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Third order corrections to the semi-leptonic b → c and the muon decays
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We compute corrections of order α3
s to the decay b → c`ν̄ taking into account massive charm

quarks. In the on-shell scheme large three-loop corrections are found. However, in the kinetic
scheme the three-loop corrections are below 1% and thus perturbation theory is well under control.
We furthermore provide results for the order α3

s corrections to b → u`ν̄ and the third-order QED
corrections to the muon decay which will be important input for reducing the uncertainty of the
Fermi coupling constant GF .

Introduction. The Cabibbo-Kobayashi-Maskawa
(CKM) matrix determines the mixing strength in the
quark sector and provides furthermore the source for
charge-parity (CP) violation in the Standard Model
(SM). It is thus of prime importance to determine the
parameters of the CKM matrix with highest accuracy.
In this Letter we address the elements Vub and Vcb which
are accessible via semi-leptonic B meson decays.

At present, the value of |Vcb| from inclusive B → Xc`ν̄
decays is obtained from global fits [1–3]. The experimen-
tal inputs are the semileptonic width and the moments
of kinematical distributions measured at Belle [4, 5] and
BABAR [6, 7], together with earlier data from CDF [8],
CLEO [9] and DELPHI [10]. The most recent determina-
tion |Vcb| = (42.19±0.78)×10−3 [11] has a relative error
of about 1.8%, which is mostly dominated by theoretical
uncertainties. In view of the much larger luminosity ex-
pected a Belle II in the next years, we are in the need to
systematically improve and validate the theoretical pre-
dictions for semileptonic B decays.

A crucial ingredient for the determination of |Vub| and
|Vcb| is the total semi-leptonic decay rate. With the help
of the heavy quark expansion it can be written as a dou-
ble series in αs and ΛQCD/mb. The mb-suppressed cor-
rections are obtained from higher-dimensional operators.
In the free-quark approximation, corrections up to O(α2

s)
are available [12–19] together with the leading β0 terms at
higher orders [20], where β0 is the one-loop coefficient of
the QCD beta function. The power corrections of order
Λ2
QCD/m

2
b and Λ3

QCD/m
3
b have been computed in [21–

24] to tree-level and in [25–28] to O(αs). Also 1/m4
b

and 1/m5
b terms are known, however, only at leading or-

der [29–32]. Note that linear 1/mb corrections vanish to
all orders.

In this Letter we compute the α3
s corrections to the

leading 1/mb term of Γ(B → Xc`ν̄). We incorporate a
finite charm quark mass via an expansion in the mass
difference mb −mc and show that precise results can be
obtained for the physical values of mc and mb. Our anal-
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ysis even allows for the limit mc → 0 which provides α3
s

corrections for the decay rate Γ(B → Xu`ν̄).1

A process closely related to b→ u`ν̄ is the muon decay.
Its lifetime, τµ, can be written in the following form

1

τµ
≡ Γ(µ− → e−νµν̄e) =

G2
Fm

5
µ

192π3
(1 + ∆q) , (1)

where GF is the Fermi constant, mµ is the muon mass
and ∆q contains QED and hadronic vacuum polariza-
tion corrections (see Ref. [33–35] for details). Note that
all weak corrections are absorbed in GF . Equation (1) al-
lows for the determination of GF if precise measurements
of τµ are combined with accurate QED predictions. We
compute for the first time α3 corrections to ∆q by spec-
ifying the colour factors of our b → c`ν̄ result to QED
and taking the limit mc → 0. This allows for the deter-
mination of the third-order coefficient with an accuracy
of 15%.

Calculation. We apply the optical theorem and con-
sider the forward scattering amplitude of a bottom quark
where at leading order the two-loop diagram in Fig. 1(a)
has to be considered. It has a neutrino, a lepton and a
charm quark as internal particles. The weak interaction
is shown as an effective vertex. Our aim is to consider
QCD corrections up to third order which adds up to three
more loops. Some sample Feynman diagrams are shown
in Fig. 1(b-f).

