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Abstract

We study a simplified model of flavoured Majorana dark matter in the Dark Minimal
Flavour Violation framework. The model extends the Standard Model by a dark
matter flavour triplet and a scalar mediator, through which the new dark fermions
couple to right-handed up-type quarks. This interaction is governed by a new cou-
pling matrix λ which is assumed to constitute the only new source of flavour and
CP violation. We analyse the parameter space of this model by using constraints
from collider searches, D0 − D̄0 mixing, cosmology and direct dark matter searches.
Throughout our study, we point out crucial differences between the Majorana and
Dirac dark matter cases. After performing a combined analysis within the context of
all the experimental constraints mentioned above, we analyse which flavour for the
dark matter particle is preferred by experimental data. We further investigate if this
model is capable of explaining the large measured value of the direct CP asymmetry
∆Adir

CP in charm decays. We find that significant enhancements with respect to the
Standard Model expectation are compatible with all constraints, and in one bench-
mark scenario even the central value of the measurement can be reached. We also
advertise the flavour-violating final state with two same-sign top quarks produced in
association with missing transverse energy as a smoking-gun signature for flavoured
Majorana dark matter at the LHC.ar
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1 Introduction

Despite the overwhelming astrophysical and cosmological evidence for the existence of dark
matter (DM), its particle nature remains obscure. With the non-observation of DM particles
in direct detection experiments and at the LHC, the WIMP paradigm – i. e. a weakly-coupled
DM particle with weak-scale mass – has been put under severe pressure [1]. As a consequence,
alternatives to the simple WIMP scenario have become increasingly popular.

One possibility to reconcile the WIMP paradigm with experimental data is the introduction
of an extended dark sector in which the DM candidate carries charge under a flavour symmetry
[2–10]. While the first studies of such flavoured DM models were confined to the Minimal
Flavour Violation (MFV) [11–15] hypothesis, more recently the concept of flavoured DM with
a non-trivial flavour structure has been put forward [16–20]. In this case the coupling between
the DM flavour multiplet and the Standard Model (SM) fermions constitutes a new source
of flavour and CP violation, so that the phenomenology vastly changes with respect to the
MFV-type models.

In order to systematically study the phenomenological implications of such a non-MFV
coupling between DM and the SM, the concept of Dark Minimal Flavour Violation (DMFV)
has been introduced [16]. Conceptually similar to the MFV hypothesis, in DMFV models the
coupling between the DM flavour triplet and the SM quark or lepton flavour triplet is assumed
to be the only new source of flavour and CP violation beyond the SM Yukawa couplings. The
assumption of DMFV has the advantage of keeping the number of parameters in the simplified
models minimal and thus allowing for an efficient study of their rich phenomenology.

Previous analyses of simplified models with DMFV introduced DM as a Dirac fermion trans-
forming as a triplet under a new U(3)χ flavour symmetry, either coupling to the SM down-type
quarks [16], up-type quarks [17,18], left-handed quark doublets [19] or charged leptons [20] via
a scalar mediator. In the present paper we instead explore the possibility to introduce the
DM flavour triplet as a Majorana fermion. Since the Majorana nature requires the DM to
transform under a real representation, we take the flavour symmetry in the dark sector to be
O(3)χ, instead of U(3)χ in the Dirac case.

As a benchmark case, we consider the case of flavoured Majorana DM in which the dark
flavour triplet χ couples to the right-handed up-type quarks, in analogy to the Dirac DM model
studied in [17,18]. To allow for a straightforward comparison of the phenomenology of the two
models, let us briefly recall the main results of [17]:

• The stringent constraints from D0 − D̄0 mixing required a strong suppression of flavour
changing neutral current (FCNC) processes, thereby forbidding interesting non-standard
effects in rare and CP-violating D meson decays.

• The LHC experiments ATLAS and CMS put lower bounds on the mass of the scalar
mediator, depending on the DM mass and the coupling strength to SM quarks. The
strongest constraints arise from searches for final states with jets plus missing transverse
energy /ET .

• Similarly to flavour-violating supersymmetric models [21, 22], the model predicts the
new benchmark signatures tj + /ET and monotop+ /ET at a significant rate. A dedicated
experimental search has been proposed in [23].

• The limits from direct detection experiments severely constrain the allowed ranges of
DM-quark couplings, requiring a destructive interference between the various tree- and
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loop-level contributions to the DM-nucleon scattering cross section. In combination with
the constraints from the thermal freeze-out condition, the direct detection limits translate
into a lower bound on the DM mass.

Analysing the constraints from collider searches, flavour physics, cosmology and direct de-
tection experiments, we shall see that the phenomenology changes drastically when, instead of
a Dirac fermion, DM is introduced as a Majorana fermion.

2 Flavoured Majorana Dark Matter in DMFV

The subject of this paper is a simplified model based on the DMFV hypothesis [16]. This section
briefly introduces the DMFV framework in general and then presents the explicit DMFV model
to be studied.

2.1 A Simplified DMFV Model

In the DMFV framework the SM is extended by a new flavour symmetry, generically denoted
as Gχ(3), and a DM field χ, that transforms under the fundamental representation of this new
symmetry. This results in a global

GDMFV = U(3)q × U(3)u × U(3)d × G(3)χ (2.1)

flavour symmetry, where we focus on DM interacting with SM quarks. Depending on whether
the field χ is a Dirac or Majorana fermion the symmetry group G(3)χ is either a U(3)χ or an
O(3)χ group, respectively. In DMFV the SM Yukawa couplings Yu, Yd, and λ – the coupling
of χ to quarks – constitute the only sources that break the flavour symmetry GDMFV. In this
sense, the DMFV framework goes beyond the scope of MFV [11–15], as it extends the SM
flavour symmetry by G(3)χ and includes one new source of flavour and CP violation, namely
λ. DMFV models can be classified by the type of flavour to which the DM couples and the
fermion nature of the DM particle. The cases of χ being a Dirac fermion and coupling to right-
handed up quarks uR [17, 18], right-handed down quarks dR [16], left-handed quark doublets
qL [19] and right-handed charged leptons [20] have already been studied.

In this paper we present a simplified model that constitutes the first realization of the DMFV
ansatz where the new DM field χ is assumed to be a Majorana fermion. In analogy to the
model analysed in [17], it is assumed that χ couples to right-handed up quarks through the
exchange of a scalar boson φ. The Lagrangian of this model reads:

L =LSM +
1

2

(
iχ̄/∂χ−Mχχ̄χ

)
− (λij ūRiχj φ+ h.c.) + (Dµφ)†(Dµφ)

−m2
φ φ
†φ+ λHφ φ

†φH†H + λφφ

(
φ†φ
)2
. (2.2)

Here we have introduced χ as a four-component Dirac spinor χ = (χL, iσ2χ
∗
L)T , with χL

being a two-component Weyl spinor. Note that due to its Majorana nature the kinetic term
and the mass term of χ include a factor of 1/2. The field χ transforms as a singlet under
the SM gauge group and as a triplet under a global O(3)χ symmetry, i.e. it comes in three
generations. Its lightest generation is assumed to constitute the observed DM in the universe.
Interactions between SM quarks and this new DM field χ are parametrised by the coupling
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λ, a general complex 3 × 3 matrix. This interaction is mediated by the scalar boson φ which
carries hypercharge and colour. The couplings λHφ and λφφ have no relevance for our analysis
and are only mentioned for completeness.

2.2 Parametrization of the DM-Quark Coupling λ

In order to analyse the constraints on our model we need to first parametrise the physical
degrees of freedom in the flavour sector. For the Yukawa couplings Yu and Yd one can proceed
as usual and use the SM flavour symmetry in order to remove unphysical parameters to finally
end up with six quark masses and the CKM matrix.

A similar procedure has to be performed for the new coupling λ. According to the DMFV
ansatz λ is an arbitrary complex 3× 3 matrix. Therefore it contains 18 parameters, consisting
of 9 real parameters and 9 complex phases. In the following we want to make use of the flavour
symmetry GDMFV and the symmetry O(3)χ in particular in order to remove unphysical degrees
of freedom from λ.

As a first step λ is expressed through a singular value decomposition, yielding

λ = UλDλVλ . (2.3)

Here, Uλ and Vλ are unitary matrices and Dλ is a diagonal matrix with positive and real
entries. Taking into account that eq. (2.3) is invariant under the diagonal rephasing

U ′λ =Uλ diag(eiα1 , eiα2 , eiα3) ,

V ′λ = diag(e−iα1 , e−iα2 , e−iα3)Vλ , (2.4)

this parametrization indeed contains 9 real parameters and 9 complex phases.
One can now use the flavour symmetry GDMFV in order to remove more unphysical degrees

of freedom from λ. Note that for the case of χ being a Dirac fermion GDMFV contains a U(3)χ
symmetry. In such models the flavour symmetry of χ can thus be used to fully remove the
unitary matrix Vλ and end up with λ = UλDλ [16,17,19]. For our case of a Majorana fermion
χ the Lagrangian is no longer invariant under such U(3)χ transformations, since Majorana
fields can only transform under real representations. Indeed the bilinear

χ̄χ = i(χ†Lσ2χ
∗
L − χTLσ2χL) . (2.5)

is only invariant under orthogonal transformations. Thus, one is left with an O(3)χ symmetry
that can be used to remove 3 real degrees of freedom from Vλ.

