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Abstract: We compute the contribution of third generation quarks (t, b) to the two-loop
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kinematic points. The master integrals are efficiently evaluated by numerically solving a
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1 Introduction

Production of a W boson pair in gluon fusion, gg → WW , is a loop-induced process.

Although it is expected to be strongly suppressed compared to qq → WW , there are two

reasons that make it relevant. First, the large gluon flux at the LHC nearly compensates for

the suppression by the strong coupling αs when compared to quark antiquark annihilation

qq → WW . Second, event selection disfavours events with large longitudinal boosts that

are due, primarily, to the qq → WW process [1]. Hence, good understanding of the

gg →WW process is needed for a reliable description of W pair production at the LHC.

The current situation is as follows. One-loop, leading order (LO) cross sections for W

pair production in gluon fusion have been computed long ago [1–4]. More recently, next-to-

leading order (NLO) QCD corrections mediated by massless quark loops were computed in

refs. [5, 6] using two-loop amplitudes calculated in refs. [7, 8]. However, these calculations

ignored the contribution of the third quark generation (t, b) since top quarks cannot

be treated as massless. The goal of this paper is to compute the contribution of third

generation quarks to the two-loop amplitude for the gg → WW process, providing a

prerequisite for improved theoretical description of W pair production at the LHC.

Massive fermion propagators that appear when top quark contributions are considered

make calculations significantly more demanding compared to the massless case. Indeed, in
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the massive case the variety of integrals one has to consider is larger and they are more

difficult to compute.

We rely on integration-by-parts (IBP) [9] identities to find linear relations between

loop integrals and express the gg → WW amplitude in terms of a few (master) integrals.

The Laporta algorithm [10] ensures that the system of IBP equations closes. However,

multi-scale integral reductions are computationally expensive and appear to be infeasible

for gg →WW with current publicly available software [11, 12].

To overcome this problem, we set the mass of the top quark mt and the mass of the

W boson mW to integers close to their current experimental values. Lowering the number

of parameters makes the IBP reduction possible. We have used Kira [12] for the reduction

as well as LiteRed [13] and Reduze [11] to find symmetry relations between integrals.

We evaluate the master integrals numerically. A widely used systematic method is

that of numerical integration enabled by sector decomposition [14] which, however, is com-

putationally expensive. Another possibility is to solve numerically a system of differential

equations satisfied by the master integrals [15, 16]. Recently, a new method to do this was

presented in ref. [17] co-authored by one of the present authors. This method is partic-

ularly suitable for problems with massive particles in the loops. We use this method to

solve a system of differential equations with respect to the m2
t variable by moving from

m2
t → −i∞ to its physical value.1 The advantage of this method is that it allows for,

essentially, arbitrary precision at low computational expense.

The remainder of the paper is organised as follows. Section 2 provides definitions of

kinematic variables as well as conventions regarding the γ5-matrix and renormalisation of

ultraviolet (UV) and infrared (IR) singularities. In section 3 we discuss Feynman diagrams

involved in the calculation at one and two loops, the colour structure, and the integral

reduction. A detailed presentation of the numerical approach to the evaluation of the

master integrals is given in section 4. In section 5 we evaluate the gg → WW amplitude

at two phase space points and present plots of the amplitude across partonic phase space.

We conclude in section 6.

2 Definitions

We study the contribution of third generation quarks (t, b) to the amplitude of the process

g(p1) + g(p2)→W (p3) +W (p4), (2.1)

keeping the exact dependence on the top quark mass mt while treating the bottom quark

as massless. We only consider the case where both W bosons couple directly to the quark

loop. Indeed, the single-resonant contribution of an intermediate Z can be ignored as it

vanishes for on-shell W pair production [1]. The process involving an intermediate Higgs

boson is known [18, 19].

1To construct the system of differential equations, the integral reduction needs to be parametric in mt.

This is however not a bottleneck as the parametric reduction is only required for integrals of low rank.
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We write the gg →WW amplitude as

M({pi}, {εj},mt) = δa1a2
(
gW√

2

)2

A({pi}, {εj},mt), (2.2)

where a1,2 are the colour indices of the external gluons, gW = e/ sin θW is the weak coupling

constant, and εj are the polarisation vectors of external particles. We consider the CKM

matrix to be an identity matrix.

We set all particles on-shell,

p21 = p22 = 0, p23 = p24 = m2
W , (2.3)

and introduce Mandelstam variables in a standard way

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p2 − p3)2. (2.4)

These variables satisfy the relation s+ t+ u = 2m2
W .

