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Abstract: We compute the non-factorisable contribution to the two-loop helicity
amplitude for t-channel single-top production, the last missing piece of the two-
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to master integrals and the auxiliary mass flow method for their fast numerical
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1 Introduction

Hadronic production of top quarks at the LHC provides an opportunity to study
the heaviest particle of the Standard Model in great detail. Since, according to the
Standard Model, top quarks receive their masses exclusively through interactions
with the Higgs background field, a better understanding of top quark properties may
lead to a better understanding of electroweak symmetry breaking in and, hopefully,
beyond, the Standard Model.

At a hadron collider top quarks and anti-quarks are primarily produced in pairs
by means of strong interactions. However, single-top production, which necessarily
involves the weak tWb interaction vertex, also occurs quite frequently at the LHC.
In fact, the single-top production cross section at the LHC is about a quarter of
the cross section to produce a tt̄ pair. Such a large cross section and an impressive
luminosity collected at the LHC implies that by now O(10) millions top quarks have
been produced there thanks to this mechanism.

The interest in single-top production is related to the fact that weak interactions
are responsible for this process. This opens up a number of interesting opportu-
nities [1] that involve studies of the structure of the tbW vertex [2, 3], improving
constrains on the CKM matrix elements [3, 4] and indirect determination of the top
quark width Γt [5]. More recently, measurements of the top quark mass in single-top
events started to play a more visible role in the top quark mass measurements at
the LHC [6]. Finally, detailed studies of QCD dynamics in single-top production
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Figure 1: Examples of non-factorisable two-loop diagrams. Wavy lines represent
W bosons, curly lines are gluons, solid lines are quarks. The double line represents
the top quark.

processes including interesting constraints on parton distribution functions and pre-
cise measurements of kinematic distributions are benefitting from the high integrated
luminosity of the LHC [7, 8].

At a hadron collider, single top quarks can be produced in three different ways
(for a review, see Ref. [1]). One distinguishes i) the t-channel process that refers
to q b → q′ t scattering mediated by an exchange of a W boson, ii) the s-channel
process that at the partonic level corresponds to q q′ → W ∗ → t b and, finally, iii)
the associated production that involves the g b→ W t process. About 70% of single
top quarks at the LHC are produced in the t-channel process; O(25%) are due to
the associated tW production and only O(5%) are due to the s-channel process.

Studies of single-top production rely on a precise theoretical description of this
process that can be obtained in the context of perturbative QCD and collinear fac-
torisation. This has been done at next-to-leading order (NLO) in perturbative QCD
in Refs. [9–14]. Furthermore, for the t-channel production next-to-next-to-leading
order (NNLO) QCD corrections have been calculated in Refs. [15–17]. Although the
more recent computations of such corrections presented in Refs. [16, 17] are quite
sophisticated and incorporate top quark decays and QCD corrections to them in
the narrow width approximation, all existing calculations of NNLO QCD corrections
to t-channel single-top production do not account for the so-called non-factorisable
contributions.

In the context of t-channel single-top production, non-factorisable corrections
refer to contributions that connect a light-quark line and a heavy b→ t line by gluon
exchanges, see Figure 1. Thanks to colour conservation, such contributions vanish
when NLO QCD predictions for cross sections are computed. However, since at
next-to-next-to-leading order two gluons in a colour-singlet state can be exchanged
between different fermion lines, non-factorisable diagrams start contributing at that
order and, in principle, have to be accounted for.

However, it is far from obvious that these non-factorisable corrections are im-
portant for a precise description of single-top production. The reason for neglecting
them in earlier computations was that they are colour-suppressed compared to fac-
torisable contributions shown in Figure 2. On the other hand, as became clear
recently, these non-factorisable corrections may be enhanced by a factor π2 related
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Figure 2: Examples of factorisable two-loop diagrams not considered in the present
calculation. Wavy lines represent W bosons, curly lines are gluons, solid lines are
quarks. The double line represents the top quark.

to remnants of the so-called Coulomb or Glauber phase [18]. Indeed, the existence of
such an enhancement was recently demonstrated [19] in the context of Higgs boson
production in weak boson fusion. In fact it was shown in that reference that the
π2-enhancement of non-factorisable corrections largely compensates their O(1/N2

c )

suppression, so that the non-factorisable corrections to Higgs production in weak
boson fusion are larger than the colour-suppression argument suggests. Moreover,
it is known that factorisable NNLO QCD corrections to single-top production cross
section and basic kinematic distributions are rather small [15–17]. This smallness of
factorisable QCD corrections makes non-factorisable corrections more relevant pro-
vided, of course, that high-precision theoretical description of single-top production
is of interest.

The goal of this paper is to make the first step towards a better understanding
of non-factorisable corrections to single-top production at the LHC and to calculate
their contributions to the two-loop virtual amplitude. We do this by expressing all
two-loop integrals that appear in non-factorisable diagrams through master integrals
keeping exact dependence on the top quark mass and the W mass and by computing
these integrals using the auxiliary mass flow method [20–22].1 As we explain in detail
below, this computational set up is similar to the one used previously by two of the
present authors [25, 26].

This paper is organised as follows. In Section 2 we discuss technical details perti-
nent to the calculation of non-factorisable contributions to the single-top production
amplitude. In Section 3 we describe the numerical evaluation of the master integrals.
The (infrared) pole structure of the non-factorisable contribution to the amplitude
is discussed in Section 4. The impact of non-factorisable corrections on the cross
section and some kinematic distributions are studied in Section 5. We conclude in
Section 6. Numerical values for non-factorisable contributions to the two-loop am-

1We note that the very first reduction of the non-factorisable contributions to single-top pro-
duction to master integrals was performed in Ref. [23], albeit for a fixed numerical relation between
the top-quark mass and the W boson mass m2

t = 14m2
W /3. Furthermore, a reduction of pla-

nar, non-factorisable diagrams for W -associated single-top production was recently presented in
Ref. [24].
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plitude at a few kinematic points are presented in Appendix A. Boundary conditions
for master integrals that we used in this calculation can be found in an ancillary file.

