
ar
X

iv
:2

10
6.

05
97

9v
1 

 [
he

p-
ph

] 
 1

0 
Ju

n 
20

21

P3H-21-040, TTP21-015

Two-loop QCD penguin contribution to the width

difference in Bs − B̄s mixing

Marvin Gerlach, Ulrich Nierste, Vladyslav Shtabovenko,

and Matthias Steinhauser

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany

Abstract

We consider two-loop QCD corrections to the element Γq12 of the decay matrix
in Bq − B̄q mixing, q = d, s, in the leading power of the Heavy Quark Expansion.
The calculated contributions involve one current-current and one penguin operator
and constitute the next step towards a theory prediction for the width difference
∆Γs matching the precise experimental data. We present compact analytic results
for all matching coefficients in an expansion in mc/mb up to second order. Our new
corrections are comparable in size to the current experimental error and slightly
increase ∆Γs.
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1 Introduction

In particle collisions Bq mesons, where q = d, s labels the flavour of the light valence quark,
are produced as flavour eigenstates. This means that they are either meson or antimeson,
with beauty quantum number B = 1 or B = −1, respectively. Subsequently, this pure Bq

or B̄q state evolves into a quantum-mechanical superposition of Bq and B̄q following the
time evolution of damped oscillations. Two accidental features of the Standard Model
(SM) permit the precise study of Bq−B̄q oscillation in modern experiments: First, the
smallness of the element Vcb of the Cabibbo-Kobayashi-Maskawa (CKM) matrix implies
a large Bq lifetime of around 1.5 ps, which makes decay-time dependences experimentally
observable. Second, the heaviness of the top quark enhances the Bq− B̄q mixing box
diagram, which governs the Bq− B̄q mixing amplitude, to a level that the oscillation
frequency is in the same ballpark as the Bq lifetime.

Bq−B̄q mixing is described by the 2× 2 matrix M q − iΓq/2 with the hermitian mass and
decay matrices M q and Γq, respectively. Diagonalizing M q− iΓq/2 leads to a “heavy” (H)
and a “light” (L) mass eigenstate which are commonly denoted by Bq

H and Bq
L, respec-

tively, and have masses MH,L and widths ΓH,L. The oscillation phenomena involve the
three quantities |M q

12|, |Γq12| and arg(−M q
12/Γ

q
12) which are related to the experimentally

accessible quantities

∆Mq = M q
H −M q

L ,

∆Γq = ΓqL − ΓqH ,

aqfs = Im
Γq12
M q

12

, (1)

where the CP asymmetry in flavour-specific decays, aqfs, is typically measured in semilep-
tonic decays. ∆Mq and ∆Γq are related to the elements of the mass and decay matrices
as

∆Mq ≃ 2|M q
12|,

∆Γq
∆Mq

= −Re
Γq12
M q

12

. (2)

In the Standard Model (SM) the phase between −Γq12 and M q
12 is small, so that aqfs is

much smaller than ∆Γq/∆Mq and ∆Γq ≃ 2|Γq12|.
M q

12 is a ∆B = 2 amplitude probing virtual effects of physics beyond the SM (BSM
physics) up to mass scales of several 100 TeV. By contrast, Γq12 is sensitive to new physics
in ∆B = 1 transitions. While Γq12 probes much lower scales thanM q

12, it is instead sensitive
to effects of feebly coupled BSM particles which are light enough to be produced in Bq

decays. Such particles are predicted in theories addressing the strong CP problem [1, 2]
or as members of the dark sector, see e.g. Ref. [3] for a baryogenesis mechanism utilising
Bq−B̄q mixing and Bq decays into dark matter.

In this paper we calculate QCD corrections to Γq12 in the SM needed to better predict
both ∆Γq/∆Mq and aqfs. Currently, better theory predictions are needed in the case of
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Bs−B̄s mixing to be competitive with the precise experimental values

∆M exp
s = (17.757± 0.007(stat) ± 0.008(syst)) ps

−1 [4]

∆Γexp
s = (0.085± 0.004) ps−1. [5] (3)

Furthermore, there is steady progress with measurements of ∆Γs at LHCb [6], CMS [7],
and ATLAS [8].

For the calculation of Γq12 one employs a special operator product expansion, the Heavy
Quark Expansion (HQE), which treats the b quark mass mb as a hard scale. In this way
one expresses Γq12 as a simultaneous expansion in ΛQCD/mb and αs(mb). Each term of the
1/mb expansion involves perturbative coefficients multiplying hadronic matrix elements
of local ∆B = 2 operators. Next-to-leading logarithmic order (NLO) QCD corrections
at leading power in 1/mb have been computed in Refs. [9–12]. The 1/mb contribution
is known to leading order in αs [13]. The uncertainty resulting from the truncation
of the perturbative series of the currently known SM prediction for ∆Γs is larger than
the experimental error in Eq. (3), which calls for the calculation of higher-order QCD
contributions.

First steps towards next-to-next-to-leading order (NNLO) have been undertaken in
Ref. [14] where the fermionic corrections of order α2

sNf , where Nf = 5 is the number
of active quark flavours, have been computed including linear terms in the expansion in
mc/mb. Note that this calculation cannot be used to obtain aqfs, which is proportional to
m2
c/m

2
b . In this paper we denote any O(αs) contribution to Γq12 as “NLO”, irrespective

of the Wilson coefficients involved. This complies with the commonly used notation in
connection with higher-order QCD calculations, but differs from the language used in
previous papers on Γq12, in which the small ∆B = 1 penguin Wilson coefficients C3−6 are
counted as O(αs). In order to match the precision of the experimental value in Eq. (3)
one needs the yet unknown complete NNLO corrections proportional to two factors of the
current-current Wilson coefficients C1,2, while the contributions proportional to C1,2C3−6

are only needed at NLO. In Ref. [15] for the first time penguin contributions have been
considered beyond LO, presenting the terms proportional to C1,2C3−6 αsNf .