We decompose the gg →WW amplitude into 38 tensor structures,

A({pi}, {εj},mt) =
20∑
I=1

AI(s, t,mW ,mt) T
µν
I ({pi}, {εj})ε∗3µ(p3)ε

∗
4ν(p4)

+
38∑
I=21

AI(s, t,mW ,mt) S
µν
I ({pi}, {εj})ε∗3µ(p3)ε

∗
4ν(p4). (2.5)

The tensor structures TµνI are defined in ref. [8] and are parity-even, while SµνI are parity-

odd and are defined in ref. [1]. Our goal is to calculate the form factors AI .

The Wqq-vertex contains vector and axial parts

iq1γµ
1− γ5

2
q2W

µ. (2.6)

The gg →WW amplitude can hence be written as a sum of vector-vector, axial-vector, and

axial-axial contributions. The vector-vector and axial-axial terms are parity-even and can

be decomposed in terms of tensor structures TµνI in eq. (2.5). On the other hand, the axial-

vector term is odd under parity transformations; its decomposition is possible in terms of

the tensor structures SµνI in eq. (2.5). If masses of two quarks in a single generation are

equal, the parity-odd contribution vanishes [1–3, 20] and it is therefore absent in amplitudes

involving only massless quark loops [7, 8].

To deal with the axial part of the vertex (2.6), we employ the γ5-prescription of refs. [21,

22] and replace γµγ5 with

γµγ5 = − 1

3!
εµνρσγ

νγργσ. (2.7)

Throughout this paper the Levi-Civita symbol εµνρσ is defined using the convention of

FORM ε0123 = −i. Although this γ5-prescription is much more convenient to work with in

dimensional regularisation, it violates Ward identities of the axial current. To restore the

Ward identity, we have to perform a finite renormalisation [23],

JAµ = Z5J
A
µ, b =

[
1− αs

2π
2CF +O(α2

s)
]
JAµ, b, (2.8)

where JA and JAb stand for renormalised and unrenormalised axial currents respectively.
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2.1 Pole structure

Throughout the calculation we employ dimensional regularisation and set the space-time

dimensionality to d = 4 − 2ε. The singularities ubiquitous in loop calculations appear as

poles in ε of either ultraviolet (UV) or infrared (IR) origin. UV poles are absorbed through

the introduction of renormalisation factors leading to a renormalised amplitude.

Expanding the unrenormalised amplitude Ab in the bare strong coupling α0
s we have

Ab = A
(0)
b +

α0
s

2π
A

(1)
b +

(
α0
s

2π

)2

A
(2)
b +O

(
(α0

s)
3
)
. (2.9)

Following [24, 25] we employ a hybrid renormalisation scheme where the gluon field Gµ
and the top quark mass mt are in the on-shell scheme while the strong coupling constant

αs is renormalised in the MS scheme. We have

α0
s = µ2εSεZαsαs, G0

µ =
√
ZgGµ, m0

t = Zmtmt, (2.10)

where µ is the renormalisation scale and Sε = (4π)−εeεγE . The renormalisation constants

are expanded in the coupling

Z =
∑
n=0

(αs
2π

)n
Z(n), Z(0) = 1. (2.11)

The renormalised amplitude is related to the unrenormalised one by

A(ε, µ, αs,mt) = ZgAb(ε, α
0
s,m

0
t ) =

αs
2π
A(1)(ε,mt) +

(αs
2π

)2
A(2)(ε,mt) +O(α3

s), (2.12)

A(1)(ε,mt) = µ2εSεA
(1)
b (ε,mt), (2.13)

A(2)(ε,mt) = µ2εSε

[
(Z(1)

g + Z(1)
αs

)A
(1)
b (ε,mt) +mtZ

(1)
mt
C

(1)
b (ε,mt)

]
+
(
µ2εSε

)2
A

(2)
b (ε,mt), (2.14)

where we used the fact that the tree level amplitude A
(0)
b vanishes. Note that while the

renormalisation factors for the strong coupling and the gluon wave function are multiplica-

tive at the level of the amplitude, the factor for the mass renormalisation is not. For this

reason, the mass counterterm C(1) is calculated separately.

