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Fermionic corrections to quark and gluon form factors in four-loop QCD
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We analytically compute all four-loop QCD corrections to the photon-quark and Higgs-gluon form
factors involving a closed massless fermion loop. Our calculation of non-planar vertex integrals
confirms a previous conjecture for the analytical form of the non-fermionic contributions to the
collinear anomalous dimensions of quarks and gluons.

I. INTRODUCTION

Two of the most important processes which are studied
in great detail at the CERN LHC are the production of
lepton pairs and Higgs bosons. The total cross sections
for Drell-Yan lepton pair production through virtual pho-
tons and Higgs boson production through the dominant
gluon fusion channel are known to next-to-next-to-next-
to-leading order (N3LO) in perturbation theory [1-3] in
the limit of an infinitely heavy top quark. Historically,
first the virtual corrections have been computed and the
real radiation contributions have been added later. In
this paper we take an important step towards the N4LO
corrections and provide analytic results for the fermionic
contribution to the virtual corrections, both to the Drell-
Yan and Higgs boson production processes.

The virtual corrections are conveniently expressed in
terms of form factors of the photon-quark vertex and
the effective gluon-Higgs boson vertex. Let us denote
the corresponding bare vertex functions by I'y and I'}",

respectively. Then the bare form factors are obtained
from
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where our overall normalization is such that both form
factors are one at leading order. Further, we work in con-
ventional dimensional regularization and use d = 4 — 2¢
for the space-time dimension. The external momentum
of the photon and Higgs is ¢ = ¢1 + ¢2 and ¢ and ¢2 are
the incoming momenta of the quark and anti-quark in
the case of F, and of the gluons in the case of Fj;. Some
sample Feynman diagrams contributing to the fermionic
part of I, and Fj are shown in Fig. 1.

We define the perturbative expansion of F, and Fj in
terms of the bare strong coupling constant and write

ol n A \ " MQ ne
_ s i (n)
re (%) () (=) =

: @)

with z € {¢,g}.

Two-loop corrections to F, have been computed in
Refs. [4-7] and the first two-loop calculation for Fy has
been performed in [8]. In the first three-loop calculation
of F, and Fy [9] the coefficients of the highest e expansion
terms of three master integrals were only known numeri-
cally. These coefficients have been computed in [10]. The
results of [9] have been confirmed in Refs. [11-13]. For
the computation of three-loop master integrals we also
refer to [14].

At four-loop order there are only partial results. For
F,, the large-N. limit, which only involves planar di-
agrams, has been considered in Refs. [15, 16], the nfc
terms are available from [17], the complete contribution
from color structure (d4°°?)? has been computed in [18]
and confirmed in [19]. For F, and F,, all corrections
with three or two closed fermion loops were calculated in
[20, 21], respectively, including also the singlet contribu-
tions.

There are a number of works where pole parts of the
form factors have been computed. In fact, from the 1/¢2
pole it is possible to extract the so-called cusp anomalous
dimension. A complete calculation based on the form
factors can be found in Ref. [19]. In that work a basis
of finite integrals has been chosen and expanded only to
lower orders in € in order to obtain the required weight
six information. Ref. [19] confirmed the expression pre-
sented in Ref. [22], which is based on a calculation in
N = 4 super Yang-Mills, other known QCD results, and
conjectural input for one term in the matter contribu-
tions. Partial contributions to the QCD cusp anomalous
dimension are available from [15-17, 20, 23-26] and nu-
merical results are presented in Refs. [27, 28].

Recently, the collinear anomalous dimensions of the
quark and gluon form factors have been computed in
Ref. [29] by extracting the 1/e poles of the correspond-
ing form factors. All contributions could be computed
analytically except one contribution from a non-planar
four-loop integral defined in 6 — 2¢ dimensions, which is
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FIG. 1. Sample Feynman diagrams contributing to the fermionic corrections to Fj; and Fy at four-loop order. Straight and
curly lines denote quarks and gluons, respectively. Both planar and non-planar diagrams contribute.

parameterized by H (c.f. Eq. (10) of [29]),

(6—2¢)

=H+0(e). (3)

Using a numerical evaluation of ‘H to 10 significant digits
together with an assumption on the multiple zeta val-
ues present in H, an analytic expression could be conjec-
tured. Using the results obtained in the present paper we
confirm this expression; details are presented in the next
Section where we outline some of the techniques used
for our calculation. Our analytic results are presented in
Section IIT and Section IV contains our conclusions and
an outlook to the full result.

II. CALCULATION

We employ Qgraf [30] to generate the required Feyn-
man diagrams with closed fermion loops, 2464 diagrams

for Fq(4) and 18642 diagrams for Fg(4). After applying the
projectors and performing the numerator algebra with
Form 4 [31], we obtain the form factors F, and F, ex-
pressed as a linear combination of scalar functlons be-
longing to properly defined integral families. Each func-
tion has 18 indices where up to twelve correspond to the
different propagators of the diagrams. In addition to pla-
nar diagrams (see, e.g., Ref. [15, 16, 32]) there are non-
planar diagrams; it is the latter which pose challenges.
We perform the calculation in a general R¢ gauge and
check explicitly that terms proportional to £ cancel in
our results.

From the computational point of view there are two
challenges one has to deal with. The first one is the
integration-by-parts reduction [33, 34] of the scalar inte-
grals, which appear in the amplitudes, to so-called master
integrals. For this task, we employ the setup described
in Ref. [19], which is based on the codes Reduze 2 [35]
and Finred, implementing techniques from [36—42].

