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Abstract
We compute the next-to-next-to-leading order QCD corrections to Higgs boson production in

weak boson fusion followed by its decay to a bb̄ pair or to a pair of leptonically-decaying W bosons.

Our calculation allows us to compute realistic fiducial cross sections and assess the impact of fiducial

cuts applied to the Higgs boson decay products on the magnitude of QCD radiative corrections in

weak boson fusion.
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I. INTRODUCTION

Precision studies of Higgs boson properties are central to the physics program of the Run

III and high-luminosity phases of the LHC. Currently, all major Higgs production cross

sections and decay rates are known experimentally to a precision of about twenty percent

or better [1, 2]. These measurements are used to determine Higgs couplings to a variety of

elementary particles, confirming that the Higgs boson profile emerging from the LHC data

is very consistent with expectations based on the Standard Model.

Further exploration of the Higgs boson will lead to an even better understanding of its

properties. Central to this endeavor is the overarching goal of the LHC experiments to

determine Higgs couplings with a few percent precision, allowing for a detailed exploration

of the structure of the Standard Model. To facilitate this progress, precise theoretical pre-

dictions for all the major Higgs boson production and decay processes are required. Such

predictions must, on the one hand, account for higher order radiative corrections and, on

the other hand, describe observable final states in as much detail as possible. The recent

past has seen impressive progress in the development of high-quality theoretical predictions

for Higgs production and decay processes at colliders, see e.g. Ref. [3] for a review.

In this paper, we focus on Higgs boson production in weak boson fusion (WBF). Being the

channel with the next-to-largest cross section at the LHC, it allows for detailed studies of

the structure of the Higgs sector. Indeed, phenomenologically, this channel is important for

a direct determination of the Higgs couplings to the electroweak bosons, for investigating

the CP-structure of the Higgs boson [4–6] and for studies of Higgs decays into invisible

particles [7, 8].

Higgs production in WBF has been investigated by both ATLAS and CMS using a number

of Higgs decay modes. One finds µVBF = 1.21 ± 0.18 (stat.) ± 0.15 (syst.) (ATLAS) [1]

and µVBF = 0.73 ± 0.23 (stat.) ± 0.16 (syst.) (CMS) [2] for the signal strength in this

channel relative to the Standard Model expectations. These studies are supported by the

development of sophisticated theoretical tools that allow accurate descriptions of Higgs boson

production in WBF.1

1 For a review of the state-of-the-art predictions for this channel, see Ref. [9]. Recent phenomenological

studies are summarized in Ref. [10].
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At leading order, WBF production involves the two incoming partons emitting space-like Z’s

andW ’s that fuse into the Higgs boson. This gives WBF events a characteristic signature of

two forward jets in opposite hemispheres, and means that WBF can be viewed as a double

deep inelastic scattering (DIS) process [11]. At next-to-leading order (NLO) in QCD, color

conservation forbids interactions that connect the two quark lines, so that the double-DIS

picture of WBF is still exact.2 As a consequence of this simplification, NLO QCD corrections

to WBF were computed early on and have been known for almost twenty years by now [14].

At next-to-next-to-leading order (NNLO), QCD interactions between two quark lines become

possible, so that the double-DIS picture of WBF is no longer exact. However, the double-DIS

and the so-called non-factorizable contributions are separately finite and gauge-invariant

and, therefore, can be studied independently. Theoretical predictions for the double-DIS

contributions are very advanced. In this approximation, the total cross section is known to

NNLO [15] and N3LO [16] in QCD, while fully differential results – which are crucial for a

reliable modeling of the WBF process – are available at NNLO QCD [17, 18].

On the contrary, the non-factorizable contributions are much less understood since no exact

results exist in this case. Recently, the leading non-factorizable QCD corrections that appear

at NNLO QCD have been estimated [19]. Although non-factorizable corrections are known

to be color-suppressed [15], it was explicitly shown in Ref. [19] that they get enhanced by

additional factors of π2 leading to a partial compensation of the color suppression factor.

A comprehensive discussion of phenomenological aspects of non-factorizable corrections can

be found in Ref. [20].

All the NNLO calculations mentioned above do not include the decay of the Higgs boson

and, therefore, cannot describe realistic final states in WBF. Since the Higgs boson is a

narrow scalar particle, its production and decay stages are completely separated. Hence,

the inclusion of Higgs decays is, in principle, straightforward. However, in practice this

turns out to be non-trivial for fully differential NNLO QCD calculations. One may naively

think of performing a NNLO calculation with a stable Higgs boson, storing events with the

relevant kinematic information and including the Higgs decays in a second stage. In fact,

this strategy is routinely employed in complex NLO calculations. However, the number

2 This statement does not hold for interference contributions to the qq → Hqq amplitude squared. However,

these contributions are known to be tiny when WBF cuts are applied [10, 12, 13].

3



of events needed for a NNLO calculation of the WBF type is extremely high, making this

approach impractical.3 As the result, NNLO QCD predictions for Higgs production in WBF

including Higgs decays are currently not available. This limitation is important as kinematic

cuts applied to the decay products of the Higgs boson may alter the impact of NNLO QCD

corrections. Even if such modifications turn out to be small, they may still be relevant at

NNLO QCD accuracy, given that both the size of the NNLO corrections and the residual

scale uncertainty for Higgs production in WBF are at the level of a few percent.

In this paper, we make a first step towards NNLO QCD predictions for Higgs production in

WBF with realistic final states. Similarly to the earlier calculations of Ref. [17, 18] we only

consider the double-DIS contributions but we include Higgs decays in our computation. We

consider two representative cases – Higgs decays to a pair of b quarks and Higgs decays to

two W bosons which decay leptonically in turn. Since both of these final states have large

branching ratios, they have been extensively studied by the ATLAS [22, 23] and CMS [24, 25]

collaborations. Our calculations allow us to investigate the impact of kinematic constraints

applied to final state particles on the magnitude of QCD corrections to fiducial cross sections

and kinematic distributions in the presence of realistic selection criteria.

In principle, a proper modeling of Higgs-boson decays to b pairs would require the inclusion

of b-quark mass effects (so that a realistic jet algorithm can be adopted) and higher-order

QCD radiative corrections. Although all the required ingredients exist [26, 27], combining

them into an efficiently working computer program is a major undertaking if NNLO QCD

precision is desired. For this reason, in this paper we restrict ourselves to Higgs decays

into massless bb̄ pairs at leading order in QCD.4 This is the first non-trivial step towards

a NNLO-accurate description of the weak boson fusion process with Higgs decays into bb̄

pairs.

