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Over the last decade the gradient flow formalism has become an important tool for lattice simula-

tions of Quantum Chromodynamics. It offers remarkable renormalization properties which pave

the way for cross-fertilization between perturbative and lattice calculations. In this contribution

we report on the construction of the flowed operator product expansion for the current-current

operators of the electroweak Hamiltonian at NNLO QCD. This allows for simpler transforma-

tions between lattice and perturbative schemes and might reduce the uncertainties of theoretical

predictions for low-energy flavor observables.
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1. Introduction

Flavor observables play an important role in the search for new physics beyond the Standard

Model (SM). Theoretical predictions of such flavor observables are usually calculated in the

effective theory of weak interactions described by an effective Hamiltonian [1]. Typically, the

Wilson coefficients are derived from a perturbative matching calculation to the SM (or a particular

model for new physics). Depending on the process, their SM expressions are known through next-

to-leading order (NLO) or next-to-next-to-leading order (NNLO), see e.g. Refs. [1–5]. On the other

hand, the evaluation of matrix elements of the higher-dimensional composite operators requires

non-perturbative treatment as provided by lattice QCD, for example. Matching the renormalization

conditions of these two factors is an important source of uncertainties for theoretical predictions in

flavor physics [6].

The gradient flow formalism (GFF) [7] provides an elegant solution to this problem. It can

be viewed as a regularization scheme which applies to lattice as well as perturbative calculations.

Composite operators are finite after renormalization of the QCD parameters and the involved fields,

without the need for additional operator renormalization [8]. This implies that there is no mixing

among these operators under the renormalization group.

In this contribution we consider the current-current operators. Through a suitable basis trans-

formation our results also apply to |Δ� | = 2 transitions such as ��̄ or   ̄ mixing. We introduce

the relevant operators in Section 2 and their flowed counterparts in Section 3. In Section 4 we

then derive the flowed operator product expansion (OPE) [9–11] for the electroweak Hamiltonian

through NNLO. We conclude in Section 5.

Through NLO this strategy has been performed in Ref. [12], albeit in a different operator basis.

2. Operator basis

We schematically write the effective Hamiltonian as

Heff = −4�F√
2
+CKM

∑

=

�=O= (1)

where �F denotes the Fermi constant and +CKM the relevant elements of the Cabbibo-Kobayashi-

Maskawa (CKM) matrix [1]. The Wilson coefficients �= capture the perturbative effects, whereas

matrix elements of the operators O= describe mostly non-perturbative effects.

For the physical current-current operator basis we choose [13]

O1 = −
(

k̄1,LW`)
0k2,L

) (

k̄3,LW`)
0k4,L

)

,

O2 =
(

k̄1,LW`k2,L

) (

k̄3,LW`k4,L

)

,
(2)

where our convention for the color generators is1

[)0, )1] = 5 012) 2, Tr()0)1) = −)RX
01 (3)

1This convention differs from the one of Ref. [13] which is the reason for the sign difference in O1 between that paper

and Eq. (2).
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and we adopt Euclidean space-time. The subscript L denotes the left-handed component of the

spinors

kR/L = %±k =
1
2
(1 ± W5)k. (4)

The dependence of the fields on the space-time variable G is suppressed here and in what follows.

Throughout the calculation we assume the quark flavors k1, . . . , k4 to be mutually distinct. All

penguin operators as well as the chromomagnetic operator do not contribute in this case. By

a suitable basis transformation, our results apply also to the cases corresponding to |Δ� | = 2

processes, i.e. k1 = k3 and/or k2 = k4 as long as k2 ≠ k1 ≠ k4 ≠ k3 ≠ k2.

Working in dimensional regularization with � = 4 − 2n , one has to introduce so-called

evanescent operators which vanish for � = 4, but mix with the physical operators at higher orders

in perturbation theory [14]. However, one can prevent the physical operators from mixing into

the evanescent operators by a finite renormalization such that all Green’s functions of evanescent

operators vanish [14–16]. Our choice for the evanescent operators is the same as in Ref. [13].

3. Flowed operators

In the GFF, one defines flowed gluon and quark fields �0` = �0` (C) and j = j(C) as solutions

of the flow-equations [7, 17]

mC�
0
` = D01a �1a` + ^D01` ma�

1
a ,

mC j = Δj − ^m`�0`)0j, mC j̄ = j̄
←−
Δ + ^ j̄m`�0`)0,

(5)

with the initial conditions

�0` (C = 0) = �0`, j(C = 0) = k, (6)

where �0` and k are the regular gluon and quark fields, respectively, and

D01` = X01m` − 5 012�2`, Δ = (m` + �0`)0) (m` + �1`)1),
�0`a = m`�

0
a − ma�0` + 5 012�1`�2a .

