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Anja Butter15, José Eliel Camargo-Molinaa,16, Marcin Chrzaszcza,11, Jan Conrada,17,
Jonathan M. Cornella,18, Matthias Danningera,19, Jorge de Blasd,20, Albert De Roeckb,21, Klaus
Deschc,8, Matthew Dolanb,22, Herbert Dreinerc,8, Otto Eberhardtd,23, John Ellisb,24,
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ABSTRACT

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to
parameter estimation. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues
are often sidestepped with very simplistic and statistically unsound ad hoc methods, involving naive intersection of parameter intervals
estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they
exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions.
In this article we give clear guidance for going beyond these rudimentary procedures, suggesting some simple methods for performing
statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim
is to provide physicists with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden.



Key points:

1. Models in particle physics, astrophysics and cosmology can have many free parameters, and assessing them often requires
data from multiple experiments. As a result, simplistic methods widely used in the literature are not adequate and may
lead to faulty and unreliable conclusions.

2. Overlaying confidence regions from multiple experiments is often a poor approximation of a combined confidence region
and grossly underestimates error rates. We recommend constructing a composite likelihood function for all relevant
experimental measurements and using it to find joint confidence or credible regions.

3. Uniform random and grid scans are not well suited for investigating high-dimensional parameter spaces. There are many
dedicated algorithms available that are more efficient and yield more accurate results.

Website summary: Theories with many parameters and observable predictions present special challenges for rigorous scientific
inference. We highlight problems with widely-used methods, and recommend easy-to-use alternatives for drawing reliable
conclusions from data about novel or existing physical theories.

1 Introduction
The search for new particles is underway in a wide range of high-energy, astrophysical and precision experiments. These
searches are made harder by the fact that theories for physics beyond the Standard Model almost always contain unknown
parameters that cannot be uniquely derived from the theory itself. For example, in particle physics models of dark matter, these
would be the dark matter mass and its couplings. Models usually make a range of different experimental predictions depending
on the assumed values of their unknown parameters. Despite an ever-increasing wealth of experimental data, evidence for
specific physics beyond the Standard Model has not yet emerged, leading to the proposal of increasingly complicated models.
This increases the number of unknown parameters in the models, leading to high-dimensional parameter spaces. This problem
is compounded by additional calibration and nuisance parameters that are required as experiments become more complicated.
Unfortunately, high-dimensional parameter spaces, and the availability of relevant constraints from an increasing number of
experiments, expose flaws in the simplistic methods sometimes employed in phenomenology to assess models. In this article,
we recommend alternatives suitable for today’s models and data, consistent with established statistical principles.

When assessing a model in light of data, physicists typically want answers to two questions: a) Is the model favoured or
allowed by the data? b) What values of the unknown parameters are favoured or allowed by the data? In statistical language,
these questions concern hypothesis testing and parameter estimation, respectively. Here we mainly focus on parameter
estimation. This allows us to understand what a model could predict, and design future experiments to test it. On the theory
side, inferring the parameters of a model allows us to construct theories that contain the model and naturally accommodate the
observations.

Many analyses of physics models suffer from two key deficiencies. First, they overlay exclusion curves from experiments
and, second, they perform a random or grid scan of a high-dimensional parameter space. In this article, we point out why both
of these methods give unreliable results, and give concrete recommendations for what should be done instead.

Our discussion covers both Bayesian methods,1–6 in which one directly considers the plausibility of a model and regions of
its parameter space, and frequentist methods,7–10 in which one compares the observed data to data that could have been observed
in identical repeated experiments. Our recommendations are agnostic about the relative merits of the two sets of methods, and
apply whether one is an adherent of either form, or neither. Both approaches usually involve the so-called likelihood function,
which tells us the probability of the observed data, assuming a particular model and a particular combination of numerical
values for its unknown parameters.

2 Problems of overlaying exclusion limits
Experimental searches for new particles are usually summarised by confidence regions, either for a particular model’s parameters
or for model-independent quantities more closely related to the experiment that can be interpreted in any model. For example,
experiments performing direct searches for dark matter11 publish confidence regions for the mass and scattering cross section
of the dark matter particle, rather than for any parameters included in the Lagrangian of a specific dark matter model. To apply
those results to a given dark matter model, the confidence regions must be transformed to the parameter space of the specific
model of interest. This can sometimes modify the statistical properties of the confidence regions, so care must be taken in
performing the transformation.12–14

In the frequentist approach, if an experiment that measured a parameter were repeated over and over again, each repeat
would lead to a slightly different confidence region for the measured parameter. The confidence level of the confidence region
is the fraction of repeated experiments in which the resulting confidence region would contain the true parameter values.15 For
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Figure 1. Confidence intervals in 100 pseudo-experiments, from the combination of five measurements (left) or from the
intersection of five individual confidence intervals (right). We show the true value of φs with a vertical black line. Intervals that
contain the true value are shown in blue; those that do not are shown in red. On the right-hand side, grey bands indicate cases
where no value can be found where the 95% intervals from all five measurements overlap. Each bar originates from five
pseudo-measurements, as shown zoomed-in to the side for a few points.

example: a 95% confidence region contains the true values in 95% of repeated experiments, and the rate at which we would
wrongly exclude the true parameter values is controlled to be 5%.* Confidence regions can often be found from the likelihood
function alone. The analogous construct in Bayesian statistics is the credible region; a 95% credible region for a parameter
contains the true value of the parameter with a probability of 95%.