In this paper we present the QCD corrections to all penguin contributions proportional
to the product of C1,2 with one of C3−6 in an expansion in

z =

(
mOS
c

mOS
b

)2

, (4)

where the superscript “OS” refers to the on-shell (or pole) scheme, i.e. two-loop contribu-
tions of order O(αs). Thus this is a step towards the completion of the NLO prediction
of Γq12, which is a necessary preparation for NNLO. This calculation is more convenient
in the “CMM” operator basis of Ref. [16], which avoids problems in connection to γ5. We
also adopt this basis in the calculation presented in this paper. As a byproduct we repro-
duce the NLO result for the contribution with two copies of C1,2 of Refs. [9–12] (expanded
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in z) after transforming the ∆B = 1 Wilson coefficients to the CMM basis, which is a
powerful check of our calculational set-up.

The paper is organised as follows: Sec. 2 introduces the ∆B = 1 and ∆B = 2 operator
bases employed by us, Sec. 3 and Appendix A present the methodology of our calculation,
Sec. 4 contains the results, and we conclude in Sec. 5.

2 Preliminaries

The effective |∆B| = 1 weak Hamiltonian in the CMM operator basis [16] reads:

H|∆B|=1
eff =

4GF√
2

[
−λst

( 6∑

i=1

CiQi + C8Q8

)
− λsu

2∑

i=1

Ci(Qi −Qu
i )

+ V ∗
usVcb

2∑

i=1

CiQ
cu
i + V ∗

csVub

2∑

i=1

CiQ
uc
i

]
+ h.c. , (5)

where λsa = V ∗
asVab, a = u, c, t, contains the CKM matrix elements and λt = −λc−λu. For

definiteness we specify to b → s decays relevant for Bs−B̄s mixing. The corresponding
expressions for Bd−B̄d mixing are trivially found by replacing Vas with Vad. GF is the
Fermi constant and the dimension-six ∆B = 1 operators are given by

Qu
1 = s̄LγµT

auL ūLγ
µT abL ,

Qu
2 = s̄LγµuL ūLγ

µbL ,

Qcu
1 = s̄LγµT

auL c̄Lγ
µT abL ,

Qcu
2 = s̄LγµuL c̄Lγ

µbL ,

Quc
1 = s̄LγµT

acL ūLγ
µT abL ,

Quc
2 = s̄LγµcL ūLγ

µbL ,

Q1 = s̄LγµT
acL c̄Lγ

µT abL ,

Q2 = s̄LγµcL c̄Lγ
µbL ,

Q3 = s̄LγµbL
∑

q

q̄γµq ,

Q4 = s̄LγµT
abL

∑

q

q̄γµT aq ,

Q5 = s̄Lγµ1γµ2γµ3bL
∑

q

q̄γµ1γµ2γµ3q ,

Q6 = s̄Lγµ1γµ2γµ3T
abL

∑

q

q̄γµ1γµ2γµ3T aq ,

Q8 =
gs

16π2
mb s̄Lσ

µνT abRGa
µν , (6)

4



where qL = PLq with PL = (1−γ5)/2. Q
(u)
1 and Q

(u)
2 are the current-current operators de-

scribing theW -mediated tree-level decay of the b quark including QCD effects. Q3, . . . , Q8

are four-quark penguin operators. We list the operator Q8 (with σµν = i[γµ, γν ]/2) for
completeness; it does not enter the calculations in this paper. gs is the strong coupling
constant and Ga

µν denotes the gluon field strength tensor. In Eq. (6) the sum over q runs
over all five quark fields u, d, s, c or b. For our calculation we also need the following
evanescent operators [16]

E1[Q1] = s̄Lγ
µ1γµ2γµ3T ac c̄γµ1γµ2γµ3T

abL − 16Q1 ,

E1[Q2] = s̄Lγ
µ1γµ2γµ3ci c̄jγµ1γµ2γµ3bL − 16Q2 ,

E1[Q5] = s̄Lγ
µ1γµ2γµ3γµ4γµ5bL

∑

q

q̄γµ1γµ2γµ3γµ4γµ5qj − 20Q5 + 64Q3 ,

E1[Q6] = s̄Lγ
µ1γµ2γµ3γµ4γµ5T abL

∑

q

q̄γµ1γµ2γµ3γµ4γµ5T
aq − 20Q6 + 64Q4 (7)

and the counterparts of E1[Q1,2] with one or both c replaced by u. The ∆B = 1 operators
in Eqs. (6) and (7) destroy a b and s̄ quark while creating a b̄ and s quark and thereby
describe the transition of a B̄s ∼ bs̄ into a Bs ∼ b̄s meson. The corresponding Feynman
diagrams have incoming b quark and outgoing s quark lines.

Using the Hamiltonian in Eq. (5) the width difference ∆Γ ≈ 2|Γ12| is obtained from

Γs12 =
1

2MBs

Abs〈Bs|i
∫

d4x T H∆B=1
eff (x)H∆B=1

eff (0)|B̄s〉 , (8)

where “Abs” stands for the absorptive part and T is the time ordering operator. Γs12
encodes the information of the inclusive decay rate into final states common to Bs and B̄s

and Eq. (8) employs the optical theorem to relate Γs12 to the B̄s → Bs forward scattering
amplitude.

It is convenient to decompose Γs12 as [9]

Γq12 = −(λqc)
2Γcc12 − 2λqcλ

q
uΓ

uc
12 − (λqu)

2Γuu12 , (9)

where in the practical calculation the quantities Γab12 are considered.

