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Abstract

We discuss the infrared structure of processes with massive quarks in the initial state. It
is well known that, starting from next-to-next-to-leading order in perturbative QCD, such
processes exhibit a violation of the Bloch-Nordsieck theorem, in that the sum of real and
virtual contributions to partonic cross sections contains uncanceled infrared singularities.
The main purpose of this paper is to present a simple physical argument that elucidates the
origin of these singularities and simplifies the derivation of infrared-singular contributions
to heavy-quark initiated cross sections.

1 Introduction and general considerations
The infrared structure of perturbative gauge theories is a fascinating topic which received
significant attention since the early days of QCD [1, 2]. In the 70‘s, the observation of
factorization of soft and collinear divergences in deep-inelastic scattering [3, 4] paved the
way for a new understanding of the perturbative structure of gauge theories, leading to the
promotion of the naive parton model [5] to a well-defined approximation rooted in a fully
consistent quantum theory of strong interactions.

Generalisation of these results to the more complicated case of hadron-hadron colli-
sions [6–9] resulted in a better understanding on the universal pattern of factorization and
cancellation of long-distance effects in perturbative QCD calculations. This understand-
ing was eventually distilled into “theorems” [10,11] that state that (potential) logarithmic
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sensitivity to long-distance effects is absent in sufficiently inclusive observables in hard scat-
tering processes. This remarkable fact is the foundation of modern collider phenomenology
as it allows us to to provide first-principles improvements of the theoretical description
of hadron collisions by refining predictions for partonic scattering cross sections in QCD
perturbation theory.

Given the prominence of these theorems in modern collider physics, it is useful to
inquire about their limitations. Such a question, albeit being interesting in its own right,
may also have practical consequences for the precision physics program at current and
future colliders by e.g. informing us about ultimate limits in precision that improvements
in perturbative computations alone can possibly provide.

Indeed, while the aforementioned theorems are very solid in the case of lepton-lepton or
lepton-hadron collisions, the situation is more delicate in case of hadron-hadron collisions,
see e.g. [10,11]. In fact, it was argued that, at sufficiently high orders in perturbation theory,
combining real and virtual corrections within the framework of collinear factorization may
be insufficient to get rid of the infrared sensitivity, even for inclusive observables [12–14].

For processes involving massless partons in the initial state, our current understanding
of the soft-collinear structure of QCD implies that these issues can only appear at third
or higher orders in QCD perturbation theory.1 However, the situation is very different if
one considers massive quarks in the initial state. In this case, it was pointed out long ago
that starting from second order in QCD perturbation theory the sum of real and virtual
corrections is not free of infrared singularities. As a consequence, “standard” perturbative
calculations in this case become insufficient beyond next-to-leading order, even for the
simplest partonic processes [17].

This problem received a lot of attention in the past [18] and several formal ways of
dealing with it have been proposed [19]. The goal of this paper is to present a derivation
of the divergent contribution to the cross section of a process with two heavy quarks in the
initial state that, in our opinion, is remarkably simple and physically transparent.

Our argument is inspired by recent work on infrared subtraction schemes for higher
order calculations [20, 21] and, in a nutshell, consists in connecting infrared singular con-
tributions of a process where infrared finiteness is guaranteed to infrared singular contri-
butions of a process initiated by the collision of two massive quarks. In what follows, we
focus on the Drell-Yan process where a virtual photon is produced in the collision of a
quark and an anti-quark. The simplicity of this process allows us to present our argument
with a minimal amount of technical overhead.

The remainder of this paper is organised as follows. In Sec. 2.1 we show by an explicit
computation that there are no uncanceled infrared singularities at next-to-leading order
(NLO) QCD for the Drell-Yan process with massive initial-state quarks and comment on
the generalization of this result to arbitrary processes. We also argue that the absence of
infrared singularities in the production process qq̄ → V +X at NLO QCD can be naturally
understood if the absence of infrared singularities in the decay process V → qq̄+X is taken
for granted. In Sec. 2.2, we generalize this argument to the next-to-next-to-leading order

1At third order, they are only relevant for processes involving a non-trivial color structure [14–16].
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(NNLO) case and show that at NNLO there is only one potential source of non-canceling
soft singularities. In Sec. 3, we explicitly compute the infrared singular contribution to the
Drell-Yan cross section and comment on the result. We conclude in Sec. 4. The analytic
continuation of the one-loop integrals required for our analysis is discussed in the appendix.