When several experiments report measured confidence regions, requiring that the true value must lie within all of those
regions amounts to approximating the combined confidence region by the intersection of regions from the individual experiments.
While this could be a reasonable rough estimate in some cases, it quickly loses accuracy as more experiments are applied in
sequence, and leads to much greater than nominal error rates. This is because by taking an intersection of n independent 95%
confidence regions, a parameter point has n chances to be excluded at e.g. a 5% error rate, giving an error rate of 1−0.95n.17

This issue is illustrated in fig. 1 using the B-physics observable φs, which is a well-measured phase characterising CP
violation in Bs meson decays.18 We perform 10000 pseudo-experiments.† Each pseudo-experiment consists of a set of five
independent Gaussian measurements of an assumed true Standard Model value of φs =−0.0369 with statistical errors 0.078,
0.097, 0.037, 0.285, and 0.17, which are taken from real ATLAS, CMS and LHCb measurements.‡ We can then obtain the 95%
confidence interval from the combination of the five measurements in each experiment, and compare it to the interval resulting
from taking the intersection of the five 95% confidence intervals from the individual measurements. We show the first 100
pseudo-experiments in fig. 1. As expected, the 95% confidence interval from the combination contains the true value in 95% of
simulated experiments. The intersection of five individual 95% confidence intervals, on the other hand, contains the true value
in only 78% of simulations. Thus, overlaying regions leads to inflated error rates and can create a misleading impression about
the viable parameter space. Whilst this is a one-dimensional illustration, an identical issue would arise for the intersection
of two-dimensional confidence regions. Clearly, rather than taking the intersection of reported results, one should combine

*Note though that confidence regions are sometimes defined to include the true parameter values in at least e.g. 95% of repeated experiments16 and that in
some cases the nominal confidence level may not hold in practice.

†In a pseudo-experiment, we simulate the random nature of a real experimental measurement using a pseudo-random number generator on a computer.
Pseudo-experiments may be used to learn about the expected distributions of repeated measurements.

‡See eq. 91 and table 22 in18.
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Figure 2. Starting from four individual likelihood functions (top), we compare overlaid 95% contours (bottom left) versus a
combination of the likelihoods (bottom right; blue contours). The dashed black line in both bottom panels is the intersection of
the limits from the individual likelihoods. The red line in the bottom right panel is the resulting 95% contour of the product of
all likelihoods.

likelihood functions from multiple experiments. Good examples can be found in the literature.19–25

In fig. 2 we again show the dangers of simply overlaying confidence regions. We construct several toy two-dimensional
likelihood functions (top), and find their 95% confidence regions (bottom left). In the bottom right panel, we show the contours
of the combined likelihood function (blue) and a combined 95% confidence region (red contour). We see that the naive
intersection of confidence regions (dashed black curve) can both exclude points that are allowed by the combined confidence
region, and allow points that should be excluded. It is often useful to plot both the contours of the combined likelihood (bottom
right panel) and of the individual likelihoods (bottom left panel), in order to better understand how each measurement or
constraint contributes to the final combined confidence region.

Recommendation: Rather than overlaying confidence regions, combine likelihood functions. Derive a likelihood function for
all the experimental data (this may be as simple as multiplying likelihood functions from independent experiments), and use it
to compute approximate joint confidence or credible regions in the native parameter space of the model.

3 Problems of uniform random sampling and grid scanning

Parameter estimation generally involves integration or maximisation of a likelihood function. This is required to go from the
full high-dimensional model to the one or two dimensions of interest. In most cases this cannot be done analytically. The
derivatives of the likelihood function are usually unavailable, and even single evaluations of the likelihood function can be
computationally expensive. The challenge is then to perform integration or maximisation in a high-dimensional parameter
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Figure 3. Points found inside the 95% confidence region of the likelihood function, in a two-dimensional plane of the
four-dimensional Rosenbrock problem. Points are shown from scans using differential evolution (blue), random sampling
(orange) and grid sampling (yellow). For reference, we also show the actual 95% confidence level contour of the likelihood
function (red). Note that due to the projection of the four-dimensional space down to just two dimensions, two of the points
shown from the grid sampler actually consist of three points each in the full four-dimensional space.

space using a tractable number of evaluations of the likelihood function.
Random and grid scans are common in the high-energy phenomenology literature. In random scans, one evaluates the

likelihood function at a number of randomly-chosen parameter points. Typically the parameters are drawn from a uniform
distribution in each parameter in a particular parameterisation of the model, which introduces a dependency on the choice of
parameterisation. In grid scans, one evaluates the likelihoods on a uniformly spaced grid with a fixed number of points per
dimension. It is then tempting to attribute statistical meaning to the number or density of samples found by random or grid
scans. However, such an interpretation is very problematic, in particular when the scan is combined with the crude method
described in section 2, i.e. keeping only points that make predictions that lie within the confidence regions reported by every
single experiment.

