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The decay H → ℓ+ℓ−γ, ℓ = e, µ, receives contributions from H → Z[→ ℓ+ℓ−]γ and a non-

resonant contribution, both of which are loop-induced. We describe how one can separate these

sub-processes in a gauge-independent way, define the decay rate Γ(H → Zγ), and extract the latter

from differential H → ℓ+ℓ−γ branching ratios. For ℓ = µ also the tree decay rate, which is driven

by the muon Yukawa coupling, is important. We propose kinematic cuts optimized to separate the

three contributions, paving the way to the milestones (i) discovery of H → Zγ, (ii) discovery of

H → µ+µ− γ|tree, and (iii) quantification of new physics in both the effective H-Z-γ and non-

resonant H-ℓ+-ℓ−-γ couplings.

I. INTRODUCTION

Currently ATLAS and CMS put substantial effort into the discovery of the decay H → Zγ. However,

this process is only well-defined when the Z boson is taken on-shell. If one includes the effect of a non-

vanishing Z decay width ΓZ by smearing the off-shell H → Zγ decay amplitude with a Breit-Wigner

distribution one finds an unphysical, gauge-dependent result [1]. If the Z boson is detected through its

leptonic decay, H → Zγ is a sub-process of H → ℓ+ℓ−γ. The one-loop diagrams contributing to the

process H → ℓ+ℓ−γ can be divided into three classes, namely diagrams with off-shell Z boson (describing

H → Z∗[→ ℓ+ℓ−]γ), those with off-shell photon (involving H → γ∗[→ ℓ+ℓ−]γ), and box-diagrams.

The calculations of the H → ℓ+ℓ−γ decay amplitude in an arbitrary linear Rξ-gauge in Ref. [2] has

revealed how the sum of all diagrams in each class depend on the gauge parameter ξ of the W boson. This

dependence cancels in the final physical result after the summation of all contributions. Complete one-loop

calculations of differential decay rates (and asymmetries) of H → ℓ+ℓ−γ in the Standard Model (SM) have

been performed by several groups [1–5] and Ref. [2] contains a detailed comparison of the numerical results

presented in these references.
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Nevertheless, it is possible to define a gauge-independent resonant contribution which peaks near s =

M2
Z , where

√
s is the invariant lepton mass. The remaining contribution to H → ℓ+ℓ−γ, consisting of

H → γ∗[→ ℓ+ℓ−]γ, box diagrams, and the gauge-dependent off-peak pieces of H → Z∗[→ ℓ+ℓ−]γ

are all non-resonant and can be experimentally distinguished from the resonant term of interest. Next one

can employ the narrow-width approximation (NWA) to relate the latter to the product of the decay rate

B(H → Zγ) and the branching ratio B(Z → ℓ+ℓ−). Thus one arrives at a physical, experimentally

accessible definition of Γ(H → Zγ). Then ruling out Γ(H → Zγ) = 0 at five standard deviations will

constitute the desired discovery of this decay mode. At several steps of this derivation (for instance by

modifying the NWA) one could change the definition of Γ(H → Zγ) by terms of order Γ2
Z/M

2
Z and arrive

at equally valid, yet different results. This feature is intrinsic to any decay into an unstable particle detected

only through its decay products. In view of the smallness of Γ2
Z/M

2
Z ∼ 10−3, however, this ambiguity is

phenomenologically irrelevant.

The differential decay rate dΓ(H → µ+µ−γ)/ds peaks at the photon and Z poles at s = 0 and s ≃ M2
Z ,

respectively, and rises towards the end of the spectrum at s = M2
H (see Fig. 2). The latter effect is due to

the tree-level contribution involving the small muon Yukawa coupling. ATLAS has already found evidence

for H → ℓ+ℓ−γ in the low invariant mass region dominated by the photon pole [8]. To discover H → Zγ

one must study the complementary region and in the H → µ+µ−γ data carefully separate the Z peak

from H → µ+µ− γ|tree. A discovery of the latter contribution will constitute a manifestation of the Higgs

Yukawa coupling to muons, independent of and complementary to the observation of H → µ+µ−. The loop

contribution to the decay rate of H → e+e−γ is several orders of magnitude larger than the corresponding

tree contribution, as the latter is suppressed by the square of the tiny electron Yukawa coupling. We do

not consider the process H → τ+τ−γ which is dominated by the tree-level contribution. The light lepton

masses are neglected in the loop contributions which are found infrared-finite in this limit.