The structure of the Feynman diagrams allows the in-
tegration of the massless neutrino-lepton loop which es-
sentially leads to an effective propagator raised to an ε-
dependent power, where d = 4− 2ε is the space-time di-
mension. The remaining diagram is at most of four-loop
order.

From the technical point of view there are two basic
ingredients which are crucial to realize our calculation.
First, we perform an expansion in the difference between
the bottom and charm quark mass. It has been shown

1 Note that in our approach one class of diagrams for the b → u
transition is missing, namely the one where the charm quark
appears as virtual particle in a closed loop. At O(α2

s) these
corrections were denoted by UC [14, 15].
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Sample Feynman diagrams which contribute to the
forward scattering amplitude of a bottom quark at LO (a),
NLO (b), NNLO (c) and N3LO (d-f). Straight, curly and
dashed lines represent quarks, gluons and leptons, respec-
tively. The weak interaction mediated by the W boson is
shown as a blob.

in Ref. [19] that the expansion converges quite fast for
the physical values of mc and mb. Second, we apply the
so-called method of regions [36, 37] and exploit the simi-
larities to the calculation of the three-loop corrections to
the kinetic mass [38].

The method of regions [36, 37] leads to two possible
scalings for each loop momentum

• |kµ| ∼ mb (h, hard)

• |kµ| ∼ δ ·mb (u, ultra-soft)

with δ = 1 −mc/mb. We choose the notion “ultra-soft”
for the second scaling to stress the analogy to the cal-
culation of the relation between the pole and the kinetic
mass of a heavy quark, see [38, 39]. Note that the mo-
mentum which flows through the neutrino-lepton loop, `,
has to be ultra-soft since the Feynman diagram has no
imaginary part if ` is hard.

Let us next consider the remaining (up to three) mo-
mentum integrations which can be interpreted as a four-
point amplitude with forward-scattering kinematics and
two external momenta: ` and the on-shell momentum
p2 = m2

b . This is in close analogy to the scattering am-
plitude of a heavy quark and an external current consid-
ered in Ref. [38]. In fact, the loop momenta can have the
following scalings

O(αs) h, u

O(α2
s) hh, hu, uu

O(α3
s) hhh, hhu, huu, uuu

Note that all regions where at least one of the loop mo-
menta scales ultra-soft leads to the same integral families

as in Ref. [38, 39]. The pure-hard regions were absent
in [38, 39]; they lead to (massive) on-shell integrals.

At this point there is the crucial observation that the
integrands in the hard regions do not depend on the loop
momentum `. On the other hand, the ultra-soft integrals
still depend on `. However, for each individual integral
the dependence of the final result on ` is of the form

(−2p · `+ 2δ)α (2)

with known exponent α. This means that it is always
possible to perform in a first step the ` integration which
is of the form∫

dd`
`µ1`µ2 · · ·

(−2p · `+ 2δ)α(−`2)β
. (3)

A closed formula for such tensor integrals with arbitrary
tensor rank and arbitrary exponents α and β can easily
be obtained from the formula provided in Appendix A
of Ref. [37]. We thus remain with the loop integrations
given in the above table. Similar to Eq. (3) we can in-
tegrate all one-loop hard or ultra-soft loops which leaves
us with pure hard or pure ultra-soft contributions up to
three loops.

A particular challenge of our calculation is the high
expansion depth in δ. We perform an expansion of all
diagrams up to δ12. This leads to huge intermediate ex-
pressions of the order of 100 GB. Furthermore, for some
of the scalar integrals individual propagators are raised
to positive and negative powers up to 12, which is a non-
trivial task for the reduction to master integrals. For the
latter we combine FIRE [40] and LiteRed [41].2 For the
subset of integrals which are needed for the expansion up
to δ10 we also use the stand-alone version of LiteRed [41]
as a cross-check. For all regions where at least one of the
regions is ultra-soft we can take over the master integrals
from [38, 39]. For some of the (complicated) three-loop
triple-ultra-soft master integrals higher order ε terms are
needed. The method used for their calculation and the
results are given Ref. [39]. All triple-hard master inte-
grals can be found in Ref. [42].