The efficiency of random and grid scans is also extremely poor. The “curse of dimensionality”26 is one of the well-known
problems: the number of samples required for a fixed resolution per dimension scales exponentially with dimension D: just
10 samples per dimension requires 10D samples. This quickly becomes an impossible task in high-dimensional problems.
Similarly, consider a D-dimensional model in which the interesting or best-fitting region occupies a fraction ε of each dimension.
A random scan would find points in that region with an efficiency of εD, i.e. random scans are exponentially inefficient.

These issues can be addressed by using more sophisticated sampling algorithms that adapt to the function that they are
sampling, e.g., by preferentially moving to sample areas of the parameter space where the likelihood is larger. This is illustrated
in fig. 3, where we assume that the logarithm of the likelihood function is given by a four-dimensional Rosenbrock function27

−2lnL (xxx) = 2
3

∑
i=1

f (xi, xi+1), where f (a,b) = (1−a)2 +100(b−a2)2 . (1)

This is a challenging likelihood function with a global maximum at xi = 1 (i = 1,2,3,4). We show samples found with
−2lnL (xxx)≤ 5.99. This constraint corresponds to the two-dimensional 95% confidence region, which in the (x1,x2) plane has
a banana-like shape (red contour). We find the points using uniform random sampling from −5 to 5 for each parameter (orange
dots), using a grid scan (yellow dots), and using an implementation of the differential evolution algorithm28, 29 operating inside
the same limits (blue dots). With only 2×105 likelihood calls, the differential evolution scan finds more than 11500 points in
the high-likelihood region, whereas in 107 tries the random scan finds only 7 high-likelihood samples, and the grid scan just
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10. The random and grid scans would need over 1010 likelihood calls to obtain a similar number of high-likelihood points as
obtained by differential evolution in just 2×105 evaluations. If likelihood calls are expensive and dominate the run-time, this
could make differential evolution about 105 times faster.

Recommendation: Use efficient algorithms to analyse parameter spaces, rather than grid or random scans. The choice of
algorithm should depend on your goal. Good examples for Bayesian analyses are Markov chain Monte Carlo30 and nested sam-
pling.31 Good examples for maximizing the likelihood are simulated annealing,32 differential evolution,28 genetic algorithms33

and local optimisers such as Nelder-Mead.34 These are widely available in various public software packages.29, 35–41

4 Discussion and Summary

Overlaying confidence regions and performing random scans are straightforward methods for “hypothesis tests” of physical
theories with many parameters or testable predictions. For example, it is tempting to say that a model is excluded if a uniform
random or grid scan finds no samples for which the experimental predictions lie inside every 95% confidence region. This
procedure is, however, misleading and prone to misinterpretation.

Testing and comparing individual models in a statistically defensible manner is challenging. On the frequentist side, one
can calculate a global p-value: the probability of obtaining data as extreme or more extreme than observed, if the model in
question is true. On the Bayesian side, one can perform Bayesian model comparison42 to find any change brought about by
data to the relative plausibility of two different models. Neither of these approaches is simple, and the task of model testing and
comparison is in general full of subtleties.43, 44

As first steps towards addressing the challenges posed by physical theories with many parameters and many testable
predictions, we make two recommendations: i) construct a composite likelihood that combines constraints from individual
experiments, and ii) use adaptive sampling algorithms (ones that target the interesting regions) to efficiently sample the parameter
spaces. The second recommendation can be easily achieved through the use of any one of a multitude of publicly-available
implementations of efficient sampling algorithms (for examples see section 3). For the first recommendation, composite
likelihoods are often relatively simple to construct, and can be as straightforward as a product of Gaussians for multiple
independent measurements. Even for cases where constructing the composite likelihood is more complicated, software
implementations are often publicly available already.45–53

Given the central role of the likelihood function in analysing experimental data, it is in the interest of experimental
collaborations to make their likelihood functions (or a reasonable approximation) publicly available to truly harness the full
potential of their results when confronted with new theories. Even for big and complex data, as e.g. from the Large Hadron
Collider, there are various recommended methods for achieving this goal.54

Our two recommendations can be taken separately when only one of the challenges exists, or where addressing both is
impractical. However, when confronted with both high-dimensional models and a multitude of relevant experimental constraints,
we recommend that they are used together to maximise the validity and efficiency of analyses.
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