2 Drell-Yan process with initial-state massive quarks
We begin with the discussion of the infrared structure of the process

q(p1) + q̄(p2)→ V (pV ) +X, (2.1)

where q, q̄ are massive quarks with p2
1 = p2

2 = m2
q and V is a virtual photon2 with p2

V =
m2
V . Since there are no massless partons in the initial state of this process, no collinear

renormalization of parton distribution functions is required. The perturbative expansion
of the partonic cross section for this process reads

dσ = dσLO + dσNLO + dσNNLO +O(α3
s). (2.2)

2.1 Next-to-leading order

We start by considering next-to-leading order (NLO) QCD contributions to the cross sec-
tion of the process in Eq. (2.1). We write them as

dσNLO = dσV + dσR. (2.3)

The first term on the r.h.s. of Eq. (2.3) represents UV-renormalized contributions of one-
loop virtual corrections. It reads [22]

dσV =
αs(µ)

2π

{
−2CF

ε

[
1

2v
ln

(
1− v
1 + v

)
+ 1

]}
dσLO + dσV,fin, (2.4)

where ε = (4 − d)/2 and d is the dimensionality of space-time. Also, CF = 4/3 is the
Casimir invariant of the SU(3) gauge group of QCD, v =

√
1−m4/(p1 · p2)2 and dσV,fin

is finite in the ε→ 0 limit. The 1/ε pole in Eq. (2.4) is of infrared origin; it is well known
that it is canceled by a similar divergence in the real emission contribution dσR.

To illustrate this, consider the real emission process3

q(p1) + q̄(p2)→ V (pV ) + g(pg), (2.5)

and write

dσR =
1

4J

∫
[dpV ][dpg]

∑
|M0(p1, p2; pV , pg)|2(2π)dδd(p1 + p2 − pV − pg), (2.6)

2Our argument applies verbatim for any (massive) color-singlet final state V .
3We only consider the corrections to the qq̄ channel, since the qg channel is infrared finite.
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where J = p1 · p2 v is the flux factor, [dpV,g] = dd−1pV,g/((2π)d−12EV,g) are the phase-space
elements of the virtual photon and the gluon, respectively, Σ indicates the sum (average)
over final-state (initial-state) colors and polarizations, andM0 is the tree-level scattering
amplitude for the process Eq. (2.5). When the emitted gluon becomes soft, Eg → 0, the
matrix element |M0|2 scales as E−2

g , and Eq. (2.6) develops a logarithmic singularity. To
expose it, we work in the partonic center-of-mass frame, separate the integration over the
gluon energy and write

dσR =
1

4J

∫
dEg
E1+2ε
g

dΩ
(d−1)
g

2(2π)d−1
F (d)
g (p1, p2, pV ; pg), (2.7)

where

F (d)
g (p1, p2, pV ; pg) =

1

4J
[dpV ]E2

g

∑
|M0(p1, p2; pV , pg)|2 (2π)dδd(p1 + p2− pV − pg). (2.8)

To extract infrared divergences from Eq. (2.7), we write

dσR =

Emax∫
0

dEg
E1+2ε
g

dΩ
(3)
g

16π3
lim
Eg→0

[
F (4)
g (p1, p2, pV ; pg)

]
+ dσfin

R , (2.9)

where the second contribution is finite and the first one is divergent. We rewrite it as
Emax∫
0

dEg
E1+2ε
g

dΩ
(3)
g

16π3
lim
Eg→0

[
F (4)
g (p1, p2, pV ; pg)

]
= dσdiv

R + · · · , (2.10)

where

dσdiv
R = − 1

2ε

∫
dΩ

(3)
g

16π3
lim
Eg→0

[
F (4)
g (p1, p2, pV ; pg)

]
, (2.11)

and the ellipses in Eq. (2.10) stand for finite terms.
To proceed further, we recall that in the soft limit scattering amplitudes obey the

well-known factorization formula

M0(p1, p2; pV , pga) ≈ g2
sε
µJa,(0)

µ (p1, p2; pg)M0(p1, p2; pV ), (2.12)

where εµ is the gluon polarization vector and a is its color index. The tree-level soft current
reads

Ja,(0)
µ (p1, p2; pg) =

2∑
i=1

T ai
pi,µ
pi · pg

, (2.13)

where T ai is the color charge of particle i. In our case, T a1 = ta21 and T a2 = −ta12, where taij
is the matrix element of an SU(3) algebra generator in the fundamental representation.4
This immediately allows us to rewrite Eq. (2.11) as

dσdiv
R = Eik0(p1, p2)× dσLO, (2.14)