On a technical side, we note that the previous NNLO QCD calculations of Refs. [17, 18]

were performed using the projection-to-Born [17] and antenna subtraction [28] methods,

respectively, to regulate infrared singularities. For the computation described in this paper

we employ the nested soft-collinear subtraction scheme [29], using analytic formulas for

the integrated subtraction terms derived in Ref. [30]. This is the first phenomenological
3 A recent summary on progress in this direction was given in Ref. [21].
4 Of course, for leading order H → bb̄ decay dealing with massless, as opposed to massive, b-quarks does

not change the complexity of the calculation.
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application of this method to a complex LHC process involving final-state jets, marking an

important step in its development.

The paper is organized as follows. In Section II we briefly summarize some technical aspects

of the calculation of NNLO QCD corrections to Higgs production in WBF within the nested

soft-collinear subtraction scheme. In Section III we apply our computation to perform NNLO

QCD phenomenological studies at the 13 TeV LHC. We first present results for stable Higgs

boson (Section IIIA), showing perfect agreement with earlier calculations. We then discuss

the H → bb̄ (Section III B) and H → WW ∗ → `−ν̄`+ν (Section III C) cases, focusing on

the interplay of fiducial cuts on the final state particles and NNLO QCD corrections. We

conclude in Section IV.

II. NESTED SOFT-COLLINEAR SUBTRACTION CALCULATION OF NNLO

QCD CORRECTIONS TO WEAK BOSON FUSION

In this section we summarize the technical aspects of the calculation including a brief discus-

sion of the nested soft-collinear subtraction scheme [29] and an explanation of how we apply

it to the computation of factorizable NNLO QCD corrections to Higgs boson production

in weak boson fusion. We note that this section is not meant to provide a self-contained

discussion of the nested soft-collinear subtraction scheme. We refer the interested reader to

Refs. [29, 30] for a thorough explanation of all the relevant details.

It is well-known that fully-differential QCD computations suffer from infra-red and collinear

singularities that appear differently in virtual and real corrections. In the case of virtual

corrections, these singularities manifest themselves as explicit poles in the dimensional reg-

ularization parameter. The universal structure of these singularities has been known for a

long time [31, 32].

The situation with the real-emission contributions is quite different. Indeed, in this case

infra-red and collinear singularities arise from the integration over the phase space of final

state partons that appear at higher orders in QCD, in addition to the particles present in the

Born process. However, if one’s goal is a fully-differential computation valid for arbitrary

infra-red safe observables, such integration is not possible both in theory and in practice.
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The solution to this problem involves isolating phase-space regions that contribute to infra-

red and collinear singularities. The standard ways for dealing with them are the so-called

slicing and subtraction methods, which regulate the singular regions of the phase space

by adding and subtracting cleverly-constructed counterterms. In the past decade, a large

number of such schemes has been developed for NNLO QCD computations [17, 28, 33–38].

In this paper, we employ the so-called nested soft-collinear subtraction scheme [29].

The idea behind this scheme is an iterative construction of subtraction counterterms, starting

from the soft ones. The soft subtraction terms are given by universal eikonal currents multi-

plied by amplitudes with lower multiplicities. For the non-trivial case of double-unresolved

contributions, they were integrated over the phase space of unresolved partons in Ref. [39]

using the universal double-soft limits of scattering amplitudes computed in Ref. [40].

The collinear regularization procedure is then applied to soft-regulated matrix elements. In

analogy with the FKS construction at NLO [41], different collinear directions are separated

with the help of suitably-constructed partitions of unity. For triple-collinear configurations,

different strongly-ordered collinear limits can be approached in different ways; as the result,

an angular ordering is employed to uniquely define them. This can be achieved by introduc-

ing a particular phase-space parametrization for the two unresolved partons [33] that allows

for a natural separation of various collinear configurations. Among the various collinear sub-

traction terms that need to be considered, the triple-collinear ones are the most complicated;

they were integrated over the phase space of the unresolved partons in Ref. [42].

Apart from the subtraction terms for double-unresolved configurations, the remaining contri-

butions to the subtraction counterterms include various soft and collinear limits that either

involve kinematic configurations that are significantly simpler than the double-unresolved

ones or correspond to soft-collinear configurations which are relatively easy to deal with.

Finally, we note that the subtraction terms and their integrals over unresolved phase spaces

involve universal functions that appear in soft and collinear limits of matrix elements; hence,

they are fully determined by the number, types and color charges of external particles, and

are independent of the matrix elements of hard processes. Since factorizable corrections

to weak boson fusion process involve a t-channel momentum transfer by a colorless vector

boson, they are topologically similar to QCD corrections in deep inelastic scattering (DIS),

as mentioned previously. The calculation of integrated subtraction terms for DIS has been
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p3

p4x2 · P2

x1 · P1
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q1

q2

pX1

pX2

Figure 1. Conventions used for the generation of the phase space to compute factorizable contribu-

tions to Higgs production in WBF. Momenta pX1 and pX2 are combined momenta of all additional

(massless) partons radiated from the upper or the lower line, respectively

performed in the context of the nested soft-collinear subtraction scheme in Ref. [30]. We can

then use results obtained in that reference for the WBF case as well. We refer the reader to

Ref. [30] for further details regarding the subtraction scheme.

It is well-known that one of the challenging issues pertinent to the computation of higher

order QCD corrections to weak boson fusion is the phase-space parametrization. Such a

parametrization should, on the one hand, lead to an efficient sampling of the phase space

and, therefore, to an efficient Monte-Carlo integration and, on the other hand, it should also

allow for a seamless connection with the subtraction scheme. Because of this, we now briefly

describe how the phase space is parametrized in our computation.