Results. We write the total decay rate for the b → c
transition in the form

Γ(B → Xc`ν̄) = Γ0

X0 + CF
∑
n≥1

(αs
π

)n
Xn


+O

(
Λ2
QCD

m2
b

)
, (4)

with CF = 4/3, Γ0 = AewG
2
F |Vcb|2m5

b/(192π3), X0 = 1−
8ρ2−12ρ4 log(ρ2)+8ρ6−ρ8 where ρ = mc/mb and αs ≡
α
(5)
s (µs) with µs being the renormalization scale. Aew =

2 We thank A. Smirnov for providing us with the private version
of FIRE which was crucial for our calculation.
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FIG. 2. The third-order coefficient (see Eq. (4)) as a function
of ρ = mc/mb for different expansion depth in δ.

1.014 is the leading electroweak correction [43] and mb

(mc) is the bottom (charm) pole mass. The one- and two-
loop results are available from Refs. [12–19]. The main
result of our calculation is X3. In the following we set all
colour factors to their numerical values. Furthermore, we
specify the number of massless quarks to 3 and take into
account closed charm and bottom loops. For µ = mb we
have

X3 =
∑
n≥5

x3,nδ
n , (5)

with analytic coefficients x3,n, which in general depend
on log(δ). For illustration purposes we show explicit re-
sults only for the leading term x3,5. Our result reads

CFx3,5 =
533858

1215
− 20992a4

81
+

8744π2ζ3
135

− 6176ζ5
27

− 16376ζ3
135

− 2624l42
243

+
5344π2l22

1215
+

179552π2l2
405

− 39776π4

6075
− 1216402π2

3645
, (6)

where l2 = log(2), a4 = Li4(1/2) and ζn is the Riemann
zeta function. Analytic results up to δ12 can be found in
the supplementary material to this Letter [44].

In Fig. 2 we show X3 as a function of ρ = 1 − δ =
mc/mb where the different curves contain different ex-
pansion depths in δ. One observes a rapid convergence
at the physical point for the b→ c decay which amounts
to ρ ≈ 0.3. In particular, the curves including terms
up to δ10, δ11 or δ12 are basically indistinguishable for
ρ ≈ 0.3 which leads to X3(ρ = 0.28) = −68.4± 0.3,
where the uncertainty is obtained from the difference of
the δ11 and δ12 expansion, multiplied by a security factor
of five.

For the numerical evaluation it is convenient to cast
Eq. (4) in the form

Γ(B → Xc`ν̄) = Γ0X0

1 +
∑
n≥1

(αs
π

)n
Yn



Y1 Y rem
2 β0Y

β0
2 Y rem

3 β2
0Y

β2
0

3

mOS
b ,mOS

c −1.72 3.08 −16.17 48.8 −212.1

mkin
b ,mkin

c −0.94 0.33 −4.08 −5.4 −15.4

mkin
b ,mc(3 GeV) −1.67 −3.39 −3.85 −97.7 69.1

mkin
b ,mc(2 GeV) −1.25 −1.21 −2.43 −68.8 67.9

mb(mb),mc(3 GeV) 3.07 −21.81 35.17 −56.7 119.4

TABLE I. Numerical results for the coefficients Yn in Eq. (7)
for various renormalization schemes.

+O

(
Λ2
QCD

m2
b

)
, (7)

with αs ≡ α
(4)
s (µs) as expansion parameter. In the fol-

lowing we discuss various renormalization schemes for
the charm and bottom quark masses, where Γ0 and X0

are evalutated using the respective numerical values. In
Tab. I we provide the corresponding results for the co-
efficients Yn. At two and three-loop orders we split the
results into the large-β0 contribution and the remaining
term

Y2 = Y rem
2 + β0Y

β0

2 ,

Y3 = Y rem
3 + β2

0Y
β2
0

3 , (8)

with β0 = 11− 2/3nl = 9 where nl = 3 is the number of
massless quarks. Note that the uncertainty of Y3 due to
the expansion in δ is of the same order of magnitude as
for X3 discussed above.