With increasing statistics one will be able to quantify deviations from the SM predictions not only for

the effective H-Z-γ vertex, but also for the effective non-resonant H-ℓ+-ℓ−-γ couplings. To this end the

data sample with ℓ = e and ℓ = µ should not be combined, as new-physics (NP) contributions are likely

to be different. Through the Higgs vev H-µ+-µ−-γ couplings can contribute to the anomalous magnetic

moment of the muon, whose measurement significantly deviates from the SM prediction [6]. The non-

resonant region between photon and Z pole is best suited to probe those NP operators which are unrelated

to the effective H-Z-γ vertex, because the SM contribution is small.

This paper is organized as follows: In Sec. II we separate the gauge-independent resonant contribution

to H → ℓ+ℓ−γ related to the H → Zγ sub-process. Sec. III proposes various kinematic cuts to enhance

the sensitivities to H → Zγ, H → µ+µ− γ|tree, or non-resonant NP. In Sec. IV we define B(H → Zγ)
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and relate this quantity to the resonant piece of H → ℓ+ℓ−γ and Sec. V presents the conclusions. Two

appendices contain numerical input values and the loop function for H → Zγ.

II. SEPARATING THE RESONANT CONTRIBUTION

We parametrize the loop-induced amplitude for the process h → ℓℓγ as:

Aloop =
[
(kµ p1ν − gµν k · p1)ū(p2)

(
a1γ

µPR + b1γ
µPL

)
v(p1)

+ (kµ p2ν − gµν k · p2)ū(p2)
(
a2γ

µPR + b2γ
µPL

)
v(p1)

]
εν ∗(k) , (1)

where, using the notation of Ref. [2], we denote the four-momenta of photon, lepton and antilepton by k,

p1, p2, respectively, while the chiral projectors are PL,R = (1∓ γ5)/2.

The loop-functions a1,2 and b1,2 depend on the Mandelstam variables

s = (p1 + p2)
2, t = (p1 + k)2, and u = (p2 + k)2 = m2

H + 2m2
ℓ − s− t, (2)

where mℓ and mH denote the masses of lepton and Higgs boson. The coefficients a2 and b2 are obtained

by exchanging the variables t and u within a1 and b1, respectively. Explicit one-loop expressions for the

coefficients a1 and b1 can be found in Ref. [2] and corresponding ancillary files.

Each of the coefficients a1,2 and b1,2 can be written in the following form, e.g. for a1:

a1(s, t) = ã1(s, t) +
α1(s)

s−m2
Z + imZΓZ

, (3)

with the obvious index replacement and the change of notation α1,2 → β1,2 for the coefficients b1,2. Note

the relations

α1(s) = α2(s) ≡ α(s) and β1(s) = β2(s) ≡ β(s). (4)

As mentioned in the Introduction, the off-shell amplitude for H → γZ∗, which determines α(s) and β(s),

depends on the unphysical gauge parameter ξ. However, the process H → γZ involving the on-shell

Z boson does not depend on the gauge. Thus, we can isolate the ξ-independent part of the amplitude for

H → γZ∗[→ ℓ+ℓ−] sub-process by setting s = m2
Z in α(s), β(s), i.e. the residue of the Z-boson propagator

is gauge-independent. In the following we denote this term the "resonant" contribution.