At variance with earlier applications of the nested soft-collinear subtraction scheme, we

work in the laboratory frame, i.e. in the center-of-mass frame of the incoming protons. We

consider the generic process shown in Fig. 1. We assume that particles with momenta p3

and p4 are “hard” and particles collectively denoted with pX1,2 can become soft and collinear

to other particles. The separation into hard and soft particles either happens naturally (for

example, for the NNLO subprocess qq → Hqq + gg the hard partons are the two final-state

quarks while the partons that can become soft and collinear are the gluons) or it is achieved

by introducing additional partition functions (as it happens in the case of several quarks in

the final state). An analogous procedure was carried out for computing the NNLO QCD

corrections to DIS [30] and we make use of it in the current calculation.

7



Using the notation in Fig. 1, we schematically write the weak boson fusion cross sections in

the following way

σ = N
∫ 1

0

dx1dx2f1(x1)f2(x2)

2shadx1x2

∫
[dp3][dp4][dpX1 ][dpX2 ][dpH ]

× (2π)dδ(d) (Pi − Pf ) |M(x1P1, x2P2 ; p3, pX1 , p4, pX2 , pH)|2 ,
(1)

where N is the (possible) symmetry and averaging factor, P1,2 are the protons’ momenta,

Pi = x1P1+x2P2, Pf = p3+p4+pX1+pX2+pH and shad = (P1+P2)2 is the hadronic center-of-

mass energy. Also, f1,2 are parton distribution functions,M is the relevant matrix element

that depends on the momenta of initial- and final-state particles and [dp] is the phase-space

element for a particle or a collection of particles with momenta p. More precisely, we define

[dpi] =
dd−1pi

(2π)d−12Ei
, (2)

for a single particle and

[dpXi ] =
∏
i∈Xi

dd−1pi
(2π)d−12Ei

, (3)

for several particles. Finally, we set [dpXi ] = 1 if Xi does not contain any particle.

To proceed further, we introduce two auxiliary momenta q1,2 defined as follows (see Fig. 1)

q1 = p3 + pX1 − x1P1 , q2 = p4 + pX2 − x2P2 . (4)

We then insert unity into the phase-space integrand and write

1 =

∫ µ2
max

0

dµ2
i δ(µ

2
i + q2

i ) , (5)

for i = 1, 2. We note that the relative sign between µ2
i and q2

i in the argument of the

delta-function is due to the fact that the momenta q2
1,2 are space-like. In the above formula

µ2
max is an arbitrary quantity with the dimension of energy squared. We note that µmax

should be large enough to accommodate all the relevant values of |q2
1,2|; we take it to be

µ2
max = shad −m2

H , where mH is the mass of the Higgs boson.

The benefit of having the delta-function in Eq. (5) to appear in the WBF phase space follows

from the fact that its argument is linear in xi, i = 1, 2. Indeed, using explicit expressions
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for q1,2 and the fact that P 2
i = 0, we find

δ(µ2
i + q2

i ) = δ(µ2
i + (p3,4 + pXi − xiPi)2)

= δ(µ2
i + (p3,4 + pXi)

2 − 2xi(p3,4 + pXi)Pi)

=
1

|2(p3,4 + pXi)Pi|
δ

(
µ2
i + (p3,4 + pXi)

2

2(p3,4 + pXi)Pi
− xi

)
.

(6)

We can then use these expressions to integrate over x1,2 in Eq. (1). We find

σ =

µ2
max∫

0

dµ2
1 dµ2

2

∫
[dp3][dp4][dpX1 ][dpX2 ][dpH ]

2shadx∗1x
∗
2

f1(x∗1)f2(x∗2)

|2(p3 + pX1)P1||2(p4 + pX2)P2|

× (2π)dδ(d) (P ∗i − Pf ) |M(x∗1P1, x
∗
2P2 ; p3, pX1 , p4, pX2 , pH)|2 ,

(7)

where P ∗i = x∗1P1 + x∗2P2 and

x∗i =
µ2
i + (p3,4 + pXi)

2

2(p3,4 + pXi)Pi
, i = 1, 2. (8)

We require, of course, that x∗i ∈ [0, 1]; if this is not the case, the corresponding kinematic

points are rejected.

We remove the delta-function in Eq. (7) by integrating over the four-momentum pH of the

Higgs boson. We use

[dpH ] (2π)dδ(d)(x1P1 + x2P2 − p3 − p4 − pX1 − pX2 − pH)

= 2π δ
(
(q1 + q2)2 −m2

H

)
= 2π δ

(
− µ2

1 − µ2
2 + 2(q1q2)−m2

H

)
,

(9)

and remove this last delta-function by integrating over µ2
2. We should, however, account for

the fact that q2 depends on x∗2 which, in turn, depends on µ2
2 implicitly.

Integrating over µ2
2, we find

σ =

µ2
max∫

0

dµ2
1

∫
[dp3][dp4][dpX1 ][dpX2 ]

f1(x∗1)f2(x∗2)

2shadx∗1x
∗
2

× 2π

|4(q1P1)(pHP2)|

× |M(x∗1P1, x
∗
2P2 ; p3, p4, . . . )|2 ,

(10)

where pH = q1 + q2 and

µ2
2 =

(p4 + pX2)P2

(p4 + pX2 + q1)P2

×
[
−m2

H − µ2
1 +

(
2(p4 + pX2)q1 −

(p4 + pX2)2(q1P2)

(p4 + pX2)P2

)]
(11)

9



should be used when computing x∗2 and q2.

The expression for the cross section in Eq. (10) is general; it can be used at any order in

perturbation theory and for various combinations of emissions off initial and final states.

For our calculation, we will mainly need to consider the case of two emissions off the upper

(lower) quark line and, consequently, no emissions off the lower (upper) quark line. Focusing

on the emissions off the upper line, we set [dpX2 ]→ 1 in the expression for the phase space

in Eq. (10), and pX2 → 0 in Eq. (11). Since p2
4 = 0, the expression for µ2 simplifies to

µ2
2 =

(p4P2)

(pHP2)
×
[
m2
H + µ2

1 − 2(q1p4)
]
. (12)

Finally, we note that if at NLO or at NNLO additional emissions occur only at the lower

line in Fig. 1, it is of course beneficial to integrate over µ2
1, instead of µ2

2. We do not write

an explicit formula for the cross section in this case as it can simply be obtained by a trivial

re-labeling of various particles in the expressions given in Eqs. (10,11).