The relevant renormalisation factors are [26–30]

Z(1)
αs

= −γg(nl + 1)

ε
, (2.15)

Z(1)
g = Sε

(
4πµ2

m2
t

)ε
Γ(1 + ε)TF

[
− 2

3ε

]
, (2.16)

Z(1)
mt

= Sε

(
4πµ2

m2
t

)ε
Γ(1 + ε)CF

[
− 3

2ε
− 2

1− 2ε

]
, (2.17)

where γg(nl + 1) = 11
6 CA −

2
3TF (nl + 1) and nl is the number of massless fermions. The

divergent contribution of the massive quark flavour in γg(nl+ 1) cancels between the gluon
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field and the coupling renormalisation, while the light quark contributions are absorbed

into Catani’s operator, as explained below.

In general, IR poles of loop amplitudes cancel against contributions of real emission

processes. In the virtual amplitudes the IR singularities factorise in a universal manner [31],

this allows us to write the amplitude as a sum of IR poles and a finite remainder.

Since gg → WW vanishes at tree level, the pole structure of the two-loop amplitude

is particularly simple. Furthermore, the amplitude is a singlet in colour space. Hence, we

can write the renormalised amplitude as

A(2)(ε, µ) = I(1)(ε, µ)A(1)(ε, µ) + F (2)(ε, µ), (2.18)

where F (2) is the finite remainder. The Catani operator reads

I(1)(ε, µ) = −N(ε)

(
CA
ε2

+
γg(nl)

ε

)(
µ2e−iπ

s

)ε
, (2.19)

where N(ε) = eεγE/Γ(1 − ε) and γg(nl) = 11
6 CA −

2
3TFnl. In the following we will set

TF = 1
2 . In order to obtain the finite remainder of the two-loop amplitude, we require the

one-loop amplitude, A(1), expanded through O(ε2).

3 Amplitude calculation

In this section we discuss the calculation of the amplitudes A(1), C(1), and A(2).

3.1 One loop

We generate 8 one-loop diagrams using QGRAF [32] and perform colour and Dirac algebra as

well as projection of the form factors shown in eq. (2.5) using FORM [33–35]. Two triangle

diagrams with g? → WW transition vanish due to colour conservation. The remaining

six box diagrams can be mapped to 5 independent topologies. We perform the integral

reduction step using IBP identities, and express the form factors as linear combinations

of 16 master integrals. The form factors for the mass counterterm amplitude C(1) are

computed in a similar fashion. The one-loop amplitudes were checked against FeynArts

and FeynCalc [36–39].

3.2 Two loops

At two loops we generate 136 diagrams using the same steps as above. To test these steps of

our implementation, a subset of unreduced diagrams were crosschecked numerically against

FeynArts and FeynCalc. In figure 1 we show a few representative diagrams that contribute

to the two-loop gg →WW amplitude.

Since the weak bosons are not colour charged, the colour structure follows that of

the gluon self-energy two-loop diagrams with a closed quark loop. These diagrams are

given in table 1. All 136 diagrams contributing to gg →WW can be formed by attaching

two W bosons to the quark loop and by pinching propagators. This results in four basic

topologies shown in figure 2. It is clear from this classification that only class L has
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Figure 1: Representative two-loop Feynman diagrams for gg →WW .

Class Colour factor

L NC

S 1
NC

LS
(
NC − 1

NC

)

Table 1: The classification of diagrams in colour structures follows that of the two-loop

gluon self-energy diagrams involving a closed fermion loop. This motivates splitting the

amplitude into leading and sub-leading colour.

nonplanar contributions. We find 33 non-vanishing diagrams in class L (of which 17 are

nonplanar), 20 in class S and 40 in LS.

This classification motivates splitting the amplitude into leading (NC) and sub-leading

(1/NC) colour contributions,

A(2) = NcA
(2),[1] +

1

Nc
A(2),[−1]. (3.1)

Note that both A(2),[1] and A(2),[−1] are gauge invariant. We also observe that A(2),[−1] is

finite after mass renormalisation and has no infrared poles.

In order to perform an IBP reduction we express the amplitude in terms of integral fam-

ilies. An integral family is a set of propagators and irreducible scalar products (ISPs) that

forms a basis of the linear space spanned by all scalar products containing loop momenta.

For four-point kinematics in four dimensions there are 9 independent scalar products at

two loops. Before the integral reduction the form factors can be written as

A
(2)
I =

NT∑
T=1

∑
~aT

c
(2)
IT~aT

IT (~aT ). (3.2)
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(a) (b) (c) (d)

Figure 2: The four basic topologies. The internal lines can be both massive and massless.