According to [24] the unitary matrix Vλ can be decomposed as

Vλ = OV dV PV . (2.6)

Here, OV and PV are orthogonal matrices with 3 real degrees of freedom and dV is a diagonal
unitary matrix with 3 complex phases. The orthogonal matrix PV can now be removed from
Vλ by using the transformation

χ→ P−1
V χ . (2.7)

This finally yields
λ = U DO d , (2.8)
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where we have omitted the indices for brevity of notation.
We adopt the parametrisation for U from [17,25], which reads

U = U23 U13 U12

=

1 0 0
0 cθ23 sθ23e

−iδ23

0 −sθ23e
iδ23 cθ23

 cθ13 0 sθ13e
−iδ13

0 1 0
−sθ13e

iδ13 0 cθ13

 cθ12 sθ12e
−iδ12 0

−sθ12e
iδ12 cθ12 0

0 0 1

 ,

(2.9)

where we have used the shorthand notation cθij = cos θij and sθij = sin θij . The matrix O is
parametrised as

O = O23O13O12

=

1 0 0

0 cφ23 sφ23

0 −sφ23 cφ23

 cφ13 0 sφ13

0 1 0

−sφ13 0 cφ13

 cφ12 sφ12 0

−sφ12 cφ12 0
0 0 1

 , (2.10)

with cφij = cosφij and sφij = sinφij , and the diagonal matrices D and d are parametrised as

D = diag(D1, D2, D3) and d = diag(eiγ1 , eiγ2 , eiγ3) . (2.11)

In total the coupling matrix λ then has the following 15 physical parameters:

θ23, θ13, θ12, φ23, φ13, φ12, δ23, δ13, δ12, γ1, γ2, γ3, D1, D2, D3 . (2.12)

In order to avoid a double-counting of the parameter space in our numerical analysis, we
restrict the parameters of the coupling matrix λ to the following ranges:

θij ∈ [0,
π

4
], φij ∈ [0,

π

4
], δij ∈ [0, 2π), γi ∈ [0, 2π), Di > 0 . (2.13)

2.3 Mass Spectrum and Dark Matter Stability

Following the DMFV assumption the mass term Mχ cannot be a generic 3 × 3 matrix, as
this would constitute an additional source of flavour violation. Instead, similarly to the MFV
spurion expansion [12], we can expand the DM mass matrix in powers of the flavour violating
coupling λ:

Mχ,ij = mχ

{
1 +

η

2
(λ†λ+ λTλ∗) +O(λ4)

}
ij
. (2.14)

The expansion parameter η is an additional parameter of the simplified model that accounts for
our ignorance of the UV completion of the theory. In order to ensure that the mass corrections
always reduce the DM mass with respect to the leading-order mass parameter mχ, we choose
η < 0.

The expression in eq. (2.14) differs from the one employed in the case of Dirac DM [17]
– the second summand in the round brackets is required in order to render the mass matrix
symmetric, as required for Majorana fermions. Inserting our parametrization for λ we find

Mχ,ij = mχ

{
1− |η|

2
(d∗OT D2O d+ dOT D2O d∗) +O(λ4)

}
ij

. (2.15)
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Note that in contrast to the Dirac fermion case the mass matrix Mχ is not diagonal per se, i.e.
there is a misalignment between the flavour and the mass eigenstates for χ. The diagonalization
of Mχ can be achieved through an Autonne-Takagi factorization [26,27], where

Mχ = W TMD
χ W . (2.16)

Here, MD
χ is a diagonal matrix with real positive entries and W is an orthogonal matrix, since

the mass matrix Mχ is real. The necessary field redefinition χL → WχL then transforms the
coupling of the DM field χ to the SM quarks uR to

λ̃ = λW T . (2.17)

We further arrange the rows of W in such a way that we always have

MD
χ = diag(mχ1 ,mχ2 ,mχ3) , (2.18)

with mχ1 > mχ2 > mχ3 , i. e. the third dark generation is the lightest state, and we assume
it to form the DM of the universe. Due to the complexity of the mass corrections it is not
possible to provide an analytical expression for W and thus, calculating analytical conditions
that the model parameters have to fulfil in order to generate a particular mass splitting, as
was done in [17], is not possible.

In DMFV models with Dirac fermions DM stability is guaranteed by an unbroken Z3 sym-
metry which follows from the flavour symmetry [16, 17, 19]1. However, for Majorana DM this
symmetry cannot be present due to its non-trivial representation being complex. Hence, we
impose a Z2 symmetry under which only the new particles χ and φ are charged in order to
forbid the decay of χ and φ into final states with SM particles only. The lightest flavour of
the DM triplet χ is then rendered stable, as long as its mass is smaller than the mass of the
coloured scalar boson φ. Thus, we additionally choose

mχ < mφ . (2.19)

3 Collider Phenomenology

Searches for new particles at the LHC lead to stringent constraints on the model presented
above. We discuss these constraints in this section to determine the experimentally excluded
regions in the parameter space of our model.

It was shown in [28] that for models with a coloured t-channel mediator the most stringent
limits arise in general from the pair-production of the mediator, subsequently decaying into
quarks and missing transverse energy (/ET ), as opposed to searches for monojet+/ET . The
authors of [16] found very similar results for a DMFV model where χ is a Dirac fermion and
couples to right-handed down-type quarks. We expect that this behaviour also applies to our
model and therefore focus on φ pair production.

The relevant final states constrained by the LHC experiments are those of searches for
supersymmetric top squarks (tt̄ + /ET ) and squarks of the first two generations (jets+/ET ).
Note that the limits used in [17] to constrain the Dirac version of top-flavoured DM were
based on LHC run 1 data with

√
s = 8 TeV. Updated bounds resulting from a recast of

1An analogous residual symmetry had previously been found in the case of DM models with MFV [4].

7



136 fb−1 of LHC run 2 data at
√
s = 13 TeV were presented in [23]. In this study we will use

the same run 2 limits as in [23] to constrain our model of flavoured Majorana DM.

3.1 LHC Signatures from Mediator Pair-Production

Just like squarks in SUSY, the scalar boson φ is a colour triplet that is odd under a Z2 symmetry
and is therefore produced in pairs through QCD interactions. Note that this production channel
neither depends on the DM mass mχ nor on the coupling λ.

However, φ can also be pair-produced through processes involving the t-channel exchange of
χ, as shown in Figure 3.1. These diagrams are proportional to λ2. As χ is a Majorana fermion
the production modes for φ also include same-sign production channels, i.e. the mediator can
be produced as φφ†, φφ and φ†φ† pairs. Note the production of a φφ pair is enhanced by the
up quark parton distribution function (PDF) [29], due to the pair of valence up quarks in the

proton. As it is the mass term of eq. (2.5) that mixes χ†L and χL, these production channels
are additionally proportional to the mass parameter mχ of the Lagrangian.

Due to the Z2 symmetry introduced in section 2.3 the scalar boson φ can only decay into
final states that include χ. The by far dominant decay modes are then the ones into a single
quark qi accompanied by χj , where i, j are flavour indices, as depicted in Figure 3.2.

Combining the pair-production and decay of the mediator boson φ, we find the following
parton level processes that are relevant for the LHC analysis:

pp → φφ† → χi χj qk q̄l ,
pp → φφ → χi χj qk ql ,
pp → φ† φ† → χi χj q̄k q̄l .

(3.1)

Here, i, j, k and l are flavour indices. The explicit constellation of the final states at the LHC
depends on the SM flavour indices k and l. An (anti)quark of the first or second generation
leads to a jet in the final state which is very difficult to distinguish in flavour. Top and anti-top
quarks, however, can be experimentally distinguished in their semileptonic decay channels, by
measuring the charge of the final-state lepton. The dark flavours χi, on the other hand, are
indistinguishable at the LHC, as they appear as missing transverse energy /ET – due to the
small mass splitting possible decay products of the heavy flavours are too soft to be detected.

The relevant final state signatures for the processes discussed above are then tt̄+ /ET , tt+ /ET ,
t̄t̄ + /ET , and jj + /ET . The former three are not distinguished experimentally if hadronically
decaying top quarks are considered. In that case we use the shorthand notation tops + /ET
for the sum of these three processes. The signatures tops + /ET and jj + /ET are the same
as in SUSY searches for a pair of squarks decaying into SM quarks and a neutralino. As the

(a) φφ† production (b) φφ production (c) φ†φ† production

Figure 3.1: Feynman diagrams of the t-channel χ exchange production modes of φ.
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Figure 3.2: Feynman diagram of the mediator decay.

spin-statistics in the SUSY case and in our model are the same, the final-state kinematics is
the same as far as the QCD production channel is concerned. For the t-channel production
specific to our model, the final-state kinematics could be different, however we do not expect
a relevant impact on our results. Thus, we can straightforwardly transfer the limits obtained
by such SUSY searches to our case.

It is also possible that the two intermediate φ bosons decay into two χ particles, one top
quark and one light quark, generating the signature tj + /ET , which is also generated in SUSY
models with flavour violating squark decays [21, 30–34]. While no dedicated searches for this
signature currently exist, it has been shown in [23] to have significant discovery potential in
the case of Dirac DM. We expect that similar conclusions also hold in our model, but leave a
detailed analysis for future work.

Lastly, the enhanced same-sign signature tt+ /ET is a unique feature of Majorana DM models
which, to the best of our knowledge, has not received attention in the literature. We return to
this signature in Section 3.3.

3.2 Recast of LHC Constraints

For the analysis of constraints that LHC searches for SUSY squarks pose on our model, we
use the bounds obtained by the CMS collaboration [35] using the full run 2 data set with
an integrated luminosity of 136 fb−1. Their analysis places limits on coloured SUSY particles
from final states with multiple hadronic jets associated by /ET . In particular, the final states of
interest jj+ /ET and tops + /ET are directly addressed in that analysis, and cross-section limits
are provided in tabular form. Note that the results of [35] are not distinctive with respect to
the charge of the final state top quarks.

In order to recast the experimental limits we calculate the leading order (LO) signal cross-
section using MadGraph 5 [36]. The simplified model is implemented in FeynRules [37] using
the Lagrangian in eq. (2.2). Note that for simplicity we assume a degenerate mass spectrum
for the DM triplet χ and neglect the small mass splitting that was discussed in Section 2.3.
This approximation is justified as the mass splitting would only lead to additional soft decay
products that are difficult to detect and therefore do not qualitatively influence the results
of this analysis [17]. As we are primarily interested in the constraints that the LHC searches
impose on the mass parameters mφ and mχ, we set the mixing angles and phases in the
coupling matrix λ to zero. Non-zero mixing angles tend to reduce the branching ratio of a
given flavour-conserving final state in comparison to the case with vanishing mixing angles,
and therefore lead to a smaller signal cross-section. We also assume D1 = D2 for simplicity.