Separating the resonant and non-resonant terms in this way yields

a1(s, t) = anr1 (s, t) + ares1 (s) , (5)

anr1 (s) ≡ ã1(s, t) +
α(s)− α(m2

Z)

s−m2
Z + imZΓZ

, ares1 (s) ≡
α(m2

Z)

s−m2
Z + imZΓZ

. (6)
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We write

d2Γ

ds dt
=

d2Γloop

ds dt
+

d2Γtree

ds dt
,

where the tree contribution in the second term is to be dropped for ℓ = e. The loop contribution to the

differential decay rate over the variables s and t is given by the formula:

d2Γloop

ds dt
=

s

512π3m3
H

[
t2(|a1|2 + |b1|2) + u2(|a2|2 + |b2|2)

]
, (7)

where we have neglected the light lepton masses in the phase space and u is to be substituted for the expres-

sion in Eq. (2). The non-zero value of the lepton mass impacts the value of the loop induced contribution to

the decay rate only in the dilepton invariant-mass region close to the production threshold, mℓℓ ∼ 2mℓ, via

the kinematic effect. We avoid this region by using the cut mℓℓ ,min ≡
√
s̃min = 0.1mH in what follows.

The square of the magnitude of a1 in Eq. (6) contains three distinguishable pieces:

|a1|2 = |anr1 |2 + |ares1 |2 + 2Re (anr1 ares
∗

1 ) , (8)

and mutatis mutandis for a2 and b1,2. Corresponding contributions to the one-loop decay rate are

d2Γloop

ds dt
=

d2Γnr

ds dt
+

d2Γres

ds dt
+

d2Γint

ds dt
, (9)

where the small interference term, denoted by Γint, corresponds to the third term in Eq. (8) and can be

safely neglected for the purposes of expected near-future measurements.

The differential decay rate for the tree contribution for H → µ+µ−γ reads:

d2Γtree

ds dt
= N

[9m4
µ + m2

µ(−2s+ t− 3u) + t u

(t−m2
µ)

2
+

9m4
µ + m2

µ(−2s+ u− 3t) + t u

(u−m2
µ)

2

+
34m4

µ − 2m2
µ (8s+ 5(t+ u)) + 2(s+ t)(s+ u)

(t−m2
µ)(u−m2

µ)

]
, (10)

where

N =
e4m2

µ

256π3 sin2 θWm2
Wm3

H

. (11)

For this distribution, we keep the nonvanishing muon mass in the formulas for physical kinematic limits

given in Eq. (12). Note that the muon mass cannot be neglected in the phase space integral of the tree

contribution, see Eq.(12) below.

The dependence of the loop- and tree contributions to the differential decay rate on the Mandelstam

variables s and t is displayed in the Dalitz plots in Fig. 1. With focus on the kinematic cuts required in the

measurements, it is interesting to observe the behaviour of the distributions in the end-point regions of the
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(a) (b)

FIG. 1: Dalitz plot for (a) the one-loop contribution to the decay rate of h → ℓ+ℓ−γ and (b) the tree contribution to

the decay rate of h → µµγ.

Dalitz plots. While the one-loop contribution does not increase towards the boundaries, the tree distribution

exhibits strong enhancements in high-s, small-t, and small u regions, see Eq. (10) below.

With data on d2Γ
ds dt one can implement a very simple discovery strategy for H → Zγ: Just insert ares1

from Eq. (6) into Eq. (5) and the resulting expression for a1 into Eq. (8) (and treat a2 and b1,2 in the

same way), then use these results in Eq. (7), and finally add d2Γtree
ds dt . When using this formula to fit the

three quantities
[
α(m2

Z)
]2

+
[
β(m2

Z)
]2, |anr1 |2 + |bnr1 |2, and |anr2 |2 + |bnr2 |2 to the data, a 5σ signal of[

α(m2
Z)

]2
+

[
β(m2

Z)
]2 ̸= 0 will imply the desired discovery. With Eq. (36) below one can translate this

measurement into a number for Γ(H → Zγ). Thus after implementing the lengthy SM expressions for anr1,2

and bnr1,2 one can directly compare Γ(H → Zγ) to the SM prediction in Eq. (30).