The Heavy Quark Expansion (HQE) allows us to express the quantities Γab12 in Eq. (9) in
terms of infrared-safe perturbative coefficients and hadronic matrix elements of ∆B = 2
operators. To leading power in 1/mb one only needs two ∆B = 2 operators, which are
conveniently chosen as

Q = s̄iγ
µ (1− γ5) bi s̄jγµ (1− γ5) bj ,

Q̃S = s̄i (1− γ5) bj s̄j (1− γ5) bi (10)

with colour indices i, j. At intermediate steps of the calculation one also encounters

Q̃ = s̄iγ
µ (1− γ5) bj s̄jγµ (1− γ5) bi ,
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QS = s̄i (1− γ5) bi s̄j (1− γ5) bj , (11)

and operators with more than two Dirac matrices on both quark lines. QS can be traded
for Q, Q̃S, and an operator R0 describing 1/mb-suppressed contributions to Γs12 [13],

QS = −Q̃S −
1

2
Q+R0. (12)

By subtracting judiciously constructed linear combinations of Q and Q̃S, all additional
operators entering the calculation are evanescent, meaning that they vanish in D = 4
dimensions. We choose [9, 17]

E
(1)
1 = Q̃−Q ,

E
(1)
2 = b̄iγ

µγνγρ PL sj b̄jγµγνγρ PL si − (16− 4ǫ)Q̃ ,

E
(1)
3 = b̄iγ

µγνγρ PL sib̄jγµγνγρ PL sj − (16− 4ǫ)Q ,

E
(1)
4 = b̄iγ

µγν PL sj b̄jγνγµ PL si + (8− 8ǫ)Qs ,

E
(1)
5 = b̄iγ

µγν PL sib̄jγνγµ PL sj + (8− 8ǫ)Q̃s , (13)

with the usual ǫ = (4 − D)/2 of dimensional regularisation. The operators on the RHS

are understood to be expressed in terms of the minimal physical basis Q ,Q̃S, e.g. Q̃ is
to be read as Q + E

(1)
1 in E

(1)
2 . The choice of the O(ǫ) terms in the coefficients affect

the expressions of the renormalised coefficients Hab , H̃ab
S of Q ,Q̃S [18]. That is, their

specification is part of the definition of the renormalisation scheme of the operators (along
with the MS prescription and the use of anticommuting γ5). Our definitions in Eq. (13)
ensure that the coefficients do not depend on the Fierz arrangement [17, 18], i.e. a four-

dimensional Fierz transformation of Q, Q̃S does not change C and C̃S.

It is thus possible to write Γab12 in Eq. (9) as

Γab12 =
G2
Fm

2
b

24πMBs

[
Hab(z)〈Bs|Q|B̄s〉+ H̃ab

S (z)〈Bs|Q̃S|B̄s〉
]
+ . . . (14)

with z defined in Eq. (4). The ellipses denote higher-order terms in ΛQCD/mb. The

matching coefficients Hab and H̃ab
S are related to the functions Gab and Gab

S defined in
Refs. [9] via (see, e.g., Eq. (21) of Ref. [12])

Hab = Gab +
α2

2
Gab
S ,

H̃ab
S = Gab

S α1 , (15)

with

α1 = 1 +
αs(µ2)

4π
CF

(
6 + 12 log

µ2

mb

)
,
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α2 = 1 +
αs(µ2)

4π
CF

(
13

2
+ 6 log

µ2

mb

)
, (16)

where CF = (N2
c − 1)/(2Nc) with Nc = 3 denoting the number of colours. We decompose

Hab(z) and H̃ab
S (z) as follows

Hab(z) = H(c) ab(z) +H(cp)ab(z) +H(p)ab(z) ,

H̃ab
S (z) = H̃

(c) ab
S (z) + H̃

(cp)ab
S (z) + H̃

(p)ab
S (z) , (17)

where the superscript “(c)” denotes the contributions with two current-current operators
Q1,2, while “(cp)” refers to those with one operator Q1,2 and one penguin operator Q3−6

and “(p)” labels the terms involving two penguin operators. The functions H(cp)ab(z) and

H̃
(cp)ab
S (z) are the main focus of this paper.

3 Calculation

The Wilson coefficients Hab(z) and H̃ab
S (z) encode the short-distance physics and are

independent of the external states in the matrix elements in Eqs. (8) and (14). Thus one
may replace the mesons by free quarks, i.e. calculate the forward-scattering amplitude

b+ s̄ → b̄+ s

in perturbation theory and apply the optical theorem in order to extract the desired
absorptive part. By equating Eq. (8) with Eq. (14) one determines Hab(z) and H̃ab

S (z).
The infrared singularities present in both sides of this matching equation factorise, which
makes the desired coefficients meaningful infrared-safe perturbative quantities. The ex-
ternal quarks are on-shell, i.e. we have p2b = m2

b and may choose ps = 0 since we use
ms = 0 and terms proportional to pb · ps match onto power-suppressed matrix elements.
Thus we must evaluate two-point loop integrals with external momentum q2 = m2

b . In
our calculation we regulate the infrared divergences with a gluon mass which introduces
a further mass scale, mg. We introduce the gluon propagator as

iδab
(
gµν + ξ pµpν

−p2−i0

)

m2
g − p2 − i0

. (18)

It is possible to expand the Feynman integrals for mg ≪ mb. We perform this expansion
at the level of the master integrals as described below. We further employ an arbitrary
QCD gauge parameter ξ and use its cancellation as a check of our calculation.

In the following we describe our methodology for the dominant contribution encoded
in Hcc(z) and H̃cc

S (z). The calculational steps for the CKM-suppressed contributions

involving Huc(z) and H̃uc
S (z) are the same. Our practical calculation proceeds as follows:

We consider the bilocal matrix elements

Abs〈 i
∫

d4x TOi(x)Oj(0) 〉 , (19)
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s
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b

(b) (c) (d) (e)

Figure 1: Sample Feynman diagrams contribution to the process b + s̄ → b̄ + s with
∆B = 1 operators. The latter are marked by a blob. In (a), (b) and (c) both operators
can be from the set {Q1, . . . , Q6} whereas in (d) and (e) one of the operators has to be
from the set {Q3, . . . , Q6}.

where Oi andOj are operators from Eqs. (6) and (7). At one-loop order we have to consider

the cases Oi, Oj ∈ {Q1, . . . , Q6} and Oi ∈ {Q1, . . . , Q6}, Oj ∈ {E(1)
1 , . . . , E

(1)
4 }. The

matrix elements with evanescent operators enter via the renormalisation procedure. One
may formulate this procedure in terms of either bare and renormalised Wilson coefficients
or bare and renormalised operators. With the former choice we have

(C1, . . . , C6, CE(1)
1
, . . . , C

E
(1)
4
)bare = (C1, . . . , C6, ∗)

(
ZQQ ZQE
∗ ∗

)
(20)

where ZQQ and ZQE are 6×6 and 6×4 matrices, respectively. They can be extracted from
Ref. [19]. The entries in Eq. (20) represented by a ∗ are irrelevant for our calculation.
The UV poles contained in ZQQ and ZQE force us to include O(ǫ) terms in the one-loop
matrix elements 〈 i

∫
d4xTOi(x)Oj(0) 〉(0) multiplied by ZQQ,ZQE.

