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Abstract: We study the dark matter phenomenology of scotogenic frameworks through

the rather illustrative model T1-2A extending the Standard Model by scalar and fermionic

singlets and doublets. Such a setup is phenomenologically attractive since it provides

the radiative generation of neutrino masses, while also including viable candidates for

cold dark matter. We employ a Markov Chain Monte Carlo algorithm to explore the

associated parameter space in view of numerous constraints stemming from the Higgs mass,

the neutrino sector, dark matter, and lepton-flavour violating processes. After a general

discussion of the results, we focus on the case of fermionic dark matter, which remains

rather uncovered in the literature so far. We discuss the associated phenomenology and

show that in this particular case a rather specific mass spectrum is expected with fermion

masses just above 1 TeV. Our study may serve as a guideline for future collider studies.
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1 Introduction

Particle physics beyond the Standard Model (BSM) is well motivated by many arguments

from both theory considerations and experimental observations. Among the latter, two

important observations clearly call for new physics. First, the existence of cold dark matter

(DM) in the Universe [1] remains unexplained. Second, the discovery of their oscillations

[2] implies that the neutrinos are massive, although there is no corresponding mass term

in the Standard Model.

One of the classical approaches to address dark matter relies on the so-called Weakly

Interacting Massive Particle (WIMP) paradigm. Such a massive, electrically neutral, and

stable particle may achieve the observed dark matter relic density through thermal freeze-

out. However, in absence of direct experimental evidence, there is no consensus about the

exact nature of the WIMP dark matter candidate.

Concerning neutrino masses, while in the Standard Model the other fermions are of

Dirac nature, allowing for mass generation through the Higgs mechanism, right-handed

neutrinos would be a singlet under full Standard Model gauge group. In addition, account-

ing for the experimentally inferred mass scale would require unnaturally small Yukawa

couplings. While many extensions of the Standard Model address this question by con-

sidering effective small masses generated through the so-called Seesaw mechanism [3–5], a

different approach can be implemented by considering loop-induced Majorana mass terms,

which are naturally loop-suppressed.

In the present work, we will consider a framework of the scotogenic type, which reunites

WIMP dark matter and radiative neutrino mass generation. A simple model of this type

has been proposed by Ma [6] and discussed in Refs. [7–10]. Phenomenological aspects of

this class of models have then been presented in numerous subsequent studies [11–19]. A

summary and classification in terms of topologies related to neutrino mass generation of

more general scotogenic setups has been published in Ref. [20].

The generation of neutrino masses necessarily comes along with lepton-flavour violat-

ing effects, which may contribute to experimentally constrained processes, such as, e.g.,

the decay µ→ eγ and related leptonic transitions. Precision measurements of such transi-

tions may put stringent constraints on the parameter space, especially concerning coupling

parameters involved in the neutrino mass generation and dark matter phenomenology.

We will dedicate our analysis to a specific scotogenic model, labelled “T1-2A” according

to Ref. [20] that includes both scalar and fermionic singlets and doublets. This model

features two non-vanishing neutrino masses generated through radiative contributions and

offers three different candidates for WIMP dark matter. A discrete Z2 symmetry ensures

that the dark matter particle is stable. In a sens, this corresponds to a union of the

singlet-doublet scalar [21–24] and singlet-doublet fermion [21, 22, 25–28] extensions. More

recently, this model has been studied in Ref. [29], focusing mainly on the particular case

of scalar dark matter.

The present work aims at providing a more complete analysis of this rather general

framework. In particular, we do not restrict ourselves to the case of scalar dark mat-

ter. Moreover, we include CP -violating phases present in the Pontecorvo-Maki-Nakagawa-
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Ψ1 Ψ2 F Φ S

SU(2)L 2 2 1 2 1

U(1)Y -1 1 0 1 0

Table 1: Field content of the scotogenic model T1-2A in addition to the Standard Model

fields.

Sakata (PMNS) matrix. Finally, we include the couplings of the new fields to the right-

handed leptons, which have been omitted in Ref. [29] as they do not contribute to the

generation of neutrino masses. They may, however, have an impact on lepton flavour vio-

lating processes and dark matter phenomenology. In order to efficiently include all relevant

constraints and explore the large parameter space, we rely on a Markov Chain Monte Carlo

algorithm.

Our paper is organised as follows: After a presentation of the model in Sec. 2, we discuss

the physical mass spectrum as well as the impact of next-to-leading order corrections on

the masses in Sec. 3. Sec. 4 is then devoted to the presentation of the employed Markov

Chain Monte Carlo setup. We present our results in Sec. 5 and discuss perspectives for

collider searches in Sec. 6. Finally, conclusions are given in Sec. 7.

2 The model T1-2A

As mentioned in the Introduction, we will consider a scotogenic framework, where the

Standard Model is extended by two Weyl fermion doublets, Ψ1 and Ψ2, a Weyl fermion

singlet, F , a scalar doublet, Φ, and a real scalar singlet, S. These additional fields are

assumed to be singlet under SU(3), and odd under a Z2 symmetry to ensure neutrino

mass generation at the one loop level as well as the stability of the dark matter candidate.

All Standard Model fields are even under the mirror symmetry. The additional field content

including their respective representations under SU(2)L × U(1)Y is summarized in Table

1. According to the classification of Ref. [20], this specific scotogenic model is labelled

“T1-2A”, where the “T1-2” refers to the topology of adding two fermions and two scalars,

while the “A” indicates that the model contains two singlets and two doublets.

In this Section, we will briefly introduce the different sectors, present the corresponding

Lagrangian, and set the notation.

2.1 The scalar sector

The scalar sector of the model consists of the Standard Model Higgs doublet H, the ad-

ditional singlet S, and the additional doublet Φ. They carry charges as given in Table 1.

Upon electroweak symmetry breaking, which involves the Higgs doublet only, the doublets

can be expanded into components according to

H =

(
G+

1√
2

[
v + h0 + iG0

]
)
, Φ =

(
φ+

1√
2

[
φ0 + iA0

]
)
. (2.1)
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Here, h0 is the Standard-Model Higgs boson, G0 and G+ are the Goldstone bosons, and

v =
√

2〈H〉 ≈ 246 GeV denotes the vacuum expectation value. Moreover, φ0 and A0 are

CP -even and CP -odd neutral scalars, and φ+ is a charged scalar.

The scalar potential of the model is given by

−Lscalar = M2
H

∣∣H
∣∣2 + λH

∣∣H
∣∣4 +

1

2
M2
SS

2 + λ4SS
4 +M2

Φ

∣∣Φ
∣∣2 + λ4Φ

∣∣Φ
∣∣4 +

1

2
λSS

2
∣∣H
∣∣2

+ λΦ

∣∣Φ
∣∣2∣∣H

∣∣2 + λ′Φ
∣∣HΦ†

∣∣2 +
1

2
λ′′Φ
{(
HΦ†

)2
+ h.c.

}
+ T

{
SHΦ† + h.c.

}
.

(2.2)

The first two terms are the Standard Model part related to the Higgs doublet H. After

electroweak symmetry breaking, at the tree-level, the usual minimization relation in the

Higgs sector,

m2
h0 = − 2M2

H = 2λHv
2 , (2.3)

allows to eliminate the mass parameter M2
H in favour of the Higgs self-coupling λH . Im-

posing mh0 ≈ 125 GeV leads to a tree-level value of λH ≈ 0.13.