4For more details on the color notation, see e.g. [23].
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where

Eik0(p1, p2) = −αs(µ)

2π

CF
ε

∫
dΩ3,g

4π
E2
g

[
2(p1 · p2)

(p1 · pg)(p2 · pg)
−

m2
q

(p1 · pg)2
−

m2
q

(p2 · pg)2

]
. (2.15)

We parametrise momenta in Born kinematics as p1,2 = mV /2 (1, 0, 0,±β), with β =√
1− 4m2

q/m
2
V and pg = Eg(1, sin θ, 0, cos θ). A straightforward integration over the gluon

emission angle leads to

dσdiv
R =

αs(µ)

2π
× 2CF

ε

[
1 + β2

2β
ln

(
1− β
1 + β

)
+ 1

]
dσLO. (2.16)

The cancellation of soft singularities in the NLO cross section can be observed upon com-
bining dσV from Eq. (2.4) and dσdiv

R from Eq. (2.16) and using the relation between v and
β, v = 2β/(1 + β2), which implies

1 + β2

2β
ln

(
1− β
1 + β

)
=

1

2v
ln

(
1− v
1 + v

)
. (2.17)

We also note that the cancellation of infrared divergences occurs in a much broader
context than what we discuss here for the Drell-Yan process. Indeed, by considering
a generalization of Eq. (2.4) to 2 → n processes as described in Ref. [22], and adapting
Eq. (2.13) to this case, it is straightforward to prove the cancellation of infrared divergences
for arbitrary processes with massive quarks in the initial state.

We will now re-analyse the NLO case from a perspective that will be helpful for deriving
the infrared divergent contribution to the NNLO cross section. To this end, instead of
considering the production process qq̄ → V + X, we start with its decay counterpart
V (pV ) → q(p1) + q̄(p2) + X. We use the optical theorem and obtain the total decay rate
of the above process from the imaginary part of the time-ordered correlator of two vector
currents. Since such correlator cannot have infrared divergences, we conclude that the
decay rate is free of infrared singularities as well. Writing the decay rate as the sum of
virtual and real-emission contributions, we conclude that dσdecay

V +dσdecay
R is infrared finite.

We now want to relate dσdecay
V , dσdecay

R to their counterparts in the production case
Eqs (2.4, 2.6). For virtual corrections, this relation is obvious. Indeed, one-loop corrections
to the γ∗ → qq̄ vertex are described by a single form factor FV that only depends on the
invariant mass of the virtual photon m2

V .5 Hence, this form factor is identical for the
production (qq̄ → γ∗) and decay (γ∗ → qq̄) processes. We conclude that the infrared
structure of the decay rate dσdecay

V and the production cross section dσV, is the same.
Therefore

dσdecay
V = FV (m2

V , ε)dσ
decay
LO + · · · and dσV = FV (m2

V , ε)dσLO + · · · , (2.18)

where the ellipses stand for finite contributions.
5The dependence of the form factor on quark masses is not relevant for this discussion.
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To make use of the finite nature of NLO corrections to the decay as an explanation
of why NLO corrections to the production are finite, we need to understand how the real
emission contribution to the decay rate changes when we move heavy quarks into the
initial state and the vector boson into the final state which is required for calculating the
production cross section. Since we are only interested in the divergent contribution to the
cross section, we require this crossing in the soft limit. We note that the tree-level soft
current Eq. (2.13) is homogeneous in the hard momenta p1,2 (and it does not depend on
the momenta of the color singlet), so it does not change under the replacement pi → −pi.
Moreover, the phase space of the Born process decouples from the eikonal factor and the
gluon phase space in the soft limit. It follows that

dσdecay
R = Eik0(p1, p2)× dσdecay

LO + · · · and dσR = Eik0(p1, p2)× dσLO + · · · , (2.19)

where ellipses stand for finite contributions and the function Eik0 is defined in Eq. (2.15).
Since dσdecay

V + dσdecay
R is free of infrared divergences, it follows from Eqs (2.18, 2.19) that

FV (m2
V , ε) + Eik0(p1, p2) (2.20)

is infrared finite. Without any additional computation, this ensures that the O(αs) con-
tributions to the cross section of qq̄ → V + X with massive initial state quarks are finite
as well. In the next section we generalize this analysis to next-to-next-to-leading order.