The second challenge is the computation of the mas-
ter integrals as a Laurent series in €. Here we have two



approaches at hand. The first one is based on the con-
struction of a basis of finite master integrals [13, 43, 44],
partly in 6 — 2¢ dimensions. Subsequently the program
HyperInt [45] is used to compute the e expansion of the
master integrals. This approach allowed us to compute
all € coefficients of the master integrals required for the
fermionic four-loop corrections except for H. We wish to
note, however, that it remains unclear whether the eval-
uation of the constants of transcendental weight eight (or
even higher) of some of the non-planar twelve-line master
integrals is possible in this approach. In particular, for
the two Feynman integrals corresponding to non-planar
graphs with twelve edges

(4)

it is not known whether a linearly reducible [46, 47] Feyn-
man parametric representation exists.

In this Letter, we show that both remaining non-
linearly reducible topologies (4) can be solved using a
second method, which is based on differential equations.
While the method of differential equations [48-50] is not
directly applicable to one-scale Feynman integrals, we
can introduce an additional scale parameter, as was sug-
gested in Ref. [51]. On the one hand, we complicate the
situation. On the other hand, we obtain the possibil-
ity to apply the full power of the method of differential
equations (see, e.g., Refs. [52, 53] and Ref. [54, Section
E.8]). In the context of massless four-loop form factors
this approach has been applied successfully in Refs. [15-
18]. In a first step one introduces a second mass scale
by imposing a virtuality g2 # 0 on one of the external
partons, which apparently makes the problem more com-
plicated. However, we are now in a position to establish
differential equations for the master integrals in the vari-
able x = ¢5/q* which determine the connection between
the points x = 1 and z = 0. The boundary conditions

J

are then easy to fix at x = 1 as in this point our integrals
turn into massless propagator integrals for which analytic
results are known at least up to weight twelve [55, 56].
A detailed description of the procedure can be found in
Ref. [18].

In our calculation we employ Fire 6 [57] in combina-
tion with LiteRed [40, 58] to compute the reductions
for the differential equations and closely follow the algo-
rithm of Refs. [59, 60] as implemented in Libra [61] to
bring our system in e-form. The complexity of the two
topologies (4) is somewhat reflected also in the proper-
ties of the differential equations. First, it appears that
differential equations for these two topologies, in addi-
tion to singularities at = 0 and 1, have singularities at
x=—1,4,1/4 (at x = 4) for the first (second) topology,
respectively. Among those, the singularity at « = 1/4 is
especially troublesome as it lies inside the segment (0,1)
connecting the points of interest. Moreover, it appears
that in order to reduce the system to e-form, we need
to introduce the algebraic extensions x1 = +/z, 2 =
Va —1/4, and x3 = y/1/x — 1/4. Fortunately, for each
specific iterated integral which appears in the € expansion
of the master integrals of these two topologies it is possi-
ble to find the rationalizing variable change. As a result,
the master integrals of the two topologies are not directly
expressed via non-alternating multiple zeta values, but
rather via Goncharov polylogarithms with letters in the
alphabet {0, 41, 4iv/3, eT7/3 +2im/3 oFim/3 /21 Using
the PSLQ algorithm, we were able to express our final
result for the master integrals with two massless legs and
their subtopologies through to weight nine in terms of
regular zeta values, ¢, (n = 2,...,9), and the multiple
zeta value
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Our results for the corner integrals of the two non-planar
topologies through to the finite parts are
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[
in the conventions of [32]. Combining the integral solu- No=N e — Qy d%bcd%bc _ NE —4
tions obtained by direct integration with the result (6) F © ~ Qq Ny 16N, ’
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This value for H agrees with the expression conjectured
in [29] and thus confirms the non-fermionic contribu-
tions to the collinear anomalous dimensions in that ref-
erence analytically. Moreover, this result provides the
last remaining master integral coefficient required for the
present calculation.

III. RESULTS FOR FORM FACTORS

In this Section we present the complete fermionic four-
loop corrections to the form factors F, and Fy in massless
QCD. We express the results in terms of SU(N,) color
factors and use

where @), is the fractional charge of the quark ¢ and ny
is the number of active quark flavors. Without loss of
generality we have used for the trace normalization Tr =
1/2.

The € expansion of the fermionic corrections to both
form factors start with seventh order poles in 1/¢, reflect-
ing the fact that fermionic corrections start to contribute
only at two loops. Similarly, four-loop contributions with
more than two closed fermion loops or specific color fac-
tors start even later in the € expansion. The correspond-
ing poles through to order 1/e can be obtained from [19];
they consist of zeta values with transcendental weight up
to six.

Here, we calculate the complete finite part of the
fermionic four-loop contributions to Fy; and F,; and obtain
an analytical result in terms of zeta values with transcen-
dental weight up to seven. Our result for the finite part
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For the finite part of Fg(4) we obtain
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The n?f’, n?c and ngyny terms agree with the results
presented in Refs. [20, 21]. Our expression for Fj repro-
duces the result of Ref. [15] in the large-N, limit. The

remaining, subleading color terms for Fq(4) and all of the
terms linear in ny for F}§4) are new.

IV. CONCLUSIONS

In this Letter, we calculated the complete fermionic
corrections to the photon-quark and Higgs-gluon vertices
in massless four-loop QCD. We solved two non-planar
vertex topologies using the method of differential equa-
tions and found a result in terms of multiple zeta val-
ues. This renders the only two topologies which were not
known to be linearly reducible accessible, such that the
main obstacle for the remaining four-loop corrections has
been removed. Our calculation confirms a previous con-

(

jecture for the analytical solution of one of the integrals

in this topology, which fully establishes the pole terms of

all non-fermionic four-loop corrections analytically.
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