The additional couplings, stemming from the presence of the new fields, are the self-

couplings λ4S and λ4Φ of the new singlet S and doublet Φ, the coupling λS between the

Standard Model Higgs doublet H and the new singlet S, the couplings λΦ, λΦ′ , and λΦ′′

between the Standard Model Higgs doublet H and the new doublet Φ, and the trilinear

coupling T relating the Higgs doublet H, the new singlet S, and the new doublet Φ.

Moreover, there are the mass terms M2
S and M2

Φ for the singlet and doublet, respectively.

The resulting physical scalar mass eigenstates will be discussed in Sec. 3.1.

2.2 The fermion sector

In addition to the Standard Model fermions, the model contains a Majorana singlet F and

a Dirac doublet Ψ. The latter can be expressed as two Weyl components with opposite

hypercharge,

Ψ1 =

(
Ψ0

1

Ψ−1

)
, Ψ2 =

(
−
(
Ψ−2
)†

(
Ψ0

2

)†

)
. (2.4)

The corresponding Lagrangian includes mass terms MF and MΨ for the singlet and

the doublets, respectively, and Yukawa couplings y1 and y2 inducing mixing between the

singlet and one of the doublets,

−Lfermion = − i

2

(
Ψ1σ

µDµΨ1 + Ψ2σ
µDµΨ2

)

+
1

2
MFF

2 +MΨΨ1Ψ2 + y1Ψ1HF + y2Ψ2HF + h.c.

(2.5)

The physical mass eigenstates are three neutral fermions, potentially a superposition of

singlet and doublet, as well as one charged fermion. The fermionic mass spectrum will be

discussed in more detail in Sec. 3.2.

– 4 –



⌫i ⌫j

 2

S

⌫i ⌫j

F

�

6B;m`2 R, 62vMK�M /B�;`�Kb �bbQ+B�i2/ iQ i?2 ;2M2`�iBQM Q7 M2mi`BMQ K�bb2b �i i?2 QM2@
HQQT H2p2H BM i?2 KQ/2H hR@k� BM i?2 BMi2`�+iBQM 2B;2M#�bBbX

6Q` T`�+iB+�H `2�bQMb- r2 `2;`QmT i?2 +QmTHBM;b �TT2�`BM; BM i?2 }`bi irQ i2`Kb Q7 1[X
UkXeV BMiQ i?2 K�i`Bt

G =

 
ge
 gµ

 g⌧ 

ge
F gµ

F g⌧F

!
UkXdV

LQi2 i?�i i?2 H�bi i2`K Q7 1[X UkXeV BMpQHpBM; i?2 +QmTHBM;b gi
R /Q2b MQi +QMi`B#mi2 iQ

M2mi`BMQ K�bb2b- #mi K�v ?�p2 BKTHB+�iBQMb BM Qi?2` b2+iQ`b- BM T�`iB+mH�` BM H2TiQM@~�pQm`
pBQH�iBM; �M/ /�`F@K�ii2` `2H�i2/ T`Q+2bb2bX

j S?vbB+�H K�bb bT2+i`mK

>�pBM; /Bb+mbb2/ i?2 G�;`�M;B�M T�`�K2i2`b BM i?2 T`2pBQmb a2+iBQM- r2 rBHH MQr 7Q+mb QM
i?2 `2bmHiBM; T?vbB+�H K�bb bT2+i`mKX q2 rBHH BM T�`iB+mH�` /Bb+mbb i?2 BKT�+i Q7 M2ti@
iQ@H2�/BM; ULGPV +Q``2+iBQMb iQ i?2 T?vbB+�H K�bb2b Q7 b+�H�`b �M/ 72`KBQMbX q2 rBHH �HbQ
T`2b2Mi i?2 /Bz2`2Mi +�M/B/�i2b 7Q` +QH/ /�`F K�ii2` i?�i i?2 KQ/2H hR@k� T`QpB/2bX

jXR a+�H�` K�bb2b
�7i2` 2H2+i`Qr2�F bvKK2i`v #`2�FBM;- i?2 M2mi`�H b+�H�` bi�i2b S �M/ �0 KBt- ;BpBM; `Bb2
iQ irQ CP @2p2M M2mi`�H K�bb 2B;2Mbi�i2b- r?B+? r2 rBHH /2MQi2 �b �0

1 �M/ �0
2X �i i?2

i`22@H2p2H- BM i?2 #�bBb {S,�0} i?2 +Q``2bTQM/BM; K�bb K�i`Bt Bb ;Bp2M #v

M2
� =

 
M2

S + 1
2v2�S vT

vT M2
� + 1

2v2�L

!
, UjXRV

r?2`2 �L = �� + �0
� + �00

�X .B�;QM�HBx�iBQM �++Q`/BM; iQ
�
�0

1,�
0
2

�
= U�

�
S,�0

�
UjXkV

H2�/b iQ i?2 K�bb 2B;2Mp�Hm2b

m2
�0

1,2
=

1

2

"
M2

S + M2
� +

1

2
v2
�
�S + �L

�
⌥
rh

M2
S � M2

� +
1

2
v2
�
�S � �L

�i2
+ 4v2T 2

#
,

UjXjV

/2}M2/ bm+? i?�i m�0
1

< m�0
2
X 6BM�HHv- i?2 K�bb2b Q7 i?2 CP @Q// �M/ +?�`;2/ b+�H�`b �`2-

�i i?2 i`22@H2p2H- ;Bp2M #v

m2
A0 = M2

� +
1

2
v2
h
�� + �0

� � �00
�

i
and m2

�± = M2
� +

1

2
v2�� . UjX9V

Ĝ 8 Ĝ

Figure 1: Feynman diagrams associated to the generation of neutrino masses at the one-

loop level in the model T1-2A in the interaction eigenbasis.

2.3 Interaction terms and neutrino masses

The Lagrangian of the model is completed by interaction terms that relate the scalar and

fermion sectors to the Standard Model leptons. They are given by

−Linteraction = giΨΨ2LiS + giFΦLiF + giRE
c
iΦ
†Ψ1 , (2.6)

where Li (i = e, µ, τ) denotes the three generations of lepton doublets in the Standard

Model, and Ei the singlets of right-handed charged leptons. The presence of the first

two terms of Eq. (2.6) allows the radiative generation of neutrino masses, and constitutes

and important feature of the model T1-2A with respect to the extensions of the Standard

Model by only scalars [21–24, 30–33], only fermions [21, 22, 25, 27, 28], or models with only

fermionic and scalar singlets [34]. The corresponding Feynman diagrams in the interaction

basis are shown in Fig. 1.

For practical reasons, we regroup the couplings appearing in the first two terms of Eq.

(2.6) into the matrix

G =

(
geΨ gµΨ gτΨ

geF gµF gτF

)
(2.7)

Note that the last term of Eq. (2.6) involving the couplings giR does not contribute to

neutrino masses, but may have implications in other sectors, in particular in lepton-flavour

violating and dark-matter related processes.