2 Non-factorisable contributions to helicity amplitudes

We consider single-top production in the t-channel and, for definiteness, focus on a
particular flavour of light quarks

u(p1) + b(p2)→ d(p3) + t(p4). (2.1)

Except for the top quark, all other quarks in Eq. (2.1) are massless, so that p2i =

0, i = 1, 2, 3. The top quark is on the mass-shell p24 = m2
t . We follow standard

conventions and define Mandelstam variables as

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p2 − p3)2, (2.2)

with s+ t+ u = m2
t .

We write the amplitude of the process in Eq. (2.1) expanded in the renormalised
strong coupling constant αs = αs(µ) as follows

A({pi}) = g2wVudVtb

(
A(0) +

αs
4π
A(1)

nf +
(αs

4π

)2
A(2)

nf + ...+O
(
α3
s

))
. (2.3)

When writing Eq. (2.3), we have extracted the weak coupling constant gw and the
CKM matrix elements Vtb and Vud. Also, A(0) = A(0)({pi}) is the (properly nor-
malised) Born amplitude of the process Eq. (2.1), A(1,2)

nf = A(1,2)
nf ({pi}) are one- and

two-loop non-factorisable amplitudes respectively, and ellipses stand for factorisable
contributions that we do not discuss in this paper.2

To proceed further, we perform the colour decomposition of relevant amplitudes.
Figure 3 shows the only diagram that contributes to t-channel single-top production
at tree level. Since W bosons carry no colour charge, we find

A(0) = 1̂c3c1 1̂c4c2A
(0) = δc1c3δc2c4 A

(0), (2.4)

where 1̂ is the identity matrix, c1,..,4 are the colour indices of particles with momenta
p1,..,4, respectively, and A(0) is the colour-stripped amplitude.

Four box diagrams with identical colour factors contribute to the one-loop non-
factorisable amplitude. We write

A(1)
nf = T ac3c1T

a
c4c2

A
(1)
nf =

1

2

(
δc1c4δc2c3 −

1

Nc

δc1c3δc2c4

)
A

(1)
nf . (2.5)

2We note that two-loop factorisable contributions to the full amplitude are of the vertex type,
see Figure 2. For the udW vertex they were computed in Refs. [27, 28], whereas for the tbW vertex
they were calculated in Refs. [29–33].
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Figure 3: Tree-level diagram. Wavy lines representW bosons, solid lines are quarks.
The double line represents the top quark.

We note that the interference of the one-loop amplitude and the Born amplitude
vanishes thanks to colour conservation∑

colour

A(0)?A(1)
nf = 0. (2.6)

At two loops eighteen non-factorisable box diagrams need to be considered; we
generate them using QGRAF [34]. Since W bosons are colourless, these diagrams are
of both planar and non-planar types as far as QCD interactions are concerned. For
this reason, there are just two distinct colour factors

c2,pl = (T aT b)c3c1(T
aT b)c4c2 , c2,npl = (T aT b)c3c1(T

bT a)c4c2 , (2.7)

so that
A(2)

nf = c2,plA
(2),pl
nf + c2,nplA

(2),npl
nf . (2.8)

The two amplitudes A(2),pl
nf and A(2),npl

nf are obtained by computing (QCD) planar and
non-planar diagrams, respectively.

However, it is easy to realise that only a particular combination of these ampli-
tudes contributes to NNLO QCD cross section through interference with the leading-
order amplitude. Indeed, since the leading-order colour factor involves δc3c1δc4c2 ,
when the interference of non-factorisable two-loop diagrams and the tree amplitude
is computed, we obtain Tr(T a1T a2) for each of the fermion lines. However, since
Tr(T aT b) = Tr(T bT a), the distinction between colour factors for planar and non-
planar diagrams disappears. To project on the relevant structure, we write

2T aT b = {T a, T b}+ [T a, T b], 2T bT a = {T a, T b} − [T a, T b]. (2.9)

Since Tr
(
[T a, T b]

)
= 0, commutators of colour generators do not contribute to the

interference. As the result, we can write

A(2)
nf =

1

4
{T a, T b}c3c1{T a, T b}c4c2 (A

(2),pl
nf + A2,npl

nf ) + . . .

=
1

4
{T a, T b}c3c1{T a, T b}c4c2 A(2)

nf + . . . ,
(2.10)

where ellipses stand for terms that vanish when the interference of A(2)
nf with tree am-

plitude is computed. We note that we introduced A(2)
nf = A

(2),pl
nf +A2,npl

nf in Eq. (2.10).
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We find ∑
colour

A(0)∗A(2)
nf =

1

4
(N2

c − 1) A(0)∗A
(2)
nf . (2.11)

To compute relevant one- and two-loop amplitudes, we need to write them in
terms of invariant form factors and independent Lorentz structures. Since charged
weak currents involve left-handed projectors and, therefore, the Dirac matrix γ5, care
is needed when performing computations in dimensional regularisation. However,
since no closed fermion loops contribute to non-factorisable corrections, we can make
use of an anti-commuting prescription for the γ5 and move left-handed projectors
to act on the external massless fermion states. It then becomes clear that we can
consider amplitudes mediated by the vector current but only account for left-handed
massless quarks when constructing physical amplitudes for the charged current.