Having derived a suitable parametrization of the weak boson fusion phase space, we will

have to use it to construct both the subtraction terms and their integrated counterparts

required to extract and regulate all the relevant infra-red and collinear divergences. To this

end, we would like to use the results for DIS that we have derived in Ref. [30]. However,

in that reference the subtraction framework was constructed in the partonic center-of-mass

frame. Since the subtraction formalism of Ref. [29] is not manifestly boost invariant, it is not

immediately obvious that one could use the results of Ref. [30] here without modifications.

To illustrate the connection between the phase space parametrization in Eq. (10) and

Ref. [30], we describe how the construction of a typical subtraction term derived in Ref. [30]

would proceed. For the sake of argument, we consider the emission of two gluons with mo-

menta p5,6 off the upper (quark) line in Fig. 1 and study the limit when p6 is collinear to the

incoming proton P1. The operator that extracts the relevant limit from the cross section is

referred to as C61 in Ref. [30]. In that reference, we worked at fixed x1, x2 and wrote the

collinear subtraction term as

C61 [σ] = g2
s

∫
dx1dx2f(x1)f(x2)

2shadx1x2

∫ 6∏
i=3

[dpi](2π)dδ(d) (zx1P1 + x2P2 − p3 − p4 − p5)

× 1

(P1p6)
Pqq (z)

|M(zx1P1, x2P2 ; p3, p4, p5)|2
zx1

,

(13)
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where gs is the (bare) strong coupling constant and Pqq is the standard (d-dimensional)

LO splitting function whose precise form is irrelevant for our discussion. The variable z is

related to the energy of the gluon with momentum p6 as E6 = x1E1(1− z), where E1 is the

energy of the incoming proton.

We then write

[dp6] =
dΩ6

2(2π)d−1
(x1E1)2−2εdz(1− z)1−2ε, (14)

and use this expression in Eq. (13) to find (see Ref. [30] for details)

C61 [σ] = −[αs]
Γ(1− ε)2

Γ(1− 2ε)ε

∫
dx1dx2f(x1)f(x2)

2shadx1x2

(2x1E1)−2ε

∫
dz (1− z)−2ε Pqq (z)

×
∫ 5∏

i=3

[dpi] (2π)dδ(d) (zx1P1 + x2P2 − p3 − p4 − p5)

× |M(zx1P1, x2P2 ; p3, p4, p5)|2
z

,

(15)

where we have defined [αs] = (g2
s/8π

2)× (4π)ε/Γ(1− ε).

We now repeat the same computation using the phase-space parametrization in Eq. (10).

The difference with what we just did originates from the fact that in Eq. (10) the Bjorken

variables x1,2 are not free parameters anymore but, rather, are determined from the kinemat-

ics of final state particles. Hence, when we extract the collinear limits of the cross sections,

we have to act on x1,2 as well.

Using Eq. (8), we find

C61 [x∗1] = x̄∗1 = xNLO
1 +

E6

E1

, (16)

where

xNLO
1 =

µ2
1 + (p3 + p5)2

2(p3 + p5)P1

, (17)

is the Bjorken x that one would have obtained by performing a NLO calculation with a

parton p5 in the final state. We also find that

C61 [x∗2] =
C61 [µ2

2]

2(p4P2)
≡ xNLO

2 , (18)

and that the collinear limit of µ2
2 is determined by the collinear limit of q1 which is given by

q1 → q̄1 = p3 + pX1 − x̄∗1P1 = p3 + p5 − xNLO
1 P1. (19)

Again, this is the expression for the momentum transfer that one obtains in the NLO com-

putation where an additional parton with momentum p5 is emitted.

11



We can now compute the collinear limit of the cross section using the phase-space parametriza-

tion Eq. (10). We find

C61 [dσ] = g2
s

∫
dµ2

∫
[dp3][dp4][dp5][dp6]

f1(x̄∗1) f2(x̄∗2)

2shadx̄∗1x̄
∗
2

2π

|4(q̄1P1)(pHP2)|

× δmom−cons ×
1

x̄∗1(P1p6)
× x̄∗1E1

x̄∗1E1 − E6

Pqq

(
x̄∗1E1 − E6

x̄∗1E1

)
× |M([x̄∗1 − E6/E1]P1, x̄

∗
2P2 ; . . . , p5)|2 ,

(20)

where we have used Pqq(1/z) = −Pqq(z)/z and defined

δmom−cons = (2π)dδ(d)
(

[x̄∗1 − E6/E1]P1 + x̄∗2P2 − p3 − p4 − p5

)
. (21)

The reduced matrix element squared simplifies

|M([x̄∗1 − E6/E1]P1, x̄
∗
2P2 ; . . . , p5)|2 =

∣∣M(xNLO
1 P1, x

NLO
2 P2 ; . . . , p5

)∣∣2 . (22)

An analogous simplification occurs in the argument of the delta-function in Eq. (21) where

we find

δmom−cons = (2π)dδ(d)
(
xNLO

1 P1 + xNLO
2 P2 − p3 − p4 − p5

)
. (23)

To simplify Eq. (20) further, we introduce a new variable z

z =
x̄∗1E1 − E6

x̄∗1E1

=
xNLO

1

xNLO
1 + E6

E1

, (24)

and express the energy of the collinear gluon through z. We find

E6 = E1 x
NLO
1

(
1− z
z

)
, (25)

and x̄∗1 = xNLO
1 /z.

As a result, the collinear limit of the cross section becomes

C61 [dσ] = g2
s

∫
dµ2

∫ 6∏
i=3

[dpi]
f1(xNLO

1 /z) f2(xNLO
2 )

2shadxNLO
1 xNLO

2

z2

xNLO
1 (P1p6)

× δmom−cons ×
Pqq(z)

z

∣∣M(xNLO
1 P1, x

NLO
2 P2 ; . . . , p5

)∣∣2
× 2π

|4(q̄1P1)(pHP2)| .

(26)

Writing

[dp6] =
dΩ6

2(2π)d−1
E1−2ε

6 dE6 =
dΩ6

2(2π)d−1

[
E1x

NLO
1 (1− z)

z

]1−2ε
E1x

NLO
1 dz

z2
, (27)

12



and using this expression in Eq. (26), we arrive at

C61 [dσ] = −[αs]
Γ(1− ε)2

Γ(1− 2ε)ε

∫
dµ2

∫ 5∏
i=3

[dpi]
∫

dz(1− z)−2ε

(
2E1x

NLO
1

z

)−2ε

× δmom−cons ×
Pqq(z)

z

∣∣M(xNLO
1 P1, x

NLO
2 P2 ; . . . , p5

)∣∣2
2shadx1

NLOxNLO
2

× f1(xNLO
1 /z) f2(xNLO

2 )
2π

|4(q̄1P1)(pHP2)| .