3 Physical mass spectrum

Having discussed the Lagrangian parameters in the previous Section, we will now focus on

the resulting physical mass spectrum. We will in particular discuss the impact of next-to-

leading order (NLO) corrections to the physical masses of scalars and fermions. We will

also present the different candidates for cold dark matter within the model T1-2A.

3.1 Scalar masses

After electroweak symmetry breaking, the neutral scalar states S and φ0 mix, giving rise

to two CP -even neutral mass eigenstates, which we will denote as φ0
1 and φ0

2. At the

tree-level, in the basis {S, φ0} the corresponding mass matrix is given by

M2
φ =

(
M2
S + 1

2v
2λS vT

vT M2
Φ + 1

2v
2λL

)
, (3.1)

– 5 –



Figure 2: Left: Histogram showing the relative impact of the higher-order corrections to

the Higgs-boson mass. Right: Resulting distribution of the tree-level parameter λH when

imposing the measured Higgs-boson mass. Both distributions are based on a sample of

about 80.000 phenomenologically viable parameter points.

where λL = λΦ + λ′Φ + λ′′Φ. Diagonalization according to

(
φ0

1, φ
0
2

)
= Uφ

(
S, φ0

)
(3.2)

leads to the mass eigenvalues

m2
φ01,2

=
1

2

[
M2
S +M2

Φ +
1

2
v2
(
λS + λL

)
∓
√[

M2
S −M2

Φ +
1

2
v2
(
λS − λL

)]2
+ 4v2T 2

]
,

(3.3)

defined such that mφ01
< mφ02

. Finally, the masses of the CP -odd and charged scalars are,

at the tree-level, given by

m2
A0 = M2

Φ +
1

2
v2
[
λΦ + λ′Φ − λ′′Φ

]
and m2

φ± = M2
Φ +

1

2
v2λΦ . (3.4)

In our analysis, we will make use of the numerical spectrum calculator SPheno (version

4.0.4) [35, 36] to compute the mass spectrum including radiative corrections at the one-

loop level. To this end, we have implemented the T1-2A model under consideration into

the Mathematica package SARAH [37–40] allowing to generate the numerical modules for

SPheno. In the following, we will discuss the impact of radiative corrections on the scalar

mass spectrum.

The mass of the Standard Model Higgs boson h0 is mainly governed by the parameter

λH (see Eq. (2.3))), while the remaining parameters of the scalar sector enter only through

the one-loop corrections. In the left part of Fig. 2 we show the distribution of the relative

correction to the tree-level mass, obtained for a sample of about 80.000 phenomenologically

viable parameter configurations. Our exact setup will be detailed in Sec. 4. As can be seen,

the corrections to the Higgs mass may be sizeable, reaching about 45% in extreme cases.

Consequently, the viable interval for the parameter λH is widened with respect to the pure
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Figure 3: Histograms showing the relative impact of the higher-order corrections for the

lighter scalar (mΦ0
1
, left) and the pseudo-scalar (m0

A, right) obtained for the same parameter

sample as in Fig. 2.

tree-level case, where λH ≈ 0.13. The resulting distribution for λH is shown on the right

part of Fig. 2 justifying the interval λH ∈ [0.1; 0.4] for the following study.

Coming to the additional scalar states, Fig. 3 shows distribution of the correction to

the lighter scalar and the pseudo-scalar masses, obtained for the same parameter space

sample. Again, different corrections arise from the different values of scalar and fermion

parameters. They can either increase or decrease the mass, however to a much lesser extend

than for the Higgs-boson discussed above. Here, typical corrections are of the order of a

few GeV in most cases, corresponding to a relative correction of up to about 3%. The

corrections are of the same order for the heavier scalar φ0
2.

Overall, the corrections in this sector are similar to those in two-Higgs doublet models,

such as the Inert Doublet Model [30–33], the additional singlet state does not affect the

corrections in a significant way.

3.2 Fermion masses

In the fermion sector, the singlet F will mix with the neutral doublet components Ψ1 and

Ψ2. At the tree-level, in the basis
{
F,Ψ0

1,Ψ
0†
2

}
, the corresponding mass matrix is given by

Mχ0 =



MF

v√
2
y1

v√
2
y2

v√
2
y1 0 MΨ

v√
2
y2 MΨ 0


 =




MF
vy√

2
cos θ vy√

2
sin θ

vy√
2

cos θ 0 MΨ

vy√
2

sin θ MΨ 0


 . (3.5)

The resulting physical mass eigenstates are denoted χ0
1, χ0

2, and χ0
3. The associated

mixing matrix is defined according to

(
χ0

1, χ
0
2, χ

0
3

)
= Uχ

(
F,Ψ0

1,Ψ
0
2

)
, (3.6)

ordered by definition such that mχ0
1
< mχ0

2
< mχ0

3
.

As for the scalar masses, we analyse the impact of the one-loop corrections included in

SPheno by comparing to the tree-level results for the fermion masses. We show the example
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Figure 4: Histogram showing the relative impact of the higher-order corrections for the

lightest (mχ0
1
, left) and the second-lightest (mχ0

2
, right) fermions obtained for the same

parameter sample as in Fig. 2.
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Figure 5: Feynman diagram associated to the generation of neutrino masses at the one-

loop level in the mass eigenbasis. Here, the neutrino indices i, j run over e, µ, τ , the scalar

φ0
n can be CP -even (φ0

1, φ0
2) or CP -odd (A0), and the fermionic states include χ0

1, χ0
2, and

χ0
3.

of the lightest and the second-lightest fermion state in Fig. 4. Typically, the correction to

the lighter mass is of the same order as for the new scalars discussed above, the corrections

not exceeding about 2% for a large majority of points. The correction received by the

second-lightest state is slightly less important. The impact on the heaviest fermion mass

(not shown in Fig. 4) is similar to the one on the second state.

3.3 Neutrino masses

After electroweak symmetry breaking, the neutrino masses receive contributions from the

three neutral Majorana fermions χ0
1, χ0

2, and χ0
3 together with the neutral scalars φ0

1, φ0
2,

and A0. The neutrino masses are radiatively generated via the diagrams shown in Fig. 5

involving the couplings gF and gΨ. The resulting neutrino mass matrix can be expressed

as

Mν = GtML G , (3.7)

where the couplings G are separated from the loop functions contained in the matrix ML.

The latter depends only on the parameters of the scalar and fermion sectors. Due to the

precise field content of the present model, there are only two independent contributions to

the neutrino mass. Consequently, the matrix ML is of order 2×2 meaning that the present
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Parameter Interval

∆m2
12 [7.0; 7.84] · 10−23

mν2 [8.367; 8.854] · 10−12

∆m2
13 [2.47; 2.57] · 10−21

mν3 [4.96; 5.07] · 10−11

Parameter Interval

θ12 [31.90; 34.98]

θ13 [8.33; 8.81]

θ23 [46.8; 51.6]

δCP [143; 251]

Table 2: Intervals at the 2σ confidence level for the neutrino masses and mixing parameters

extracted from global fits of experimental neutrino data [45]. The neutrino masses are given

in GeV, the angles and phases entering the PMNS matrix are given in degrees.

framework can only provide two non-zero neutrino masses. Detailed expressions for the

elements of ML are given in App. A.