There are eleven structures that may contribute to the non-factorisable part of
the amplitude through NNLO QCD. They are3

S1 = ut(p4) u(p2)× u(p3) /p4 u(p1) ,

S2 = ut(p4) /p1 u(p2)× u(p3) /p4 u(p1) ,

S3 = ut(p4) γ
µ1 u(p2)× u(p3) γµ1 u(p1) ,

S4 = ut(p4) γ
µ1/p1 u(p2)× u(p3) γµ1 u(p1) ,

S5 = ut(p4) γ
µ1γµ2 u(p2)× u(p3) γµ1γµ2/p4 u(p1) ,

S6 = ut(p4) γ
µ1γµ2/p1 u(p2)× u(p3) γµ1γµ2/p4 u(p1) ,

S7 = ut(p4) γ
µ1γµ2γµ3 u(p2)× u(p3) γµ1γµ2γµ3 u(p1) ,

S8 = ut(p4) γ
µ1γµ2γµ3/p1 u(p2)× u(p3) γµ1γµ2γµ3 u(p1) ,

S9 = ut(p4) γ
µ1γµ2γµ3γµ4 u(p2)× u(p3) γµ1γµ2γµ3γµ4/p4 u(p1) ,

S10 = ut(p4) γ
µ1γµ2γµ3γµ4/p1 u(p2)× u(p3) γµ1γµ2γµ3γµ4/p4 u(p1) ,

S11 = ut(p4) γ
µ1γµ2γµ3γµ4γµ5 u(p2)× u(p3) γµ1γµ2γµ3γµ4γµ5 u(p1) ,

(2.12)

where ut(p4) denotes the only massive spinor. We note that the above quantities
depend on the polarisation states of external fermions that, in what follows, we will
denote by ~λ. Therefore, we will write Si = Si(~λ), i = 1, . . . , 11.

It is clear that not all eleven structures contribute at leading and next-to-leading
order in the perturbative expansion of the amplitude A. Indeed, at tree level each
fermion line has exactly one Dirac matrix. As the result, the colour-stripped tree-
level amplitude for the u+ b→ d+ t process can be written as

A(0)(~λ) =
S3(~λ)

4(t−m2
W )

. (2.13)

3We use slightly different tensor structures as compared to the ones used in Ref. [23].
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Upon squaring A(0)(~λ) and summing over colours and appropriate polarisation states
of external fermions, we find∑

~λ,colours

|A(0)(~λ)|2 = N2
c

4s(s−m2
t )

(t−m2
W )2

. (2.14)

The one-loop diagrams have at most three γ-matrices on each fermion line and
can therefore be decomposed in terms of the first seven tensor structures. At two
loops we need all eleven structures to express the amplitude in terms of invariant
form factors. We write

A
(2)
nf = ~f · ~S, (2.15)

where we introduced vectors ~S and ~f to accommodate eleven tensor structures ~ST =

(S1,S2, . . . ,S11) and eleven form factors, respectively.
To compute the form factors, we calculate eleven quantities

Qi =
∑
~λ

S†i (~λ)A
(2)
nf (~λ), i = 1, . . . , 11, (2.16)

where the sum runs over all polarisation states of external fermions. We stress that
since form factors do not depend on helicities of external quarks, we do not need to
restrict polarisation states to left-handed ones when computing the sum in Eq. (2.16).
Hence, we can use simple formulas to describe density matrices of external quarks∑

λ

u(pi)⊗ u(pi) = /pi, i = 1, 2, 3,
∑
λ

ut(p4)⊗ ut(p4) = /p4 +mt . (2.17)

For each Feynman diagram that contributes to A(2)
nf polarisation sums produce in-

dependent traces for the two fermion lines. Once these traces are computed, the
results depend on scalar products of the loop momenta and external momenta and
no external spinors are present anymore. At this point, one can define families of
integrals and use integration-by-parts identities to express all the relevant integrals
through a relatively small set of master integrals. We describe this point in detail in
the next section.

To relate the quantities Qi to form factors, we use the representation of the
amplitude in terms of form factors and write

Qi =
∑
~λ

S†i (~λ)A
(2)
nf (~λ) =

∑
j

fj
∑
~λ

S†i (~λ)Sj(~λ) =
∑
j

Cijfj , (2.18)

where the coefficients Cij read

Cij =
∑
~λ

S†i (~λ)Sj(~λ) . (2.19)
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Turning to vector notation, we rewrite Eq. (2.18) as

~Q = Ĉ ~f . (2.20)

It follows that
~f = Ĉ−1 ~Q . (2.21)

This equation allows us to compute the form factors as linear combinations of the
amplitude projections Qi.

It remains to explain how helicity amplitudes are computed. To this end, we
make use of the fact that the four-momenta p1,2,3,4 are four-dimensional. This allows
us to define polarisation states of the external fermions in the standard way. However,
since the Lorentz indices that appear in Eq. (2.12) are d-dimensional, before we can
calculate helicity amplitudes we need to remove all Dirac matrices with (d − 4)-
dimensional indices from these expressions. This can be done if one notices that, to
be non-vanishing, a matrix element between two “four-dimensional” spinors requires
an even number of matrices with (d−4)-dimensional indices. This observation allows
us to decompose the original tensor structures in terms of their “four-dimensional”
counter-parts. We find

S1,..,4 = S(4)
1,..,4 ,

S5,6 = S(4)
5,6 − 2εS(4)

1,2 ,

S7,8 = S(4)
7,8 − 6εS(4)

3,4 ,

S9,10 = S(4)
9,10 − 12εS(4)

5,6 +
(
12ε2 + 4ε

)
S(4)
1,2 ,

S11 = S(4)
11 − 20εS(4)

7 +
(
60ε2 + 20ε

)
S(4)
3 ,

(2.22)

where the notation S(4)
1,...,11 refers to the structures shown in Eq. (2.12) with all dummy

indices restricted to four dimensions. Thanks to this restriction, computing helicity
amplitudes using Lorentz structures that appear on the right-hand side of Eq. (2.22)
is straightforward and unambiguous.

