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Abstract

In these proceedings we discuss the relation between the kinetic and the on-shell schemes
for the bottom and the charm quarks and present the methods for the calculation of the mass
relation to higher orders in perturbative QCD. The bottom mass in the kinetic scheme is a
pivotal input parameter in the inclusive determination of |Vcb| from B → Xc`ν` decays. By
combining the relation between the kinetic and the on-shell mass with well-know results for
the MS-on-shell conversion, we obtain a prediction for mkin

b
based on precise determinations

of mb(mb).

1 Introduction

The prediction of inclusive B → X c`ν` decays is closely intertwined with the mass schemes for
the charm and the bottom quarks. The theoretical framework for this class of decays, the Heavy
Quark Expansion (HQE), is well established and allows us to predict the semileptonic total rate and
the moments of various kinematic spectra as a double expansion in the strong coupling constant
αs(mb) and ΛQC D/mb. The size of the parturbative QCD corrections strongly depends on the
heavy-quark mass scheme, which is crucial to obtain precise predictions. The on-shell scheme is
affected by renormalon ambiguity and yields a bad behaviour of the perturbative series [1,2]. For
instance, to leading order in ΛQC D/mb, the αs expansion for the semileptonic width Γsl behaves
as:

Γsl =
G2

F |Vcb|2(mOS
b )

5

192π3
f (ρ)
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π
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π
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1

m2
b

�

, (1)

where GF is the Fermi constant, f (ρ) = 1 − 8ρ − 12ρ2 logρ + 8ρ3 − ρ4, αs ≡ α(5)s (m
OS
b ) and

p
ρ = mOS

c /m
OS
b = 0.25. Both at O(α2

s ) and O(α3
s ) one observes a shift of about −6% which

shows that the preturbative expansion is badly behaved. Also in the MS scheme, the αs correc-
tions to Γsl have a bad convergence. Indeed, removing the infra-red (IR) renormalons by us-
ing a short distance mass definition does not guarantee a fast convergent perturbative series.
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The overall factor m5
b generates power-enhanced terms when converting to another scheme, e.g.

mOS
b = m̃b[1+ c1αs/π+ c2(αs/π)2]:

Γsl =
G2

F |Vcb|2m̃5
b

192π3
f (ρ)

�

1+ (−1.78+ 5c1)
�αs

π

�

+ (−13.1− 8.9c1 + 10c2
1 + 5c2)

�αs

π

�2�

(2)

Terms like
�5

k

�

ck
1α

k
s can spoil the first orders in the perturbative series. The heavy-quark kinetic

scheme (mkin
Q ) was introduced in [3,4] to resum in the semileptonic rate such enhanced terms via

a suitable short-distance definition. Global fits of inclusive semileptonic decays in [5–8] have used
the kinetic scheme for the definition of the bottom mass and the non-perturbative parameters. An
alternative approach is given by the 1S scheme developed in [9–11] which has been used also for
the extraction of the inclusive |Vcb| in [12].

The relation between the on-shell mass and the kinetic mass was computed up to O(α2
s ) more

than 20 years ago [13]. The need for a further improvement up to O(α2
s ) is two fold. On the one

hand, a prediction of the partonic rate up to O(α3
s ), necessary to reduce the theoretical uncertainty

on the semileptonic rate, requires the mass conversion formula up to the same order [14]. On
the other hand, global fits must take advantage of several external constraints to improve the
extraction of |Vcb|. The semileptonic B decays alone precisely determine only a linear combination
of the heavy quark masses, approximately given by mb − 0.8mc [5]. So, in order to break the
degeneracy one must include external constraint for the bottom (or the charm) mass. These mass
values are obtained, for instance, from lattice QCD [15] or sum rules [16] which are usually given
in the MS scheme. Before the calculation in [17,18], the O(α2

s ) scheme-conversion uncertainty of
mkin

b was much larger than the error of mb(mb).
In these proceedings we review the definition of the kinetic mass of the heavy quark and

provide an explicit derivation of the leading order result. We discuss also the strategy employed
for the calculation of the O(α3

s ) corrections recently presented in [17,18].