The neutrino mass eigenvalues are obtained by diagonalizing the mass matrixMν such

that the physical mass eigenstates are given by

(ν1, ν2, ν3) = Uν (νe, νµ, ντ ) , (3.8)

again ordered such that mν1 ≡ 0 < mν2 < mν3 .

In the basis where the charged lepton Yukawa matrix is diagonal, the mixing matrix

Uν in Eq. (3.8) is identified with the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

[41, 42]. The latter can be expressed as the product

UPMNS =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13






c12 s12 0

−s12 c12 0

0 0 1







1 0 0

0 eiα1 0

0 0 eiα2


 , (3.9)

where θ12, θ13, and θ23 are the three neutrino mixing angles, δCP is the CP -violating Dirac

phase, and α1,2 are two CP -violating Majorana phases. Experimental data, mainly from

neutrino oscillation measurements, gives access to the differences of the neutrino masses

squared as well as to the mixing angles and the Dirac phase [43–45]. The extracted mass

squared differences directly translate into intervals for the two remaining masses as given

in Tab. 2. We also show the intervals for the mixing angles and the Dirac phase. Note that

the Majorana phases remain unconstrained by present data.

Following the Casas-Ibarra parametrization [46], the couplings gF and gΨ, which are

responsible for the generation of the neutrino masses, are related to the parameters entering

Eq. (3.8) through

G = ULD
−1/2
L RD1/2

ν U∗PMNS . (3.10)

Here, Dν is a diagonal matrix containing the neutrino mass eigenvalues and UPMNS is the

PMNS matrix. The matrix DL contains the eigenvalues of the matrix ML and UL is the

associated rotation matrix. DL and UL only depend on the parameters related to the

scalar and fermion sectors. A detailed discussion of the neutrino mass matrix and the

Casas-Ibarra parametrization in the model under consideration is given in Apps. A and B.
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Figure 6: Impact of one-loop corrections to scalar and fermion masses on the neutrino

masses. We show the leading order (input) neutrino mass entering the Casas-Ibarra pre-

scription against the mass obtained from SPheno when taking into account one-loop cor-

rections to the scalar and fermion masses as discussed in Secs. 3.1 and 3.2.

It is important to note that Eq. (3.10) is based on tree-level relations. In particular,

the diagonalization of the scalar and fermion sectors entering the matrices DL and UL is

done at the tree-level at this stage. Consequently, the neutrino masses will be affected

when computing the scalar and fermion masses including one-loop corrections as it is done

in our analysis using SPheno instead of relying on tree-level relations as it is the case in

Eq. (3.10).

The impact of the one-loop corrections to the scalar and fermion masses on the neutrino

mass calculation is illustrated in Fig. 6. As can be seen, the impact is such that it shifts

the neutrino masses towards higher values. Consequently, in the following study, we will

choose the input neutrino mass values in a slightly shifted interval such that the resulting

masses fall within the experimentally allowed ranges given in Tab. 2.

4 Constraints and computational setup

In order to efficiently explore the parameter space of the model, we employ a Markov Chain

Monte Carlo [47] scanning technique based on the Metropolis-Hastings algorithm [48, 49].

In an iterative procedure, the parameter space exploration is conditioned by a large number

of (mostly experimental) constraints, implemented through the computation of the likeli-

hood associated to a chosen parameter set. In the following, we detail the computational

details, the corresponding input parameters, as well as the imposed constraints.

4.1 Input parameters

The model under consideration is determined by the parameters presented in Sec. 2 and

summarized in Table 3. Note that the parameter λH , although related to the Standard

Model Higgs doublet and the experimentally known mass of the Higgs boson, is varied

since one-loop contributions including the scalar additional fields may alter the prediction

of the Higgs mass (see Sec. 3.1). Let us recall that the couplings gF and gΨ related to the
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Parameter Interval

λH [0.1; 0.4]

M2
S , M2

Φ [0.5 · 106; 4 · 106]

T [−1000; 1000]

λΦ, λ′Φ, λ′′Φ [−2; 2]

λS , λ4S , λ4Φ [−2; 2]

Parameter Interval

MF , MΨ [700; 2000]

y1, y2 [−1.2; 1.2]

giR (i = e, µ) [−1.2; 1.2]

gτR [−2.0; 2.0]

r [−1; 1]

Table 3: Independent input parameters of our Markov Chain Monte Carlo scan. All

dimensionful quantities are given in GeV.

neutrino masses are computed from experimental neutrino data (see Table 2) thanks to

the Casas-Ibarra parametrization discussed in Sec. 3.3.

The intervals associated to each parameter have been determined using preliminary

studies and are indicated in Tables 2 and 3. The Standard Model parameters are fixed

to mpole
top = 173.5 GeV, mb(mb) = 4.18 GeV, mτ = 1.77669 GeV, 1/αEW = 127.9320,

GF = 1.166370 · 10−5 GeV−2, αs(mZ) = 0.1187, mZ = 91.1887 GeV [50].

4.2 Constraints and likelihood

As a first constraint, we require a phenomenologically viable mass spectrum, i.e. no tachy-

onic states, and the lightest Z2-odd particle to be electrically neutral, such that it provides

a viable dark matter candidate. Recall that the viable dark matter candidates within the

model under consideration are χ0
1, φ0

1, and A0.

We then impose a number of constraints related to low-energy, flavour violating, and

CP -violating observables. In particular, we impose experimental constraints from lepton-

flavour violating processes such as `i → `jγ and `i → `j`j`k (i, j, k = e, µ, τ), muon-electron

conversion rates in specific nuclei, and flavour-violating decays of the Z-boson. Moreover,

we require the dark matter candidate to meet the relic density determined by the Planck

mission [51], allowing for a 2% theoretical uncertainty in addition to the experimental error,

and the direct detection cross-section not to exceed the limits published by the XENON1T

experiment [52]. Finally, we require the Higgs-boson mass to match the experimental value

determined from combined measurements of the ATLAS and CMS experiments [53] allowing

for a 3 GeV uncertainty dominated by the theory error on the mass calculation.

For a given parameter set ~θn, the adequacy with respect to the imposed constraints is

expressed in terms of the likelihood Ln. Assuming a Gaussian likelihood of uncorrelated

observables, the latter is computed as the product of individual likelihoods with respect to

each of the imposed constraints,

Ln ≡ L(~θn, ~O) =
∏

i

Li(~θn, Oi) . (4.1)

Here, the index i runs over the various constraints, and ~O is the set of the observables.
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Observable Constraint

mH 125.1± 3.0 GeV

ΩCDMh
2 0.1198± 0.0042

BR(µ− → e−γ) < 4.2 · 10−13

BR(τ− → e−γ) < 3.3 · 10−8

BR(τ− → µ−γ) < 4.4 · 10−8

BR(µ− → e−e+e−) < 1.0 · 10−12

BR(τ− → e−e+e−) < 2.7 · 10−8

BR(τ− → µ−µ+µ−) < 2.1 · 10−8

BR(τ− → µ+e−e−) < 1.5 · 10−8

BR(τ− → µ−e+e−) < 2.1 · 10−8

BR(τ− → e+µ−µ−) < 1.7 · 10−8

BR(τ− → e−µ+µ−) < 2.7 · 10−8

Observable Constraint

BR(Z0 → e±µ∓) < 7.5 · 10−7

BR(Z0 → e±τ∓) < 9.8 · 10−6

BR(Z0 → µ±τ∓) < 1.2 · 10−5

BR(τ− → e−π0) < 8.0 · 10−8

BR(τ− → µ−π0) < 1.1 · 10−7

BR(τ− → e−η) < 9.3 · 10−8

BR(τ− → e−η′) < 1.6 · 10−7

BR(τ− → µ−η) < 6.5 · 10−8

BR(τ− → µ−η′) < 1.3 · 10−7

CRµ→e(Ti) < 4.3 · 10−12

CRµ→e(Pb) < 4.6 · 10−11

CRµ→e(Au) < 7.0 · 10−13

Table 4: Constraints stemming from Higgs mass measurement [53], dark matter relic den-

sity [54], as well as flavour and low-energy precision data [50]. In our setup, intervals given

at the 1σ confidence level are implemented using a Gaussian function, while upper limits

are given at the 90% confidence level and are implemented with a single-sided Gaussian

allowing for a 10% uncertainty.

