = 1 operator basis and the old |∆B| = 2 basis
made of Q and QS operators. We reproduce this result at O(z) and explicitly verify the correctness
of the basis change formulas given in [11] and [5] for |∆B|= 1 and |∆B|= 2 theories respectively.
The same also applies to the one-loop Q1,2 ×Q3−6 and Q1,2 ×Q8 contributions from [5]. We also
reproduce the one-loop result for Q3−6×Q3−6 from [24]. The fermionic parts of the two-loop con-
tributions Q1,2×Q3−6 and Q1,2×Q8 and of the one-loop contributions Q3−6×Q8 and Q8×Q8 with
full z-dependence were computed in [10]. The N f -parts of our full matching coefficients agree
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with those results at O(z). Finally, we also reproduce the N f -piece of the three-loop Q1,2 ×Q1−2
correlator given in [9] (at O(

p
z)) in the z = 0 limit.

Therefore, apart from extending the existing incomplete results for Q1,2×Q1−2 at three loops,
Q1,2 ×Q3−6 and Q1,2 ×Q8 at two loops and Q3−6 ×Q8 as well as Q8 ×Q8 at one loop, we also
obtain new results for Q3−6×Q8 and Q8×Q8 at two loops. Since the explicit values of the matching
coefficients are too lengthy to be presented here even for Nc = 3, we refer to [12] for the already
published results for the two-loop contribution to Q1,2 ×Q3−6 and to [25, 58] for the remaining
operator insertions.

In view of the still ongoing cross checks for the nonfermionic part of our three-loop result we
are not yet in the position to provide an updated prediction for ∆Γs. However, we observe that as
far as the two-loop contributions are concerned, the largest relative shift of∆Γs is generated by the
Q1,2×Q3−6 combination. Taking into account all current-current and current-penguin corrections
up to O(αs) and penguin-penguin contributions up to O(α0

s ), the ratio of the current-penguin
contribution to ∆Γs evaluates to

∆Γ
p,12×36,α0

s
s

∆Γs
= 7.6% (pole),

∆Γ
p,12×36,α0

s
s

∆Γs
= 6.1% (MS), (12)

Including our new two-loop current-penguin correction both in the numerator and denominator
of Eq. (12) we find

∆Γ
p,12×36,αs
s

∆Γs
= 0.3% (pole),

∆Γ
p,12×36,αs
s

∆Γs
= 1.4% (MS). (13)

which implies a noticeable reduction of the existing perturbative uncertainties. With “MS” and
“pole” we denote different ways to treat the m2

b prefactor in Eq. (7). We can either evaluate it in
the MS or in the on-shell scheme. Notice, however, that even in the pole scheme all quantities
except for the m2

b prefactor are handled in the MS scheme. More details on the numerical input
parameters entering these comparisons can be found in [12].

5 Summary

In order to reduce perturbative uncertainties entering theory predictions for the width difference
∆Γs in the B0

s − B̄0
s mixing, we have calculated the previously unknown QCD corrections to this

quantity at two- and three-loop accuracy for all relevant combinations of |∆B|= 1 operator inser-
tions. Our calculation is done in a fully analytic fashion including the evaluation of new three-loop
on-shell master integrals. For simplicity, we expand in the ratio m2

c/m
2
b up to first order at two

loops and set mc = 0 at three loops. In this limit we reproduce all already existing results from
the literature. Since many of the literature results contain only fermionic contributions, while
our computation includes both n f - and non-n f pieces, this work is obviously instrumental to the
task of improving theory predictions for ∆Γs. A part of our new matching coefficients has already
been published in [12] while the remaining two- and three-loop contributions will appear in [58]
and [25] respectively. For the future we also plan to increase the accuracy in m2

c/m
2
b by including

higher orders in this parameter or possibly by calculating the relevant master integrals with full
mc dependence.
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