In Figure 3.3 we show the exclusion contours resulting from the final state tops + /ET in the
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Figure 3.3: Constraints on the final states tt̄+ /ET , tt+ /ET and t̄t̄+ /ET obtained from [35].
The area under the curve is excluded.

mφ −mχ plane, obtained by recasting the cross-section limits of [35]. The value of D3 is fixed
whereas D1 = D2 is varied. In Figure 3.3a the excluded region shrinks with growing couplings
D1 = D2. This is due to the fact that increasing the couplings to up and charm quarks reduces
the branching ratio of the mediator φ decaying into final states with top flavour.

At the same time a growing coupling D1 enhances the t-channel production process. In
Figure 3.3b one can see that due to this reason for couplings D1 > 0.5 the excluded area
grows for increasing values of D1 = D2. Note that in this case contributions of the t-channel
production of φ proportional to λ2 grow larger than the QCD contributions to the overall
cross-section. In particular, a large coupling D1 also enhances the production of the same
sign final state tt + /ET , enhanced by the PDFs of two up quarks in the initial state. This
can be seen explicitly in Figure 3.3b. The excluded region grows quickly for increasing D1

and non-vanishing DM mass mχ. As explained above, this dependence on mχ originates
from the Majorana nature of χ necessary for this contribution. Thus, even for the maximally
constraining case of D1 = D2 = D3 = 1.5 regions with a small mχ and mφ & 1 TeV are not
excluded.

The results of recasting the jj + /ET limits are shown in Figure 3.4. In this case we fix
the value of D1 = D2 and vary the value of D3. In contrast to the final states with top
flavour, increasing the value of D3 reduces the branching ratio into this final state. At the
same time, both the mediator pair-production cross-section and the final state branching ratio
grow with increasing D1 = D2. The pattern in Figure 3.4 matches this expectation. We
observe that an increasing value of D3 shrinks the excluded area. When comparing Figure
3.4a and Figure 3.4b, we also see that the excluded region grows sizeably when the values of
D1 and D2 are increased. While this in general is due to an increased production cross-section
and branching ratio, it partially originates – in analogy to the final states with top flavour –
from the production rate of the same-sign intermediate φφ state that grows for an increasing
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Figure 3.4: Constraints on the final state jj + /ET obtained from [35].

value of D1 and is again governed by the mass parameter mχ. Just as for the final states with
top flavour, regions with a small mχ are therefore not excluded for sufficiently high mediator
masses mφ & 1.5 TeV. Overall, comparing Figure 3.3 and Figure 3.4 shows that the limits
for final states with two jets are significantly more constraining for large D1 = D2 than the
limits for final states with top flavour. As there is no interplay between a decreased branching
ratio into the final state and a concurrent increased production of the intermediate state when
increasing the value of D1, this was to be expected. Another reason is that for degenerate
couplings Di the branching ratio of the final state with jj + /ET is larger, due to the larger
multiplicity of possible parton-level final states (u- and c-jets).

In total, we conclude that for both signatures the same-sign contributions present only in
the Majorana DM model constrain a significant part of the mφ −mχ plane. In order to avoid
large exclusion limits on the masses, we require D1 and D2 to be small. As this choice ensures
the t-channel production of φ to be small compared to its QCD production, it is safe for D3

to have larger values. Requiring the couplings to lie in the ranges

0 < D3 ≤ 1.5 ,

0 < D1, D2 ≤ 0.5 , (3.2)

it is possible to fulfil the LHC constraints for masses mφ & 1 TeV and arbitrary mχ. As we
will see later on, the limits from flavour and DM phenomenology support this choice of ranges
especially in the case of top-flavoured DM. Note that even for larger values D1, D2 & 1.0 it is
still possible to fulfil the LHC constraints by choosing mφ & 1.5 TeV and mχ . 200 GeV.
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Figure 3.5: LO cross section of pp → φφ → tt+ /ET in 14 TeV collisions for mφ = 1200 GeV
and mχ = 200 GeV.

3.3 Same-sign tops at the LHC

As discussed above, the t-channel exchange of a Majorana fermion χ leads to the production
of same-sign mediator pairs φφ, with the cross-section being enhanced by two powers of the up
quark PDF of the proton. The subsequent decay of both φ scalars into a top quark and a DM
flavour then induces the same-sign di-top final state tt + /ET . Since this signature is absent
in the case of Dirac DM and strongly suppressed by the smallness of the relevant couplings
in SUSY, we regard this final state as a smoking-gun signature of our model. Experimentally,
this final state can be distinguished from the more common tt̄ + /ET one by measuring the
lepton charge of semileptonic top decays.

Therefore we also present a prediction for the tt + /ET production cross section for the
upcoming LHC runs, i.e. at a centre of mass energy of

√
s = 14 TeV. Note that experimental

NP searches dedicated to same-sign top signatures exist, see [38]. The limits obtained in the
latter study generally also pose constraints on our model. However, the NP processes under
consideration are different from our case, and hence the final-state kinematics are not the same.
A proper recasting would therefore be in order to derive meaningful bounds on the parameter
space of our model, which is beyond the scope of the present paper.

Figure 3.5 illustrates the LO cross-section for the same-sign signature tt+ /ET for a centre-
of-mass energy of

√
s = 14 TeV. The cross-section is calculated for varying coupling strengths

D1 = D2 as well as D3, whereas the masses are fixed to mφ = 1200 GeV and mχ = 200 GeV, in
agreement with the LHC constraints derived in the previous section. As expected, the cross-
section grows with an increasing coupling D1 since the same-sign intermediate state is mainly
produced through the process uu → φφ. At the same time, the branching ratio into top final
states grows for increasing D3, yielding the largest tt+ /ET in the part of the parameter space
where all couplings Di are large. In this case, rates of the order of several fb are predicted,
well in the reach of future LHC studies.
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4 Flavour Physics Phenomenology

A central aspect of the DMFV ansatz is the introduction of the new flavour and CP-violating
coupling λ which can generally lead to large FCNC effects and therefore is very sensitive
to constraints stemming from flavour observables. Often, the most stringent constraints on
flavoured NP interactions stem from ∆F = 2 observables, i. e. observables measuring the
oscillation of neutral mesons. Since in our model the new particles couple to the right-handed
up-type quarks, the relevant process is D0 − D̄0 mixing (∆C = 2), to which we dedicate this
section. We derive the relevant expressions for the contributions of our flavoured Majorana
DM model and restrict the structure of the coupling matrix λ through existing experimental
bounds on D0− D̄0 mixing observables. A detailed introduction into the underlying formalism
of effective Hamiltonians describing flavour violating processes can be found in [39,40].

Concerning ∆F = 1 processes, the constraints on NP contributions to rare D decays are
generally weaker than the ones from D0 − D̄0 mixing, and we do not consider them here.
Following [17] we also ignore rare flavour violating top decays, as their constraints are not
stringent enough yet. However, after combining all available constraints on the parameter
space of our model, in Section 8 we return to flavour physics and study the contributions to
directly CP-violating charm decays, measured in the asymmetry ∆Adir

CP .

4.1 Neutral D Meson Mixing

The flavour violating interaction term in eq. (2.2) gives rise to NP contributions to D0 − D̄0

mixing. This ∆C = 2 process is first generated at one-loop order, i.e. O(λ4). The relevant
diagrams are shown in Figure 4.1. Note that the crossed diagram shown in Figure 4.1b only
exists if χ is a Majorana fermion. In models where χ is a Dirac fermion one only has the
standard box diagram shown in Figure 4.1a. Using the techniques presented in [39, 40] and
evaluating the diagrams one arrives at the following effective Hamiltonian:

H∆C=2,NP
eff =

1

128π2m2
φ

∑
ij

λujλ
∗
ci

[
λuiλ

∗
cj ·F (xi, xj)−2λujλ

∗
ci ·G(xi, xj)

]
×QV RRuc +h.c. , (4.1)

where we have used the short-hand notation

QV RRuc = (ūαγµPRcα)(ūβγνPRcβ) (4.2)

(a) standard box diagram (b) crossed box diagram

Figure 4.1: Feynman diagrams for the NP contributions to D0 − D̄0 mixing at LO.
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for the relevant effective four-fermion operator. The loop functions read

F (xi, xj) =

(
x2
i log(xi)

(xi − xj)(1− xi)2
+

x2
j log(xj)

(xj − xi)(1− xj)2
+

1

(1− xi)(1− xj)

)
,

G(xi, xj) = −
( √

xixjxi log(xi)

(xi − xj)(1− xi)2
+

√
xixjxj log(xj)

(xj − xi)(1− xj)2
+

√
xixj

(1− xi)(1− xj)

)
, (4.3)

with xi = m2
χi
/m2

φ. In eq. (4.2) we imply a summation over the colour indices α and β. In the
interval xi ∈ [0, 1] the loop functions of eq. (4.3) have the same sign, i.e. the two diagrams of
Figure 4.1 can interfere destructively due to the relative minus sign in the effective Hamiltonian
in eq. (4.1). This is a well known effect from SUSY where the box diagram contains a squark
and a gluino [41]. For xi = xj = 1 we even have 2G(1, 1) = F (1, 1), but as the coupling λ
is not flavour-universal a destructive interference can only occur in eq. (4.1) if the different
prefactors of F (xi, xj) and G(xi, xj) have the same sign.

Using the effective Hamiltonian from above we can now calculate the off-diagonal element
of the D0 − D̄0 mass matrix as

MD,NP
12 =

1

2mD
〈D̄0|H∆C=2,NP

eff |D0〉∗

=
ηDmDf

2
DB̂D

384π2m2
φ

∑
ij

λ∗ujλci

[
λ∗uiλcj · F (xi, xj)− 2λ∗ujλci ·G(xi, xj)

]
, (4.4)

where we have used

〈D̄0|QV RRuc (µ) |D0〉 =
2

3
m2
Df

2
DB̂D (4.5)

for the hadronic matrix element at the meson scale µ = 3 GeV. The parameters fD and B̂D
are obtained through lattice QCD calculations at this scale [42,43]. In eq. (4.4) the parameter
ηD accounts for NLO contributions from the renormalization group running between the weak
scale µ = MW and the D0 meson scale µ = 3 GeV [44]. It also serves as a parametrisation
of threshold corrections for the matching of the SM to the effective theory. We neglect the
additional threshold matching corrections between the SM and our DMFV model which, fol-
lowing [16], we expect to be small. Also note that there is no NP contribution to the absorptive
part of the mixing amplitude ΓD12, since the NP scale is above the D0 meson mass scale and
therefore cannot contribute on-shell.