In case of a measured observable, such as the Higgs-boson mass, mH , or the dark

matter relic density, ΩCDMh
2, experimental intervals have been determined. Consequently,

these constraints are implemented assuming a Gaussian profile with the given uncertainty

σi. More precisely, the likelihood is computed as

lnLi( ~θn, Oi) =
Oi(~θn)−Oexp

i

2σ2
i

, (4.2)

where Oi(~θn) denotes the predicted value of a given observable, Oexp
i is the experimental

mean value, and σi is the uncertainty associated to the observable Oi. Note that the latter

may include experimental and theoretical uncertainties.

For the remaining constraints related to lepton-flavour violating processes as well as

the dark matter direct detection, only upper limits have been derived by the various ex-

periments. In practice, the corresponding likelihood computation is implemented as a step

function, which is smeared as single-sided Gaussian with a width of 10% of the value of

the upper limit. The likelihood is Li( ~θn, Oi) ≡ 1 if the predicted value is below the ex-

perimental limit. Otherwise, the likelihood is calculated according to Eq. (4.2) with Oexp
i

being the upper limit and σi = 0.1 ·Oexp
i .

Concerning the neutrino sector, thanks to the Casas-Ibarra parametrization discussed

in Sec. 4.1, by construction all our parameter points should fulfill the constraints stemming
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from the neutrino sector. In practice, however, as the Casas-Ibarra procedure is imple-

mented using the tree-level masses, while our final spectrum and neutrino mass calculation

from SPheno contains one-loop corrections, slight changes in the neutrino masses and the

elements of the PMNS matrix may appear. For each point, we check again the compliance

of the neutrino sector output of SPheno against the experimental values given in Tab. 2.

Let us finally mention that we also impose the experimental constraints stemming from

lepton electric dipole moments, namely EDMe < 1.1 · 10−29 and EDMµ < 1.9 · 10−29 [50].

However, these observables have no constraining power in the T1-2A framework under

consideration.

4.3 Metropolis-Hastings algorithm

This algorithm aims at randomly exploring the parameter space while increasing the likeli-

hood Ln in an iterative manner. Each Markov chain starts from a parameter point, which

is randomly chosen within the intervals given in Tables 2 and 3 such that its likelihood is

(numerically) different from zero. Then, in each iteration, random values for the param-

eters ~θ are picked in the vicinity of the previous accepted parameter point. In our study,

the new proposed parameter value is computed according to

θn+1
i = Π

{
θni , κ

(
θmax
i − θmin

i

)}
, (4.3)

where Π {a, b} is a Gaussian distribution with mean value a and standard deviation b.

The parameter κ parametrizes the allowed jump length between two iterations, its value is

chosen empirically in order to maximize the efficiency of the algorithm. Note that in case

that the calculated value exceeds the limits of the corresponding interval (see Tables 2 and

3), the point is rejected.

For each chosen parameter set, the likelihood Ln+1 is evaluated according to Eq. (4.1)

and compared to the likelihood of the previous iteration Ln. If Ln+1 > Ln, the point is

accepted and the chain will continue from this point. Otherwise, the new point is accepted

with probability

p = Ln+1/Ln . (4.4)

If the point is rejected, a new random point is chosen in the vicinity of point n. Within this

framework, the algorithm can move across larger regions while still converging to highest

likelihood places.

In typical chains, the likelihood value is supposed to grow significantly before converg-

ing towards a plateau near the global maximum. Because low-likelihood points generated

before the convergence occurs are less relevant, we remove the first 50 points of the chain

(burn-in length). This parameter is also set empirically by observing the likelihood curve

across the chains.

In a high-dimensional parameter space (in the present case: 26 parameters), the quality

of the exploration relies more on the total number of chains than the individual lengths

of the chains themselves. Note that different starting points, chosen randomly, may lead

to different likelihood maximums. For the following analysis, we have generated a total of

80.500 accepted parameter points stemming from 230 independent Markov chains.
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Figure 7: Distribution of the absolute values of the coupling parameters giF and giΨ
(i = e, µ, τ) obtained from the Markov Chain Monte Carlo analysis.

4.4 General computational setup

Starting from the input parameters given in the MS-scheme at the scale Q = mpole
t , for each

parameter point, we compute the physical mass spectrum at the one-loop level employing

the numerical program SPheno 4.0.4 [35, 36], where we have implemented the model

T1-2A making use of the Mathematica package SARAH 4.3.14 [37–40]. This setup is

also used to compute the observables related to lepton-flavour violation and low-energy

measurements, which will be detailed in Sec. 4.2. The dark matter relic density and the

direct detection cross-sections are numerically evaluated using micrOMEGAs 5.0.8 [55–60],

where again the corresponding CalcHEP [61] model files have been generated using SARAH.

The parameter values are communicated between the two codes using the SLHA file format

[62, 63].

5 Results

In this Section, we will present the main results from our Markov Chain Monte Carlo

studies presented in Sec. 4. After a discussion of the couplings and the constraints from

the lepton and neutrino sectors, we will in particular focus on the resulting dark matter

phenomenology.

5.1 Couplings, neutrino masses, and lepton flavour violation

The couplings gF and gΨ are strongly related to the measured neutrino masses and mixing

parameters through Eq. (3.10). The obtained distributions of the absolute values are

shown in Fig. 7. As can be seen, the couplings are constrained to be rather small and

cannot exceed about 10−3. Consequently, the couplings gF and gΨ cannot be expected

to contribute significantly to lepton-flavour violating processes such as µ → eγ and other

decays. In other words, the lepton-flavour violating processes have almost no impact on

the viable values of the couplings gF and gΨ.
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Figure 8: Distribution of the geometric mean value G of the coupling elements defined in

Eq. (5.1).

Figure 9: Distributions of the couplings giR (i = e, µ, τ) obtained from the Markov Chain

Monte Carlo analysis.

As complementary information, we compute the geometrical mean value of the ele-

ments of the matrix G (regrouping the couplings gF and gΨ, see Eq. (2.7)),

G =
(
geF g

µ
F g

τ
F g

e
Ψ g

µ
Ψ g

τ
Ψ

)1/6
. (5.1)

The numerical values of this parameter are shown in Fig. 8. We see that the geometrical

mean value of the couplings is relatively stable peaking around G ≈ 3.2 · 10−5. This value

represents the typical order of magnitude needed to meet the experimental constraints from

the neutrino sector. If one entry of the matrix G is numerically larger (smaller), it has to

be compensated by other elements which are then smaller (larger). Note that the width of

the shown distribution is caused by the fact that we vary the parameters of the scalar and

fermion sectors appearing in the matrix ML of Eq. (3.10).