The first three (a)–(c) are planar and can at most have 5 massive internal lines, while the

nonplanar topology (d) can at most have 4 massive internal lines.

In eq. (3.2) NT is the number of independent integral families and ~aT = (a1, . . . , a9). Each

ai is an integer power of the 9 independent scalar products in the integral family T . Using

symmetries between diagrams, including crossing symmetry, we find a total of NT = 35

families of type (a), (b), and (d). The coefficients of integrals, c
(2)
IT~aT

, are rational functions

of s, t, mt, mW and space-time dimensionality d.

The 35 families can be further reduced to 25 two-loop irreducible families and a single

one-loop squared family using IBP identities. Family definitions are given in appendix A

and the corresponding topologies are shown in figure 3. We use Kira [12] to reduce all

integrals IT (~aT ) appearing in the scattering amplitude to a set of 334 master integrals.

To complete the integral reduction using reasonable time and resources, several mea-

sures have been taken. First, the integrals depend on the kinematic variables s and t,

the masses mt and mW , and space-time dimensionality d. Keeping all of them para-

metric makes the reduction formidably complicated. To overcome this problem, we set

mt = 173 GeV and mW = 80 GeV in the IBP reduction, keeping only s, t, and d as pa-

rameters.2 This simplifies the reduction tables and cuts down the run times considerably.

Second, the size of reduction tables can be reduced further by a careful choice of master

integrals. Our guiding principle in choosing master integrals is absence of denominators

with non-factorisable dependence on kinematic variables and space-time dimensionality

d as well as avoiding denominators that lead to poles at non-integer values of d (e.g.

3d − 10) [41, 42]. Furthermore, we aim at having simple differential equations for fast

numerical evaluation. By trial and error, we find that master integrals with at most one

squared propagator or a single irreducible scalar product are sufficient to satisfy the above

requirements. In a few sectors integrals with two squared propagators are needed, but this

appears to be an exception rather than the rule.

Third, we use the select masters reduction feature implemented in Kira to project

integrals onto one master integral at a time. Our final reduction tables are of the order of

hundred MB each, which makes applying reduction rules to the amplitude a manageable

job.

2Although the numerical values of mt and mW that we use are different from current experimental

values by about 0.1% and 0.5% respectively [40], the impact of these differences on the two-loop amplitude

is negligible. If needed, these differences can be taken into account by Taylor expanding the (unreduced)

amplitude in terms of the mass differences and using the same set of reduction tables and master integrals

to compute the correction.
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(a) one-loop squared (b) planar no. 1 (c) planar no. 2

(d) planar no. 3 (e) planar no. 4 (f) planar no. 5

(g) planar no. 6 (h) planar no. 7 (i) planar no. 8

(j) planar no. 9 (k) nonplanar no. 1 (l) nonplanar no. 2

(m) nonplanar no. 3 (n) nonplanar no. 4 (o) nonplanar no. 5

Figure 3: Topologies of integral families. Solid and dashed lines correspond to massive

and massless particles respectively. Internal massive particles have mass mt while external

massive particles have mass mW . All nine planar topologies and nonplanar no. 2 and 3

can be crossed (p1 ↔ p2) giving a total of 26 topologies.

4 Differential equation

Having expressed the full amplitude through master integrals, we need to evaluate them.

The master integrals are defined as follows

I(a1, . . . , a9) =

∫ ( 2∏
n=1

eεγE
ddln

iπd/2

)
1

Da1
1 D

a2
2 · · ·D

a9
9

, (4.1)

where Di are denominators in one of the 26 families given in appendix A. Their topologies

are shown in figure 3. Note that we absorb a factor of −i(4π)2−εeεγE per loop into the

definition of master integrals.

To evaluate all 334 two-loop master integrals with massive propagators, we employ the

imaginary mass method proposed in ref. [17]. In the original formulation of this method,

an imaginary mass term −iη is added to all propagators. The differential equation with
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respect to η is solved numerically starting at η → ∞ and progressing towards a physical

point η = 0+. The boundary conditions involve vacuum integrals with mass m2 = −iη,

as no physical masses or kinematic variables survive in this limit. Adding −iη to massless

propagators alters the behaviour of integrals near the physical point η = 0+ and generates

a singularity in the differential equation. In order to compute the result at the physical

point it is then necessary to fix constants in a formal solution of the differential equation,

by matching against another point within its radius of convergence.