Next we discuss the various contributions to dΓ
dmℓℓ

, where mℓℓ =
√
s is the dilepton invariant mass. As a

first step, we perform the integration over the full allowed range of the variable t, tmin ≤ t ≤ tmax with

tmin(max)(s,mℓ) = 1
2

(
m2

H − s+ 2m2
ℓ ∓ (m2

H − s)
√
1− 4m2

ℓ/s

)
. (12)

The resulting resonant and non-resonant one-loop distributions are shown in the left plot in Fig. 2. Since

the masses of electrons and muons can be safely neglected in the one-loop calculation, plot (a) represents

the loop correction for both cases. Furthermore, since the tree contribution for H → e+e−γ is negligible,

dΓloop/dmℓℓ also represents the total contribution for H → e+e−γ. The effect of the tree contribution is
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FIG. 2: One-loop contributions to differential decay rate with respect to the invariant dilepton mass for ℓ = e (left)

and ℓ = µ (right). The full one-loop, resonant and nonresonant contributions are denoted by black dashed, solid red

and turquoise dot-dashed curves, respectively. For the case ℓ = e the full one-loop contribution represents the full

rate, while for ℓ = µ, the additional, tree-level contribution needs to be accounted for.

shown in the plot 2 (b). The only kinematic cut imposed for these plots is the one for the photon energy in

the Higgs rest frame, Eγ, min = 5GeV, which only lowers the maximum value of mℓℓ.

In Fig. 3 we display the interference contribution. As expected, this distribution changes sign at the

value of mℓℓ corresponding to the Z-pole and is approximately symmetric around the null-axis in this

region. However, its magnitude turns out negligible within the full rate – this term is completely dropped in

the following discussion.

III. KINEMATIC CUTS

In this section we study the impacts of the kinematic cuts on the minimal values of the variables t and u

on the resonant-, nonresonant- and tree contributions.

We fix the kinematic range for the variable s all the way until the section III D as:

s̃min = (0.1mH)2 , s̃max = m2
H − 2mH Eγ,min = (120GeV)2 with Eγ,min = 5GeV , (13)

where Eγ,min the minimal photon energy in the rest frame of the Higgs.

The full physical range for the variable t is given in Eq. (12). We introduce the kinematic cuts on the

minimal values of t and u variables, and denote them by t̃min > 0 and ũmin > 0. Note that the cut on the

minimal value of variable u lowers the maximal value of t from the physical limit tmax(s) to tmax(s)−ũmin.

Neither the resonant nor the non-resonant loop contribution exhibits a strong dependence on the small
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FIG. 3: Differential distribution dΓint

dmℓℓ
with respect to invariant dilepton mass for ℓ = e, µ.

variations of the cuts on the t, u-variables near the boundaries of the Dalitz plot, see Fig. 1 (a) or Eq. (19)

below On the other hand, the tree contribution is peaking for the small values of t, as can be seen from

the Dalitz plot boundary parallel to s-axis, and for the small values of u, as can be seen from the diagonal

boundary of the plot in Fig. 1 (b).

A. Resonant contribution

The resonant distribution is given by:

dΓres

ds dt
=

s(t2 + u2)

512m3
Hπ3

1

(s−m2
Z)

2 +m2
ZΓ

2
Z

(|α(m2
Z)|2 + |β(m2

Z)|2) , (14)

with the mass of the light lepton neglected in the evaluations of both the kinematics and the amplitude. With

mℓ = 0, the physical limits on the variable t are tmin(s) = 0, tmax(s) = m2
H − s, while u = m2

H − s− t.