For the transition of the on-shell quark masses to the
MS scheme we use the three-loop formulae provided in
Refs. [45, 46]. Finite-mc effects in the bottom mass rela-
tion are taken from Refs. [47]. The two- and three-loop
corrections to the transition from the on-shell to the ki-
netic scheme are provided in [48] and [38, 39], respec-
tively. Note that the transition to the kinetic scheme also
requires the renormalization of the parameters µ2

π and
and ρ3D, which enter the decay rate at order 1/m2

b and
1/m3

b , respectively. They receive additive contributions,
which enter Yi in Eq. (7) [49, 50]. The corresponding cor-
rections up to three-loop order can be found in [39]. Note
that we assume a heavy charm quark and thus we have
(nl = 3)-flavour QCD as starting point for the on-shell–
kinetic relations. We use the decoupling relation for αs
up to two-loop order to obtain expressions parameterized

in terms of α
(4)
s . For the decoupling scale we use µs. It

has been shown in Ref. [39] that there are no additional
charm quark mass effects in the kinetic-on-shell relation.
Note that our two-loop results for Y rem

2 differ from the
one of Ref. [2] due to finite charm quark mass effects
in the relation between the kinetic and on-shell bottom
quark mass and the renormalization of µ2

π and ρ3D [39].
This leads to a shift of about −0.5% in the leading 1/mb

approximation of the decay rate and thus might have a
visible effect on the value of |Vcb|.

For the numerical evaluation of the decay rate we use
the input values mOS

b = 4.7 GeV, mOS
c = 1.3 GeV,



4

mkin
b = 4.526 GeV, mkin

c = 1.130 GeV, mb(mb) =
4.163 GeV, mc(3 GeV) = 0.993 GeV, mc(2 GeV) =

1.099 GeV, and α
(5)
s (MZ) = 0.1179. We use RunDec [51]

for the running of the MS parameters and the decou-
pling of heavy particles. For the Wilsonian cutoff in the
kinetic scheme we use µ = 1 GeV both for the bottom

and charm quark. For the renormalization scale of α
(4)
s ,

µs, we choose the respective value for the bottom quark
mass.

For illustration purpose we provide in Tab. I also
results where both masses are defined in the on-shell
scheme. It is well known that in this scheme the per-
turbative series shows a bad convergence behaviour. In
fact, we have Y3 ≈ −163 whereas in the schemes where
the bottom quark mass is used in the kinetic scheme we
have that Y3 is between −1 and −29. Note, that in the
scheme where both quark masses are defined in the MS
scheme the three-loop corrections are more than twice as
big which also hints for a worse convergence behaviour.
This behaviour clearly shows the advantage of the kinetic
scheme which is constructed such that large corrections
are resummed into the quark mass value. In fact, all
three schemes which involve mkin

b demonstrate a good

convergence behaviour. Using α
(4)
s (mkin

b ) = 0.2186 we
obtain for Γ(B → Xc`ν̄)/Γ0 in these three schemes

mkin
b ,mkin

c : 0.633 (1− 0.066− 0.018− 0.007)

≈ 0.575 ,

mkin
b ,mc(3 GeV) : 0.700 (1− 0.116− 0.035− 0.010)

≈ 0.587 ,

mkin
b ,mc(2 GeV) : 0.648 (1− 0.087− 0.018− 0.0003)

≈ 0.580 , (9)

where the different αs orders are displayed separately.
We observe that the third-order corrections amount to
at most 1% and they are a factor two to three smaller
than the corrections of order α2

s. A particularly good
behaviour is observed for the choice mc(2 GeV) where the
corrections of order α3

s are below the per mille level. Its
final result lies between the other two kinetic schemes and
deviates from them by about 0.9% and 1.2%, respectively.

In general the large-β0 terms provide dominant contri-
butions. However, in all cases the remaining terms are
not negligible and often have a different sign. In the ki-
netic scheme where the charm quark is renormalized in
the MS scheme the remaining contributuions are numer-
ically even bigger than the large-β0 terms.