We employ a variant of the original method, where the imaginary mass parameter −iη
is introduced only to the massive propagators. Setting the mass m2

t of massive propagators

to m2
t − iη requires no extra work as far as IBP reductions are concerned.3 Since our

diagrams already have many massive propagators, the boundary conditions at η →∞ are

remarkably simple, with only 5 planar integrals and 1 nonplanar, massless 3-point integral

needed to fix all master integrals at the boundary. The topologies of the boundary integrals

are shown in figure 4, see appendix B for their definitions [43–47].

By constructing a differential equation with respect to m2
t and choosing the boundary

condition at m2
t → −i∞, the differential equation can be used to evaluate master inte-

grals at the physical mass, m2
t = (173 GeV)2. At η → ∞, the master integrals receive

contributions from 3 regions:

1. All internal momenta are comparable to m2
t → −i∞.

2. Some internal momenta that form a closed loop are comparable to m2
t → −i∞, while

the remaining momenta are much smaller than m2
t and are comparable to other

kinematic parameters (i.e. s, t, m2
W ).

3. All internal momenta are much smaller than m2
t → −i∞.

In figure 5 we show a typical master integral and its regions. The boundary condition in

each region can be expressed in terms of the boundary integrals given in figure 4 through

IBP reduction, together with an overall scaling factor of mt.

Note that if we add −iη to all propagators, only the first region contributes to the

integrals. In general, the fewer propagators one takes to be infinitely massive, the more

complicated boundary conditions one needs to consider. However, since we change the

original integrals less, the singularity at the physical point, η = 0+, is simpler. In fact,

for the problem at hand, the differential equation is regular at the physical point and no

additional complications arise.

Having fixed all boundary conditions, we are ready to solve the differential equation.

We write the differential equation in terms of a dimensionless variable

x =
m2
t − (173 GeV)2

m2
W

, (4.2)

3We need to keep mt as a parameter when constructing differential equations using IBP identities, but

this is unproblematic since the integrals that appear in the differential equations are much simpler than

those in the amplitude.
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(a) I1 (b) I2
(c) I3

(d) I4
(e) I5 (f) I6

Figure 4: Topologies of boundary integrals. Solid and dashed lines correspond to massive

and massless particles respectively. See appendix B for their explicit expressions.

region 1: m−6−4εt ×

region 2: m−4−2εt × ×

region 3: m−2t ×



∝

Figure 5: A typical master integral and its leading regions. Solid and dashed lines corre-

spond to massive and massless particles respectively. Internal massive particles have mass

mt, while external massive particles have mass mW .

and make all master integrals dimensionless using m2
W . At each phase space point, we solve

the differential equation numerically by moving along the positive imaginary axis from the

boundary at x = −i∞ to the physical point x = 0. This involves three steps.

1. First, we transform the differential equation at x = −i∞ to a Fuchsian form

∂I

∂y
=

(
A−1
y

+ A0 + A1y + . . .

)
I, (4.3)

where y = 1/x and I is the vector of master integrals.

2. Second, we use the differential equation to obtain power-logarithmic expansions of

the master integrals I in terms of y in the neighbourhood of x = −i∞ or y = 0. For

each master integral, we write

Ii =

M∑
j

εj

[
N∑
k=0

∑
l

cijkly
k lnl y +O(yN+1)

]
+O(εM+1), (4.4)
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where the numerical coefficients cijkl are completely determined by the differential

equation and the boundary conditions. The parameter N in the above equation is

the desired order of the expansion; it controls the truncation error and, eventually,

the precision with which Ii is computed. Parameter M is the maximal power of ε in

the series.

3. Finally, using the expansion (4.4), we move to a regular point x0 within the radius

of convergence by direct evaluation of I(y = 1/x0). Then at each regular point xi
along the path of integration, we Taylor expand the master integrals by expanding

the equation up to order N around xi

∂I

∂x′
=
(
A′0 + A′1x

′ + . . .
)
I, (4.5)

Ii =
M∑
j

εj

[
N∑
k=0

cijkx
′k +O(x′N+1)

]
+O(εM+1), (4.6)

where x′ = x − xi. Once this is accomplished, we move on to the next point xi+1

within the radius of convergence of the new series (4.6). By repeating this expand-

evaluate operation, we finally arrive at the physical point x = 0. Figure 6 shows a

typical situation in the complex x-plane.