Numerical values of the loop coefficients at s = m2
Z are [2]:

α(m2
Z) = −9.41 · 10−6 GeV−1 , β(m2

Z) = 1.17 · 10−5 GeV−1 . (15)

Integrating over the variable t, while taking imposing the cuts t̃min and ũmin, we have:

dΓres

ds
(s, t̃min, ũmin) =

s

512π3m3
H

1

(s−m2
Z)

2 +m2
ZΓ

2
Z

(
|α(m2

Z)|2 + |β(m2
Z)|2

)
·

[
t3 + (s+ t−m2

H)3

3

]t=t̃max=tmax(s)−ũmin

t=t̃min

. (16)
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FIG. 4: The resonant decay rate distribution with respect to dilepton invariant mass mℓℓ for different choices of the

cuts (t̃min, ũmin).

A further integration over the variable s can also be performed analytically, but results in a somewhat

lengthy expression. In Fig. 4 we illustrate the variations of the resonant differential decay rate dΓres/dmℓℓ

for different values of the cuts (t̃min, ũmin).

The effects of the cuts are more noticeable in the fully integrated decay rate. Integrating over s in the

range given in Eq. (13) we have, e.g.

Γres[t̃min = (κmH)2, ũmin = (κmH)2]

Γres[t̃min = 0, ũmin = 0]
= (1, 0.94, 0.77) , for κ = (0 , 0.1 , 0.2) , (17)

with

Γres[t̃min = 0, ũmin = 0] = 0.215 keV . (18)

B. Nonresonant contribution

The analytic form of the non-resonant contribution turns out rather lengthy – its explicit form can be

read off from the expressions given in Appendix A of Ref. [2]. As in the previous case, we integrate

the corresponding decay distribution over the variable t numerically from t̃min > 0 to the value tmax(s)−

ũmin = m2
H−s−ũmin. We illustrate the effect of several choices of the cuts t̃min , ũmin on the nonresonant

differential distribution over mℓℓ in Fig. 5. Again, integrating over the variable s in the limits given in
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FIG. 5: The nonresonant decay distributions dΓnr/dmℓℓ, for few choices of the cut t̃min.

Eq. (13), we obtain:

Γnr[t̃min = (κmH)2, ũmin = (κmH)2]

Γnr[t̃min = 0, ũmin = 0]
= (1, 0.97, 0.87) , for κ = (0 , 0.1 , 0.2) , (19)

where

Γnr[t̃min = 0, ũmin = 0] = 0.043 keV . (20)

Therefore, we find weak dependence on the t, u-cuts as long as the values of the latter are not such that they

remove a significant amount of the phase space.

It is convenient to display the shapes of the distributions shown in Fig. 5 in an approximate numerical

form. Since the dependence on the cuts is small, we represent the shape that does not involve any cuts on

variables t, u as the following power series:

dΓnr

dmℓℓ
= 10−10

3∑
n=−4

cn

(
mℓℓ

mH

)n

+ . . . (21)

with

(c−4, . . . , c3) = (3.27 · 10−4 ,−1.26 · 10−2 , 2.0 · 10−1 , 8.49 · 10−1 , 7.96 ,−30.1 , 32.1 ,−11.0) . (22)

The integral of the above approximate function over the variable mℓℓ differs from the exact result at the

level of around 0.5% (2%) for mℓℓ ,min = 0.1mH (0.5mH), with mℓℓ,max = 120 GeV for both cases.

This is an acceptable approximation given that the non-resonant part is itself a small contribution to the full

decay rate in the interesting region around Z-boson peak.
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FIG. 6: Differential distribution dΓtree/dmµµ with respect to invariant dimuon mass.

C. Tree contribution

The definite integral over the variable t in Eq. (10) can be performed analytically. As before, for the

lower limit we have t̃min, which is larger or equal to the the physical lower limit tmin(s,mℓ), while the

upper limit is tmax(s,mℓ)− ũmin. Introducing the shorthand notation

I(t) =
∫

dt
d2Γtree

ds dt
, I(a, b) ≡ I(b)− I(a) , (23)

the resulting distribution with respect to s is:

dΓtree

ds
(s; t̃min ũmin) =

∫ tmax−ũmin

t̃min

dt
d2Γtree

ds dt
θ
(
t− tmin(s)

)
= I

(
tmin(s), tmax(s)− ũmin

)
− θ

(
t̃min − tmin(s)