3 Master integrals

To compute the eleven quantities Qi, we classify all contributing integrals into in-
tegral families using REDUZE 2 [35]. We find that we need to introduce 18 integral
families but half of them are crossings of the other half. The integral families can be
found in Table 1. The integral reduction is performed analytically using KIRA [36].
The computational expense is rather modest and the most complicated reduction
takes about four days on 20 cores. We find that 428 master integrals are required to
compute the non-factorisable corrections to single-top production at two loops.
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Name Definition

planar

1
l21, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2, (l1 + l2 − p1 + p3)

2,

(l2 − p1 − p2 + p3)
2, l22 −m2

W , l1 · p3, l2 · p2
2

l21, l
2
2, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2,

(l2−p1−p2+p3)
2−m2

t , (l1+ l2−p1+p3)
2−m2

W , l1 ·p3, l2 ·p2
3

l22, (l1 − p1)2, (l2 + p3)
2, (l1 + l2 − p1 + p3)

2, (l1 + p2)
2 −m2

t ,

(l2 − p1 − p2 + p3)
2 −m2

t , l
2
1 −m2

W , l1 · p3, l2 · p2

non-planar

1
l22, (l2 − p1)2, (l1 + p3)

2, (l1 − l2 + p3)
2, (l1 − l2 − p2 + p3)

2,

(l1 − p1 − p2 + p3)
2, l21 −m2

W , l2 · p2, l2 · p3
2

l21, l
2
2, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2,

(l1 − l2 + p2 − p3)2, (l1 − l2 − p1)2 −m2
W , l2 · p1, l2 · p2

3
l21, l

2
2, (l1 + p3)

2, (l1 − l2 + p3)
2, (l1 − l2 − p2 + p3)

2,

(l1 − p1 − p2 + p3)
2 −m2

t , (l2 − p1)2 −m2
W , l2 · p2, l2 · p3

4
l21, l

2
2, (l1 − p1)2, (l1 + p2)

2, (l1 − l2 − p1)2,
(l1 − l2 + p2 − p3)2 −m2

t , (l2 + p3)
2 −m2

W , l2 · p1, l2 · p2
5

l22, (l1 − p1)2, (l2 + p3)
2, (l1 − l2 − p1)2, (l1 + p2)

2 −m2
t ,

(l1 − l2 + p2 − p3)2 −m2
t , l

2
1 −m2

W , l2 · p1, l2 · p2
6

l21, l
2
2, (l2 − p1)2, (l1 + p3)

2, (l1 − l2 − p2 + p3)
2 −m2

t ,

(l1 − p1 − p2 + p3)
2 −m2

t , (l1 − l2 + p3)
2 −m2

W , l2 · p2, l2 · p3

Table 1: Definitions of the integral families. l1 and l2 are loop momenta while p1,
p2, and p3 are external momenta defined in Eq. (2.1). The remaining 9 families can
be obtained by crossing p1 ↔ −p3.

The master integrals are defined as follows

I(a1, . . . , a9) =

∫ ( 2∏
n=1

eεγE
ddln
iπd/2

)
1

Da1
1 D

a2
2 · · ·Da9

9

, (3.1)

where denominators Di can be deduced from Table 1 for each of the integral families.
Note that we absorb a factor of −i(4π)2−εeεγE per loop into the definition of the
master integrals.

The calculation of the master integrals needed to compute the non-factorisable
corrections to single-top production is complicated as they depend on Mandelstam
variables and on two masses, mW and mt. We believe that, currently, their ana-
lytic computation is not possible. For this reason, we employ the auxiliary mass
flow method [20–22] to calculate them. To this end, we first construct a system
of differential equations with respect to m2

W , solve it starting from the boundary
conditions at m2

W → −i∞ as required by the causality prescription, and move to
the physical value mW = 80.379 GeV. To do so, we require boundary conditions
at m2

W → −i∞. Although many integrals in this limit can be computed, we find
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(a) planar no. 1 (b) planar no. 2 (c) planar no. 3

(d) non-planar no. 1 (e) non-planar no. 2 (f) non-planar no. 3

(g) non-planar no. 4 (h) non-planar no. 5 (i) non-planar no. 6

Figure 4: Topologies of integral families. Solid and dashed lines correspond to
massive and massless particles respectively. Blue lines have mass mt while red lines
have massmW . All families can be crossed (p1 ↔ −p3) giving a total of 18 topologies.

that some of the boundary integrals are either hard to calculate analytically or that
analytic results available in the literature are not known to sufficiently high orders
in the ε-expansion. Examples of such integrals are shown in Figure 5. We take a
pragmatic approach and calculate these integrals numerically. Having already taken
the limit m2

W → −i∞, we analytically continue m2
t in internal propagators to the

complex plane, as the causality prescriptions differ for internal and external masses.
We proceed as follows. First, we rename the top mass mt that appears in internal
propagators to m and construct a system of differential equations with respect to
m2. We solve these equations starting at the boundary m2 → −i∞ and moving to
the physical value m = mt = 173 GeV. We then use these results as boundary con-
ditions for differential equations with respect to m2

W at m2
W = −i∞. The integrals

shown in Figure 6 is the complete set that we used as boundary conditions either
at m2

W = −i∞ or m2 → −i∞. We note that these integrals can be found in an
ancillary file. In compiling this list, we have used results of Refs. [37–41]. We have
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calculated two of the master integrals (I16 and I17 in Figure 6) since we could not
find them in the literature.