2 The kinetic mass

The definition of the kinetic mass is based on the relation between the masses of a heavy meson
MH and the corresponding heavy quark mQ, derived within the Heavy Quark Effective Theory
(HQET):

MH = mQ +Λ+
µ2
π −

dH
3 µ

2
G

2mQ
+O

�

1

m2
Q

�

, (3)

where dH = 3 for pseudo-scalar mesons and dH = −1 for vector mesons. The parameters µ2
π,µ2

G
are matrix elements of local operators in HQET while Λ is the heavy meson’s binding energy in
the mQ→∞ limit.

From (3) we obtain the relation between the on-shell and the kinetic mass by identifying
MH → mOS

Q – they both are scale independent – and mQ → mkin
Q ; the relevant HQET parameters

are computed in perturbation theory. The averaged meson mass provides the definition of the
mass relation up to order 1/mQ [4]:

mOS
Q = mkin

Q (µ) + [Λ(µ)]pert +
[µ2
π(µ)]pert

2mkin
Q (µ)

+O

�

1

m2
Q

�

. (4)
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The scale µ entering the definition of mkin
Q and the parturbative version of the HQET parameters

plays the role of a Wilsonian cutoff with ΛQCD � µ� mQ. It allows to separate short- and long-
distance effects in the heavy quark decay.

Q

Q

J

(a)

J

Q

q

k
p

p′

(b)

J

Q

q

k
p

p′

(c)

Figure 1: Scattering of a heavy quark Q out of a current J (left). Feynman diagrams for
the single-gluon emission at O(αS) (center, right).

The perturbative versions of the HQET parameters are most conveniently computed by making
use of the Small Velocity (SV) sum rules [3]. We consider the scattering of a heavy quark Q induced
by a generic current J (as shown in Fig. 1(a)). The exact nature of the current J is irrelevant, we
can use for convenience a scalar current J = Q̄(x)Q(x) or a vector current Jµ = Q̄(x)γµQ(x). The
current J excites the quark Q causing the emission of gluons and/or light quarks. We denote the
generic multi-particle final state with XQ and we work in the rest frame of the initial quark Q. The
excitation energy ω of XQ is defined by

ω= q0 − qmin
0 = q0 −

�
Ç

~q2 +m2
Q −mQ

�

, (5)

where q = (q0, ~q) is the four-momentum transferred by the current J to the system. Let us denote
with W (ω, ~v) the structure function for the process, i.e. the squared matrix element, and with
~v = ~q/mQ the velocity of the state XQ.

We consider such scattering process in the heavy-quark mass limit mQ →∞ and in the SV
limit, i.e. the limit in which the XQ ’s velocity is small |~v| � 1. The Operator Product Expansion
tells us that in this limit we can relate the moments of W (ω, ~v) w.r.t. the excitation energy ω to
the HQET parameters, in particular

[Λ(µ)]pert = lim
~v→0

lim
mQ→0

2
~v 2

∫ µ

0 ωW (ω, ~v) dω
∫ µ

0 W (ω, ~v) dω
,

[µ2
π(µ)]pert = lim

~v→0
lim

mQ→0

3
~v 2

∫ µ

0 ω
2 W (ω, ~v) dω

∫ µ

0 W (ω, ~v) dω
. (6)

These are the SV sum rules which provide us with the rigorous definition of the perturbative HQET
parameters in the kinetic mass formula.

3 The kinetic mass as a threshold mass

To calculate the relation between the kinetic mass and the on-shell mass in (2) we have to consider
all possible perturbative QCD corrections to the structure function W (ω, ~v), order by order in αs.

3
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To this end in [17,18] we developed the following strategy.

• We use the optical theorem to compute the structure function W , i.e. we consider multi-loop
diagrams for bJ → bJ forward scattering (see Fig. 2) and take their discontinuity.

• We calculate W only to leading order in a ~v2 andω expansion. This means we are interested
in the following decomposition

W (ω, ~v) =Welδ(ω) +Wreal
~v2

ω
θ (ω) +O(~v4,ω0). (7)

The first term on the r.h.s. arises from tree-level and all-virtual diagrams (which have zero
excitation energy) while Wreal comes from real emission contributions.