There are several advantages of this method. First, it allows us to evaluate master

integrals to arbitrary precision in reasonable and predictable time, which can be difficult

to do using other numerical methods. The possibility to increase precision is crucial for

a stable evaluation of the amplitude in quasi-singular regions, e.g. around thresholds of

internal particles. Second, given an equation and a valid path of analytic continuation in

the complex plane, this method produces identical results every time. This determinism

makes the calculation reproducible and allows one to keep numerical errors under control.

Finally, this method is fast enough for practical applications. The run time depends on the

form of the equation, requested precision, depth of the ε-expansion, and working precision

used in the calculation. However, for a result accurate to 15 digits, typical run time is

about 1–10 seconds per integral, depending on the form of the equation. Evaluating all

master integrals at a typical phase space point takes less than an hour on a single CPU

core.

We crosschecked the evaluation of master integrals against pySecDec [48, 49] and

FIESTA [50]. We also checked the self-consistency of the differential equations by comparing

results obtained by integrating along different paths. Specifically, all master integrals have

been checked against pySecDec at an unphysical phase space point

s = −(120 GeV)2, t = −(10 GeV)2, (4.7)

up to the default precision of pySecDec (3–10 digits). Some of the master integrals have

also been checked against FIESTA at another unphysical phase space point

s = 29× (80 GeV)2, t = 31× (80 GeV)2, (4.8)
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singularity

step

-10 10 20 30

-100

-50

Figure 6: A typical path to solve the differential equation at a certain phase space point.

This plot shows singularities and steps of the family planar no. 1 at s = (500 GeV)2, t =

−(300 GeV)2 in the complex plane of x. The red crosses are the singularities of the dif-

ferential equation, while the blue dots are the steps used to solve the differential equation.

We approach the origin from −i∞ along the positive imaginary axis. The boundary at

x = −i∞ is not shown on this plot.

up to default FIESTA precision (3–10 digits).

In addition, evaluations at two different phase space points should be connected by a

system of differential equations with respect to s and t. We pick the following two phase

space points,

s1 = (160.008 GeV)2, t1 = −(80.008 GeV)2, (4.9)

s2 = (160.032 GeV)2, t2 = −(80.032 GeV)2. (4.10)

Taking the evaluations at (s2, t2) as boundary condition and running the equations from

(s2, t2) to (s1, t1), we then check against a direct evaluation at (s1, t1). We find that master

integrals evaluated at (s1, t1) in the two different ways agree up to the precision used when

solving the equations (15 digits in this particular case).

5 Numerical evaluation

We parametrise the phase space of the W bosons using the angle θ between ~p1 and ~p3 in

the centre of mass frame, see figure 7, and the relative velocity of the W boson pair, β.
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These quantities are related to Mandelstam invariants through the following equations

s =
4m2

W

1− β2
, t = m2

W −
s

2
(1− β cos θ) . (5.1)

Figure 7: Illustration of the scattering angle θ between incoming momentum ~p1, parallel

to the z-axis, and outgoing momentum ~p3.

For further references, we present helicity amplitudes evaluated at two phase-space

points

P1: β =
1

2
, cos θ = −1

5
, (5.2)

P2: β =
9

10
, cos θ =

4

5
. (5.3)

This corresponds to
√
s ≈ 185 GeV and θ ≈ 102◦ and

√
s ≈ 367 GeV and θ ≈ 37◦ for P1

and P2 respectively.

To evaluate the tensor structures in (2.5) we construct polarisation vectors for the two

gluons using spinor-helicity formalism. The polarisation vectors are given by

εµ1,L = − 1√
2

[2|γµ|1〉
[21]

, εµ1,R =
1√
2

〈2|γµ|1]

〈21〉
, (5.4)

εµ2,L = − 1√
2

[1|γµ|2〉
[12]

, εµ2,R =
1√
2

〈1|γµ|2]

〈12〉
. (5.5)

Keeping in mind that, eventually, we will be interested in the decay of the W bosons into

leptons, we express the polarisation vectors of on-shell W boson states through a current

that describes W− → eν and W+ → eν transitions

εµ3,L = 〈5|γµ|6], εµ4,L = 〈7|γµ|8]. (5.6)

The massless momenta are constructed by flattening the massive momenta

p5 = p3 −
m2
W

2p3 · η1
η1, p6 =

m2
W

2p3 · η1
η1, (5.7)

p7 = p4 −
m2
W

2p4 · η2
η2, p8 =

m2
W

2p4 · η2
η2, (5.8)
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Phase space point Momenta