Figure 5: Examples of integrals that appear in the calculation of boundary condi-
tions at m2

W → −i∞. Solid and dashed lines correspond to massive and massless
particles respectively. Blue lines have mass mt while black lines correspond to mas-
sive external particles.

(a) I1 (b) I2 (c) I3 (d) I4

(e) I5 (f) I6

(g) I7 (h) I8 (i) I9

(j) I10 (k) I11 (l) I12

(m) I13

(n) I14 (o) I15 (p) I16 (q) I17

Figure 6: Master integrals for the boundary conditions. Solid and dashed lines
correspond to massive and massless particles respectively. Thick solid lines represent
particles with either mass m or mt depending on whether the line is external or
internal. If in some integrals thick solid lines appear both as external and internal,
the mass is mt. Thin solid lines correspond to external particles with the momentum
squared q2 where in general q is a linear combination of external momenta p1,2,3.

For phenomenology, we need to compute master integrals for many kinematic
points relevant for the description of the process u + b→ d + t. To do that, we can
simply solve the differential equations with respect tom2

W starting atm2
W = −i∞ for
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each pair of Mandelstam variables s and t. This is the approach used in the previous
papers by two of the present authors [25, 26]. Alternatively, we can compute master
integrals at a few kinematic points by solving differential equations in m2

W and then
use these points as boundary conditions for differential equations with respect to the
kinematic invariants s and t to calculate master integrals at other phase-phase points.
We note that a similar approach has already been used in the literature [42–44]. In
the current calculation, we first generate several reference points in the phase space
by solving the m2

W equation. Then we solve the equations in s or t to move from one
of the reference points to the point of interest.

In general there are singularities in differential equations with respect to Man-
delstam invariants; some of these singularities may appear as curves in the physical
phase space. We need to use the correct causality prescription to cross such curves
to avoid ending up on the unphysical sheet of the Riemann surface. One virtue
of the auxiliary mass flow method is that the negative imaginary part of the mass
provides a correct way to cross singular curves involving that mass. Whenever we
encounter such a singular curve, we can move to the complex mass plane using the
corresponding equation, then solve the s and t equations, and finally move back to
the physical value of the W boson mass. Evaluating all 428 master integrals to a
precision of twenty digits at a typical phase-space point takes less than half an hour
on a single CPU core.

We perform two checks to verify the integrals computed using the method de-
scribed above. First, we calculate the master integrals by directly integrating over
Feynman parameters using the publicly available program pySecDec [45, 46]. We
perform a comparison at a physical phase-space point, away from kinematic thresh-
olds4 and find good agreement of our and pySecDec results for the majority of the
master integrals. Unfortunately, for some master integrals required in this paper,
in particular non-planar boxes, we were unable to produce meaningful results with
pySecDec.

Second, we have also checked the self-consistency of the differential equations.
Indeed, solving the differential equations in s and t variables to move from one phase-
space point to the next should produce the same results as solving the m2

W -equations
and directly moving from m2

W = −i∞ to the phase-space point of interest. We have
checked that for several points across the phase space, master integrals evaluated in
these two different ways agree up to the target precision of twenty digits.

4We use s = (500 GeV)2 and t = −(100 GeV)2.
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4 Divergences in non-factorisable contributions to the scat-
tering amplitude

In this section we discuss the ε-pole structure of non-factorisable contributions to
the scattering amplitude for the process u + b → d + t. In principle, divergences of
scattering amplitudes at higher orders in perturbative QCD are very well understood,
see e.g. Refs. [47–49]. However, since in this paper we only deal with non-factorisable
contributions to the two-loop amplitude, the relevant pole structure turns out to be
quite special and, in fact, simpler than the general case.

Indeed, the first point to appreciate is that there are no ultraviolet divergences
in non-factorisable corrections that contribute to the interference of the two-loop
amplitude and the tree-level amplitude in Eq. (2.11). Therefore, we only need to use
a relation between the bare and renormalised MS QCD coupling to zeroth order in
perturbative QCD. It reads

αbare
s = µ2εSεαs, (4.1)

where Sε = (4π)−ε exp(εγE) and γE ≈ 0.57721 is the Euler-Mascheroni constant.
Starting with the expression for individual Feynman diagrams, where the bare cou-
pling constant enters, and rewriting it using Eq. (4.1), we obtain the amplitude
introduced in Eq. (2.3).

In general, after renormalisation, the only ε-poles present in the amplitude A
are of infrared origin. To extract them, we follow Refs. [47–49]. To this end, we
interpret the full amplitude in Eq. (2.3) as a vector in colour space. This amplitude
is divergent; if poles of this amplitude are removed using the MS prescription, we
obtain a finite amplitude |F〉 that is also a vector in colour space. Similar to the
original amplitude |A〉, |F〉 can also be expanded in powers of αs. We write

|A〉 = Z|F〉, (4.2)

where Z is an operator that removes infrared poles from the amplitude |A〉. This
operator satisfies the renormalisation group equation

µ
d

dµ
Z = −ΓZ, (4.3)
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where Γ is the so-called anomalous dimension operator. It reads [50–55]

Γ({pi},mt, µ) =
∑
(i,j)

T i · T j

2
γcusp(αs)Lij +

∑
(I,j)

T I · T jγcusp(αs)L
(m)
Ij

−
∑
(I,J)

1

2
T I · T Jγcusp(νIJ , αs) +

∑
i

γi(αs) +
∑
I

γI (αs)

+
∑

(I,J,K)

ifabcT aI T
b
JT

c
KFI (νIJ , νJK , νKI)

+
∑
(I,J)

∑
k

ifabcT aI T
b
JT

c
kf2

(
νIJ , ln

(−σJkvJ · pk
−σIkvI · pk

))
.