Let us now discuss the coupling gR, which is not related to the neutrino sector, but

constrained from lepton flavour data. Fig. 9 shows the distributions that we obtain for the

three individual couplings after imposing the constraints in our Markov Chain Monte Carlo
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Figure 10: Distribution of the dark matter mass obtained from the Markov Chain Monte

Carlo study imposing the constraints of Tab. 4 (left) and for a random scan using the

same parameter intervals but without imposing the constraints (right). The three his-

tograms show the distribution for the three possible dark matter candidates (χ0
1, φ0

1, A0).

The percentages in the legend correspond to the relative occurrence of each dark matter

candidate.

study. The numerical values of geR and gµR are bound to a moderately large interval due to

the high experimental precision in the searches for µ-e transitions. Searches involving tau

leptons do not meet this level of precision (see Table 4) and, consequently, the corresponding

coupling parameter gτR is less constrained, allowing values of up to |gτR| . 2.0. The localized

peaks around |gτR| ∼ 1.0 is explained by the interplay of the relic density constraint and

the flavour-violating tau decays. The latter forbid too high values of |gτR|, while non-zero

couplings increase the relative contribution of dark matter (co-)annihilation into tau final

states (see Sec. 5.2).

5.2 Dark matter mass and nature

Coming to the second motivation of the present model after providing neutrino masses,

we will now discuss the dark matter phenomenology of the framework after including all

constraints discussed in Sec. 4.2. Recall that the present model includes three viable dark

matter candidates, the lightest neutral fermion χ0
1, the lightest neutral scalar φ0

1, and the

pseudo-scalar A0.

We start by investigating the mass interval that can be expected for the dark matter

particle. In Fig. 10 we show the obtained distribution of the dark matter mass together with

its respective nature. Moreover, we compare the situation after imposing the constraints

of Table 4, i.e. the viable parameter points obtained from the Markov Chain Monte Carlo

(MCMC) analysis, to the situation without imposing these constraints, obtained from a

pure random scan with the only requirement that the dark matter particle is electrically

neutral.

First, we observe that the model intrinsically prefers fermionic dark matter over scalar

or pseudo-scalar dark matter. Already in the case without imposing constraints, the former

accounts for about 60% of the accepted parameter points. Imposing the experimental
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Figure 11: Left: Correlation of the fermion dark matter relic density and the fermion dark

matter mass obtained from a random scan without imposing the experimental constraints

of Tab. 4. Blue points correspond to doublet-dominated fermions, while red points indicate

singlet-dominated configurations. The horizontal lines are the Planck limits for the relic

density. Right: Mass difference between the heavier neutral fermion, charged fermion, the

lightest scalar, charged scalar, and the pseudo-scalar with respect to the lightest fermion

mass for the case where the lightest fermion is the dark matter candidate using the MCMC

sample.

constraints, this percentage is slightly increased to about 64%. At the same time, the

percentage of pseudo-scalar dark matter decreases, mainly due to the dark matter direct

detection constraint, which will be discussed in more detail in Sec. 5.3.

Second, after imposing the constraints, the mass distribution associated to fermionic

dark matter displays a rather sharp shape peaking at mχ0
1
∼ 1.1 TeV. In contrast, the scalar

and pseudo-scalar dark matter feature much wider distributions reaching from about 700

GeV to about 1700 GeV. The case of scalar dark matter has been discussed in detail in

Ref. [29].

The striking behaviour in the fermionic case can be traced to requiring the predicted

relic density to meet the Planck limit of ΩCDMh
2 ≈ 0.12 (see Table 4). In order to under-

stand the exact mechanism, we show in Fig. 11 the predicted relic density projected on the

lightest fermion mass together with information about the singlet-doublet composition of

the lightest fermion. The singlet-dominated (doublet-dominated) parameter points have

a singlet component of more than 90% (less than 10%). In total, about one third of the

points is singlet-dominated, while about two thirds are doublet-dominated. Moreover, we

show in Fig. 11 the relative mass differences between the lightest fermion and the remaining

Z2-odd particles, which are potential co-annihilation partners.

In the left part of Fig. 11 it can be seen that the parameter configurations are about

uniformly distributed in the case of singlet-like dark matter. In this case, pair-annihilations

of the lightest fermion are dominant, while co-annihilations with the other particles can

occur depending on the exact mass configurations of the individual parameter points.

The situation is different for the case of doublet-dominated fermionic dark matter
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Figure 12: Left: Spin-independent dark matter direct detection cross-section as a function

of the dark matter mass. The colours correspond to the different natures of the dark

matter. Right: Spin-independent dark matter direct detection cross-section versus the

mass difference between the dark matter and the next-to-lightest particle (NLP) for the

case of fermionic dark matter. The colours correspond to the different natures of the

next-to-lightest particle.

candidates. As can be seen in the left panel of Fig. 11, the corresponding parameter

configurations are grouped in a rather specific region of the Ωχ0
1
h2–mχ0

1
plane. This is

explained by the fact that in the doublet case, the physical masses of the lightest, the

second-lightest, and the charged fermions are very close. This manifests in the right panel

of Fig. 11 as the pronounced peak for precisely these states, meaning that indeed mχ0
1
≈

mχ0
2
≈ mχ± . Consequently, co-annihilations between these states are dominant, and the

relic density depends essentially on the overall mass scale. This explains the highly densely

populated region of doublet-dominated points visible in Fig. 11. As can be seen, following

this region towards higher masses, the experimentally observed relic density is achieved for

masses of about 1.0 – 1.2 TeV, corresponding to the peak observed in the mass distribution

shown in Fig. 10. In this situation, the fermionic dark matter mainly (co-)annihilates into

tau leptons and quarks, while in specific configurations also W - and Z-boson may occur in

the final state.

5.3 Dark matter direct detection

Let us finally comment on the dark matter direct detection and its implications on the

model parameter space. We show in the left part of Fig. 12 the spin-independent scattering

cross-section of a dark matter particle off a nucleon as a function of the dark matter mass

for each valid parameter point of our Markov Chain Monte Carlo analysis. Points not

satisfying the current limits from the XENON1T experiment [64] are not shown.

This limit excludes a large part of pseudo-scalar dark matter, the remaining valid

configurations being situated relatively close to the exclusion limit. A large majority of

these points lie within the reach of the XENONnT experiment [52], meaning that the latter will

be able to exclude pseudo-scalar, and thus doublet-dominated scalar dark matter, in a near
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Parameter Interval

λH [0.1; 0.3]

T [−500; 500]

λS [−1.0; 1.0]

λΦ [−1.25; 0.75]

λ′Φ [−1.50; 1.00]

λ′′Φ [−1.75; 1.50]

λ4S , λ4Φ [−2.0; 2.0]

Parameter Interval

M2
S [0.5; 4.0] · 106

M2
Φ [1.5; 4.0] · 106

MF [1300; 2000]

MΨ [1000; 1300]

y1, y2 [−0.75; 0.75]

geR, gµR [−0.25; 0.25]

gτR [−1.5; 1.5]

Table 5: Intervals for the model parameters which can be expected to lead to viable

parameter configurations obtained from the Markov Chain Monte Carlo analysis. All

dimensionful parameters are given in GeV. Approximate viable intervals for the coupling

parameters giF and giΨ (i = e, µ, τ) can be extracted from Fig. 7.

future. The scalar dark matter configurations allowing smaller scattering cross-sections are

mainly singlet-dominated. This corresponds to the case discussed in Ref. [29].