• Insert the αs expansion of Wel and Wreal into the SV sum rules and re-expand the ratios in
αs. For instance for µπ we have:

[µπ(µ)]pert = lim
~v→0

lim
mQ→∞

3
~v 2

∑

n=1

αn
s

∫ µ

0

ω2 ~v
2

ω
W (n)

real(ω, ~v)dω

�

∑

n=0

αn
s W (n)

el . (8)

Equation (8) shows that terms of O(~v4) or higher are eliminated by the limit ~v→ 0. More-
over, we retain only the leading 1/ω part since higher orders, which scale as (ω/mQ)n, are
eliminated by the limit mQ → +∞. Due to the factors ωk in the integrand of the numera-
tor, the δ-function distribution in Eq. (7) does not contribute to the numerator but only to
the denominator. Thus virtual corrections are needed to one order less than the real ones.
Vice versa, we discard real corrections at the denominator since, after expanding in αs, they
become of order ~v 4 and vanish in the ~v→ 0 limit.

• For the practical calculation, we express the non-relativistic quantities ω and ~v in terms of
Lorenz invariants. Let us define

y ≡ m2
Q − s = −ω

�

2mQ

p

1+ ~v 2 +ω
�

= −mQω(2+ ~v
2) +O(ω2, ~v 4) , (9)

q2 ≡
�

mQ

�p

1+ ~v 2 − 1
�

+ω
�2
−m2

Q~v
2 = −mQ ~v

2(mQ −ω) +O(ω2, ~v 4) . (10)

This allows us to take the non-relativistic limits lim~v→0 and limmQ→∞ by expanding W
around the one-particle threshold limit at s = (p + q)2 = m2

Q and subsequently expand in
q. In fact, the limmQ→∞ limit corresponds to an expansion in y = m2

Q− s ≤ 0, the difference
between the Mandelstam variable s and the position of the threshold at s = m2

Q. We realise
the expansion with the help of the method of regions [19,20]. The expansion ~v→ 0, on the
other hand, reduces to a naive Taylor expansion in q.

As an explicit example, let us derive the mass relation to order αs. We start with the structure
function at tree-level: W (0). The scattering amplitude is simply iM(0) = u(p′)Γu(p) at O(α0

s ),
where p (p′) is the momentum of the incoming (outgoing) heavy quark. We do not need to
specify the current J = Q(x)ΓQ(x), as its dependence will drop out in the end. W (0) is obtained
by performing the one-particle phase-space integration:

W (0) =

∫

d3p′

(2π)32p′0
|M(0)|2(2π)4δ4(p+ q− p′) = (2π)δ(s−m2

Q)|M(0)|2, (11)

4
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as expected by the optical theorem. The integration w.r.t. ω gives
∫ µ

0

dω (2π)δ(s−m2
Q)|M(0)|2 =

∫ µ

0

dω(2π)δ(−y)|M(0)|2 '
π

mQ
|M(0)|2, (12)

since y ∼ −2mQω. This is the denominator in Eq. (8). We define for later discussion

H =
π

mQ
|M(0)|2, U (0)(ω, ~v) = 2δ(s−m2

Q) = 2δ(−y). (13)

We then consider the amplitudes for the one-gluon emission shown in Fig. 1(b) and 1(c) in
the threshold limit. The first amplitude with the gluon emitted before the interaction with the
current can be written in the following way:

iM(1)
b = u(p′)Γ

i(/p− /k+mQ)

(p− k)2 −m2
Q

(−i gsγ
µ)u(p)ε?µ ' u(p′)Γu(p)

�

− gs
p · ε?

p · k

�

+O(|y|/m2
Q) (14)

where εµ(k) and k are the polarisation vector and the momentum of the gluon, respectively. We
expanded the propagator in the limit |k| ∼ y/mQ � mQ. What we obtain is the usual Eikonal
factorisation. In the second diagram 1(c) the heavy quark propagator is

1

(p+ q)2 −m2
Q

=
1

s−m2
Q

= −
1
y

, (15)

so the amplitude factorises as follows:

iM(1)
c = u(p′)(−i gsγ

µ)
i(/p+ q+mQ)

(p+ q)2 −m2
Q

u(p)ε?µ ' u(p′)Γu(p)

�

− gs
2P · ε?