(4.4)

Small-letter indices refer to massless external partons whereas capital-letter indices
denote massive external partons [51]. When indices in a sum are shown in parenthesis,
as e.g. (i, j), the summation should be restricted to distinct indices. Also, Lij =

ln (µ2/(−sij)) and L
(m)
Ij = ln (mtµ/(−sIj)). Furthermore, the kinematic invariants

that appear in the above equation are defined as

sij = 2σijpi · pj + iε , (4.5)

where σij = 1 if both pi and pj are incoming or outgoing and σij = −1 otherwise.
Quantities νIJ are cusp angles, vI are four-velocities and T i are colour-charge oper-
ators of the corresponding partons.

The operator Γ in Eq. (4.4) describes infrared and collinear divergences of the full
amplitude that includes both factorisable and non-factorisable terms. However, if we
focus on non-factorisable contributions only, the expression for Γ can be simplified.
Indeed, we note that the last two terms in Eq. (4.4) are not needed for predicting
infrared poles of the non-factorisable amplitude A(2)

nf since they are proportional to
non-abelian colour factors. As we have explained in Section 2, non-abelian colour
factors cannot arise in the contributions that we are interested in. Furthermore,
the two sums over the anomalous dimensions γ(i) and γ(I) cannot contribute to A(2)

nf

either since they are related to collinear emissions that, in physical gauges, should
be associated with factorisable parts of the amplitude.

We are left with three sums that involve products of two colour-charge operators
in Eq. (4.4). In our case, there are three massless and one massive external particle;
hence, the third sum in Eq. (4.4) that should be performed over two distinct massive
indices is not relevant for us and can be discarded. Moreover, the non-factorisable
contributions involve gluon exchanges between different fermion lines. Hence only
four products of colour-charge operators contribute; they are T 1 ·T 2, T 1 ·T 4, T 2 ·T 3,
and T 3 · T 4. Finally, the cusp anomalous dimension is given by [51, 56]

γcusp = 4
(αs

4π

)
+

[(
268

9
− 4π2

3

)
CA −

80

9
TFnl

](αs
4π

)2
+O(α3

s) . (4.6)
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We note that the O(α2
s) contribution to γcusp contains terms that are either propor-

tional to a non-abelian colour factor CA or to the number of light fermions nf and
none of these parameters appear in the non-factorisable diagrams. Hence, if we are
interested in non-factorisable corrections only, the CA- and nf -dependent contribu-
tions to γcusp should be discarded. Therefore, we are allowed to replace

γcusp → γnf = 4
(αs

4π

)
, (4.7)

in the expression for Γ in Eq. (4.4).
We define the part of the operator Γ that is relevant for non-factorisable correc-

tions as Γnf . As a consequence of the above discussion, it reads

Γnf({pi},mt, µ) =
(αs

4π

)
Γ0,nf({pi},mt, µ), (4.8)

where

Γ0,nf = 4

[
T 1 · T 2 ln

(
µ2

−s− iε

)
+ T 2 · T 3 ln

(
µ2

−u− iε

)
(4.9)

+ T 1 · T 4 ln

(
µ mt

m2
t − u− iε

)
+ T 3 · T 4 ln

(
µ mt

m2
t − s− iε

)]
. (4.10)

We can solve Eq. (4.3) with Γnf in place of Γ order by order in αs, to determine
the operatorZnf ; we assume thatZnf = 1+O(αs). This solution is much simpler than
the one for the full amplitude since perturbative running of the coupling constant
cannot play a role in the non-factorisable contribution through O(α2

s). As the result,
we find a remarkably simple expression

Znf = 1 +
(αs

4π

) Γ0,nf

2ε
+
(αs

4π

)2 Γ0,nf
2

8ε2
+O(α3

s), (4.11)

which emphasizes that through two loops non-factorisable contributions are abelian
even if computed in a non-abelian theory like QCD. We also note that in comparison
to infrared ε-poles in the full amplitude, divergences in non-factorisable contributions
are much more mild and start at 1/ε at O(αs) and at 1/ε2 at O(α2

s). This is a direct
consequence of the fact that collinear divergences cannot appear in a non-factorisable
amplitude due to its very definition. Hence, all infrared poles present in Eq. (4.11)
are of soft origin.

It is now straightforward to predict ε-poles in non-factorisable contributions to
cross sections. We find

〈A(0)|A(2)
nf 〉 = − 1

8ε2
〈A(0)|Γ2

0,nf |A(0)〉+
1

2ε
〈A(0)|Γ0,nf |A(1)

nf 〉+ 〈A(0)|F (2)
nf 〉,

〈A(1)
nf |A

(1)
nf 〉 =

1

4ε2
〈A(0)||Γ0,nf |2|A(0)〉+

1

2ε
〈A(1)

nf |Γ0,nf |A(0)〉

+
1

2ε
〈A(0)|Γ†0,nf |A

(1)
nf 〉+ 〈F (1)

nf |F
(1)
nf 〉.