At two loops we compute 〈 i
∫
d4xTOi(x)Oj(0) 〉 for Oi, Oj ∈ {Q1, Q2}, transform the

result to the traditional operator basis [20,21], and compare to the literature [9] in order
to have a non-trivial cross check for the implementation of the CMM operator basis. New
results are obtained for 〈 i

∫
d4xTQ1−2(x)Q3−6(0) 〉.

For our calculation we use a well-tested program chain including qgraf [22] for the gener-
ation of the amplitudes, q2e and exp [23,24] for the identification of the integral families
and FORM [25] for the algebraic manipulations and the traces of the γ matrices. As an
alternative to q2e we also use the program tapir [26] which automatically generates
FORM code, in which scalar products in the numerator are re-written in denominator fac-
tors and relations implementing a partial fraction decomposition are applied, if necessary.
Furthermore, the input files for FIRE [27] are automatically generated. The Feynman
rules involving the ∆B = 1 and ∆B = 2 operators have been obtained with the help of
FeynRules [28] and FeynCalc [29, 30].

At one-loop order only the type of diagrams shown in Fig. 1(a) contribute. At two

8



loops we can distinguish four different classes of Feynman diagrams, see also Fig. 1.
Figures 1(b) and (c) show the type of diagrams which contribute to the matrix element
〈 i
∫
d4xTQ1,2(x)Q1,2(0) 〉. These topologies are also present if one of the operators is

replaced by a penguin operator. Note that in Fig. 1(c) one of the closed quark loops
contains charm or up quarks whereas the other may contain all five active flavours. In
Fig. 1(d) and (e) we show sample diagrams which require the presence of a penguin
operator. In Fig. 1(d) it is the left operator whereas in (e) it is the one on the external
quark line.

We have implemented two approaches for the manipulation of the fermion spinor lines.
In the first approach we concentrate on tensor integrals and various manipulations of
Dirac structures. We use FeynCalc [29–31] together with Fermat [32] to obtain formulae
for tensor reduction which we then implement in FORM. To this end the tensor reduction
algorithm of FeynCalc was improved using ideas from [33]. In the second approach we
construct projectors to all Dirac structures. This has the advantage that we can take
traces and afterwards only scalar expressions have to be manipulated. More details can
be found in Appendix A.

At this point a comment concerning the expansion in mc is in order. Since we restrict
ourselves to quadratic terms in mc, i.e. linear terms in z, all loop integrals with both
bottom and charm quark lines present in the same loop can be naively Taylor-expanded
in mc before performing the loop integrations.1 All such diagrams are contained in the
class which is represented by Fig. 1(a) and (b). In all other cases we can apply the
so-called large-momentum expansion [35] as implemented in exp [23, 24]. However, our
explicit calculation shows that up to order z indeed a naive expansion in mc is sufficient.

For the reduction to master integrals we use FIRE [27] and LiteRed [36, 37]. For all
infrared contributions the reduction is performed for general gluon mass mg. Afterwards
we consider the limit of small mg and perform an asymptotic expansion [35] for mg ≪
mb at the level of the master integrals. We have performed numerical cross-checks of
the expansions with the help of FIESTA [38]. After the asymptotic expansion we have
to compute single-scale one- and two-loop integrals, most of which are available in the
literature (see, e.g., Ref. [35]). The remaining ones are straightforward to compute.

We multiply the matrix element on both sides of the matching equation with Z2
ψ, where

Zψ is the quark field renormalisation constant in the MS scheme. This renders both
expressions UV-finite. Note, that they still depend on the gauge parameter which is due
to the gluon mass used as infrared regulator. For the renormalisation of the charm quark
mass we use both the MS and on-shell scheme, see also Section 4. No renormalisation of
the bottom or strange quark mass is needed since in the considered order there are no
corresponding self-energy diagrams.

For the ∆B = 2 theory we calculate one-loop QCD corrections for the matrix elements

1There is, however, a z log z term in one-loop diagrams with a charm mass counterterm. This term
does not affect the expansion of the unrenormalised two-loop integrals in z and, moreover, is absent once
the result is expressed in terms of z̄ = mc(mb)/mb(mb) [34].
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b

s

s

b

Figure 2: Sample Feynman diagrams with ∆B = 2 operators.

of the minimal operator basis in Eq. (10). Sample Feynman diagrams, which have to be
considered at NLO, are shown in Fig. 2. The results of the matrix elements in both the
∆B = 1 and ∆B = 2 theories can be expressed as a linear combination of the tree-level
matrix elements of Q, Q̃S, R0 and the unphysical operators in Eq. (13). Since both results
are UV-finite we can take the limit ǫ → 0 and then read off the desired NLO corrections
to the ∆B = 2 Wilson coefficients Hab and H̃ab

S . We observe that the infrared regulator
mg and the gauge parameter cancel from these coefficients, providing a non-trivial check

of the calculation. Hab and H̃ab
S depend on the renormalisation scales µ1 and µ2, at which

the renormalised operators are defined in the ∆B = 1 and ∆B = 2 theories, respectively.
The µ1-dependence of H

ab and H̃ab
S diminishes order-by-order in perturbation theory and

is commonly used as a means to estimate the accuracy of the truncated perturbative
series. The µ2-dependence cancels in the matching procedure of the perturbative ∆B = 2
matrix elements with their non-perturbative counterparts.

4 Analytical and numerical results

In the following we discuss the results for the matching coefficients Hab and H̃ab
S (z) intro-

duced in Eq. (14).