It is impressive that the expansion in δ shows a good
converge behaviour even for δ → 1 which corresponds to
a massless daughter quark. This allows us to extract the
coefficient X3 for the decay b → u`ν̄. A closer look to
the δ10, δ11, and δ12 terms in Fig. 2 indicates that the
convergence is quite slow for ρ → 0. As central value
for the three-loop prediction we use our approximation
based on the δ12 term and estimate the uncertainty from
the behaviour of the one- and two-loop [52, 53] results for
ρ = 0, where the exact results are known. Incorporating

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-18

-16

-14

-12

-10

-8

FIG. 3. The third-order coefficient to ∆q introduced in Eq. (1)
as a function of me/mµ.

expansion terms up to order δ12 we observe a deviation
of about 3.5% whereas the δ12 terms amount to less than
1%, both at one and two loops. At three loops the δ12

term amounts to about 2%. We thus conservatively esti-
mate the uncertainty to 10% which leads to

Xu
3 ≈ −202± 20 . (10)

In this result the contributions with closed charm loops
are approximated with mc = 0.

In the remaining part of this Letter we specify our
results to QED and study the corrections to the muon
decay. A comprehensive review of the various correction
terms is given in Ref. [34] where ∆q in Eq. (1) is param-
eterized as

∆q =
∑
i≥0

∆q(i) . (11)

∆q(0) is given by X0 − 1 (see Eq. (4)) with ρ = me/mµ

and ∆q(1) [33] and ∆q(2) [53, 54] are easily obtained af-
ter specification of the QCD colour factors to their QED
values (see Ref. [34] for analytic results). We introduce
∆q(3) = (α(mµ)/π)3Xµ

3 , where α(mµ) is the fine struc-

ture constant in the MS scheme [34]. In Fig. 3 we show
the third-order coefficient Xµ

3 for 0 ≤ ρ ≤ 0.3. At
the physical point me/mµ ≈ 0.005 the convergence be-
haviour is similar to QCD. We estimate Xµ

3 using the
same approach as for Xu

3 and examine the one- and two-
loop behaviour. Up to an overall factor CF the one-loop
term is, of course, identical to the b → u transition. In-
cluding expansion terms up to δ12 at two loops leads to
a deviation by about 8% from the exact result whereas
the δ12 term itself contributes by about 1%. The three-
loop δ12 amounts to about 2%. Assuming the same rel-
ative contribution thus leads to an uncertainty estimate
of about 15% and we have

∆q(3) ≈
(
α(mµ)

π

)3

(−15.3± 2.3) . (12)

In Ref. [35] the three-loop corrections were estimated
to Xµ

3 ∼ −20. With the help of Eq. (1) we obtain
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for the α3 QED contribution to the muon life time
(−9± 1)× 10−8 µs. This result has to be compared
to the current experimental value which is given by
τµ = 2.1969811 ± 0.0000022 µs [55]. The new correc-
tion terms are almost two orders of magnitude smaller
than the experimental uncertainty. Thus, an updated
value of GF can only be extracted once the latter has
been improved.

Conclusions. In this Letter we have computed three-
loop corrections of order α3

s to the total decay rate
Γ(B → Xc`ν̄) including finite charm quark mass effects.
We perform an expansion around the equal-mass case
and demonstrate that a good convergence at the physical
point is observed after taking into account eight expan-
sion terms. Our result is one of the very few third-order
results to physical quantities available to date involving
two different mass scales.

We can extend our considerations to the case of a mass-
less charm quark and thus obtain corrections of order α3

s

to Γ(B → Xu`ν̄), although with a larger uncertainty of
about 10%. After specifying our findings to QED we

furthermore obtain predictions for the third-order cor-
rections to the muon decay. Here we estimate the uncer-
tainty to 15%.

The decay rate Γ(B → Xc`ν̄) is an important ingre-
dient for the determination of the CKM matrix element
|Vcb|. However, a detailed analysis (see, e.g., Ref. [2]) also
requires the knowlegde of moments of kinematic distri-
butions. The method described in this Letter can also be
applied to the calculation of such moments at order α3

s,
although at the cost of signifcantly increased computer
resources.
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