)
I
(
tmin(s), t̃min

)
,

(24)

where we have temporarily suppressed an additional dependence of tmin(max) on the lepton mass, for clarity

of the notation. Note that the insertions of the Heaviside step function in the above equation confine the

integration to the physically allowed region. The expression for I(t) is:

I(t) =
α2m2

ℓ

16πm3
Hm2

W sin2 θW

[
2m2

ℓ (m
2
H − 4m2

ℓ )

t−m2
ℓ

+
2m2

ℓ (m
2
H − 4m2

ℓ )

s+ t−m2
H −m2

ℓ

−
m4

H − 4m2
Hm2

ℓ + (s− 4m2
ℓ )

2

s−m2
H

ln

(
s+ t−m2

H −m2
ℓ

t−m2
ℓ

)]
.

(25)

The final formula for d2Γtree
ds (s; t̃min, ũmin) is obtained by inserting the result of Eq. (25) into Eq. (24). We

illustrate the dependence of the tree contribution on the cuts for several values of t̃min and ũmin in Fig. 6.
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TABLE I: Integrated decay rates for different contributions to H → µ+µ−γ for several choices of the kinematic cuts

on the variables s, t and u. Note the symmetric choice ũmin = t̃min.

Cut smin smax t̃min, ũmin Γres(keV) Γnr(keV) Γtree(keV) Γtot(keV) Purpose

1 (0.1mH)2 (120GeV)2 (0.1mH)2 0.202 0.042 0.026 0.270 general

2 (0.1mH)2 (120GeV)2 (0.2mH)2 0.165 0.037 0.013 0.215 general

3 (70GeV)2 (100GeV)2 (0.1mH)2 0.195 0.002 0.007 0.204 h → Zγ

4 (70GeV)2 (100GeV)2 (0.2mH)2 0.160 0.001 0.004 0.165 h → Zγ

5 (10GeV)2 (40GeV)2 (0.1mH)2 3.53 · 10−4 3.78 · 10−2 1.02 · 10−3 3.92 · 10−2 nonresonant

6 (20GeV)2 (40GeV)2 (0.1mH)2 3.33 · 10−4 1.75 · 10−2 8.12 · 10−4 1.87 · 10−2 nonresonant

7 (100GeV)2 (120GeV)2 (0.1mH)2 1.93 · 10−3 7.51 · 10−5 1.5 · 10−2 1.70 · 10−2 tree

8 (100GeV)2 (120GeV)2 (0.2mH)2 1.40 · 10−3 5.28 · 10−5 6.06 · 10−3 7.51 · 10−3 tree

Finally, integrating over the variable s in the limits given in Eq. (13), we have:

Γtree[t̃min = (κmH)2, ũmin = (κmH)2]

Γtree[tmin(s,mµ)]
= (1, 0.25, 0.12) , for κ = (0 , 0.1 , 0.2) , (26)

where

Γtree[t̃min = tmin(s,mµ)] = 0.104 keV . (27)

D. Kinematic cuts and total rates

We now explore how each of the three contributions to integrated decay rate depends on the cuts on

variables that also include s. We propose different cuts to optimize the sensitivity to the three milestones

mentioned in the abstract. The results for several combinations of such cuts are shown in Table I.

Cuts 1 and 2 correspond to the choices of the three previous subsections1. For the cut 1 we find that the

nonresonant contribution is around 20% of the resonant one, while the tree contribution is somewhat larger

than about 10%. As noted before, the tree contribution receives a strong suppression with the increasing

vales of t̃min and ũmin. Cuts 3 and 4 isolate the resonant contribution stemming from H → Zγ, while cuts

5 and 6 probe the nonresonant contribution. The purpose of cut 7 is the isolation of the tree contribution.

Cut 8 simply illustrates an additional suppression of the tree contribution that results from tightening of cuts

on t and u.