2.2 Next-to-next-to-leading order contributions to the production
cross section

Consider the NNLO QCD contributions to the cross section of the production process
qq̄ → V + X. In full analogy to the NLO case discussed in the previous section, we split
dσNNLO into double-virtual, double-real and real-virtual contributions

dσNNLO = dσVV + dσRR + dσRV. (2.21)

In this equation, the double-virtual term dσVV is proportional to the two-loop form factor
for the qq̄ → V process. The double-real term dσRR is proportional to the tree-level matrix
element for the process

q(p1) + q̄(p2)→ V (pV ) + fi(pi) + fj(pj), (2.22)

where (fj, fj) ∈ {(g, g), (qi, q̄j)} and qi is a generic (massive or massless) quark. Finally,
the real-virtual contribution dσRV is proportional to the one-loop matrix element for the
process

q(p1) + q̄(p2)→ V (pV ) + g(pg). (2.23)

In principle, one can study the infrared structure of the various contributions at this
perturbative order by extending the NLO analysis presented at the beginning of the previ-
ous section to one order higher. However, it is much easier and more transparent to re-use
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the connection between the production and decay processes as was done at the end of the
previous section. For this reason, we consider the NNLO QCD contributions to the decay
process V → qq̄ +X, which is finite, and write

dσdecay
NNLO = dσdecay

VV + dσdecay
RR + dσdecay

RV . (2.24)

We then compare each contribution to its counterpart in the production case. The results
of this comparison can be summarized as follows.

• All infrared singularities of the double-virtual contributions come from the one- and
two-loop V qq̄ form factors. Since the form factor is the same for the V → q + q̄ and
q + q̄ → V processes, the infrared structure of dσdecay

VV and dσVV is identical.

• In the double-real contribution, infrared singularities appear when either one or two
final state gluons become soft, or when a massless final state quark pair becomes
soft. The case of one-gluon emission is described by the tree-level current Eq. (2.13).
The emission of two soft partons is described by a double-soft current [24] that is
homogeneous in the momenta of the external hard partons. Similar to the NLO
case described above, this implies that the infrared structure of dσdecay

RR and dσRR is
identical.

• The real-virtual contribution contains both explicit 1/ε infrared poles in the qq̄ → V +
g one-loop amplitude and implicit singularities that only appear after integrating over
the soft region of the gluon phase space. As long as the gluon is hard, this integration
does not introduce any divergence and only explicit singularities are relevant. These
singularities cancel against single soft-gluon emission in the double-real contribution
along the lines of the NLO case described in the previous section. As we explained
there, this cancellation occurs for both the production and the decay processes.

The only contribution that we still need to discuss is a one-loop correction to the
emission of a soft gluon. In this case, we cannot invoke the crossing argument to
conclude that the production and decay processes share the same infrared structure
because the analytic structure of loop amplitudes is non-trivial and care is needed to
relate the production and decay cases.

Hence, we conclude that the infrared structure of the production and decay processes
is identical, except for possible contributions that originate from crossing the V → q+ q̄+g
one-loop amplitude into the q + q̄ → V + g one, in the kinematic configuration where g
is soft. Since the total rate for V → q + q̄ + X is finite, this implies that the only
potential non-canceling infrared singularities in q + q̄ → V + X at NNLO must be related
to this crossing. Below we show that the analytic continuation from decay to production
kinematics is indeed non-trivial, and that it leads to an uncanceled 1/ε infrared singularity
in the production cross section.6

6We note that similar arguments suggest that other partonic channels, i.e. qg and gg, are infrared-finite.
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Figure 1: Diagrams contributing to the one-loop soft current. i and j are hard eikonal
lines, pg and k are soft, see text for details.

3 The one loop soft current and its crossing
In this section, we study one-loop corrections to soft gluon emission. More precisely,
following the discussion in the previous section, we investigate whether additional infrared
divergences can be generated by crossing the one-loop decay amplitudeM1(pV ; p1, p2, pg)
into the amplitudeM1(p1, p2; pV , pg) that describes the production process.

Similar to the tree-level case Eq. (2.12), the one-loop amplitudeM1 also factorizes in
the soft limit7

M1(pV ; p1, p2, pg) ≈ g2
sε
µ

[
Ja,(0)
µ (p1, p2; pg)M1(pV ; p1, p2)

+g2
sJ

a,(1)
µ (p1, p2; pg)M0(pV ; p1, p2)

]
.