We start with the analytic expressions for the penguin contributions H(cp) ab(z) and

H̃
(cp)ab
S (z) (for ab = uu, uc and cc) introduced in Eq. (17). It is convenient to decom-

pose the ∆B = 2 matching coefficients in terms of the ∆B = 1 coefficients Ci of the
|∆B| = 1 Hamiltonian in Eq. (5):

H(c) ab(z) =

2∑

i,j=1

CiCj p
ab
ij (z) ,

H̃
(c) ab
S (z) =

2∑

i,j=1

CiCj p
S,ab
ij (z) ,

H(cp)ab(z) =
∑

i=3,...6,8

Ci
[
C1p

ab
1i (z) + C2p

ab
2i (z)

]
,
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H̃
(cp)ab
S (z) =

∑

i=3,...6,8

Ci

[
C1p

S,ab
1i (z) + C2p

S,ab
2i (z)

]
,

H(p)ab(z) =
∑

i,j=3,...6,8

CiCj p
ab
ij (z) ,

H̃
(p)ab
S (z) =

∑

i,j=3,...6,8

CiCj p
S,ab
ij (z) . (21)

We furthermore introduce the perturbative expansion as

pabij (z) = p
ab,(0)
ij (z) +

αs(µ1)

4π
p
ab,(1)
ij (z) +O(α2

s) , (22)

(and analogously for the other coefficients) where p
ab,(0)
ij refers to one-loop and p

ab,(1)
ij to

two-loop contributions. In this paper the strong coupling constant is defined with five
active quark flavours at the renormalisation scale µ1, i.e. we have αs ≡ α

(5)
s (µ1). For later

convenience we introduce the squared ratio of the charm and bottom quark masses as

z =

(
mOS
c

mOS
b

)2

=

(
mc(mc)

mb(mb)

)2

+ O
(
α2
s

)
, z̄ =

(
mc(mb)

mb(mb)

)2

, (23)

with the MS masses mq and the pole (on-shell) masses mOS
q . While it is easier to employ

on-shell masses in the calculation, their poor definition (especially of mOS
c ) make them

unsuited for numerical evaluations and we will always use MS values as inputs.

The one-loop coefficients p
ab,(0)
ij , p

S,ab,(0)
ij can be extracted from Ref. [13], where the full

mc dependence has been taken into account, by transforming the result to the operator
bases used in this paper. We can reproduce these results in an expansion in z including
the linear terms. Note that p

ab,(0)
i8 , p

S,ab,(0)
i8 and p

ab,(1)
88 , p

S,ab,(1)
88 vanish. For ab = cc the

non-zero LO coefficients are

p
cc,(0)
13 (z) =

√
1− 4z

(
4

3
+

8z

3

)
, p

cc,(0)
14 (z) =

√
1− 4z

(
− 5

36
− 5z

18

)
,

p
cc,(0)
15 (z) =

√
1− 4z

(
64

3
− 160z

3

)
, p

cc,(0)
16 (z) =

√
1− 4z

(
−20

9
− 4z

9

)
,

p
cc,(0)
23 (z) =

√
1− 4z(1 + 2z), p

cc,(0)
24 (z) =

√
1− 4z

(
5

6
+

5z

3

)
,

p
cc,(0)
25 (z) =

√
1− 4z(16− 40z), p

cc,(0)
26 (z) =

√
1− 4z

(
40

3
+

8z

3

)
, (24)

as well as

p
S,cc,(0)
13 (z) =

√
1− 4z

(
−8

3
− 16z

3

)
, p

S,cc,(0)
14 (z) =

√
1− 4z

(
−2

9
− 4z

9

)
,

p
S,cc,(0)
15 (z) =

√
1− 4z

(
−128

3
− 256z

3

)
, p

S,cc,(0)
16 (z) =

√
1− 4z

(
−32

9
− 64z

9

)
,
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p
S,cc,(0)
23 (z) =

√
1− 4z(−2− 4z), p

S,cc,(0)
24 (z) =

√
1− 4z

(
4

3
+

8z

3

)
,

p
S,cc,(0)
25 (z) =

√
1− 4z(−32− 64z), p

S,cc,(0)
26 (z) =

√
1− 4z

(
64

3
+

128z

3

)
.

(25)

The two-loop coefficients p
ab,(1)
ij are new and are given by

p
cc,(1)
13 (z) =

(
47

18
− 4z

)
L1 +

56

9
L2 +

320z

9
+

1523

108
− 5π

18
√
3
,

p
cc,(1)
14 (z) =

(
−371

108
+

5NH

54
+

5NL

27
+

5NV

27
+

59z

3

)
L1 +

1

54
L2

+

(
4265

108
+

5NL

9
+

10NV

9
+

5π2

9

)
z

− 1649

162
+

35NL

162
+

35NV

162
+

5π

108
√
3
+

5π2

18
+NH

(
85

162
− 5π

18
√
3

)
,

p
cc,(1)
15 (z) =

(
376

9
− 136z

)
L1 +

(
896

9
− 192z

)
L2 + z

(
−16408

9
− 768 log(z)

)

+ 318− 40π

9
√
3
,

p
cc,(1)
16 (z) =

(
−1484

27
+

25NH

27
+

50NL

27
+

50NV

27
+

764z

3

)
L1 +

(
8

27
+ 8z

)
L2

+ z

(
22100

27
+

50NL

9
+

100NV

9
+

8π2

9
+ 32 log(z)

)

− 4543

27
+

130NL

81
+

130NV

81
+

20π

27
√
3
+

40π2

9
+NH

(
380

81
− 25π

9
√
3

)
,

p
cc,(1)
23 (z) =

(
−47

3
+ 24z

)
L1 +

14

3
L2 +

170z

3
+

(
−677

18
+

5π

3
√
3

)
,

p
cc,(1)
24 (z) =

(
10

9
− 5NH

9
− 10NL

9
− 10NV

9
+ 26z

)
L1 −

1

9
L2

+

(
1729

18
− 10NL

3
− 20NV

3
− 10π2

3

)
z

+
137

27
− 35NL

27
− 35NV

27
− 5π

18
√
3
− 5π2

3
+NH

(
−85

27
+

5π

3
√
3

)
,

p
cc,(1)
25 (z) =

(
−752

3
+ 816z

)
L1 +

(
224

3
− 144z

)
L2 + z

(
3656

3
− 576 log(z)