1 The upper limit on s = (120GeV)2, set for these two cuts, is the result of imposing a minimal photon energy, see Eq. (13).
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IV. RESONANT CONTRIBUTION AND THE NARROW-WIDTH APPROXIMATION

The resonant contribution is related to the decay rate of H → Zγ involving an on-shell Z boson that

subsequently decays to a pair of light leptons.

We recall the amplitude for the process H → Zγ:

A = Ã
[(
pZ · ϵ(q)∗

)(
q · ϵ(pZ)∗

)
−

(
pZ · q

)(
ϵ(q)∗ · ϵ(pZ)∗

)]
, (28)

where pZ , q, ϵ(pZ), ϵ(q) denote momenta and polarizations of Z-boson and photon, respectively, while the

loop function Ã is given in Eq. (B1). The decay rate is:

Γ(H → Zγ) =
(m2

H −m2
Z)

3

32πm3
H

|Ã|2 . (29)

in agreement with the result in Ref. [13]. Evaluating Ã in Eq. (B1) for the input values of Eq. (A1) gives

the SM prediction

Γ(H → Zγ) = 6.51 keV, (30)

again in agreement with the numerical result found from the analytic expression in Ref. [13]. This value is

3% larger than the central value quoted by the LHC Higgs Cross Section Working Group, Γ(H → Zγ) =

6.31 keV, in Table 177 on page 679 of Ref. [9], see also Eq. (III.1.18) on page 403. Ref. [9] finds an

uncertainty of the theory prediction of order 5%, which could be reduced by a two-loop calculation.

Furthermore, the branching ratio of the process Z → ℓℓ at tree-level is

BR(Z → ℓℓ) =
mZ

ΓZ
C̃ , C̃ =

e2(8 sin4 θW − 4 sin2 θW + 1)

96π cos2 θW sin2 θW

(A1)
= 9.2 · 10−4 . (31)

Integration of the resonant distribution d2Γres/(ds dt) over the variable t in the full range given in Eq. (12)

results in

dΓres

ds
=

s

512π3m3
H

1

(s−m2
Z)

2 +m2
ZΓ

2
Z

· 2
3
(m2

H − s)3 ·
(
|α(m2

Z)|2 + |β(m2
Z)|2

)
. (32)

We now apply the narrow-width approximation (NWA) for the Breit-Wigner distribution:

NWA :
ΓZ

mZ
→ 0 ,

1

(s−m2
Z)

2 +m2
ZΓ

2
Z

→ π

mZΓZ
δ(s−m2

Z) , (33)

where the limit is taken under the integral over s. Substituting this limit into Eq. (32), integrating this

distribution over s, and using the relations (29) and (31) we find:

ΓNWA = Γ(H → Zγ) ·BR(Z → ℓℓ) , (34)
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provided that

[
α(m2

Z)
]2

+
[
β(m2

Z)
]2

= 24πÃ2C̃ . (35)

The latter relation can be explicitly confirmed using the functions α(s) and β(s), given in Eqs. A.1 and A.2

in Ref.[2]. Thus if
[
α(m2

Z)
]2

+
[
β(m2

Z)
]2 extracted from data, the desired decay width is calculated as

Γ(H → Zγ) =
(m2

H −m2
Z)

3

32πm3
H

[
α(m2

Z)
]2

+
[
β(m2

Z)
]2

24πC̃

(A1)
= (30.687GeV)3×

[[
α(m2

Z)
]2

+
[
β(m2

Z)
]2]

(36)

with C̃ defined in Eq. (31).

Using Eq. (35) we can rewrite Eq. (16) as

dΓres

ds
(s, t̃min, ũmin) = Γ(H → Zγ) ·BR(Z → ℓℓ) · 3 sΓZ

2πmZ(m2
H −m2

Z)
3

· 1

(s−m2
Z)

2 +m2
ZΓ

2
Z

[
t3 + (s+ t−m2

H)3

3

]t=tmax(s)−ũmin

t=t̃min

. (37)

The resulting decay rate is expressed as the function of the kinematic cuts t̃min, ũmin and can be readily

compared to the leading order result for

ΓNWA = Γ(H → Zγ) ·BR(Z → ℓℓ) = 0.219 keV = 0.0336 × Γ(H → Zγ) (38)

obtained using the parameter inputs from Eq. (A1).