(3.1)

We stress thatM1 in the above equation is the scattering amplitude of the decay process
and we intend to get the production amplitude by crossing.

The tree-level current Ja,(0)
µ is given in Eq. (2.13); as discussed in Sections 2.1, 2.2 it

leads to the same infrared divergences in the production and decay cases. Hence, we only
need to focus on the second term on the right hand side of Eq. (3.1) that describes the
one-loop correction to the soft current.

To compute the one-loop soft current Ja,(1)
µ , one needs to consider the non-abelian part

of the diagrams shown in Fig. 1, in the limit where both virtual and real gluons are soft [25].
The result reads

Ja,(1),µ(p1, p2; pg) = ifabc

2∑
i,j=1
i 6=j

T bi T
c
j

(
pµi

pi · pg
−

pµj
pj · pg

)
g

(1)
ij (ε, pg; pi, pj)

= g
(1)
12 (ε, pg; p1, p2) CA J

a,(0),µ(p1, p2; pg).

(3.2)

where fabc are the SU(3) structure constants and g(1)
ij is a function that will be specified

later. We stress that Ja,(1)
µ is purely non-abelian. This feature is expected because in an

7In this equation, gs is the bare strong coupling. Since we are interested in infrared effects, we do not
discuss renormalization.
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abelian theory the tree-level soft current does not receive corrections. Since, as we argued
at the beginning of this section, Eq. (3.2) provides the only source of non-canceling soft
singularities for the process qq̄ → V + X with massive initial particles, we recover the
classic result that in the abelian (e.g. QED) case the NNLO cross-section for the collision
of two massive partons is infrared-finite.

We continue with the non-abelian case. Following the argument of Sec. 2.2, we investi-
gate whether Eq. (3.2) leads to the same infrared structure for the decay and production
processes. Since Ja,(0),µ is invariant under p1,2 → −p1,2, any potential difference must come
from the crossing of g(1)

12 . It is easy to see that, at NNLO, only the real part of g(1)
12 con-

tributes to the cross section; for this reason we investigate the behavior of <
[
g

(1)
12

]
under

p1,2 → −p1,2 transformation.
It is instructive to consider first the case of massless quarks. For mq = 0, the function

g
(1)
12 reads [25]

g
(1)
12 (ε, pg; p1, p2) = − 1

16π2

1

ε2
Γ3(1− ε)Γ2(1 + ε)

Γ(1− 2ε)

[
(−s12 − iδ)

(−s1g − iδ)(−s2g − iδ)

]ε
, (3.3)

with sij = 2pi · pj. This implies

<
[
g

(1)
12 (ε, pg;−p1,−p2)

]
= <

[
g

(1)
12 (ε, pg; p1, p2)

]
. (3.4)

The argument of Sec. 2.2 then allows us to reproduce the standard result that for massless
quarks the cross section for the process q+ q̄ → V is free from soft singularities at NNLO.8

We continue with the case mq 6= 0. In this case, we follow Ref. [26] and write g(1)
12 as

g
(1)
12 (ε, pg; p1, p2) =

3∑
i=1

fi(pg; p1, p2)Mi(ε, pg; p1, p2), (3.5)

where Mi are defined as

M1(ε, pg; p1, p2) =

∫
ddk

(2π)d
1

[k2 + iδ][(k + pg)2 + iδ][−2p2 · k + iδ]
,

M2(ε, pg; p1, p2) =

∫
ddk

(2π)d
1

[k2 + iδ][2p1 · k + 2p1 · pg + iδ][−2p2 · k + iδ]
, (3.6)

M3(ε, pg; p1, p2) =

∫
ddk

(2π)d
1

[k2 + iδ][(k + pg)2 + iδ][2p1 · k + 2p2 · pg + iδ][−2p2 · k + iδ]
,

and fi are rational functions of pi · pj, pi · pg. Since g(1)
12 has to be computed using eikonal

vertices [25], it follows that

f1(pg;−p1,−p2) = −f1(pg; p1, p2), f2,3(pg;−p1,−p2) = f2,3(pg; p1, p2). (3.7)
8To remove initial-state collinear singularities, one still needs to redefine parton distribution functions

in the case of massless particles collisions.
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The explicit form of fi can be found in Ref. [26], but it is not needed for our argument.
Using Eqs (3.5, 3.6, 3.7) one can show by analytic continuation of theMj integrals that

the function g(1)
12 changes in the following way

g
(1)
12 (ε, pg;−p1,−p2) = e−2iεπg

(1)
12 (ε, pg; p1, p2). (3.8)