(28)

The above equation and Eq. (15) look different. However it is easy to see that by using

the phase-space parametrization of Eq. (10) in Eq. (15) and integrating over the Bjorken

variables x1,2, one obtains Eq. (28).

This quick derivation shows that for the kinematic situation when one of the final state gluons

is emitted along the direction of an incoming quark, one can indeed combine the subtraction

terms and the integrated subtraction terms computed in Ref. [30] with the phase-space

parametrization Eq. (10). We have checked that the same holds for all other limits that are

relevant for the NLO and NNLO computations. Apart from a more flexible parametrization,

this result also provides a non-trivial check on the robustness of the subtraction procedure of

Ref. [29] and allows us to use the subtraction terms derived in Ref. [30] without modification.

Finally, an important benefit of the phase-space parametrization described in this section is

that both fully-resolved matrix elements and subtraction counterterms are always calculated

in the same frame, without the need for longitudinal boosts. We find that this significantly

improves the efficiency of the Monte-Carlo integration of the most complicated subtraction

counterterms.

III. NNLO CORRECTIONS TO HIGGS PRODUCTION IN WBF

In this section we present results for fiducial cross sections and kinematic distributions for

Higgs production in WBF. We begin in Section IIIA by treating the Higgs boson as a stable

particle. This is important both for validating our results against previous calculations [17,

18] and as a reference for the case of the decaying Higgs boson which we study later. In the

following subsections, we consider two phenomenologically important Higgs decay modes,

namely H → bb̄ in Section III B and H → WW ∗ → `−ν̄`+ν in Section III C, and explore the

13



extent to which additional kinematic cuts applied to the decay products of the Higgs boson

modify the NNLO QCD corrections.

For all phenomenological results reported in this paper, we use a baseline setup which is very

similar (though not identical) to the one of Ref. [17]. We set the Higgs boson mass to MH =

125 GeV, its width to ΓH = 4.165 MeV, the vector boson masses to MW = 80.398 GeV and

MZ = 91.1876 GeV, and their widths to ΓW = 2.105 GeV and ΓZ = 2.4952 GeV. We use

the Fermi constant GF = 1.16639× 10−5 GeV−2, and approximate the CKM matrix by an

identity matrix. We employ the NNPDF31-nnlo-as-118 parton distribution functions [43] and

use them for all calculations reported in this paper, irrespective of the perturbative order.

We also use the value of the MS strong coupling constant αs(MZ) = 0.118 as provided by the

PDF set. The evolution of parton distribution functions and the strong coupling constant

is obtained from LHAPDF [44]. We employ dynamical renormalization and factorization

scales; their central values are set to [17]

µ0 =

√
mH

2

√
m2
H

4
+ p2

⊥,H . (29)

We consider proton-proton collisions with center-of-mass energy of 13 TeV, and define the

WBF fiducial cross section in the following way. We reconstruct jets using the inclusive

anti-k⊥ algorithm [45] with R = 0.4. We then consider the list J = {ji} of jets satisfying

p⊥ ≥ 25 GeV, |y| ≤ 4.5, and impose the following constraints. For each event, we require

that J contains at least two jets. Furthermore, the two leading-p⊥ jets in J should be

separated by a large rapidity interval |yj1 − yj2| ≥ 4.5, and their invariant mass should be

larger than 600 GeV. They should also be in different hemispheres in the laboratory frame;

to enforce this, we require that the product of their rapidities is negative, yj1yj2 ≤ 0.

Before presenting our results, we briefly discuss the checks that we have performed on

our calculation. For stable Higgs, we have first checked the inclusive cross section against a

customized version of the proVBFH-inclusive code [46], which is based on the calculations of

Refs. [16, 17] and on Ref. [47]. We have modified the original program to be able to compare

individual contributions separately and we have found agreement with the corresponding

results obtained from our calculation. Moving to fiducial results, we note that although our

setup is very similar to the one in Ref. [17], it is not identical. In particular, we use updated

parton distribution functions and a slightly different jet selection procedure. Because of this,
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the results presented here cannot be directly compared with those of Ref. [17]. We have,

however, produced a set of results with the setup of Ref. [17], and found agreement with

the fiducial cross-sections reported there at the level of few per-mille or better. We have

also compared differential distributions, and also in this case found good agreement within

the numerical precision of the calculations. For the H → bb̄ and H → WW ∗ → 4l results,

we have compared our implementation against MCFM version 10 [48–51] at NLO and LO,

respectively, and found perfect agreement.

A. Stable Higgs boson

In this section we present the fiducial cross sections for the production of a stable Higgs boson

in WBF at NNLO in QCD. Analogous results have been already presented in Refs. [17,

18]. There are two reasons for us to repeat these computations. First, it allows us to

validate our calculation. To this end, as we have mentioned already, we have performed

an extensive comparison with the results of Ref. [17] for both inclusive and fiducial cross

sections, and found agreement at the per-mille level or better in all cases. We also find

excellent agreement with higher-order corrections to kinematic distributions presented in

that reference. A second reason to consider WBF production with a stable Higgs boson is

that it provides a benchmark against which to compare the results obtained by considering

the decays of the Higgs boson that are discussed later.

We first report fiducial cross sections at various orders of QCD perturbation theory. Using

the setup described above, we obtain

σLO = 971−61
+69 fb, σNLO = 890+8

−18 fb, σNNLO = 859+8
−10 fb. (30)

The central values of fiducial cross sections are computed with the renormalization and

factorization scales of Eq. (29) and uncertainties are obtained by varying this scale by a

factor of two in both directions. In Eq. (30) and throughout this paper, the sub- and

super-scripts indicate the results computed with µ = µ0/2 and µ = 2µ0, respectively.