V. CONCLUSIONS

The decay rate dΓ(H→ℓ+ℓ−γ)
dmℓℓ

with ℓ = e or µ offers insights into different aspects of Higgs physics.

With increasing integrated luminosoty it will be possible to (i) discover the decay H → Zγ and measure

its branching ratio, (ii) discover the decay H → µ+µ− γ|tree driven by the muon Yukawa coupling, and

(iii) ultimately quantify potential new physics contributions to both the loop-induced H → Zγ decay and

the off-peak contributions to H → ℓ+ℓ−γ. The latter comprise the non-resonant loop contributions, best

tested in the region between the photon and Z poles, and (for ℓ = µ) H → µ+µ− γ|tree which dominates
dΓ(H→ℓ+ℓ−γ)

dmℓℓ
near the endpoint region with mℓℓ > MZ .

In this paper we have proposed a gauge-independent, physical definition of the decay rate Γ(H →

ℓ+ℓ−γ) and shown how it can be extracted from the measured decay spectrum dΓ(H→ℓ+ℓ−γ)
dmℓℓ

. To this

end it is necessary to subtract the non-resonant contribution to dΓ(H→ℓ+ℓ−γ)
dmℓℓ

and we have derived easy-

to-use approximations for the cumbersome SM expression, see Eq. (21) above. We have further studied

the dependence of dΓ(H→ℓ+ℓ−γ)
dmℓℓ

on kinematical cuts, which we only found to be a critical issue for H →
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µ+µ− γ|tree. In order to perform the three milestone measurements mentioned above we have proposed

cuts to optimize the sensitivities to H → Zγ, H → µ+µ− γ|tree, and the non-resonant loop contribution,

respectively, see Table I.
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Appendix A: Inputs

We use the following values for the parameter inputs:

mW = 80.379GeV , mZ = 91.1876GeV , sin2 θW = 1−
m2

W

m2
Z

= 0.223013 ,

mt = 173.1GeV , mH = 125.1GeV , mµ = 0.105658GeV , ΓZ = 2.4952GeV ,

GF = 1.1663787× 10−5 GeV−2 , α−1 =
π√

2GFm2
W sin2 θW

= 132.184 .

(A1)

Appendix B: The loop function Ã

The loop function Ã, introduced in Eq. (28), is given as:

Ã =
e3

3 · 16π2 cos θW sin2 θWm2
W (m2

H −m2
Z)

2
×
{
4
(
5− 8 cos2 θW

)
m2

tm
2
ZmW

×(B0(m
2
H ,m2

t ,m
2
t )−B0(m

2
Z ,m

2
t ,m

2
t ))

− 3mWm2
Z

(
2m2

W +m2
H − 12 cos2 θWm2

W − 2 cos2 θWm2
H

)
×
(
B0(m

2
H ,m2

W ,m2
W )−B0(m

2
Z ,m

2
W ,m2

W )
)

+ mW (m2
Z −m2

H)
(
2(5− 8 cos2 θW )m2

t

×(m2
H − 4m2

t −m2
Z)C0(0,m

2
H ,m2

Z ,m
2
t ,m

2
t ,m

2
t )

− 6m2
W

((
1− 6 cos2 θW

)
m2

H + 2(6 cos4 θW + 3 cos2 θW − 1)m2
Z

)
×C0(0,m

2
H ,m2

Z ,m
2
W ,m2

W ,m2
W )

+ (3− 6 cos2 θW )m2
H + 4(8 cos2 θW − 5)m2

t + 6(1− 6 cos2 θW )m2
W

)}
, (B1)
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expressed in terms of Veltman-Passarino loop functions [7], following the conventions of Feyncalc [10–

12] package.
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