)

− 580 +
80π

3
√
3
,

p
cc,(1)
26 (z) =

(
160

9
− 50NH

9
− 100NL

9
− 100NV

9
+ 128z

)
L1 +

(
−16

9
− 48z

)
L2

12



+ z

(
7640

9
− 100NL

3
− 200NV

3
− 16π2

3
− 192 log(z)

)

+
158

9
− 260NL

27
− 260NV

27
− 40π

9
√
3
− 80π2

3
+NH

(
−760

27
+

50π

3
√
3

)
(26)

and

p
S,cc,(1)
13 (z) = −4

3
L1 −

64

9
L2 −

1720 z

9
− 130

27
− 4π

9
√
3
,

p
S,cc,(1)
14 (z) =

(
2

3
+

4NH

27
+

8NL

27
+

8NV

27

)
L1 −

16

27
L2 +

(
−40

27
+

8NL

9
+

16NV

9
+

8π2

9

)
z

+
224

81
+

28NL

81
+

28NV

81
+

2π

27
√
3
+

4π2

9
+NH

(
68

81
− 4π

9
√
3

)
,

p
S,cc,(1)
15 (z) = −64

3
L1 −

1024

9
L2 −

27952z

9
− 2128

9
− 64π

9
√
3
,

p
S,cc,(1)
16 (z) =

(
32

3
+

40NH

27
+

80NL

27
+

80NV

27

)
L1 −

256

27
L2

+

(
−1720

27
+

80NL

9
+

160NV

9
+

128π2

9

)
z

+
2344

27
+

208NL

81
+

208NV

81
+

32π

27
√
3
+

64π2

9
+NH

(
608

81
− 40π

9
√
3

)
,

p
S,cc,(1)
23 (z) = 8L1 −

16

3
L2 −

448z

3
+

116

9
+

8π

3
√
3
,

p
S,cc,(1)
24 (z) =

(
8− 8NH

9
− 16NL

9
− 16NV

9

)
L1 +

32

9
L2

+

(
728

9
− 16NL

3
− 32NV

3
− 16π2

3

)
z

+
632

27
− 56NL

27
− 56NV

27
− 4π

9
√
3
− 8π2

3
+NH

(
−136

27
+

8π

3
√
3

)
,

p
S,cc,(1)
25 (z) = 128L1 −

256

3
L2 −

6304z

3
+

32

3
+

128π

3
√
3
,

p
S,cc,(1)
26 (z) =

(
128− 80NH

9
− 160NL

9
− 160NV

9

)
L1 +

512

9
L2

+

(
9920

9
− 160NL

3
− 320NV

3
− 256π2

3

)
z

+
2800

9
− 416NL

27
− 416NV

27
− 64π

9
√
3
− 128π2

3
+NH

(
−1216

27
+

80π

3
√
3

)
, (27)

with L1 = log(µ2
1/m

2
b) and L2 = log(µ2

2/m
2
b). Furthermore, we introduce the symbols NL,

NV and NH which label closed fermion loops with mass 0, mc and mb, respectively. In
the numerical evaluation we set NL = 3, NV = 1 and NH = 1.
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The results for puuij and pS,uuij are obtained from pccij and pS,ccij for z = 0. For pucij and pS,ucij

we have

p
uc,(0)
ij (z) =

p
cc,(0)
ij (z) + p

cc,(0)
ij (0)

2
, p

S,uc,(0)
ij (z) =

p
S,cc,(0)
ij (z) + p

S,cc,(0)
ij (0)

2
. (28)

Since we perform an expansion up to linear order in z, the NLO coefficients p
uc,(1)
ij (z) can

be cast in the following compact form

p
uc,(1)
13 (z) = p

cc,(1)
13 (z/2),

p
uc,(1)
14 (z) = p

cc,(1)
14 (z/2) +

5

18
zNV ,

p
uc,(1)
15 (z) = p

cc,(1)
15 (z/2)− 384z log(2),

p
uc,(1)
16 (z) = p

cc,(1)
16 (z/2) +

25

9
zNV + 16z log(2),

p
uc,(1)
23 (z) = p

cc,(1)
23 (z/2),

p
uc,(1)
24 (z) = p

cc,(1)
24 (z/2)− 5

3
zNV ,

p
uc,(1)
25 (z) = p

cc,(1)
25 (z/2)− 288z log(2),

p
uc,(1)
26 (z) = p

cc,(1)
26 (z/2)− 50

3
zNV − 96z log(2), (29)

as well as

p
S,uc,(1)
13 (z) = p

S,cc,(1)
13 (z/2),

p
S,uc,(1)
14 (z) = p

S,cc,(1)
14 (z/2) +

4

9
zNV ,

p
S,uc,(1)
15 (z) = p

S,cc,(1)
15 (z/2),

p
S,uc,(1)
16 (z) = p

S,cc,(1)
16 (z/2) +

40

9
zNV ,

p
S,uc,(1)
23 (z) = p

S,cc,(1)
23 (z/2),

p
S,uc,(1)
24 (z) = p

S,cc,(1)
24 (z/2)− 8

3
zNV ,

p
S,uc,(1)
25 (z) = p

S,cc,(1)
25 (z/2),

p
S,uc,(1)
26 (z) = p

S,cc,(1)
26 (z/2)− 80

3
zNV . (30)

The expressions in Eqs. (26) to (30) are exact to order z, i.e. they receive correc-
tions of order z2 log z. Computer-readable expressions of the two-loop coefficients from
Eqs. (26), (27), (29) and (30) can be found in the ancillary file to this paper [39]. The
two-loop terms proportional to NL, NV and NH have recently been computed in Ref. [15]
and we find complete agreement after expanding the exact expression up to linear order in
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z and transforming to the operator basis used in [15]. We note that the NLO coefficients
with i = 1, 2 and j = 8 are only one-loop quantities and can be extracted from Ref. [9].