Results for cross sections show a familiar pattern [17, 18] – NLO and NNLO QCD corrections

to fiducial cross sections are relatively small; they decrease the previous order cross section

by about 8 and 3.5 percent, respectively. The uncertainty of σNNLO as estimated from scale
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Figure 2. Transverse momenta (upper row) and rapidity (lower row) distributions for the leading

(left) and subleading (middle) jets as well as the Higgs boson (right). For each plot, the upper pane

displays the LO (hashed blue), NLO (solid yellow) and NNLO (red boxes) QCD predictions. The

lower pane shows the ratio with respect to the NLO result at central scale. The lines indicate the

central renormalization and factorization scale choice, and the bands indicate the envelope of the

results at different scales. See text for details.

variation is about a percent, only marginally smaller than the NLO one. Although we do

not show inclusive results here, we note that NNLO corrections to the inclusive WBF cross

section are about one percent and, therefore, are significantly smaller than corrections to the

fiducial cross section. This is not surprising, since WBF fiducial cuts induce a sensitivity of
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theoretical predictions to the non-trivial jet dynamics present in this process, see e.g. the

discussion in Ref. [52].

We now present results for kinematic distributions. In Fig. 2 NNLO QCD results for the

transverse momentum and the rapidity distributions of the leading and subleading jets, as

well as the Higgs boson, are shown. The upper panes in plots in Fig. 2 display LO, NLO

and NNLO QCD predictions in hashed blue, yellow, and red boxes, respectively. The lines

indicate the central renormalization and factorization scale choice µ = µ0 in Eq. (29), and

the bands indicate the envelope of the results at scales µ ∈ {µ0/2, µ0, 2µ0}. For transverse

momenta distributions, we observe that in all cases the NNLO/NLO bin-by-bin K-factors

are reasonably flat, at variance to the NLO/LO ones that exhibit strong dependencies on

transverse momenta of the leading and subleading jets. For the Higgs rapidity distribution,

both NLO/LO and NNLO/NLO K-factors are approximately flat in the bulk of the distri-

bution and consistent with the corrections to fiducial cross sections reported in Eq. (30). For

the jets rapidity distributions, the NLO/LO K-factors have a non-trivial shape (especially

in the leading jet case) but the NNLO/NLO ones are fairly flat.

The identification of the weak boson fusion process exploits kinematic features of the two

leading jets. It is therefore interesting to check how kinematic distributions that involve

them get modified in higher orders of perturbation theory. In Fig. 3 we display the invariant

mass distribution of the two leading jets, their rapidity difference ∆yj1j2 = |yj1−yj2 | and the

relative azimuthal angle |φj1 − φj2| distributions, as well as the distribution of the distance

between the two jets in the transverse plane ∆Rj1,j2 =
√

(yj1 − yj2)2 + (φj1 − φj2)2. The

distribution of the dijet invariant mass and the ∆φj1j2 distribution exhibit rather flat K-

factors, both at NLO and at NNLO. By contrast, the NLO/LO K-factors for the rapidity

difference and ∆Rj1j2 show stronger dependencies on the corresponding variables, but they

stabilize at NNLO.

In summary, we find that although NLO QCD corrections can have an important impact on

the shapes of differential distributions of Higgs production in WBF, the impact of NNLO

corrections is much milder and it is captured by an overall K-factor to a reasonable ap-

proximation. However, the NNLO distributions often lie outside of the NLO scale variation

bands, although distances between the NLO and NNLO bands are small. We note that this

is also the case for the fiducial cross sections shown in Eq. (30).
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Figure 3. Kinematic distributions of observables that involve the two leading jets for a stable

Higgs. Top row: dijet invariant mass distribution (left) and rapidity separation (right). Bottom

row: azimuthal (left) and ∆R (right) separations. See text for details.

B. Results for H → bb̄

In this section we study NNLO QCD corrections to Higgs production in WBF, taking into

account Higgs boson decays to a bb̄-pair. The radiative corrections acquire a dependence

on the kinematics of Higgs boson decay products because their four-momenta are used to

define the selection criteria, as we now explain.

In case of H → bb̄ decays, the Higgs boson is identified and reconstructed through an ob-
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servation of two b-jets. Since the b-quarks from Higgs boson decays sometimes get clustered

with other final state partons and since the Higgs boson momentum is then identified with

the total momentum of two b-jets, it is not guaranteed that the momentum of the bb̄ dijet

system equals the momentum of the Higgs boson. In principle, to reconstruct b-jets properly,

we need to carefully track flavor in the production process since initial-state partons include

b quarks that propagate into the final state, leading to b jets that originate in the production

process. Also, starting from NNLO final state splittings g∗ → bb̄ generate additional bb̄ pairs

in the final state. However, it can be checked that both of these effects are rather small for

WBF. Indeed, at NLO b-quarks in the final state contribute about one percent of the cross

section. Since we do not expect this result to change significantly at NNLO, we decided to

treat all quarks coming from the production stage as flavorless and not account for them

when determining b-tags of jets.

As a second approximation, we note that in this paper we consider Higgs boson decays to

massless bb̄ pairs only at leading order in QCD. It will be desirable to extend this calculation

and include higher order QCD corrections to Higgs decay as well. We leave this for future

work but we note that the computation reported in this paper, that describes an interplay of

NNLO QCD corrections to the production stage with leading order decays, is an important

step towards this goal.

To account for Higgs boson decays, we make use of the fact that Higgs bosons are narrow

scalar particles, so that their production and decay subprocesses are not correlated and can

be considered separately. For this reason, we generate kinematics of final state particles

in the H → bb̄ process in the Higgs boson rest frame independently of the production

stage. Then, we use high-quality importance-sampling grids that describe stable Higgs

production in weak boson fusion to generate properly distributed events with a given Higgs

four-momentum. For each production point, we consider O(10) randomly generated decay

events. We then adjust the weight of each event to account for the H → bb̄ branching ratio,

which we take to be Br(H → bb̄) = 0.5824 [9]. Finally, we boost the momenta of b-quarks

back to the laboratory frame, use them to reconstruct jets and check if final state objects

pass the selection criteria that we now describe.

Similar to the case of a stable Higgs boson, we reconstruct jets using the anti-kt algorithm

and b-tag them according to whether they contain a single b-quark or not. As we have
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already said, we work in an approximation where we have a single bb̄ pair coming from the

Higgs so this procedure is infra-red safe. In addition to the kinematic cuts described in the

previous section, we loosely follow Ref. [22] and require that an event contains at least two

b-jets with p⊥jb ≥ 65 GeV and with their rapidities confined to the interval |yjb(jb̄)| ≤ 2.5.