The expression in eq. (4.4) describes the general case with a possible mass splitting between
different DM flavours χi. As the mass corrections described in Section 2.3 are NLO in the
DMFV expansion, plugging them into the expressions from above will generate a higher-order
DMFV correction that we assume to be small. Further, we have checked numerically that
xi 6= xj only causes corrections of a few percent for the loop functions F (xi, xj) and G(xi, xj).
Thus, the mass splitting among the fields χi is neglected in this section. We can then evaluate
the sum in eq. (4.4) and find

MD,NP
12 =

ηDmDf
2
DB̂D

384π2m2
φ

[
ξf · f(x)− 2 ξg · g(x)

]
, (4.6)
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where we have introduced

ξf =
∑
ij

λ∗uiλciλ
∗
ujλcj =

(
λλ†
)2

cu
,

ξg =
∑
ij

λciλciλ
∗
ujλ
∗
uj =

(
λλT

)
cc

(
λλT

)∗
uu
. (4.7)

For the loop functions we find

f(x) = lim
y→x

F (x, y) =
1 + x

(1− x)2
+

2x log(x)

(1− x)3
, (4.8)

g(x) = lim
y→x

G(x, y) = − 2x

(1− x)2
− x(1 + x)

(1− x)3
log(x) . (4.9)

We can now calculate the NP contribution to xD12 according to

xD,NP
12 = 2 τD0 |MD,NP

12 | . (4.10)

As ΓD,SM
12 is real to an excellent approximation in the standard parametrisation of the CKM

matrix, the CP-violating phase simply reduces to φD12 = Arg
(
MD

12

)
.

4.2 Application of the D meson mixing constraints

In Table 4.1 we show the relevant values of parameters and the model-independent limits for
xD12 as well as φD12 that we use in the numerical analysis.

For a proper treatment of the restrictions these constraints pose on λ it is necessary to also
consider the SM contribution to xD12 and φD12. As the CP-violating phase is expected to be of

order O(10−3) in the SM, we neglect this small contribution and assume MD,SM
12 to be real.

As for the SM contributions to xD12, they are dominated by long-distance effects and hence

suffer from large theory uncertainties. Nevertheless, estimates of xD,SM
12 find it of the order

O(10−2) [47]. Given these uncertainties, we conservatively assume the SM contribution to lie

Numerical Values and Limits

B̂D 0.75± 0.02
fD 209.0± 2.4 MeV
ηD 0.772
mD0 1864.83± 0.05 MeV
τD0 410.1± 1.5 fs

xD12 [0.21%, 0.63%]
φD12 [−2.8◦, 1.7◦]

Table 4.1: Numerical values and limits used for the analysis of the D0−D̄0 mixing constraints
[42–46]. The limits on xD12 and φD12 are given at 95% C.L. and were obtained from
the Heavy Flavour Averaging Group’s (HFLAV) website [46].
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in the range
xD,SM

12 ∈ [−3%, 3%] . (4.11)

Using the results provided in the previous section we then demand that the total values for
xD12 and φD12 lie in their 95% C.L. intervals given in Table 4.1 to restrict the parameters of our
model. The results are shown in Figure 4.2, Figure 4.3 and Figure 4.4.

Figure 4.2 illustrates the allowed mixing angles θij in dependence of the difference ∆ij =
|Di −Dj | for mχ < mφ and mφ = mχ.2 We see that in both cases the strongest restrictions
are placed on θ12 and that the experimental constraints become especially effective for large
∆ij . For nearly degenerate couplings Di ' Dj the corresponding angle θij can be chosen freely.
The reason is that the factor ξf defined in eq. (4.9) approaches zero in the limit of degenerate
Di as λλ† = UD2U † becomes diagonal. Thus, the contribution of the diagram in Figure 4.1a
vanishes. Figure 4.2b shows that choosing mφ = mχ only slightly loosens the bounds on ∆ij .

As the crossed box diagram in Figure 4.1b is proportional to the diagonal entries of λλT

and its complex conjugate, it does not approach zero for vanishing mixing angles and phases.
In order to gain insight on the constraints this places on the parameters of λ, we analyse the
Di − Dj plane of the parameter space. Figure 4.3a shows that the constraints require the
couplings D1 and D2 to roughly lie in the interval D1, D2 ∈ [0.0, 0.5]. This is due to the fact
that ξg mainly depends on these two couplings. For zero mixing angles and phases it reduces
to ξg = D2

1D
2
2. Thus, combinations of a large D1 with a small D2 or vice versa are also allowed.

In Figure 4.3b we see that there are no such constraints on D3 and that the latter coupling
can be chosen freely. The same pattern can also be observed for other masses mφ and mχ.

(a) mφ = 1200 GeV and mχ = 200 GeV (b) mφ = 1200 GeV and mχ = 1200 GeV

Figure 4.2: Allowed mixing angles θij as a function of the splitting ∆ij = |Di −Dj | for two
choices of mφ and mχ.

2The latter case is excluded as it would render φ stable, in conflict with cosmological observations. Never-
theless, we also discuss the case of equal masses here in order to provide a better understanding of the flavour
physics phenomenology and the interference between the diagrams shown in 4.1.
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(a) D1 −D2 plane (b) D2 −D3 plane

Figure 4.3: Allowed parameter space in the Di − Dj plane for mφ = 1200 GeV and mχ =
200 GeV.

We conclude that, barring fine-tuned cancellations,

0 < D3 ≤ 2.0 ,

0 < D1, D2 ≤ 0.5 (4.12)

is required to fulfil the D0 − D̄0 mixing constraints while allowing for large mixing angles
for most of the remaining parameter space. It is interesting to see that this result perfectly
matches the LHC constraints identified in Section 3.2.

As for the aforementioned possible destructive interference of the two diagrams shown in
Figure 4.1, we find that the allowed parameter space indeed is mainly determined by it. In
Figure 4.4 we show the imaginary parts of ξi for two choices for the masses mφ and mχ to
illustrate this effect. One can see that for both choices of masses the allowed imaginary parts
scatter around a linear function. Remembering that the limits on φD12 are very stringent, i.e.
φD12 ≈ 0, this behaviour can be understood analytically. Since φD12 is given as

φD12 = arctan
Im(MD,NP

12 )

Re(MD,NP
12 ) + Re(MD,SM

12 )
(4.13)

small values for φD12 require a small imaginary part of MD,NP
12 . This requirement forces the two

factors ξf and ξg to follow the relation

Imξf ≈ Imξg
2g(x)

f(x)
. (4.14)

We confirm this finding in Figure 4.4a where we have x = 1 and 2g(1) = f(1) = 1/3. In this
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(a) mφ = 1200 GeV and mχ = 1200 GeV (b) mφ = 1200 GeV and mχ = 200 GeV

Figure 4.4: Imaginary part of the two factors ξf and ξg in percent.

case the slope is basically one and we have Imξf = Imξg. For any other point in the mφ −mχ

plane the slope is given by the actual value of 2g(x)/f(x) as can be seen in Figure 4.4b. In
the described figures the scattering of the allowed points around this linear function is due to
the fact that φD12 is not exactly zero but is allowed to lie in the interval given in Table 4.1.
The same interference between the diagrams of Figure 4.1 can also be seen in the real part of
MD,NP

12 , with the sole difference of a larger scattering around the linear function of eq. (4.14).
This is due to the theoretical uncertainty in the SM contribution to the real part of MD

12.

5 Cosmological Implications

The constraints from collider and flavour physics experiments analysed so far are generally
relevant for any extension of the SM that contains new flavoured particles. As the DMFV
ansatz further assumes the lightest flavour of the field χ to constitute the observed DM in the
universe [48], it is also necessary to consider constraints from cosmology. Thus, we use this
section to discuss the implications of the observed DM relic abundance on our model.

5.1 DM Annihilation and Freeze-Out Scenarios

A commonly used approach to explain the observed amount of DM is to assume a freeze-out
of dark particles from thermal equilibrium at a given temperature Tf ≈ mχ/20 [49], i.e. at
temperatures below Tf the DM production and annihilation rates both approach zero and one
is left with a relic of DM. The resulting relic abundance depends on the annihilation rate of
DM into SM matter. We first define two benchmark freeze-out scenarios to be discussed in this
analysis and then provide the relevant formulae for the annihilation of DM into SM matter.

As our model contains three generations of DM particles it is important to consider the mass
hierarchy of the fields χi in order to identify different freeze-out of scenarios. This hierarchy
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is generated by the DMFV mass corrections discussed in Section 2.3. If there is only a very
small difference between the different DM masses mχi , all three flavours will be present at the
time of thermal freeze-out since the decay of the slightly heavier flavours into the lightest one
is kinematically highly suppressed. The frozen-out heavy flavours will then completely decay
into the lightest DM particle at later times or lower temperatures, respectively. If on the other
hand we allow for a significant splitting, the heavier DM particles will already have decayed
by the time the freeze-out happens. In this case the only flavour that is present at freeze-out is
the lightest. We follow [16,17] and define the following two freeze-out scenarios as benchmarks:

• We call the case of a very small mass splitting the quasi-degenerate freeze-out (QDF)
scenario. In this case the mass difference

∆mi3 =
mχi

mχ3

− 1 , (5.1)

between the heavier flavours i ∈ {1, 2} and the lightest flavour3 is restricted to be below
1%. In order to suppress the DMFV correction to the DM mass matrix, we set η = −0.01
in eq. (2.15). Smaller magnitudes of η would be implausible, as the contribution is
generated at the one-loop level.

• In the single flavour freeze-out scenario (SFF) the mass splitting ∆mi3 is assumed
to be larger than 10% but still small enough to ensure the convergence of eq. (2.15). We
choose η = 0.0575 for this scenario. This yields a maximal splitting of ∆mmax

i3 ' 30% for
couplings Di ≤ 2.0.