It is interesting to note that the
√
3 in our results originate from the Feynman diagrams

in Fig. 1(b) where in one of the closed loops a massive bottom quark is present. We
mention that our results passes the checks mentioned above, the gauge parameter and
the gluon mass vanish. As an additional check we have re-done the calculation employing
dimensional regularisation of the IR divergences, which requires to do the LO matching
at order ǫ, and found the same results.

The results in Eqs. (26) to (30) contain terms of order z log z which result from diagrams
with charm self-energies and mass counterterms. The large coefficients of these terms,
proportional to the LO term γ

(0)
m = 6CF = 8 of the mass anomalous dimension, weakens

the quality of the perturbative expansion and is especially troublesome for the prediction
of aqfs, from which the z0 terms cancel. To eliminate these terms one employs the one-loop
relation

z = z̄

(
1− γ(0)

m

αs(mb)

4π
log z̄

)
+O(α2

s) ,

pabij (z) = pabij (z̄)−
∂p

ab,(0)
ij (z̄)

∂z̄

αs(mb)

4π
γ(0)
m z̄ log z̄ +O(α2

s) (31)

so that trading z for z̄ requires the replacement

p
ab,(1)
ij (z) → p̄

ab,(1)
ij (z̄) ≡ p

ab,(1)
ij (z̄)−

∂p
ab,(0)
ij (z̄)

∂z̄
γ(0)
m z̄ log z̄, (32)

where αs(mb) = αs(µ1) + O(α2
s) has been used, and an analogous replacement for

p
S,ab,(1)
ij (z).

The benefit of using z̄ instead of z for the quality of the prediction has been demonstrated
in Refs. [12, 34] and we refrain from using z in our numerics. This leaves two plausible
renormalisation schemes: One may either use (mOS

b )2 or m̄2
b(m̄b) in the prefactor of the

square bracket of Γab12 in Eq. (14). The latter choice requires the replacement

p̄
ab,(1)
ij (z̄) → ¯̄p

ab,(1)
ij (z̄) ≡ p̄

ab,(1)
ij (z̄) + 8CFp

ab,(0)
ij (z̄), (33)

and an analogous change of p̄
S,ab,(1)
ij (z̄). In Refs. [14, 15] the two mentioned schemes are

referred to as “pole” and “MS”.

Let us next investigate the numerical effects of the new contributions toHab(z) and H̃ab
S (z).

For the input values we use αs(MZ) = 0.1179 [40] and the MS quark masses mc(3 GeV) =
0.993 GeV [41] and mb(mb) = 4.163 GeV [42] which leads mc(mb) = 0.929 GeV and
z̄ ≈ 0.0497. From mb(mb) we obtain mOS

b = 4.56 GeV using the one-loop conversion
formula. For the computation of the ∆B = 1 matching coefficients we use as matching
scale to the Standard Model µ0 = MW = 80.403 GeV. The scale µ1 is set to mb(mb).
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In the following we discuss the “cc” contribution of the quantities Hab and H̃ab
S in the

MS scheme. We refrain from showing explicit results for the “uu” and “uc” contributions
which show a similar pattern. We have

Hcc = 0.925(c) − 0.051(cp) + (0.002NV + 0.002NL)(p)

+
αs
4π

[
− 2.566(c) − 0.696(c−gb) + (−0.846 + 0.0128NH + 0.116NV + 0.105NL)(cp)

]
,

H̃cc
S = 1.606(c) − 0.084(cp) + (0.002NV + 0.002NL)(p)

+
αs
4π

[
− 0.791(c) − 1.114(c−gb) + (−1.363 + 0.021NH + 0.186NV + 0.168NL)(cp)

]
,

(34)

where “c-gb” refers to the diagrams with two current-current operators and a gluon bridge,
see Fig. 1(c). The numerical values are specific to the operator renormalisation scheme
chosen by us. The scheme dependence cancels in combination with the NLO Wilson
coefficients C3−6 entering the numbers label with “cp”. From Eq. (34) we observe that
at one-loop order the penguin contribution is about a factor 20 smaller than the terms
proportional to C1 and C2, which justifies to calculate penguin contributions to lower
orders in αs than those with two copies of C1,2. However, at two loops the impact of the
penguin coefficients is larger. In the case of Hcc the relative factor is less than three and in
the case of H̃cc

S the penguin coefficient is even bigger than the current-current contribution.
We want to remark that the numerically most important penguin contribution is the one
proportional to C4.

We want to remark that in all cases the fermionic contributions to the the penguin coef-
ficients, which are known from Ref. [15], are significantly smaller than the non-fermionic
terms computed in this paper. Still, using NH = NV = 1 and NL = 3 we observe a
screening of the non-fermionic coefficient of close to 50%.

We observe that the expansion in z is well-behaved. For example, more than 90% of
the non-fermionic penguin coefficients at two-loop order in Eq. (34) are provided by the
mc → 0 approximation.

We are now in the position to evaluate the shift of the new corrections to the width
difference. To illustrate the numerical effect of the new corrections we omit both the
fermionic NNLO contributions computed in [14] and power corrections of order ΛQCD/mb.
We furthermore concentrate on ∆Γs. In addition to the quark masses and αs given above
we have the following input parameters [43–45]

MBs
= 5366.88MeV ,

BBs
= 0.813± 0.034 ,

B̃′
S,Bs

= 1.31± 0.09 ,

fBs
= (0.2307± 0.0013)GeV ,

λsu
λst

= −(0.00865± 0.00042) + (0.01832± 0.00039)i . (35)

16



Correlator Perturbative order z-dependence
O1,2 × O1,2 [9] 1 loop exact
O1,2 × O1,2 [9] 2 loops exact
O1,2 ×O8 [9] 1 loop exact
O1,2 ×O3−6 [9] 1 loop exact
O1,2 × O3−6 2 loops O(z)

O3−6 × O3−6 [13] 1 loop exact

Table 1: List of ingredients relevant for ∆Γs. The two-loop result for the O1,2 × O3−6

contribution is new.