Coming to fermionic dark matter, as discussed in Sec. 5.2, the region that is most

densely populated corresponds to the case of doublet-dominated dark matter. This scenario

can feature rather small scattering cross-sections, which are well below the reach of future

experiments. It is to be noted that the cross-section is correlated with the mass difference

of the dark matter fermion and the next-to-lightest particle, as can be seen in the right part

of Fig. 12. More precisely, the points that are expected to evade the XENONnT projected

limits feature very small mass splittings within the fermionic doublet.

Consequently, it will be interesting to investigate further the associated phenomenol-

ogy, e.g., concerning collider searches or related signatures. The case of singlet-dominated

fermion dark matter can be excluded more easily.

Note that we have also included the limits from spin-independent direct dark matter

searches leading to similar conclusions as the spin-dependent analysis presented above.

6 Summary and collider perspectives

In summary, the experimental constraints listed in Table 4 leave important room for viable

parameter points within the scotogenic T1-2A framework. As a general result of our

Markov Chain Monte Carlo study, we present in Table 5 the parameter ranges which can

be expected to lead to viable parameter configurations. Note that most intervals given

in Table 5 are restricted with respect to the input intervals given in Table 3 due to the

imposed constraints.

It is also to be noted that, due to possible interferences between different parameters,

not all configurations in the direct product of the given intervals will lead to phenomeno-

logically viable parameter sets. We therefore recommend to use the values in Table 5 as

a guideline, but check individual parameter configurations in view of the numerous con-

straints that apply to this kind of model. In the case where the couplings gF and gΨ are
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Doublet fermion Singlet fermion Doublet scalar Singlet scalar

(I) (II)

mχ0
1

1080.8 1084.1 1253.7 1712.7 1315.0

mχ0
2

1087.1 1084.5 1807.0 1832.0 1337.9

mχ0
3

1954.3 1868.5 1813.0 2061.2 1953.8

mχ± 1083.3 1084.4 1799.6 1830.8 1338.1

mφ01
1712.9 1822.0 1345.8 1193.7 940.3

mφ02
1898.9 1880.8 1966.2 1696.4 1827.6

mA0 1702.6 1856.8 1305.0 1200.0 1820.9

mφ± 1707.2 1861.8 1318.1 1198.7 1823.8

Table 6: Typical phenomenologically viable mass configurations in the T1-2A scotogenic

model resulting from our Markov Chain Monte Carlo analysis. We indicate the physical

masses of the new fermions and scalars for the five chosen dark matter configurations. All

masses are given in GeV.

chosen as free input parameters, the constraints from the neutrino sector are to be verified

in addition. Let us recall that in our study the couplings computed from the Casas-Ibarra

parametrization fulfill these constraints by construction (see Sec. 3.3).

The model under consideration includes for possible scenarios concerning the dark

matter candidate. The lightest Z2-odd particle can be either a scalar or a fermion, and

in both cases it can be singlet- or doublet-dominated. In Table 6, we indicate reference

scenarios for each case, chosen among those presenting the highest likelihood values from

our Markov Chain Monte Carlo analysis and having a rather typical mass configuration

for the given scenario type. In the following, giving special focus to the case of doublet-like

fermion dark matter, we briefly discuss the typical mass configurations together with the

associated expected collider phenomenology. A detailed study of the related signatures is,

however, beyond the scope of this work.

The complete mass spectra in SLHA 2 format [63] including the corresponding input

parameters as well as the complete decay information can be found as ancillary files asso-

ciated to the arXiv submission of the present publication.

6.1 Doublet fermion dark matter

As already discussed in Sec. 5, this case represents the majority of viable parameter points

in the model under consideration, and also the majority of the parameter sets presenting

the highest global likelihood values. Due to a common relatively small mass parameter

MΨ, the second-lightest neutral fermion as well as the charged fermion are very close

in mass to the lightest fermionic state, which is the dark matter candidate. The latter

typically has a mass of about mχ0
1
∼ 1050 − 1150 GeV with mass differences around

(mχ0
2
−mχ0

1
) ∼ (mχ± −mχ0

1
) ∼ 0.1− 10 GeV (see Fig. 12).

At the Large Hadron Collider (LHC), the production of χ0
2 and χ± may proceed

through s-channel vector or Higgs-boson exchange. The associated cross-sections are ex-
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pected to be similar to those for neutralinos and charginos in the Minimal Supersymmetric

Standard Model (MSSM).

Due to the very small mass gaps, only three-body decays are possible in this specific

configuration. We expect the two particles to decay mainly into quark-antiquark pairs and

missing energy, while decays into lepton or neutrino pairs and missing energy are expected

to be less prominent. Note that that smaller mass gaps generally allow for smaller dark

matter direct detection cross-sections.

For the example scenario (I) given in Table 6 the second-lightest fermion mainly decays

according to

BR(χ0
2 → χ0

1dd̄) ≈ 0.20 ,

BR(χ0
2 → χ0

1ss̄) ≈ 0.20 ,

BR(χ0
2 → χ0

1uū) ≈ 0.16 ,

BR(χ0
2 → χ0

1cc̄) ≈ 0.12 ,

(6.1)

while the most important decay channels of the charged fermion are

BR(χ− → χ0
1dū) ≈ 0.50 ,

BR(χ− → χ0
1sc̄) ≈ 0.15 ,

BR(χ− → χ0
1µ
−ν) ≈ 0.16 ,

BR(χ− → χ0
1e
−ν) ≈ 0.13 ,

(6.2)

where the notation ν comprises the three neutrino states. Here, we only indicate the decay

channels with a branching ratio of at least 0.1. The relic density is achieved through co-

annihilations between the three states χ0
1, χ0

2, and χ± mainly into quark-antiquark pairs.

The spin-independent direct detection cross-section is σSI ≈ 1.1 · 10−46 cm2 and thus

reachable by the XENONnT experiment.

Choosing a parameter set with an even smaller mass gap allows to avoid the projected

XENONnT constraint (see Fig. 12). Example scenario (II) of Table 6 has been chosen in this

spirit. Here, the singlet admixture is smaller than in the previous case and the physical

masses are even closer. The relic density is still governed by the same co-annihilation

channels as in the previous parameter point. However, the direct detection is much smaller,

σSI ≈ 1.4 · 10−51 cm2, well below the projected reach of XENONnT.

A further consequence of such small mass splitting concerns the decay of the fermions

χ0
2 and χ±. The above decays are still open, but kinematically strongly suppressed. The

dominant decay mode is then χ0
2 → χ0

1γ mediated at the one-loop level. The associated

decay width is of the order of 10−13 GeV, such that the decaying particle can be considered

as long-lived. Similar conclusions hold for the decay of the charged fermion.