The relevant diagram for the DM annihilation process at tree-level is shown in Figure 5.1.
Evaluating this diagram we find

|M |2 =
1

9
· 3

4

∑
ij

∑
kl

|λ̃ki|2|λ̃lj |2
(m2

χi
+m2

k − t)(m2
χj

+m2
l − t)

(t−m2
φ)2

, (5.2)

for the flavour, colour and spin averaged amplitude M . Here, t is the Mandelstam variable
defined as t = (p1 − p3)2 and the indices i, j, k and l are flavour indices. Using this result and

Figure 5.1: Feynman diagram for the annihilation of two DM particles into two SM quarks
at LO.

3Remember that we conventionally choose the third generation to be the lightest of the three DM particles.
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the techniques provided in [50] we find for the effective annihilation cross section

〈σv〉eff =
1

9
· 3

512πm4
χ

∑
ij

∑
kl

|λ̃ki|2|λ̃lj |2
16m4

χ −
(
m2
qk
−m2

ql

)2[
m2
qk

+m2
ql
− 2

(
m2
χ +m2

φ

)]2

×
√

16m4
χ +

(
m2
qk
−m2

ql

)2 − 8m2
χ

(
m2
qk

+m2
ql

)
, (5.3)

where we have set mχi = mχj = mχ. For the SFF scenario this step is evident, as only the
lightest flavour is present and there is no co-annihilation between different flavours of χ. Note
that in this case eq. (5.3) does not contain the flavour averaging factor 1/9 as there is no sum
over the initial state flavours i and j, and the parameter mχ has to be understood as the mass
of the lightest DM particle χ3. In the QDF scenario, however, all three flavours are present
but we demand the mass splittings ∆mi3 to be smaller than 1%. Thus, setting mχi = mχj is
a very good approximation. We have checked that this in fact only causes a negligibly small
difference of order O(1%) in the results. It is also important to note that the sum over the
final state flavours k and l depends on the value of mχ. If mχ < mt, final states with a top
anti-top pair are kinematically forbidden. In this case the only allowed final states with top
flavour are single-top final states, i.e. the term with k = l = 3 is excluded from them sum. For
even smaller values with mχ < mt/2 final states with top flavour are excluded completely and
thus one has k, l ∈ {1, 2}. We also state that eq. (5.3) does not contain the additional factor
of 1/2 present in the case of Dirac DM [17] as the DM particles are Majorana fermions in our
model [51,52].

5.2 Analysis of the Relic Abundance Constraints

For the numerical analysis of the relic abundance constraints we demand that

〈σv〉eff = 2.2 · 10−26 cm3/s , (5.4)

within a 10% tolerance range. This value is adopted from [49] and represents the effective
annihilation cross section that is necessary to produce the observed relic abundance through a
single particle freeze-out for masses mχ > 1 GeV. We further set the masses of the light quarks
to zero and use mt = 173.5 GeV.

The results are shown in Figure 5.2. The allowed parameter space that we see for the QDF
scenario in Figure 5.2a corresponds to the overlap between the allowed parameter space that
remains after demanding the QDF mass splitting and after demanding the annihilation cross
section to lie in the required range. For masses mχ � mt we find

〈σv〉eff =
1

96π

∑
ij

∑
kl

|λ̃ki|2|λ̃lj |2
m2
χ(

m2
χ +m2

φ

)2

=
m2
χ

96π
(
m2
χ +m2

φ

)2 ·
(
D2

1 +D2
2 +D2

3

)2
, (5.5)
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(a) D1−D2 plane in the QDF scenario for varying
mχ and mφ = 1200 GeV

(b) Allowed sin θi3 and D3 in the SFF scenario for
mχ = 210 GeV and mφ = 1000 GeV

Figure 5.2: Restrictions of the relic abundance constraints on the model parameters for both
freeze-out scenarios.

where we have used∑
ij

∑
kl

|λ̃ki|2|λ̃lj |2 = Tr
[
λ̃†λ̃
]2

= Tr
[
Wλ†λW T

]
= Tr

[
D2
]
. (5.6)

Thus, the relic abundance constraint translates into the condition

D2
1 +D2

2 +D2
3 ≈ const. , (5.7)

for a given point in the mφ − mχ plane. The circular pattern of Figure 5.2a is due to this
condition. We recover the same expression for the annihilation cross section in the limit
mχ � mt, as we set the masses of light quarks to zero and final states with top flavour become
inaccessible in this limit. The mχ dependence of 〈σv〉eff can easily be seen, as small masses mχ

require large couplings D1 and D2. Another reason for why large couplings are required in the
case of small mχ is the reduced number of annihilation channels due to the exclusion of final
states with top flavour for mχ < mt and mχ < mt/2 respectively. Given that we restrict the
couplings Di to Di ∈ [0, 2] this poses a lower limit on mχ.

There is no sum over intial state flavours in eq. (5.3) in the SFF scenario as the only flavour
contributing to the freeze-out is χ3. In Figure 5.2b we show the restrictions on the mixing
angles θ13 and θ23 in the SFF scenario for the case of top-flavoured DM, i. e. the lightest flavour
χ3 coupling dominantly to the top quark. We see that for the smallest allowed values of D3 the
mixing angles need to be large, since they parametrize the annihilation of χ3 into up or charm
quarks. In this case the contribution of the annihilation channel into a top-antitop pair alone is
not large enough to fulfil the constraint. Large mixing angles lead to additional contributions
from annihilations into final states with up or charm quarks and push the overall cross section
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into the tolerance interval. Once D3 is large enough, the constraints on the mixing angles
become softer. For even higher values for D3 we find an upper bound on the mixing angles, as
too large values would lead to too large contributions from annihilations into final states with
up or charm quarks, pushing the overall annihilation cross-section above the tolerance interval.
The upper bound on the mixing angles becomes stronger for values D3 . 1.75. In the limit of
small mixing angles φij the mass corrections to χ3 are approximately mχ3 ≈ mχ

(
1− ηD2

3

)
and

thus final states with a top-antitop pair are kinematically forbidden for values D3 & 1.75 as the
DM mass mχ3 drops below the top mass threshold. Thus, large mixing angles are allowed here
as the contribution of annihilation into light quarks may become larger again. As we do not fix
the values of sin θ13 while looking at sin θ23 and vice versa, we see no difference for these two
mixing angles in Figure 5.2b. Recall that we allow for a rearrangement of the diagonalization
matrix W of eq. (2.16) in order to obtain a hierarchy such that the third generation is always
the lightest. As this at the same time determines the flavour of χ3, its mass corrections may
also depend on D1 or D2 and the respective mixing angles if χ3 has up or charm flavour. In
these cases the parameters shown in Figure 5.2b are basically free, with the only restriction of
a sufficiently small D3 in order to fulfil the SFF mass splitting condition.

Like in the QDF scenario, also in the SFF scenario there is a lower bound on mχ3 due to the
upper limit Di < 2.0 we chose in our analysis. Additionally, for the SFF scenario we also find an
upper bound on mχ3 as can be seen in Figure 5.3. This upper bound on mχ3 can be explained
through eq. (5.3). For large values of mχ3 the couplings λ̃i3 have to be correspondingly small in
order to keep the annihilation cross section in the allowed interval. At the same time the mass
splitting of the SFF scenario forces one λ̃i3 to be large. For too large mχ3 it is not possible to
maintain the SFF mass splitting while at the same time fulfilling the relic abundance bound
and thus, we observe an upper limit. As the mediator mass mφ suppresses the annihilation
cross section, the allowed region for mχ grows with mφ.

In summary, the constraints on our model from the observed relic abundance are very similar
to the ones found in the case of Dirac DM [17], the factor of two difference in the effective

Figure 5.3: Allowed points in the mφ −mχ3 plane for the SFF scenario.

22



annihilation cross-section, eq. (5.3), plays only a minor quantitative role.

6 Dark Matter Phenomenology

The Majorana nature of the DM field χ has profound implications on its signatures in direct
detection experiments. The DM-nucleon scattering cross-section generally splits up into a
spin-dependent and spin-independent part in the non-relativistic limit, where constraints on
the latter are typically stronger due to a coherent scattering off all nucleons in the nucleus. In
the spin-dependent case there is no such enhancement, since the DM particle couples to the
modulus of the total spin [53] and the nucleon spins cancel in pairs. Hence, it is sufficient to
only consider the spin-independent part of the scattering cross-section, unless it is suppressed,
and neglect the spin-dependent contributions [16, 17, 19]. However, for our case of DM with
Majorana nature and a chiral coupling the leading dimension-six operators for spin-independent
scattering χ̄χq̄q and (χ̄γµχ)(q̄γµq) are identically zero due to the coupling structure or since
for Majorana particles bilinears which are anti-symmetric under C parity vanish, respectively
[53–55]. Thus, it is not only necessary to also include the spin-dependent cross section into
the analysis, but also to go beyond leading order and include loop-induced scattering between
DM and gluons for the spin-independent part. In Figure 6.1 we show representative Feynman
diagrams for the relevant processes.

6.1 DM-Nucleon Scattering Processes

As already mentioned above, the DM-nucleon scattering cross section splits up into a spin-
dependent part [54–56]

σNSD =
3

16π

m2
Nm

2
χ

(mN +mχ)2

 ∑
q=u,d,s

∆qNaq

2

, (6.1)

and a spin-independent part [53–55]

σNSI =
4

π

m2
Nm

2
χ

(mN +mχ)2
|fN |2 , (6.2)

where aq is the Wilson coefficient of the spin-dependent quark-nucleon interaction, ∆qN is the
spin content of the nucleon N = {p, n} in terms of the quark q and mN is its mass. The factor
fN is the matrix element of the spin-independent quark-nucleon interaction.

As the NP only couples to up-type quarks in our model, the expression for σNSD becomes

σNSD =
3

16π

m2
Nm

2
χ

(mN +mχ)2

(
∆uNau

)2
, (6.3)

with

au =
|λ̃u3|2

m2
φ − (mχ +mu)2

. (6.4)
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Figure 6.1: Tree-level and loop induced Feynman diagrams for DM-nucleon scattering.