y

�

+O(|y|/m2
Q), (16)

with P = p+q. Around threshold, the second diagram does not reduce to the usual Eikonal term.
Overall, around the one-particle threshold the amplitude factorises as follows:

iM(1) = iM(1)
b + iM(1)

c ' −gs

�

P · ε?

y
+

p · ε?

p · k

�

u(p′)Γu(p). (17)

Evaluating the squared amplitude, summing over the polarisation states and integrating w.r.t. the
gluon phase-space we obtain

W (1)
real = |M

(0)|2

× (4παs)

∫

d3k
(2π)32k0

d3p′

(2π)32p′0

�

4(m2
Q − y)

y2
+

m2
Q

(p · k)2
+

4m2
Q − 2y − 2q2

y(p · k)

�

(2π)4δ4(P − k− p′).

(18)

Phase-space integration is most easily computed by expanding the integrand in the small velocity
limit |~v| � 1 (note that before we used only the threshold limit |y| � m2

Q). We obtain

W (1)
real =

π

mQ
|M(0)|2 ×

4CF

3
αs

π

q2

y
θ (−y) +O(y0, (q2)2). (19)

5
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We can write

W (1) = H U (1)(ω, ~v) with U (1)(ω, ~v) =
4CF

3
αs

π

q2

y
θ (−y) +O

�

y0, (q2)2
�

. (20)

This shows why the HQET parameter definitions are independent on the choice of the current: H
explicitly cancel in the SV sum rules in Eq. (6), leaving the infra-red universal function U (1)(ω, ~v)
to control the heavy-quark mass definition. U (1)(ω, ~v) yields the well-known perturbative version
of the HQET parameters to O(αs) [4]:

[Λ(µ)]pert = lim
~v→0

2
~v2

∫ µ

0

dωωU (1)(ω, ~v) =
4CF

3
αs

π
µ,

[µ2
π]pert = lim

~v→0

3
~v2

∫ µ

0

dωω2 U (1)(ω, ~v) = CF
αs

π
µ2. (21)

The mass relation to first order in αs is therefore

mOS
Q = mkin

Q +
αs

π
CF

�

4
3
µ

mkin
Q

+
1
2

µ2

(mkin
Q )2

+O(µ3)

�

+O(α2
s ). (22)

4 Details of the calculation to second and third order

Figure 2: Sample Feynman diagrams for the scattering process of an external current
(wavy line) and a heavy quark (solid line). Gluons are represented by curly lines.

Let us now summarise the strategy of Ref. [17,18] for higher-order calculations. We generated
one-,two- and three-loop four-point Feynman diagrams with qgraf [21] and used FORM [22] for
algebraic manipulations. Afterwards, we expanded all loop momenta according to the rules of
asymptotic expansion which leads to a decomposition of each integral into regions in which the
individual loop momenta either scale as hard or ultra-soft. In this respect, it was essential to
choose properly the routing of loop momenta to reveal all regions. For each diagram we have
cross-checked this using the program asy [23].

The contributions where all loop momenta are hard can be discarded since there is no discon-
tinuity. The regions with both hard and ultra-soft momenta are expected to cancel after renor-
malization and decoupling of the heavy quark from the running of the strong coupling constant.
Nevertheless we performed an explicit calculation of the uh region at two loops, uuh and uhh
regions at three loops. The explicit cancellation represented a crucial consistency check. The
physical result for the quark mass relation is solely provided by the purely ultra-soft contributions.

After the various expansions, our initial four-point functions reduced to two-point functions.
During this step, Feynman denominators become linearly dependent and a partial fraction decom-
position was needed in order to obtain integral families with linearly independent propagators.

6
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To automate the procedure we used the program LIMIT [24]. Reduction of the integrals to master
integrals was performed with the programs FIRE [25] and LiteRed [26].