The WBF cuts described in the preceding section are applied exclusively to non b-jets.

We turn to the presentation of our results. We first report values of fiducial cross sections.

Using the setup described above, we obtain

σbb̄LO = 75.9−5.6
+6.5 fb, σbb̄NLO = 70.9+0.2

−1.2 fb, σbb̄NNLO = 69.4+0.5
−0.2 fb. (31)

The central values correspond to the scale µ0 shown in Eq. (29); the subscript and superscript

show the cross section at µ = µ0/2 and at µ = 2µ0 respectively.

It is interesting to compare the size of fiducial NLO and NNLO QCD corrections for stable

and decaying Higgs boson. Using Eqs. (30,31) we find (for µ = µ0)

σHNLO

σHLO

= 0.917(1) ,
σbb̄NLO

σbb̄LO

= 0.934(1) ,

σHNNLO

σHLO

= 0.885(1) ,
σbb̄NNLO

σbb̄LO

= 0.914(2) ,

(32)

where the Monte Carlo integration error is shown in parentheses. Eq. (32) shows that for

stable Higgs boson the NNLO QCD cross section is smaller than the leading order cross

section by about −11.5 percent whereas for bb̄ final state the NNLO QCD cross section is

smaller than the leading order cross section by about −8.5 percent. This 3 percent difference

is clearly not a large one; however, it is of the same order as the NNLO QCD corrections

themselves. It is also interesting that the difference between the two scenarios is slightly

more pronounced at NNLO than at NLO, where the corrections decrease the LO fiducial

cross section by about −8 percent for a stable Higgs and by about −6.5 percent when we

allow for Higgs decays.

As we now explain, this difference is largely caused by the cuts on the transverse momenta

of the b-tagged jets, which make the Higgs p⊥ spectrum harder. This is illustrated in Fig. 4,

where we show the transverse momentum and rapidity distributions of the bb̄-dijet system

that should be identified with the Higgs boson. By comparing with the analogous plots in

Fig. 2, we see that the differential K-factors are rather similar, but now the reconstructed
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Figure 4. Transverse momentum (left) and rapidity (right) distribution of the reconstructed Higgs

boson in the H → bb̄ decay channel. See text for details.

Higgs transverse momentum peaks around 150 GeV instead of 100 GeV which is the case

if no cuts on the b-jets are imposed, see Fig. 2. This observation explains the difference in

K-factors. Indeed, if we impose the requirement p⊥,H ≥ 150 GeV on our results for the

stable Higgs, we find that the ratio of NNLO to LO fiducial cross sections becomes about

0.91, quite similar to what we find by considering H → bb̄ decays and imposing cuts on

b-jets. Hence, our results show that a decent estimate of the fiducial K-factor in this case

can be obtained by considering stable Higgs boson and computing the K-factor with the cut

p⊥,H ≥ 150 GeV.5

Compared to the results that do not include decays of the Higgs boson presented in the

previous section, it is interesting to note that in the H → bb̄ fiducial region the NNLO

QCD cross section overlaps with the scale-uncertainty band of the NLO QCD cross section.

Furthermore, the relative scale variation of the NNLO result is smaller by about a factor two

compared to the stable Higgs result. These features are also explained by the fact that, when

H → bb̄ decays are considered, the Higgs boson typically has larger transverse momentum

and, as follows from Fig. 2, at higher p⊥ the NNLO result tends to get closer to the NLO

one and lies within the NLO scale variation band.

We continue with the discussion of kinematic distributions for observables that involve the
5 We note that it is customary to impose a p⊥,bb̄ ≥ 150 GeV cut in this channel [22].
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Figure 5. Various kinematic distributions that involve b-jets from Higgs boson decays. Top row:

leading (left) and subleading (right) b-jet transverse momentum distribution. Bottom row: rapidity

(left) and azimuthal (right) separation between the two leading b-jets. See text for details.

reconstructed b-jets. They are shown in Fig. 5, where we plot the transverse momentum

distribution of the leading-p⊥ (b1) and subleading-p⊥ (b2) reconstructed b-jets, as well as

their rapidity and azimuthal separation. We find that in the bulk of the distribution the

K-factors are rather flat, with the possible exception of the leading-p⊥ b-jet at NLO. Similar

to the stable Higgs case, the NNLO/NLO K-factor is flatter than the NLO/LO one.

As we mentioned earlier, b-quarks from Higgs decays may get recombined with some of the
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Figure 6. Fraction of events Σ for which the reconstructed Higgs mass is larger than the true Higgs

mass. See text for details.

partons in the production process. If this happens, the reconstructed Higgs boson will have

a non-trivial invariant mass distribution, even if the Higgs boson is on-shell. Since the Higgs

boson is produced centrally in WBF, while QCD radiation is mostly collinear to leading

jets, we expect this to happen very rarely. This expectation is confirmed by Fig. 6, where

we show the fraction of events Σ where the reconstructed Higgs mass mbb̄ is larger than a

given value mmin
bb̄

, i.e.

Σ(mmin
bb̄ ) =

1

σ

∞∫
mmin
bb̄

dmbb̄

dσ

dmbb̄

. (33)

In Fig. 6, we normalize the (N)NLO invariant mass distribution to the corresponding fiducial

cross section, integrated over the invariant mass. We see that indeed only about 1% of the

events have a reconstructed mass mbb̄ that exceeds the Higgs mass MH = 125 GeV.

C. Results for H →WW ∗ → `−ν̄`+ν

We now turn to Higgs production in weak boson fusion followed by the Higgs decay to

two W bosons which decay leptonically, H → WW ∗ → eν̄eµ̄νµ. Although this is a higher

multiplicity final state than considered in the previous section, from a conceptual point of

view it is simpler in the sense that the Higgs decay products are not clustered with any

of the QCD partons. As done for H → bb̄ in the previous section, we account for the

H → WW ∗ → eν̄eµ̄νµ decay by generating kinematics of the decay products in the Higgs
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rest frame and boosting the decay products into the lab frame. Compared to the H → bb̄

case considered earlier, the decay phase space is now much larger. To properly sample it,

we then consider O(100) randomly selected decay events per production point, instead of

O(10) events that we used for H → bb̄. In general, we note that, compared to H → bb̄, it is

much harder to efficiently sample the phase space in the four-lepton case.