For σSI we follow the formalism of [57,58] and write the effective interaction Lagrangian as

Leff
SI =

∑
q=u,d,s,c

Leff
q + Leff

g . (6.5)

Here, Leff
q describes the scattering between DM and quarks, and reads

Leff
q = fqχ̄χO(0)

q +
g

(1)
q

mχ
χ̄i(∂µγν + ∂νγµ)χO(2)

q,µν +
g

(2)
q

m2
χ

χ̄(i∂µ)(i∂ν)χO(2)
q,µν , (6.6)

while the loop-induced scattering between gluons and DM is described by

Leff
g = fGχ̄χO(0)

g +
g

(1)
G

mχ
χ̄i(∂µγν + ∂νγµ)χO(2)

g,µν +
g

(2)
G

m2
χ

χ̄(i∂µ)(i∂ν)χO(2)
g,µν . (6.7)

Using the notation of [55] the tensor operators can be written as

O(2)
q,µν =

1

2
q̄

(
γ{µiD

ν}
− −

gµν

4
i /D−

)
,

O(2)
g,µν = −Ga,µρGa,νρ +

gµν

4

(
Gaαβ

)2
, (6.8)

and the scalar operators are defined as

O(0)
q = mq q̄q ,

O(0)
g = GaµνG

a,µν . (6.9)

In this formalism, the matrix element of the spin-independent scattering process between a
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DM particle χ and a nucleon N is given by

fN
mN

=
∑

q=u,d,s,c

fTqfq +
3

4
[q(2) + q̄(2)]

(
g(1)
q + g(2)

q

)
− 8π

9αs
fTGfG +

3

4
G(2)

(
g

(1)
G + g

(2)
G

)
, (6.10)

where fTq, fTG , [q(2) + q̄(2)] and G(2) are hadronic matrix elements. The Wilson coefficients
of the DM-quark interaction read [55]

fq =
|λ̃q3|2mχ

16(m2
φ − (mχ +mq)2)2

,

g(1)
q =

|λ̃q3|2mχ

8(m2
φ − (mχ +mq)2)2

,

g(2)
q = 0 . (6.11)

Note that these coefficients only arise through NLO terms in the expansion of the propagator
in the tree-level diagram in Figure 6.1, and thus they are additionally suppressed by a factor

of (m2
φ − (mχ + mq)

2) when compared to au. The Wilson coefficients fG, g
(1)
G and g

(2)
G of the

gluonic operators O(0)
g and O(2)

g,µν can be found in Appendix A.1.
Using the results of [59] we evolve the Wilson coefficients for spin-independent scattering

from the new physics scale mφ down to the scattering scale µ = 2 GeV. The anomalous
dimension and matching matrices can be found in [59]. For the running and decoupling of
quark masses and the strong coupling αs we use the RunDec package [60]. The numerical
values of the hadronic matrix elements as well as the input quark masses for the RG running
can be found in the appendix of [55].

6.2 Direct Detection Constraints

In order to determine the constraints from direct detection experiments on the parameter space
of our model, we calculate the spin-dependent as well as the spin-independent scattering cross-
sections and compare them to the experimental upper bounds. The strongest constraints on
spin-dependent scattering are provided by the PICO-60 experiment [61] and are obtained for
WIMP-proton scattering. For spin-independent scattering the world-leading result is provided
by the XENON1T [62] experiment.

As the PICO-60 experiment provides limits on spin-dependent WIMP-proton scattering,
eq. (6.3) becomes [55,56]

σpSD =
3

16π

m2
pm

2
χ

(mp +mχ)2
(∆upau)2 . (6.12)

The spin-independent WIMP-nucleon scattering cross-section is obtained by summing over all
nucleons in the nucleus in eq. (6.2) and reads [16,17]

σNSI =
4µ2

πA2
|Zfp + (A− Z)fn|2 , (6.13)

where the reduced mass is defined as µ = mNmχ/(mN + mχ). Demanding that these cross-
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Figure 6.2: Direct detection limits on λ̃ from the PICO-60 and XENON1T experiments. For
the latter we have set λ̃u3 = λ̃c3 = λ̃t3 ≡ λ̃i3.

sections are below the experimental upper bounds yields limits on the couplings λ̃u3, λ̃c3 and
λ̃t3. The results are shown in Figure 6.2.

As we only consider the dominant tree-level contribution to spin-dependent scattering, the
PICO-60 constraints solely apply to λ̃u3. In Figure 6.2a we see that for large parts of the
mφ −mχ plane the constraints can be completely evaded. For values mφ & 1200 GeV one can
always find an mχ such that the coupling to up-quarks can grow as large as λ̃u3 = 2.0. As we
had restricted the parameters Di to lie in the range [0, 2] to avoid perturbativity issues, this
corresponds to the largest possible value the couplings λ̃i3 can take. For even larger values
mφ & 1500 GeV, the constraints only become relevant in the resonance region mχ ≈ mφ and
for small DM masses mχ . 100 GeV.

In order to analyse the constraints from spin-independent scattering we use the very simple
benchmark scenario of a flavour-universal coupling, i.e. we set λ̃u3 = λ̃c3 = λ̃t3 ≡ λ̃i3. The
results are shown in Figure 6.2b. As can be seen, the constraints are even more lenient in this
case. This was to be expected, as the relevant cross-section receives contributions from the
dimension-seven and dimension-eight operators given above and is thus highly suppressed by
the new physics scale mφ. Only in the resonance region with a mass splitting of at most 10 %
between mφ and mχ the limits become relevant and force the couplings to lie in the range
λ̃i3 ≤ 2.0.

We conclude that the direct detection constraints are less stringent than the ones considered
in the previous sections and can even be completely evaded over large parts of the parame-
ter space. Due to the Majorana nature of χ they are mostly dominated by spin-dependent
scattering.
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7 Combined Analysis

In this section we combine our previous results by analysing the validity of our model within
the context of all constraints imposed simultaneously. The remaining allowed regions will then
yield a global picture of the viable parameter space. We further use this section to analyse the
flavour of the DM particle.

7.1 Combined Constraints

The results of the combined application of all constraints are shown in Figure 7.1 and Figure
7.2. Note that the LHC constraints are considered in form of the choices for the masses mφ

and mχ. In both freeze-out scenarios the allowed parameter space is mainly determined by the
flavour and relic density constraints. The structure of the coupling matrix λ is also restricted
by the choice of the freeze-out scenario, as the hierarchy in λ drives the mass splittings between
the dark flavours χi.

In Figure 7.1a we show the |λ̃t3|−|λ̃u3| plane for the SFF scenario, i. e. the coupling strengths
of the DM particle to the top and up quark. Likewise, Figure 7.1b displays the |λ̃c3| − |λ̃u3|
plane. As already discussed in Section 5 the relic abundance constraints reduce the allowed
parameter space to the spherical condition∑

ij

∑
kl

|λ̃ki|2|λ̃lj |2 ≈ const. , (7.1)

for a given pair of mφ and mχ. In general, this condition restricts the couplings |λij | to lie on
a nine-dimensional sphere. However, in the SFF scenario, the requirement on the DM mass
splitting forces the entries in the first two columns of λ̃ to be significantly smaller than the

(a) |λ̃t3| − |λ̃u3| plane (b) |λ̃c3| − |λ̃u3| plane

Figure 7.1: Viable couplings |λ̃i3| for mχ = 250 GeV and varying mφ within the context of
all constraints in the SFF scenario.
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entries in the third column. The condition in eq. (7.1) thus reduces to

|λ̃u3|2 + |λ̃c3|2 + |λ̃t3|2 ≈ const. (7.2)

The D0 − D̄0 mixing constraints on the other hand, force either λ̃u3 or λ̃c3 to be small while
λ̃t3 can be chosen freely. This can be seen in Figure 7.1b, leading to most of the allowed
parameter points located close to the axes, with either |λ̃u3| ' 0 or |λ̃c3| ' 0. The points with
|λ̃u3| ' 0 are then scattered at the bottom of Figure 7.1a, while the points with |λ̃c3| ' 0 form
the circular bands.

The remaining features in Figure 7.1a can be understood by considering the mass dependence
of the DM annihilation cross-section relevant for the thermal freeze-out. As the annihilation
cross-section in eq. (5.3) is suppressed by m4

φ, low mediator masses require the DM particle to
be top-flavoured in the SFF scenario. This is due to the fact that the phase-space suppression
of annihilation channels with top-flavour in the final state is sufficiently large to compensate
the cross-section enhancement by the small mediator mass in the denominator. In Figure
7.1a this can be seen explicitly for a mediator mass of mφ = 1100 GeV. For larger mφ the
annihilation cross-section becomes sufficiently suppressed such that sizeable contributions to
the annihilation channels with up- or charm-flavour in the final state are allowed. At even
larger values for mφ top-flavoured DM becomes forbidden, as the above-mentioned phase-
space suppression of annihilation into top-quarks in combination with a high mφ-suppression
of the annihilation cross section yields a too small relic density. In this case, only up- and
charm-flavoured DM is viable.

In Figure 7.2 we show analogous plots for the QDF scenario, with fixed mχ = 250 GeV and
various values of mφ. The emerging patterns are much less clear in this case. The reason is
that due to the quasi-degeneracy of the DM flavours, the entries in the three columns of λ̃ have
to be of similar size. As a result, the plots in Figure 7.2 are two-dimensional projections of the

(a) |λ̃t3| − |λ̃u3| plane (b) |λ̃c3| − |λ̃u3| plane

Figure 7.2: Viable couplings |λ̃i3| within the context of all constraints in the QDF scenario.
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nine-dimensional coupling parameter space |λ̃ij |. Again we observe the circular bands in the
allowed parameter space in Figure 7.2a, stemming from the spherical condition in eq. (7.1).
The varying density of parameter points in Figure 7.2a suggests that in the QDF scenario, top-
flavoured DM is favoured over up-flavoured DM. The symmetry of Figure 7.2b with respect
to interchanging the axes indicates that the constraints do not distinguish between up- and
charm-flavour. This was to be expected, as the bounds from direct detection experiments
are not relevant for our case of Majorana DM, and the constraints from LHC searches are
already accounted for by our choice of mediator and DM masses. Interestingly, the point
density in Figure 7.2b is no longer maximal close to the axes, indicating that the D0 − D̄0

mixing constraints are weaker in the QDF scenario. Indeed, the near degeneracy in the χi
masses requires a close-to-flavour-universal coupling matrix λ, which in turn suppresses NP
contributions to Do − D̄0 mixing.