(7)

The parameter ^ is arbitrary and drops out of physical quantities; we will set ^ = 1 in our calculation,

because this choice reduces the size of the intermediate algebraic expressions.

Our practical implementation of the GFF in perturbation theory follows the strategy developed

in Ref. [8] and further detailed in Ref. [18]. On the one hand, it amounts to generalizing the regular

QCD Feynman rules by adding flow-time dependent exponentials to the propagators. The flow

equations, Eq. (5), are taken into account with the help of Lagrange multiplier fields which are

represented by so-called flow lines in the Feynman diagrams. They couple to the (flowed) quark

and gluon fields at flowed vertices which involve integrations over flow-time parameters.

Replacing the regular by flowed quark fields in Eq. (2), one arrives at the flowed physical

operators

Õ1 = −/̊2
j

(

j̄1,LW`)
0j2,L

) (

j̄3,LW`)
0j4,L

)

,

Õ2 = /̊2
j

(

j̄1,LW`j2,L

) (

j̄3,LW`j4,L

)

,
(8)
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and analogously for the evanescent operators. The non-minimal renormalization constant /̊j for

the flowed quark fields j is defined by

/̊j = − 2=c=f

(4cC)2
· 1

〈'(C)〉 |<=0

,

'(C) =
=f
∑

5 =1

j̄ 5 (C)
←→/D j 5 (C),

←→D ` = m` −
←−
m ` + 2�0`)

0,

(9)

where 〈·〉 denotes the vacuum expectation value [10], =c is the number of colors, and =f the number

of quark flavors. /̊j was computed through second order in the strong coupling constant Us in

Ref. [18].

4. Flowed operator product expansion

The flowed operators can be expressed by the small-flow-time expansion [8]

Õ8 (C) ≍
∑

9

ZR
8 9 (C)OR

9 , (10)

where the symbol ≍ signals that this relation holds asymptotically in the limit C → 0. The mixing

matrix ZR
8 9
(C) and the regular operators OR

9
are already renormalized here. At the bare level, the

mixing from and to the evanescent operators has to be taken into account [14–16]. Only after

renormalizing the regular operators can we discard the evanescent operators in Eq. (10).

By inverting Eq. (10) one finds the flowed OPE [9–11]. In the case of the electroweak

Hamiltonian of Eq. (1) it reads

Heff ≍ −
4�F√

2
+CKM

∑

=

�̃=Õ=, (11)

where the flowed Wilson coefficients are given through

�̃= =
∑

<

�R
<(ZR)−1

<=. (12)

Since the flowed operators Õ= do not require renormalization [8], the r.h.s. is scheme independent

and one can directly combine the perturbative results for the Wilson coefficients with the matrix

elements of the operators obtained by other means, for example a lattice calculation.

By constructing suitable projectors [19, 20] (see also Ref. [21]), we extracted the elements of

the mixing matrix ZR
8 9 (C) from Eq. (10). Through NNLO we find

(ZR)−1
= 1 + Us

4c

(

16.85 −3.333

−15 14.85

)

+
( Us

4c

)2
(

363.5 − 11.55=f −72.49 + 2.521=f

−371.2 + 11.35=f 311.5 − 6.934=f

)

, (13)

where the QCD color factors have been inserted and the renormalization scale has been set to

` =
4−WE/2√

2C
. We obtained these results in general 'b gauge and with the operator renormalization

from the literature, see e.g. Ref. [22]. Both facts provide welcome checks of our calculation.
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For |Δ� | = 1 processes the Wilson coefficients �R
< for the SM can be found in Refs. [2, 3]

through NNLO. Thus, when neglecting penguin contributions, the ingredients for the flowed Wilson

coefficients in Eq. (12) are known through NNLO. For |Δ� | = 2 processes the two operators in

Eq. (2) become related by a Fierz identity and a suitable basis transformation is required. In this

case, the SM Wilson coefficient is known through NLO [1], with two contributions for Kaon mixing

known through NNLO [4, 5].

5. Conclusions

In this contribution we constructed the flowed OPE for the current-current operators of the

electroweak Hamiltonian through NNLO in QCD. The non-renormalization of the flowed operators

removes the need to calculate the scheme transformation between the perturbative Wilson coef-

ficients and the matrix elements from lattice simulations and, thus, could remove one source of

uncertainties from theoretical predictions of low-energy flavor observables. Our complete results

as well as more details on our calculation and a comparison to the NLO results of of Ref. [12] will

be presented elsewhere.
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