(4.12)
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We can easily calculate matrix elements of the relevant colour-charge operators.
As an example, consider 〈A(0)|Γ2

0,nf |A(0)〉. The action of colour-charge operators on
vectors in the colour space is defined as follows

〈e|T a
i |d〉 = T aeidi

∏
j 6=i

δejdj , T aeidi =

{
taeidi final state quark,

−tadiei initial state quark.
. (4.13)

In the above equation |d〉 and |e〉 are vectors in colour space and the SU(3) generators
ta,b are normalised in a standard way

Tr
(
tatb
)

=
1

2
δab . (4.14)

Using these definitions, it is easy to see that for all combinations of colour-charge
operators that appear in Γ2

0,nf the following results holds

〈A(0)|(T iT j)(T kTm)|A(0)〉 = (−1)ni
N2
c − 1

4
. (4.15)

Here ni is the number of indices among i, j, k,m that correspond to initial-state
partons. Hence, we find

〈A(0)|Γ2
0,nf |A(0)〉 = 4(N2

c − 1)|A(0)|2
(

ln

(−u− iε
−s− iε

)
+ ln

(
m2
t − u− iε

m2
t − s− iε

))2

. (4.16)

All other contributions that appear in Eq. (4.12) can be computed in a similar way.
Predictions for infrared poles of the two-loop non-factorisable contribution to the

cross section provide an important cross check of the correctness of the calculation.
As an example of the level of numerical precision that we have achieved for the ε-poles
of the two-loop non-factorisable amplitude, in Table 2 we compare the results of the
evaluation of 〈A(0)|A(2)

nf 〉 with the analytic predictions for its ε-poles. We observe that
analytic and numerical results for ε-poles agree to 15 digits. We also find that the ε-
poles of 〈A(1)

nf |A
(1)
nf 〉 are accurate to about 30 digits throughout the phase space since

the one-loop integrals are evaluated to that precision. In Appendix A we provide
additional numerical results for non-factorizable contributions, including their finite
parts, for further reference.

5 Results

Having computed the two-loop non-factorisable contribution to the scattering ampli-
tude for single-top production, we can study its impact on the single-top production
cross section. Such an analysis is necessarily incomplete. Indeed, since in this paper
we restrict ourselves to virtual corrections, we will have to consider quantities that
depend on how the infrared singularities are removed. To arrive at the physical result
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ε−2 ε−1

〈A(0)|A(2)
nf 〉 −229.0940408654660− 8.978163333241640i −301.1802988944764− 264.1773596529505i

IR poles −229.0940408654665− 8.978163333241973i −301.1802988944791− 264.1773596529535i

Table 2: Computed and predicted ε-poles for a typical phase space point. We use
s ≈ 104337 GeV2 and t ≈ −5179.68 GeV2 for a comparison.

which is independent of the infrared regulator, we need to combine virtual correc-
tions computed in this paper with real-emission non-factorisable contributions. We
intend to do this in the future. However, we believe it is still useful to study the con-
tribution of virtual corrections computed in this paper to the single-top production
cross section. Indeed, as we explained in the previous sections, we computed master
integrals numerically. Hence, it is important to show that our numerical evaluation
is sufficiently fast and robust to enable realistic phenomenological studies.

To address this point, we study non-factorisable corrections to the differential
cross section for single-top production at the LHC in the ub-channel. We write

dσubpp→d+t =
∑
i,j=u,b
i 6=j

∫
dx1 dx2 fi(x1)fj(x2) dσ̂ij→d+t(x1, x2) , (5.1)

where fi are parton distribution functions (PDFs) and the superscript indicates that
we only consider the ub initial state. We consider proton-proton collision at 13
TeV and use the NNPDF31_lo_as_0118 parton distribution functions [57, 58]. The
renormalisation and factorisation scales are fixed at µ = mt. The value of the
strong coupling constant αs is provided by the PDF sets. We use mt = 173 GeV,
mW = 80.379 GeV, the Fermi constant GF = 1.16637× 10−5 GeV−2 and set CKM
matrix elements to one. Finally, we note that no kinematic cuts are applied.

We compute the partonic cross section using the finite amplitude F . We write

σ̂ij→d+t =
1

8N2
c s

∫
d3p3

(2π)3 2E3

d3p4
(2π)3 2E4

〈F|F〉 (2π)4δ(4) (p1 + p2 − p3 − p4) , (5.2)

where the prefactor on the right-hand side includes spin- and colour-averaging factors.
Since we are interested in the non-factorisable two-loop QCD contribution we use

〈F|F〉 = 〈F (0)|F (0)〉+
(αs

4π

)2 [
〈F (1)

nf |F
(1)
nf 〉+ 2<

{
〈F (0)|F (2)

nf 〉
}]

. (5.3)

As we already mentioned, O(αs) non-factorisable contribution vanishes due to colour
conservation.

In practice, the evaluation of the non-factorisable contribution to the cross sec-
tion proceeds as follows. As a first step we produce a reliable grid for the evaluation
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of the leading order cross section as well as top rapidity and p⊥ distributions. Once
the grid is obtained, we randomly draw kinematic points from it, compute 〈F|F〉 and
the phase-space weight for these points and obtain an estimate of the cross section
including non-factorisable corrections.

We find the following result

σubpp→dt =

(
90.3 + 0.3

(
αs(µnf)

0.108

)2
)

pb, (5.4)

where the first term is the leading order cross section5 and the second term is the non-
factorisable NNLO contribution. We have indicated in Eq. (5.4) that one can change
the scale of the strong coupling constant in non-factorisable corrections independently
of the rest of the calculation. This is so because the non-factorisable corrections
appear for the first time at NNLO so that they cannot compensate the scale variations
of leading and next-to-leading order cross sections. This remark is important as the
choice of µnf in Eq. (5.4) has obvious consequences for how large these corrections
actually are. We note that the non-factorisable correction 0.3 pb in Eq. (5.4) is the
result of the cancellation between the one-loop squared contribution (0.7 pb) and the
interference of the two-loop amplitude with the leading order one (−0.4 pb).