6.2 Singlet fermion dark matter

In this case, the dark matter mass is not related to the other fermion masses any more.

Consequently, for the heavier fermionic states a large variety of decay modes is possible,

depending on the exact mass configuration including the potential intermediate scalars.

The dark matter mass can be of mχ0
1
∼ 800− 1400 GeV (see also Fig. 11).
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6.3 Doublet scalar dark matter

In this case, the lightest scalar is close in mass to the pseudo-scalar and the charged

scalar. Typical masses are in the range mφ01
∼ 1100 − 1500 GeV while (mA0 − mφ01

) ∼
(mφ± −mφ01

) ∼ 0.1 − 10 GeV, similar to the fermion case, while the singlet-like state φ0
2

can be significantly heavier. Production at the LHC may proceed via gauge or Higgs-boson

exchange with cross-sections which are typical for two-Higgs doublet models.

As no tree-level decays are allowed in this configuration, the produced pseudo-scalar

A0 will undergo a loop-mediated decay into the lightest scalar φ0
1 and a photon. For the

example scenario given in Table 6, the associated decay width is around 4 · 10−6 GeV,

making the pseudo-scalar rather long-lived.

The situation is similar for the charged scalar φ±. No decay channels being available

at the tree-level, this state will decay into the lightest scalar φ0
1 plus light quarks or lepton-

neutrino pairs at the loop-level. Again, long-lived charged scalars can be expected in this

case.

Let us recall that the case of doublet scalar dark matter can be expected to be chal-

lenged by upcoming direct dark matter searches (see Sec. 5.3).

6.4 Singlet scalar dark matter

Finally, in the singlet-scalar dark matter case, typical masses are mφ01
∼ 1000 GeV, the

other scalars as well as the fermions may be significantly heavier. As in the fermionic

singlet case, a variety of decay options is available for the heavier states, again depending

on the exact parameter configuration. The dark matter phenomenology of this scenario

has been studied in more detail in Ref. [29].

7 Conclusion

The “T1-2A” model is a rather general framework of the scotogenic type, presenting a very

rich phenomenology. We have presented a complete analysis of the associated parameter

space, taking into account constraints from the Higgs sector, the neutrino sector, lepton-

flavour violating processes, and dark matter. To our knowledge, this is the first analysis of

a scotogenic framework taking into account the complete parameter space together with

such a large variety of constraints.

While neutrino data governs the couplings of the new particles to the left-handed

leptons (gF and gΨ in Eq. (2.6)), the couplings to the right-handed leptons (gR) are mainly

constraint by the decays µ→ eγ and µ→ 3e as well as µ−e conversion rates in nuclei. The

dark matter relic density and the direct detection constrain the mass of the new particles

as well as their Yukawa couplings. The XENONnT projection will have an impact on the

dark matter nature by excluding a large part of parameter space featuring pseudo-scalar

dark matter.

Focusing on dark matter phenomenology, contrary to previous publications focusing on

one single dark matter candidate, we have considered all three possibilities, namely scalar,

pseudo-scalar, and fermionic dark matter. The latter turns out to be preferred in view of

the imposed constraints.
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Moreover, fermionic dark matter is expected to be doublet-dominated. Our analysis

has shown that in this case, a rather precise mass range of about 1.0 – 1.2 TeV can be

expected for the dark matter fermion. In this parameter region, the correct dark matter

relic density is achieved through co-annihilations with the other fermions, while direct

detection constraints can be avoided.

The elements discussed in the present paper may be found in other extensions of the

Standard Model featuring similar ingredients, such as, e.g., the possibility of fermionic

doublet-dominated dark matter.

Finally, our results may be used as a guideline for future specific collider studies. It is

to be noted that results from experimental searches for, e.g., supersymmetric partners of

the Standard Model particles, may be used to obtain approximate exclusion limits on the

present model. Such a study is, however, beyond the scope of the present paper and left

for future work.
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A Neutrino mass matrix

As already stated in Sec. 3.3, the neutrino mass matrix can be decomposed into a part

containing the couplings and a part containing the loop integrals, according to

Mν = GtML G . (A.1)

The matrix ML is related to the loop integrals according to Fig. 1. In the present model,

i.e. with two non-zero neutrino masses, this matrix has three independent components,

which in the mass eigenbasis can be expressed as (see also Ref. [29])

(ML)11 =
∑

k,n

bkn (U †χ)2
3k (U †φ)2

1n ,

(ML)12 = (ML)21 =
1√
2

∑

k,n

bkn (U †χ)1k (U †χ)3k (U †φ)1n (U †φ)2n ,

(ML)22 =
1

2

∑

k,n

bkn (U †χ)2
1k

[
(U †φ)2

2n −
(
U †φ
)2

3n

]
,

(A.2)
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where the sums run over the neutral fermion mass eigenstates (k = 1, 2, 3) and the neutral

scalar mass eigenstates (n = 1, 2, 3, the last one corresponding to the pseudo-scalar A0).

Moreover, the coefficients stemming from the loop integrals are given by

bkn =
1

16π2

mχ0
k

m2
φ0n
−m2

χ0
k

[
m2
χ0
k

ln
(
m2
χ0
k

)
−m2

φ0n
ln
(
m2
φ0n

)]
. (A.3)

Note that all divergences as well as the dependence on the renormalization scale vanish, as

this is the leading-order contribution.

B Casas-Ibarra parametrization

Here, we present the parametrization of the neutrino sector as introduced in Ref. 3.10

applied to the case of the scotogenic model T1-2A under consideration in this work.

The matrix ML defined in Sec. A can be diagonalized as

ML = U∗LDL U
†
L , (B.1)

where DL contains the eigenvalues of ML, and UL is the associated rotation matrix.

The neutrino mass matrix (see Eq. (3.7)) is diagonalized by the PMNS matrix. The

matrix Dν containing the neutrino mass eigenvalues can then be expressed as

Dν = diag
(
mν1 = 0,mν2 ,mν3

)
= UPMNSMν U

t
PMNS

= UPMNS GtML G U tPMNS = UPMNS Gt ULDL U
t
L G U tPMNS .

(B.2)

The diagonal matrices DL and Dν fulfill the relations DL = D
1/2
L D

1/2
L , D

1/2
ν D

1/2
ν = Dν ,

and D
−1/2
ν D

1/2
ν = diag

(
0, 1, 1

)
. Making use of these identities leads to

D−1/2
ν Dν D

−1/2
ν = D−1/2

ν UPMNS Gt ULD1/2
L D

1/2
L U tL G U tPMNSD

−1/2
ν ≡ RtR , (B.3)

with the definition R ≡ D
1/2
L U tLGUPMNSD

−1/2
ν . The fact that RtR = diag

(
0, 1, 1

)
implies

that R can be written in terms of one single parameter,

R =

(
0
√

1− r2 r

0 −r
√

1− r2

)
. (B.4)

Putting everything together, the coupling matrix G is obtained as the product

G = ULD
−1/2
L RD1/2

ν U∗PMNS (B.5)

where Dν and UPMNS are known from experiment, UL and DL depend only on parameters

related to the scalar and fermion sectors, and the matrix R is parametrized through r ∈
[−1; 1].
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