This is worked out explicitly in Appendix A. To proceed further, we write the (decay)
function g(1)

12 as

g
(1)
12 (ε, pg; p1, p2) =

αs
2π
E−2ε
g

∞∑
k=−2

[rk + i · ik] εk, (3.9)

with r and i real and i−2 = 0, see Appendix A. Using Eqs (3.8, 3.9) we can then write the
difference between the real parts of the functions g12 required to describe the production
and the decay processes as

<
[
g

(1)
12 (ε, pg;−p1,−p2)

]
−<

[
g

(1)
12 (ε, pg; p1, p2)

]
=
αs
2π

∣∣∣∣ s12

s1gs2g

∣∣∣∣ε [− 2π2 · r−2 + 2π · i−1 +O(ε)
]
.

(3.10)

Since the real part of g(1)
12 at order O(ε0) contributes to divergences of the cross section or

decay rate at order 1/ε, the argument presented in Sec. 2.2 implies that the second line of
Eq. (3.10) gives rise to a non-canceling infrared divergence in the NNLO cross section for
the q + q̄ → V process with massive quarks in the initial state.

This non-canceled singularity is controlled by the coefficients r−2 and i−1. They can be
immediately obtained by matching Eq. (3.1) to the universal expression for the infrared
poles of one-loop amplitudes [22]. We obtain

r−2 = −1

2
, i−1 = π

(
1

2v
− 1

)
, (3.11)

with v defined immediately after Eq. (2.4). We work in the center of mass frame of the
two quarks and rewrite Eq. (3.10) as

<
[
g

(1)
12 (ε, pg;−p1,−p2)

]
= <

[
g

(1)
12 (ε, pg; p1, p2)

]
+
αs
2π
E−2ε
g

[(
1− v
v

)
π2 +O(ε)

]
. (3.12)

To find the contribution of the last term in Eq. (3.12) to the cross section, we note that
the soft current at one loop is proportional to the tree-level one, cf. Eq. (3.2). As a
consequence, we can read off the required result directly from Eq. (2.16) that describes the
NLO calculation.9 Therefore, we write the real-virtual contribution to the decay process
as

dσdecay
RV = Eik1(p1, p2)× dσdecay

LO + · · · , (3.13)
9Note that the additional E−2ε

g factor in Eq. (3.12) would give rise to an extra factor 1/2 compared to
the NLO case. This is compensated however by the factor of 2 in 2<[M0M∗

1].
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where the ellipses stand for finite contributions. The real-virtual contribution to the pro-
duction process is given by

dσRV = Eik1(−p1,−p2)× dσLO = Eik1(p1, p2)× dσLO + ∆[dσdiv
RV] + · · · . (3.14)

The second term in the r.h.s. of Eq. (3.14) is the additional divergent contribution to the
production cross section caused by a non-trivial analytic continuation of soft loop integrals
upon crossing. It reads

∆[dσdiv
RV] =

[
αs(µ)

2π

]2
2CACF π

2

ε

[
1

2v
ln

(
1− v
1 + v

)
+ 1

](
1− v
v

)
dσLO. (3.15)

Thanks to the argument presented in Sec. 2.2, we conclude that the cross section for
qq̄ → V + X with massive quarks in the initial state contains non-canceling infrared
divergence given by ∆[dσdiv

RV]. Therefore,

dσNNLO = ∆[dσdiv
RV] + · · · =[

αs(µ)

2π

]2
2CACF π

2

ε

[
1

2v
ln

(
1− v
1 + v

)
+ 1

](
1− v
v

)
dσLO + · · · ,

(3.16)

where the ellipses stand for finite contributions to the NNLO cross section. Eq. (3.16)
describes the violation of Bloch-Nordsieck cancellations [27] in the case when two massive
quarks collide. It coincides with the expression derived in Refs. [17–19].