It follows from Eq. (5.4) that non-factorisable corrections are quite small; they
change the leading order cross section by 0.3 percent. However, in spite of being
small they are actually of the same order as the factorisable corrections to single-top
production. Indeed, factorisable corrections are supposed to be the dominant ones
but they change the NLO single-top production cross section by less than a percent
(see e.g. Ref. [17]). Moreover, as we already mentioned, the appropriate choice of the
scale µnf in Eq. (5.4) is unclear at present. However, since these corrections always
involve exchanges between two quark lines, it is reasonable to assume that proper µnf

should be related to a typical transverse momentum of the top quark in single-top
production, which is about 40−60 GeV. If so, the magnitude of the non-factorisable
correction will increase by a factor O(1.5) and become close to half a percent.

Having discussed the total cross section we move to kinematic distributions. We
begin with the distribution of the top quark transverse momentum; it is shown in
Figure 7. In the upper pane we display the differential cross section at leading order
and including non-factorisable corrections. In the lower pane, we show ratios of the
NNLO non-factorisable correction to the leading order differential cross section as a
function of the top quark transverse momentum.

It follows from Figure 7 that non-factorisable corrections exhibit significant p⊥-
dependence. Indeed, they are quite small and negative for p⊥ between 0 and 50 GeV.
For larger p⊥, they start growing and reach O(1%) at p⊥ ∼ 100 GeV. It is interesting
to note that the NNLO factorisable correction exhibits a similar p⊥-dependence [15–

5The leading order cross section has been checked against MadGraph5_aMC@NLO [59].
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Figure 7: The top-quark transverse momentum distribution. In the upper pane, the
blue line corresponds to the leading order distribution whereas the dashed, red line
to the distribution with NNLO QCD non-factorisable corrections included. In the
lower pane, the ratio of non-factorisable corrections to the leading order distribution
is presented. See text for further details.

17] which means that the relative importance of factorisable and non-factorisable
corrections remains constant across the phase space.

In Figure 8, we show the impact of non-factorisable corrections on the top-quark
rapidity distribution and on the distribution of the invariant mass of the top quark
and the light-quark jet which for a 2→ 2 process is equivalent to the partonic centre-
of-mass energy

√
ŝ. It follows from Figure 8a that non-factorisable corrections to the

rapidity distributions are O(0.3%) for |yt| < 2.5; for larger rapidities corrections
quickly become negative. The non-factorisable corrections to the

√
ŝ distribution

shown in Figure 8b are positive and change fromO(0.6%) at the threshold toO(0.1%)

at large partonic centre-of-mass energies.

6 Conclusions

In this paper, we computed the contribution of two-loop non-factorisable virtual cor-
rections to t-channel single-top production cross section. This is the last missing part
of the two-loop amplitude needed for a complete description of this process through

– 19 –



103

104

d
σ
/
d
|y t

o
p
|[

fb
]

LO

LO+NNLO non-fact.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

|ytop|

-0.40%

-0.20%

0.00%

0.20%

0.40%

N
N

L
O

n
on

-f
ac

t.
co

rr
ec

ti
on

s
to

L
O

LO/LO

NNLO non-fact. / LO

2.9 3.0
20400

20450

20500

(a) The top-quark rapidity distribution.

102

d
σ
/
d
√
ŝ
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Figure 8: Distributions of the absolute value of the top-quark rapidity (left) and
the partonic center of mass energy

√
ŝ (right). Upper panes show leading order dis-

tributions as well as distributions with non-factorisable corrections included. Lower
panes show the ratio of non-factorisable corrections to leading order distributions.
See text for further details.

NNLO QCD. Exact dependence on the top quark mass is retained throughout the
calculation.

The calculation reported in this paper involves numerical computation of master
integrals using the auxiliary mass flow method [20–22]. For this reason it is important
to demonstrate that the calculation is sufficiently robust and can be used to produce
results relevant for phenomenology. We have shown this by studying the impact of
finite remainders of non-factorisable virtual corrections on the single-top production
cross section and basic kinematic distributions. We have found that non-factorisable
corrections are smaller than, but quite comparable to, the factorisable ones, especially
since it is not very clear which scale for the strong coupling constant should be used
when computing them.

We emphasize that phenomenological studies reported in Section 5 are neces-
sarily incomplete since they include only virtual non-factorisable corrections. As
we explained in Section 4, these virtual corrections are infrared divergent; hence, to
arrive at physical predictions, we also require non-factorisable real-emission contribu-
tions. Given the recent progress with understanding of how fully-differential NNLO
QCD computations can be performed, we believe that it is straightforward to com-
pute the non-factorisable real-emission corrections to single-top production; we plan
to do this in the near future. Finally, realistic phenomenological studies require an
inclusion of top quark decays. Since we computed non-factorisable contributions to
two-loop helicity amplitudes, it is straightforward to accommodate top quark decays
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into our computation as well.
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A Numerical evaluations

In Table 3 we provide numerical results for the non-factorisable contribution to the
two-loop amplitude for three kinematic points.

〈A(0)|A(2)
nf 〉(s, t) ε−2 ε−1 ε0

(104337.30,−5179.6797) −229.09404− 8.9781633i −301.18030− 264.17736i 380.61217 + 307.59053i

(51824.679,−16060.887) −8.2985887− 4.8234599i −7.2779624− 22.421862i 42.503179 + 59.484685i

(2728123.9,−69809.245) −5061.2720− 83.997993i 34392.588− 1255.7061i −1507.7598 + 18782.966i

Table 3: Numerical results for non-factorisable corrections at three different kine-
matic points specified by (s, t) in units of GeV2. For presentation purposes we have
truncated numerical values to eight digits. We usemW = 80.379 GeV, mt = 173 GeV

and µ = mt. See main text for further details.
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