7.2 What’s your flavour? Tell me, what’s your flavour?

The discussion in the previous subsection already contains some aspects related to the flavour
of the lightest DM particle χ3. To be more quantitative, we first define our notion of flavour
through the following condition: We call the DM particle χ3 to be i-flavoured if

|λ̃i3| > |λ̃j3| , (7.3)

with i 6= j and i, j ∈ {u, c, t}. In other words, the particle χ3 has the flavour i if it mainly
interacts with the up-type quark of flavour i. With this definition at hand, we now summarise
our insights on which DM flavour is favoured by the experimental data.

In order to provide quantitative numerical results for the DM flavour analysis we define

ni =
Ni

N
, (7.4)

where N is the total number of allowed parameter points generated in our randomised scan,
and Ni the number of allowed points with flavour i for a given constraint. The triple nconstr. =
{nu, nc, nt} then lists the percentage of viable parameter points with up-, charm- or top-
flavoured DM, after imposing that constraint. We stress that our random generation of points
prior to the application of the experimental constraints does not favour a specific flavour. The
results of this analysis for mφ = 1400 GeV and several choices for mχ are shown in Table 7.1.
Since in the QDF scenario the dependence on mχ was found to be much weaker than in the
SFF scenario, in the latter case we restrict ourselves to just one value for mχ.

The constraints on the parameter space from direct detection experiments were found to be
marginal in Section 6, and hence it is not surprising that this constraint has no relevant impact
on the preferred flavour of DM neither in the SFF nor in the QDF scenario, quantified by ndirect.
The situation is different for the constraints from D0 − D̄0 mixing, as the latter amplitude is
sensitive to the coupling of the new particles χi and φ to up and charm quarks. This especially
holds true for the SFF scenario, where the mass splitting between the different DM flavours
requires the couplings of χ3 to be dominant, and χ3 having up- or charm-flavour is thus strongly
disfavoured. In the QDF scenario the couplings of the heavier flavours χ1,2 are more relevant
so that the tendency towards top-flavoured DM implied by D0 − D̄0 mixing is weaker in this
case. The relic abundance constraints are blind towards the flavour of the DM particle in
the QDF scenario, as the initial-state flavours are summed over in eq. (5.3), rendering all nine
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Flavour of DM

scenario mχ /GeV ndirect /% nmixing /% nrelic /% ncombined /%

SFF

200

{33, 33, 34} {2, 4, 94}
{51, 48, 1} {29, 71, 0}

250 {24, 21, 55} {1, 4, 95}
300 {27, 24, 49} {1, 4, 95}
350 {21, 18, 61} {1, 2, 97}

QDF 250 {33, 33, 34} {22, 24, 54} {33, 33, 34} {23, 26, 51}

Table 7.1: Numerical results of the flavour analysis for mφ = 1400 GeV. The constraints from
direct detection experiments and D mixing do not exhibit a significant dependence
on mχ, so that in the SFF scenario only one numerical result is shown that applies
to all four mχ values.

couplings |λ̃ij | relevant. This sum is omitted in the SFF scenario, since only the lightest flavour
is present at freeze-out, so that only the third column of λ̃ is constrained. Hence, we encounter
strong implications for the flavour of the DM particle, as discussed in detail in the previous
subsection. One of them is the aforementioned interplay between the phase-space suppression of
annihilation processes into final states with top-flavour and the enhancement by small mediator
masses of the annihilation cross-section. Consequently, low mediator masses require the DM
particle to be top-flavoured in order to compensate for the enhancement through the phase-
space suppression coming from the large top-quark mass. Another important implication is
found for small mχ, where we encounter the opposite behaviour: top-flavour is completely
forbidden in this case. This is due to the fact that in the SFF scenario large couplings result
in large mass corrections, such that the threshold mχ3 < mt is crossed. Then, final states with
two top quarks become kinematically forbidden for the annihilation process. Together with
the already mentioned phase-space suppression due to the top quark mass, the annihilation
cross-section for top-flavoured DM then receives a further suppression by mixing angles and the
small couplings to up and charm quarks, yielding a too small relic density. Thus, for such small
DM masses up- and charm-flavoured DM is strongly favoured by the cosmological constraints,
where up-flavoured DM is slightly more favoured due to the smaller up quark mass and the
resulting phase-space enhancement.

Combining the constraints discussed above leads to the distribution of possible DM flavours
shown in the last column of Table 7.1. We observe that up- and charm-flavoured DM is largely
excluded in the SFF scenario. Only for small DM mass parameters mχ . 200 GeV (implying
mχ3 < mt) or large mediator masses mφ & 1700 GeV they become favoured by the relic density
constraints for the reasons explained above. For larger DM or smaller mediator masses top-
flavoured DM is favoured. While having a much weaker dependence on the mass choice, the
QDF scenario shows a similar behaviour. Here, top-flavoured DM again is favoured, however
the DM particle can also have up- or charm-flavour.

8 Direct CP Violation in Charm Decays

A central aspect of DMFV models is the structure of the coupling matrix λ and its impli-
cations on flavour- and CP-violating observables. While in DMFV models with Dirac DM
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flavour-violating interactions were found to be strongly suppressed by the stringent constraints
from neutral meson mixing observables [16–19], we have seen in Section 4 that the Majorana
nature of DM implies the presence of additional crossed box diagrams that partially cancel the
contributions from the standard box diagrams present in both the Dirac and Majorana case.
As a consequence, flavour- and CP-violating interactions are less constrained in the Majorana
DM model. The conclusion that other new flavour- and CP-violating effects are suppressed
therefore no longer holds in the Majorana model.

As the new particles in our model couple to up-type quarks, flavour- and CP-violating D
meson decays are expected to receive relevant NP contributions. Of particular interest are
the CP asymmetries in D0 → K+K− and D0 → π+π− decays, whose difference ∆ACP was
measured by the LHCb collaboration, leading to the discovery of CP violation in charm decays
[63]. Notably, the measured value of ∆ACP is significantly larger than its SM expectation.
While the latter is plagued by large hadronic uncertainties, this potential discrepancy raises
the need for a possible NP explanation. Thus, in this section we discuss if our model is capable
of giving rise to a large ∆ACP .

8.1 Theoretical Approach

The LHCb collaboration measured the difference [63]

∆Adir
CP,LHCb = (−0.157± 0.029)% (8.1)

between the time-integrated direct CP asymmetries in D0 → K+K− and D0 → π+π− decays.
The naive SM expectation for this asymmetry can be expressed parametrically as

∆Adir
CP, SM ∼ O((αs/π)(VubV

∗
cb)/(VusV

∗
cs)) ∼ 10−4 , (8.2)

which is an order of magnitude below the experimental value. A more elaborate SM prediction
based on QCD light-cone sum rules finds [64]

∆Adir
CP, SM = (0.02± 0.003)% , (8.3)

with a deviation from the data of 4.7σ. This discrepancy suggests that the LHCb results might
be a hint at NP. Note, however, that the possibility of a significantly larger ∆Adir

CP, SM has been
argued for in the literature [65,66].

In investigating the possible size of ∆Adir
CP in our model, we follow the approach in [67] where

the naive QCD factorization results for the relevant hadronic matrix elements have been used.
For the final state with K+K−, for example, it takes the following form

〈K+K−| (ūΓ1 s)(s̄Γ2 c) |D0〉 ≈ 〈K+| (ūΓ1 s) |0〉 〈K−| (s̄Γ2 c) |D0〉 . (8.4)

While suffering from large 1/mc corrections, this ansatz enables the calculation of the NP and
SM contribution to the CP asymmetry in an effective field theory approach. From [67] we
adopt the expression

∆Adir
CP = AdK+K− −Adπ+π− , (8.5)

where the direct CP asymmetry for the final state f is given by

Adf = 2 rf sin δf sinφf , (8.6)
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under the assumption that rf is small. Here, δf and φf are the differences of strong and weak
phases, respectively, of the two interfering decay amplitudes, and rf is their relative magnitude.
The general expression of rf and φf as an expansion of Wilson coefficients for the relevant set
of ∆F = 1 operators reads [67]

rfe
iφf '

(
C

(1)p
1 +

C
(1)p
2

Nc

)−1(
(C
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2 )NP
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+ C
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− C
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2
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N2
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(1)
5

Nc
− C

(1)
8

2
− C

(1)
7

2Nc
− αs

4π

N2
c − 1

N2
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C
(1)
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)
+ (C

(1)
i ↔ C̃

(1)
i )

)
, (8.7)

where Nc = 3 is the number of colours and γf are the chirality factors of the final states f ,
which are approximately

γK '
2m2

K

mcms
, γπ '

2m2
π

mc(md +mu)
. (8.8)

Note that we have dropped the Wilson coefficients of scalar operators in eq. (8.7), as they are
absent in our model and their RG running is decoupled from the ∆F = 1 operators included
above. A complete list of the operators contributing to the CP asymmetry can be found in [67].

In our model, the only NP contribution to ∆Adir
CP arises through gluon penguins as shown

in Figure 8.1. We determine the following relevant NP contributions

C̃
(1)
6 =

αs
4π

∑
i

λ̃uiλ̃
∗
ci

1

8m2
φ

u(x) ,

C̃
(1)
3 = C̃

(1)
5 = − 1

Nc
C̃

(1)
4 = − 1

Nc
C̃

(1)
6 ,

C̃
(1)
8g =

∑
i

λ̃uiλ̃
∗
ci

1

4m2
φ

v(x) , (8.9)

Figure 8.1: Penguin diagram contributing to D0 → K+K− and D0 → π+π−.