Let us first consider the quantity ∆Γs. The contributions entering our prediction are
explicitly listed in table 1 Including all known NLO corrections we obtain

∆Γs = 0.105 ps−1 + . . . (pole) ,

∆Γs = 0.110 ps−1 + . . . (MS) , (36)

where the ellipses indicate terms of order ΛQCD/mb. In case the new corrections computed
in this paper are excluded we have

∆Γs = 0.108 ps−1 + . . . (pole) ,

∆Γs = 0.113 ps−1 + . . . (MS) . (37)

Thus the calculated corrections increase ∆Γs by 0.003 ps−1, which is almost as large as
today’s experimental error in Eq. (3). The size of the correction is also in the ballpark of
the hadronic uncertainty, if ∆Γs is predicted from ∆Γs/∆Ms, since hadronic uncertainties
largely cancel from this ratio [12, 15].

Next, we discuss the relative shift of ∆Γs due to the contribution of the penguin contri-
bution in more detail. At one-loop order we obtain

∆Γ
p,12×36,α0

s

s

∆Γs
= 7.6% (pole) ,

∆Γ
p,12×36,α0

s

s

∆Γs
= 6.1% (MS) , (38)

where the quantity in denominator includes all current-current and current-penguin cor-
rections up to order α1

s. The penguin-penguin contributions are included up to order
α0
s (one-loop order). The numerator in Eq. (38) only contains the LO current-penguin

contributions (indicated by the superscript “12× 36”).

At two-loop order we have

∆Γp,12×36,αs

s

∆Γs
= 0.3% (pole) ,
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∆Γp,12×36,αs

s

∆Γs
= 1.4% (MS) ,

(39)

where the numerator contains the new corrections computed in this paper together with
the corresponding fermion contributions from [15]. Note that the non-Nf penguin contri-
bution overcompensates theNf terms [15]. In the pole scheme this leads to tiny corrections
below the percent level. In the MS scheme the non-Nf contribution is about a factor three
bigger than the Nf terms which leads to a relative correction of −1.4%.

5 Conclusions

In this paper, for the first time, the ∆B = 1 operator basis from Ref. [16] has been
used for the computation of NLO corrections to the decay matrix element Γq12, governing
the width difference between the eigenstates of the Bq− B̄q mass matrix and the CP
asymmetry in semileptonic Bq decays. After reproducing known results [9–11, 14, 15] we
have obtained novel two-loop contribution to Γq12, namely all contributions involving one
current-current operator and one four-quark penguin operator. We have computed these
two-loop corrections in an expansion in mc/mb including quadratic terms. Computer-
readable expressions of our results can be downloaded from [39].

The calculated NLO effects dominate over the previously known partial results which
contain only fermion loop contributions. While the NLO penguin contributions are nu-
merically less relevant than those with two large current-current coefficients C1,2, they are
needed for the theory prediction to match the experimental precision of ∆Γs in Eq. (3).
To fully keep up with experiment one further needs the contributions involving Q8 at the
two-loop level and a full NNLO (three-loop) calculation of the contributions with two
current-current operators. For the NNLO calculation it is instrumental to use the CMM
operator basis [16] as we did in this paper.
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A Projector methodology

In this appendix we briefly describe the approach based on the construction of projectors
for the various tensor structures. In general, the scattering amplitude of the process
b+ s̄ → b̄+ s can be parametrized as

M =
∑

n,m

A(n,m) Γ
(n)
i1i2i3i4

Σ(m)
c1c2c3c4

s̄c1i1 b
c2
i2

s̄c3i3 b
c4
i4
, (40)

where cn describe the colour and in the spinor indices. Note that the number of colour
structures Σ(m) is finite. On the other hand, the basis of the Lorentz structure is a priori
not finite. For a massless s quark the Lorentz structure can be expressed as2

Γ
(n)
i1i2i3i4

=
(
PRB

(n)
)
i1i2

(
PRB

(n)
)
i3i4

≡
(
PRB

(n)
)
⊗
(
PRB

(n)
)
, (41)

where PR = (1 + γ5)/2 and the basis vectors B(n) are given by

B(0) = 1 , B(1) = γµ1 , B(2) = γµ1γµ2 , B(3) = γµ1γµ2γµ3 , . . . . (42)

In four space-time dimensions it is possible to avoid chains with more than four Dirac
matrices, which is not possible in d = 4− 2ǫ dimensions. However, in a fixed order in the
perturbative expansion only a finite number of basis vectors B(n) appear.

In general, the coefficients A(n,m) include dimensionally regularized scalar Feynman inte-
grals. To extract A(n,m) in Eq. (40), one can apply tensor reduction to get scalar integrand
expressions. Alternatively, one can make use of the composition of Eq. (40). Hence, we
define projection operators for Lorentz (P(n)) and colour space (C(m)), acting as

A(n,m) = C(m)Trd
[
P(n)M

]
, (43)

where C(m) commutes with the operations applied in Lorentz space. P(n) is constructed
from a linear combination of the structures introduced in Eq. (42). It is understood that
the traces are evaluated in d dimensions. Note that in our case no traces including γ5
appear since Eq. (41) explicitly contains a projector PR. Thus, Eq. (43) takes the form

A(n,m) = C(m)
∑

i

p(n,i) Trd

[ (
B(i) ⊗ B(i)M

) ]
,

Using the explicit structure of M we can express the projector coefficients p(i,j) as the
inverse of the Gram matrix, constructed from the tensor basis of Eq. (41)

(
p−1

)(i,j)
= Trd

[
B(i)B(j) ⊗ B(i)B(j)

]
. (44)

Note that on the right-hand side one has a product of two traces.

2For non-SM interactions or with massive s-quarks the generalization to arbitrary chiralities is straight-
forward.
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A caveat of this approach is that the complexity of the matrix p grows considerably with
the number of γ matrices in the basis elements B(n). For our NLO calculation, we have
to consider terms up to n = 9 which leads to products of two d-dimensional traces where
each one contains up to 18 γ-matrices. This non-trivial computational task was done
using FORM [25], where the special hints described in the manual have been used. To
avoid unnecessary recomputations, we evaluate each occurring trace product separately
and include the result in a lookup table.
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