We now comment on the result Eq. (3.16). First, we note that in the massless case
v → 1 and the divergence disappears. A simple generalization of this result to the collision
of two quarks with unequal masses shows that Eq. (3.16) remains valid provided that
v =

√
1−m2

1m
2
2/(p1p2)2. It follows that the divergence in Eq. (3.16) disappears if only

one quark in the initial state is massive.
Moreover, Eq. (3.15) implies that the non-canceling infrared divergences in cross sec-

tions with massive quarks in the initial state are power-suppressed

∆[dσdiv
RV] ∼ O

(
m4
q

m4
V

)
dσLO. (3.17)

This behavior is compatible with classic arguments about factorization, see e.g. Ref. [28]
for a review. In fact, a small mass of the quark in the initial state probes the sensitivity
of the partonic cross section to long-distance physics. The result Eq. (3.17) then informs
us that at the level of logarithmic sensitivity to long-distance effects, the partonic cross
section is certainly infrared finite. The non-cancellation of infrared divergences at the level
of power corrections , as indicated in Eq. (3.17), simply shows that an understanding of fac-
torization for higher-twist or, in general, power corrections is required to make calculations
with massive partons self-consistent.
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4 Conclusion
It is well known [17–19] that partonic cross sections computed with massive quarks in
the initial state are not infrared finite starting from next-to-next-to-leading order in QCD
perturbation theory. We re-derived this result in a manner that we find simple and trans-
parent.

The gist of our approach is the relation between infrared-divergent contributions to the
manifestly finite decay process V → qq̄ +X and the production process qq̄ → V +X that
can be studied using analytic continuation. We have explicitly shown that while for the
massless case this analytic continuation is harmless through NNLO, the situation is differ-
ent in a massive theory. There the phase from the analytic continuation of the one-loop
soft current combines with a non-trivial imaginary part in the one-loop amplitude and
gives rise to an observable effect in the cross-section. Our derivation provides a concrete
and simple example of problems that one encounters when an analog of a quantum me-
chanical Coulomb phase manifests itself in massive non-abelian gauge theories. In fact, it
is relatively easy to show that the offending phase is related to a particular double-particle
massive cut that encapsulates the long-distance interaction between two incoming massive
partons, see e.g. [22].

Before concluding, we briefly discuss the phenomenological implications of the above
results. One may argue that in collider phenomenology one does encounter processes in-
volving massive initial state quarks, e.g. bb̄→ H and similar. In fact, impressive machinery
has been developed for dealing with such processes [29, 30]. However, in such cases one
always starts with initial state gluons that subsequently split into a heavy bb̄ pair. It is
important that massive quarks that originate in such a splitting and participate in the hard
scattering process after that are always off-shell. Hence, the average off-shellness of initial
state quarks that originate from the gluon splitting g → qq̄ provides a natural infrared
cut-off for processes initiated by massive quarks. For this reason, the infrared divergence
shown in Eq. (3.16) can never appear in a realistic set up.

Nevertheless, computations with massive quarks in the initial state can, perhaps, be
used to test the sensitivity of partonic cross sections to infrared energy scales that the quark
masses may represent. For example, one may wonder to what extent the masses of the
colliding quarks affect the transverse momentum distributions of Z and W bosons at low
p⊥ – a question, that may be quite relevant for the determination of the W boson mass at
the LHC. Our discussion suggests that, since one starts being sensitive to the off-shellness
of quarks only at O(m4

q/m
4
V ), it should be possible to develop a framework where one

keeps track of terms of order p⊥/mq ∼ 1 but neglects contributions of order m4
q/m

4
V and

beyond. We leave this investigation, as well as the study of its potential phenomenological
applications, for the future.

Acknowledgments DN would like to thank S. Catani for useful discussions on the
original argument. We are grateful to S. Forte, F. Krauss, S. Marzani and G. Salam for
many interesting conversations. We would also like to thank Z. Kunszt and S. Marzani

12



for a critical reading of the manuscript. The research of FC is partially supported by
the ERC Starting Grant 804394 HipQCD. The research of KM is partially supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant
396021762 - TRR 257. DN is supported by the ERC Starting Grant REINVENT-714788.
LT is supported by the Royal Society through grant URF/R1/191125.

A Analytic continuation of the one-loop integrals
In this appendix, we explicitly compute the analytic continuation of the three integrals Mi

given in Eq. (3.6) under the p1,2 → −p1,2 transformation. We start with decay kinematics,
cf. Fig. 1. Since sij = 2pi · pj, we find that under the p1,2 → −p1,2 transformation,
s1g → −s1g, s2g → −s2g and s12 → s12. Therefore, to understand how the integrals change
under analytic continuation, we only need to study their dependence on s1g, s2g.