32



with the loop functions

u(x) = −2− 7x+ 11x2

36(1− x)3
− x3

6(1− x)4
log(x) ,

v(x) =
1− 5x− 2x2

24(1− x)3
− x2

4(1− x)4
log(x) , (8.10)

and x = m2
χ/m

2
φ [67]. The Wilson coefficient C

(1)p
1 is generated at the electroweak scale, where

the W boson is integrated out, and reads

C
(1)p
1 = λp

GF√
2
, (8.11)

with λp = VcpV
∗
up and p = s for f = K or p = d for f = π, respectively. Following [67–69] we

assume O(1) strong phase differences.
For the numerical analysis we use leading-order renormalization group running to evolve

the Wilson coefficients from the NP scale down to the meson scale µ ≈ mD. The anomalous
dimensions are adopted from [67], and for the running of the quark masses and the strong
coupling αs we again use the RunDec package [60]. The values for the CKM elements are
obtained from the UTfit website [70]. Due to the large uncertainties stemming from the naive
factorization approach we follow [67–69] and allow for an enhancement factor of two for the
ratio rf .

8.2 Results

In order to estimate the size of the CP asymmetry ∆Adir
CP generated in our model, we use

parameter points that fulfil the constraints discussed in the previous sections at the 2σ level.
We then determine the range of possible ∆Adir

CP values spanned by these points, both assuming
no enhancement relative to the naive factorization result, and allowing for a factor of two
enhancement.

The results for the two freeze-out scenarios are gathered in Figure 8.2. In the QDF scenario
in Figure 8.2a the 1/m2

φ suppression of the Wilson coefficients listed in eq. (8.9) determines

the mediator mass dependence of the CP asymmetry ∆Adir
CP . In the QCD factorization limit,

values for ∆Adir
CP ' −0.1% can be reached for low mediator masses mφ = 1 TeV, bringing

the CP asymmetry in agreement with the 2σ experimental region. Allowing for a factor
of two enhancement of rf , the experimental 2σ region can be reached for mediator masses
mφ . 1600 GeV As the allowed region grows with decreasing mediator masses mφ, it crosses
the 1σ band for mφ . 1400 GeV. For smaller masses mφ . 1200 GeV, even the central value
of the LHCb measurement can be reached. We conclude that the QDF scenario is capable of
explaining the large value of ∆Adir

CP measured by the LHCb collaboration.
In Figure 8.2b we show the results for the SFF scenario. In contrast to the QDF scenario,

here ∆Adir
CP increases for an increasing mediator mass mφ up to a value of mφ ' 1600 GeV

and then starts to decrease. This quite counter-intuitive result can be understood well with
our results from Section 7 and Figure 7.1a in particular. We had seen there that for a growing
mediator mass the DM particle is more likely up- or charm-flavoured, i.e. increasing mediator
masses lead to increasing values of at least one of the relevant couplings |λ̃u3| and |λ̃c3|. Hence,
∆Adir

CP also grows with an increasing value for mφ in the SFF scenario. As we had limited the
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Figure 8.2: ∆Adir
CP in dependence of mφ in the two freeze-out scenarios. The blue contours

correspond to the ranges covered by our model, as discussed in the text. The
red, orange and yellow bands display the LHCb measurement with its 1σ and 2σ
uncertainty bands.

maximum value of the couplings |λ̃i3|, ∆Adir
CP encounters a suppression for even larger mediator

masses mφ & 1600 GeV. In the SFF scenario the maximal values of ∆Adir
CP are smaller than

in the QDF scenario. Still, when allowing for a factor of two enhancement the allowed region
crosses the 2σ band for masses mφ & 1400 GeV and touches the 1σ band at mφ ' 1600 GeV.
In the strict QCD factorization limit without enhancement factor, the SFF scenario is not able
to resolve the discrepancy in ∆Adir

CP .

9 Summary and Outlook

In this paper we studied a simplified model of flavoured DM within the DMFV framework [16]
in which the DM relic is formed by the lightest flavour of a Majorana fermion flavour triplet χ
coupling to SM up-type quarks uR via a coloured scalar mediator φ. The 3×3 coupling matrix
λ mediating this interaction constitutes the only new source of flavour and CP violation beyond
the SM Yukawa couplings in the DMFV framework. In contrast to the case of Dirac DMFV
models investigated in [16–20], in the Majorana scenario the underlying flavour symmetry in
the dark sector is O(3)χ. As a consequence, the coupling matrix λ contains more physical
parameters.

In order to constrain the structure of λ and determine the viable parameter space of the
model, we investigated the constraints from LHC searches for new particles, D0 − D̄0 mixing
observables, cosmological constraints on the DM relic density, and limits from DM direct
detection experiments. Our main findings can be summarised as follows:

• The strongest limits from LHC searches on the model are obtained from searches for
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SUSY squarks, giving rise to the final states tops + /ET and jj + /ET . Recasting the
limits obtained by CMS, using 136 fb−1 of run-2 data, we determined the bounds on the
masses mχ and mφ, depending on the new coupling parameters. We found that the LHC
phenomenology is strongly affected by the Majorana nature of χ, as an additional same-
sign φφ production channel arises in this case. The existing experimental cross-section
limits can be fulfilled by choosing 0 ≤ D3 ≤ 1.5 and 0 ≤ D1, D2 ≤ 0.5 for mediator
masses mφ & 1 TeV. While this choice makes a case for top-flavoured DM, it is also
possible to fulfil the LHC constraints with larger D1 and D2 but small mχ due to the
suppression of the same-sign contributions.

• The Majorana nature of χ, inducing same-sign φφ pair production, gives rise to the
new final-state signature of two positively charged top quarks in association with missing
transverse energy, tt+ /ET . In 14 TeV pp collisions, we predicted production cross-sections
of this final state in the multi-fb regime, making it a promising smoking-gun signature
for future LHC runs.

• The measurements of D0 − D̄0 mixing observables require the combination of the NP
couplings to up and charm quarks to be small. Choosing 0 ≤ D1, D2 ≤ 0.5 fulfils the
constraints while allowing for large mixing angles θij and a freely chosen coupling D3.
Relative to the case of Dirac DM, the Majorana nature of χ generates an additional
mixing diagram with crossed fermion lines. The latter interferes destructively with the
contribution from standard box diagrams, leading to relaxed constraints on the flavour-
violating couplings relative to the Dirac model.

• The thermal freeze-out of DM depends on the mass hierarchy among the dark flavours
χ. Following the studies of flavoured Dirac DM, we investigated two limiting cases: the
QDF scenario in which the dark flavours are quasi-degenerate and therefore all three
states are present at freeze-out, and the SFF scenario in which the heavier flavours are
split significantly from the lightest and thus only the latter contributes to the effective
annihilation cross-section. The relic abundance constraints impose a spherical condition
on the elements of the matrix λ. As we restricted the couplings Di to lie within the range
[0, 2], this poses a lower bound on the DM mass mχ. In the SFF scenario we encountered
a strong mχ dependence, with an additional upper bound on the DM mass mχ.

• The constraints from DM direct detection experiments are significantly weaker for Ma-
jorana DM than for the Dirac case, as the dominant spin-independent contributions to
the DM-nucleus scattering cross-section are absent. Consequently, the constraints on
the parameter space are rather mild and mainly dominated by contributions from spin-
dependent scattering.

In our subsequent combined analysis we investigated the interplay of these constraints in
limiting the viable parameter space for the coupling matrix λ. In both freeze-out scenarios
the interplay between the relic density and D0 − D̄0 mixing constraints mainly determines
the allowed regions of parameter space. In the QDF scenario the former constraint reduces
to a spherical condition om the coupling parameters, without a qualitative dependence on the
choice of the masses. The SFF condition on the other hand only allows for sharp bands in
each plane |λ̃i3| − |λ̃j3|, as the couplings of the third DM generation χ3 are dominant in this
scenario. We further identified a strong dependence on the DM mass mχ implied by the relic
abundance constraint.
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We then determined the flavour of the lightest DM field χ3, i. e. the quark to which it couples
mostly. In the SFF scenario up and charm flavour are unlikely for mχ & 250 GeV, and χ3 carries
top flavour in most of the allowed parameter space. Contrary, for smaller DM masses only
up or charm flavour is allowed, since in that case DM annihilation into final states with two
top quarks is kinematically forbidden. While the QDF scenario favours top-flavoured DM, a
significant part of the allowed parameter space still corresponds to up and charm flavour.

In the last part of this paper we investigated the possible amount of CP violation in charm
decays induced in our model. The CP asymmetry ∆Adir

CP in D0 → K+K− and D0 → π+π−

decays has been measured by the LHCb collaboration with a surprisingly large value, making
a NP contribution plausible. Both the QDF and SFF scenarios are capable of significantly en-
hancing ∆Adir

CP w. r. t. its naive SM expectation. While in the SFF scenario a modest deviation
from the naive QCD factorization limit is also required to bring our model in agreement with
the data, in the QDF scenario values for ∆Adir

CP as large as 10−3 can be reached even in the
strict QCD factorization limit.

In conclusion, the DMFV framework provides an elegant connection of the DM problem to
one of the least understood aspects of the SM: flavour. Introducing the DM flavour triplet as
Majorana fermions, instead of Dirac fermions as done in the previous literature, turns out to
have several phenomenological advantages. On the one hand, the stringent constraints from
D0 − D̄0 mixing and DM direct detection experiments can be softened considerably, opening
up additional viable parameter space. On the other hand, the Majorana nature of DM leads to
the prediction of the rather striking signature of a pair of same-sign top quarks in association
with missing transverse energy at the LHC. It can also provide a NP origin for large values of
the CP asymmetry ∆Adir

CP in charm decays, without the need for large hadronic enhancement
effects. Upcoming experimental measurements will hence be able to shed light on the nature
of DM and its flavour.
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A Direct Detection

A.1 Gluonic Wilson Coefficients

The Wilson coefficents fG, g
(1)
G and g

(2)
G from eq. (6.10) read [55]

fG =
∑
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with
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[24] H. Führ and Z. Rzeszotnik, A note on factoring unitary matrices, Linear Algebra and its
Applications 547 (2018) 32.

[25] M. Blanke, A. J. Buras, A. Poschenrieder, S. Recksiegel, C. Tarantino, S. Uhlig et al.,
Another look at the flavour structure of the littlest Higgs model with T-parity, Phys. Lett.
B 646 (2007) 253 [hep-ph/0609284].

[26] L. Autonne and L. C. Autonne, Sur les matrices hypohermitiennes et sur les matrices
unitaires. A. Rey, 1915.

[27] T. Takagi, On an algebraic problem reluted to an analytic theorem of carathéodory and
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