We found 1, 3 and 20 ultra-soft master integrals at one-, two- and three-loop order which
needed a novel analytic calculation. At one and two loops they are easily expressed in terms of
Euler’s Γ functions with exact dependence on the dimensional regulator ε= (4−d)/2. Also eleven
of the three-loop master integrals have such convenient form. For the remaining eight integrals,
we obtained the necessary terms in the ε-expansion through Mellin-Barnes representations and
the use of MB package [27,28]. The analytic expressions were obtained by closing the integration
contour of the Mellin-Barnes integrals and summing the pole residues with Sigma [29], or also
by performing high-precision numerical integrations and utilising the PSLQ algorithm [30] to
reconstruct the analytic form. For one integral where the Mellin-Barnes method was not successful,
we introduced a second mass scale x in one of the heavy quark propagators. We derived a set of
differential equations [31, 32] in x , applied boundary conditions at x = 0 where the integrals
could be analytically computed, and then evaluated the solution for x = 1 which provided the
desired results.

We considered also for the first time finite charm mass effects in the mass relation for the
bottom quark both at O(α2

s ) and O(α3
s ). All charm quark mass effects in the nl = 4 flavour theory

are decoupling effects, even if the bare three-loop diagrams have a non-trivial dependence on
mc/mb which eventually cancels out after renormalization. Therefore, the kinetic mass for the
bottom can be expressed in term of α(3)s without an explicit occurrence of mc . The transition from
α(3)s to α(4)s generates finite mc effects as log(µ2

dec/m
2
c ) terms, where µdec is the scale where the

charm quark is decoupled.

5 Results

The explicit expressions for the relation between the kinetic and the on-shell mass is given in [17,
18]. To obtain the conversion formula between the MS and the kinetic scheme, we replaced the
on-shell mass with the MS mass using the corresponding three-loop relation [33–36]. Our results
are implemented in the programs (C)RunDec [37] and REvolver [38].

As an example, we show how to convert with RunDec the bottom mass from the MS scheme to
the kinetic scheme. We use as input parameters the FLAG averaged values [15]with N f = 2+1+1
quark flavours: mb(mb) = 4.198(12) GeV and mc(3 GeV) = 0.988(7) GeV. We set the Wilsonian
cutoff µ = µWC = 1 GeV and α(5)s (MZ) = 0.1179 [39]. In Mathematica, first we load the RunDec
package and set the relevant parameters:

In[] := <<RunDec.m;
In[] := {mbMS, mub, mcMS, muc} = {4.198, 4.198, 0.988, 3};
In[] := {as4, mus, muWC} = {0.224262, mbMS, 1};

The function that converts mb(mb) to mkin
b is mMS2mKIN which receives as input values mb(µb),

{mc(µc),µc}, α
(n f )
s (µs), µs, µWC, nloops and a string either "A","B","C" or "D", which selects one

of the schemes for the treatment of mc effects considered in [17]. The value obtained by RunDec
is

In[] := mbK = mMS2mKIN[mbMS, {mcMS, muc}, AA*as4, mus, muWC, 3, "B"]
In[] := mbK /. AA->1

7
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Out[] = 4.198 + 0.261322 AA + 0.0787718 AA^2 + 0.0268024 AA^3
Out[] = 4.5649

To estimate the theoretical uncertainty associated to the conversion formula we use half of the
three-loop correction as the size of the unknown higher orders. This leads to an uncertainty of
about 15 MeV to O(α3

s ). The same approach applied to the two-loop mass relation leads to an
uncertainty of about 40 MeV so the three-loop formula reduces the uncertainty by about a factor
of two. Our final prediction for the kinetic mass of the bottom quark is

mkin
b (1 GeV) = 4.565 (15)th(13)lat GeV= 4.565 (20) GeV, (23)

where the first uncertainty (th) comes from the conversion formula while the second (lat) is the
error of mb(mb) from lattice average.

6 Conclusion

We presented the relation between the on-shell mass and the kinetic mass, showing an explicit
calculation of the first-order correction. We also summarised the method which we employed to
determine the conversion formula up to three-loop order. This was achieved by a suitable threshold
expansion of the relevant structure function entering the SV sum rules. Our strategy is in principle
extendable to four loops, if such precision will ever become necessary in the future. Our results
can be most easily utilised via the RunDec or REvolver implementations. The new correction
terms at three loops reduce the uncertainty due to scheme conversion by about a factor two. Our
results have been crucial to reduce the uncertainty in the inclusive |Vcb| determination [8] and
they will be also necessary in future theoretical updates of |Vcb| after incorporating new Belle II
data.
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