This is most easily achieved if we employ the Feynman-Schwinger parametrization for
the integrals M1,..,3. To derive a suitable representation, we start with the identity

1

A1A2...An
= Γ(n)

n∏
i=1

∫ ∞
0

dxi
δ(1−

∑n
j=1 xj)[∑n

i=1Aixi
]n

= Γ(n)

(
n∏
i/∈Σ

∫ ∞
0

dxi

)(∏
i∈Σ

∫ 1

0

dxi

)
δ(1−

∑
j∈Σ xj)[∑n

i=1Aixi
]n , (A.1)

where Σ represents an arbitrary subset of {1, 2, ..., n} [31]. For each integralsMi we choose
the set Σi such that it contains the Feynman parameter that is employed for the propagator
1/(−2p2 · k + iδ), i.e. Σ = {3} for M1 and M2 and Σ = {4} for M3. We find

M1(ε, pg; p1, p2) = −G1(ε)
2∏
i=1

∫ ∞
0

dxi
(x1 + x2)−1+2ε[

m2 − s2g x2 − iδ
]1+ε ,

M2(ε, pg; p1, p2) = −G2(ε)
2∏
i=1

∫ ∞
0

dxi
x−1+2ε

1[
m2 (1 + x2

2)− s1g x1x2 − s12 x2 − iδ
]1+ε (A.2)

M3(ε, pg; p1, p2) = −G3(ε)
3∏
i=1

∫ ∞
0

dxi
(x1 + x2)2ε[

m2 (1 + x2
3)− s1g x1x3 − s12 x3 − s2g x2 − iδ

]2+ε ,

where the explicit form of the Gi(ε) is irrelevant in what follows.
It is straightforward to study the dependence of the integrals on s1g and s2g using

Eq. (A.2). We begin with M1. By rescaling xi → xi/(−s2g − iδ) for i = 1, 2 we find

M1(ε, pg; p1, p2) = −G1(ε) (−s2g − iδ)−1−2ε

2∏
i=1

∫ ∞
0

dxi
(x1 + x2)−1+2ε

(m2 + x2)1+ε , (A.3)

so that the entire dependence on s2g factorizes

M1(ε, pg; p1, p2) ∝ (−s2g − iδ)−1−2ε = −|s2g|−1−2εe2iπε. (A.4)
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This implies
M1(ε, pg;−p1,−p2) ∝ |s2g|−1−2ε, (A.5)

and therefore
M1(ε, pg;−p1,−p2) = −M1(ε, pg; p1, p2)e−2iπε. (A.6)

Furthermore, we note that Eq. (A.3) implies that in the soft limit

M1(ε, pg; p1, p2) ∼ E−2ε
g . (A.7)

We analyse the integral M2 in a similar way. In this case it is sufficient to rescale
x1 → x1/(−s1g − iδ) to find

M2(ε, pg; p1, p2) = G2(ε)(−s1g − iδ)−2ε

2∏
i=1

∫ ∞
0

dxi
x−1+2ε

1[
m2 (1 + x2

2) + x1x2 − s12 x2 − iδ
]1+ε .

(A.8)
Hence, the dependence of M2 on p1 is governed by the following factor

M2(ε, pg; p1, p2) ∝ (−s1g − iδ)−2ε. (A.9)

Finally we discuss M3. In this case, we rescale xi → xi/(−sig − iδ), where we stress
that the rescaling is different for the two variables. We obtain

M3(ε, pg; p1, p2) = −G3(ε)
3∏
i=1

∫ ∞
0

dxi

(
x1

−s1g−iδ + x2
−s2g−iδ

)2ε

[
m2 (1 + x2

3) + x2 − s12 x3 + x2x3 − iδ
]2+ε . (A.10)

Similarly to what was discussed for M1, Eqs (A.9, A.10) imply

M2,3(ε, pg;−p1,−p2) = M2,3(ε, pg; p1, p2)e−2iπε, (A.11)

and
M2,3(ε, pg; p1, p2) ∼ E−2ε

g . (A.12)

Finally, we note that Eq. (3.5) along with Eqs (3.7, A.6, A.7, A.11, A.12) imply that

g
(1)
12 (ε, pg;−p1,−p2) = e−2iεπg

(1)
12 (ε, pg; p1, p2), (A.13)

and

g
(1)
12 (ε, pg; p1, p2) =

αs
2π
E−2ε
g

∞∑
k=−2

[rk + i · ik] εk, (A.14)

with rk and ik analytic in Eg. These formulas are used in the main body of the paper to
explain the appearance of non-cancelling infrared divergencies in collisions of two massive
quarks.
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