We now define the fiducial region for this decay channel. In addition to the cuts described

in Section IIIA, we impose cuts on the particles arising from the Higgs decay following

Ref. [24]. We require that the leading charged lepton has transverse momentum p⊥,l1 ≥ 25

GeV while the subleading charged lepton should have transverse momentum p⊥,l2 ≥ 13

GeV. The invariant mass of the charged-leptons system should satisfy ml1l2 ≥ 12 GeV, its

transverse momentum pl1l2⊥ should exceed 30 GeV, the missing transverse momentum should

be larger than 20 GeV and the rapidities of the charged leptons should be between the

rapidities of the two hardest jets. We note that this cut correlates the production and decay

stages and, given the forward nature of leading jets, it selects Higgs bosons produced in the

central rapidity region. Finally, we require the transverse mass, defined as

mT =

√
2pl1l2⊥ pmiss

⊥

(
1− cos ∆φl1l2,~pmiss

⊥

)
, (34)

to satisfy 60 GeV ≤ mT ≤ 125 GeV. In Eq. (34), pl1l2T and pmiss
T are the transverse momenta

of the charged-leptons system and the missing transverse momentum, respectively, while

∆φl1l2,~pmiss
T

is the azimuthal angle between the transverse momenta of the charged-leptons

and two-neutrinos systems.

Computing fiducial cross sections, we obtain

σ
eν̄eµ̄νµ
LO = 0.719−0.045

+0.051 fb, σ
eν̄eµ̄νµ
NLO = 0.662+0.005

−0.012 fb, σ
eν̄eµ̄νµ
NNLO = 0.632+0.008

−0.008 fb. (35)

The pattern of the corrections is very similar to what we observed in Section IIIA for the

stable Higgs case: the NLO corrections reduce the cross section by−8 percent and the NNLO

corrections reduce it by additional −4.5 percent. The relative scale variation uncertainty is

also similar to the stable Higgs case. These features can be understood since, in contrast

to Section III B, we impose relatively mild cuts on the Higgs decay products which do not

force the kinematics of the Higgs boson to differ significantly from the stable case. Indeed,

we have checked that, in this fiducial region, the differential distributions of the Higgs and

the jets are very similar to the corresponding results for the stable Higgs boson.
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Figure 7. Various kinematic distributions that involve charged leptons from Higgs boson decays.

From left to right: transverse momentum and rapidity distribution of the negatively charged lepton,

and transverse mass of the charged-leptons system. See text for details.

In Fig. 7 we present results for selected kinematic distributions of the two charged leptons.

We show the transverse momentum and rapidity of the negatively-charged lepton and the

transverse mass defined in Eq. (34). We see that already at NLO the K-factors are rather

flat and this remains true at NNLO. This is not surprising since in this case the only

impact of radiative corrections comes from the interplay between jet and lepton cuts. As

we mentioned earlier, the leptonic cuts that we employ are rather mild and do not severely

affect the kinematics of the Higgs boson. In particular, the only cut that correlates jets and

leptons is the requirement that the charged lepton rapidity should lie within the rapidities

of the two hard jets. However, the tagging jets are mostly produced along the beam line, so

this requirement is satisfied by most of the events.

In summary, our results show that in this channel the impact of Higgs decays on radiative

corrections is milder. This happens because the kinematic features of the Higgs boson and of

the jets remain unaffected by the fiducial cuts on leptons and, as a consequence, corrections

to leptonic observables are rather flat and can be described to a very good approximation

with a global K-factor corresponding to fiducial cross section for stable Higgs.
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IV. CONCLUSIONS

In this paper, we presented a computation of NNLO QCD corrections to Higgs boson produc-

tion in weak boson fusion using the nested soft-collinear subtraction scheme. We have used

analytic formulas for the required NNLO integrated subtraction terms derived in Ref. [30].

We have shown that, although we employ a somewhat different phase-space parametrization

for the current computation, the results derived in Ref. [30] remain applicable.

We have confirmed earlier results on NNLO QCD corrections to fully-differential Higgs boson

production in weak boson fusion obtained in Refs. [17, 18]. We have also extended these

results by incorporating decays of the Higgs boson into the calculation. We considered

two Higgs decay modes that are important for WBF studies, namely H → bb̄ and H →
WW ∗ → 4 leptons. We observed that in the H → bb̄ case the perturbative behavior of the

fiducial cross section differs from the stable Higgs case. In particular, we found that, while

the NLO/LO ratio is very similar for stable Higgs and for H → bb̄, the difference in the

NNLO/LO ratio is comparable to the NNLO QCD corrections themselves.

We have argued that the main reason for this difference is that the cuts on the b-jets push the

transverse momentum of the Higgs boson towards larger values, where NNLO corrections

are small. If this effect is taken into account, the impact of radiative corrections in the

stable-Higgs approximation and in the H → bb̄ decay channel become very similar. In both

cases, shapes of NLO distributions are not significantly affected by NNLO corrections so that

a rescaling of NLO distributions would provide a good approximation to the full result. We

stress that this would not be the case if one were to use a NNLO/NLO K-factor computed

in the standard WBF fiducial region, without an additional p⊥,H & 150 GeV cut.

In the H → WW ∗ → 4l channel, typical selection cuts are milder and do not significantly

affect the Higgs and jets kinematic distributions. Because of this, corrections to Higgs and

leptonic observables are rather flat and can be well captured by an overall K-factor.

Our results could be extended in several directions. Most prominently, ourH → bb̄ analysis is

only approximate. Indeed, we did not consider radiative corrections to H → bb̄ decay. Given

the non-trivial interplay between jets coming from the production stage and jets originated

from the b-quarks from Higgs decays, it would be interesting to perform a complete NNLO

analysis that accounts for corrections to both the production and decay stages of the WBF
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process.

Furthermore, since radiative corrections to WBF in the fiducial region are impacted by a non-

trivial jet dynamics, it is difficult to predict how potential Beyond the Standard Model effects

would impact the radiative corrections. To study this point, one could, for example, repeat

the NNLO QCD calculation within the Standard Model effective field theory framework, to

investigate to which extent radiative corrections can mimic potential anomalous couplings

effects if the latter are only predicted at low orders in QCD perturbation theory. We leave

these interesting avenues of investigation for the future.
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