P1

p1 = ( 92.37604307, 0, 0, 92.37604307 )

p2 = ( 92.37604307, 0, 0, −92.37604307 )

p5 = ( 39.37488835, 7.777358084, −37.47747591, −9.237604307 )

p6 = ( 53.00115472, 37.47747591, 37.47747591, 0 )

p7 = ( 65.22151600, −64.45598423, 0, −9.963545922 )

p8 = ( 27.15452707, 19.20115023, 0, 19.20115023 )

P2

p1 = ( 183.5325871, 0, 0, 183.5325871 )

p2 = ( 183.5325871, 0, 0, −183.5325871 )

p5 = ( 155.3270581, 79.16327619, −19.94432084, 132.1434627 )

p6 = ( 28.20552903, 19.94432084, 19.94432084, 0 )

p7 = ( 174.3120610, −105.6274936, 0, −138.6633593 )

p8 = ( 9.220526124, 6.519896548, 0, 6.519896548 )

Table 2: Massless incoming and outgoing momenta in units of GeV in the centre of mass

frame for the phase space points defined in eq. (5.2) and eq. (5.3).

A(1)|ε=0 LLLL LRLL

P1 1071.827685027612 + 395.318437150354i 1711.87290725190− 4954.09482662664i

P2 7791.28734007197 + 9509.73549766894i 2134.32524328450− 2908.70435024589i

Table 3: Evaluation of the two independent helicity amplitudes at one loop for the phase

space points defined in eq. (5.2) and eq. (5.3).

where we choose massless reference vectors η1 = (
√

2, 1, 1, 0) and η2 = (
√

2, 1, 0, 1). The

full set of momenta are given in table 2.

We label the helicity amplitudes by the helicities of the two incoming gluons and two of

the out-going leptons λ1λ2λ5λ7, where λi = L,R. W bosons are left-handed and there are

four helicity configurations for the gluons. Two operations allow us to establish relations

between these configurations. First, we can flip all helicities simultaneously by complex

conjugation of the polarisation vectors. Second, we can flip the helicities of the W bosons

only by swapping the momenta (p5 ↔ p6 and p7 ↔ p8) in the currents of eq. (5.6). Hence,

only two helicity configurations are independent, we choose to present LLLL and LRLL.

One-loop helicity amplitudes for the two phase space points defined in eq. (5.2) and

eq. (5.3) are given in table 3.

We present ε-expansions of the two-loop amplitudes for leading and sub-leading colour

in tables 4 and 5 respectively. Comparison with the predicted structure of IR poles is

also shown. The renormalisation scale µ is set to 2mW . We note that the renormalised

two-loop amplitudes (2.14) receive a trivial contribution from the counter term amplitude.

It is independent of NC and we do not include it here.
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Two loops LLLL

NC ε−2 ε−1 ε0

P1
A(2),[1]/A(1) −0.999999998857788 + 9.6903 · 10−11i −1.86131749404292− 4.44620066408116i 12.61200733077990− 5.60441510422259i

IR pole −1.000000000000000 −1.86131750171342− 4.44620066769177i -

P2
A(2),[1]/A(1) −1.000000000278483− 3.35826 · 10−10i −0.92496050816583− 4.30331991724938i 14.3620835041344 + 7.9736182100082i

IR pole −1.000000000000000 −0.92496050665624− 4.30331991476767i -

LRLL

NC ε−2 ε−1 ε0

P1
A(2),[1]/A(1) −1.000000002280574− 1.477331 · 10−9i −1.50299977076179− 5.37992305396807i 13.7636860170288− 7.2085584481283i

IR pole −1.000000000000000 −1.50299976418128− 5.37992304294408i -

P2
A(2),[1]/A(1) −0.999999992424562 + 2.318144 · 10−9i 1.37986725767052− 8.54746743169715i 27.3890551624320 + 3.3867392467224i

IR pole −1.000000000000000 1.37986720742840− 8.54746746126171i -

Table 4: Evaluation of the two-loop helicity amplitudes, LLLL and LRLL, for the phase space points defined in eqs. (5.2) and (5.3) for

the leading colour contribution. We normalise by the one-loop amplitude A(1)|ε=0 and show the infrared pole structure for comparison.

We set the renormalisation scale µ = 2mW .

–
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Two loops LLLL

1/NC ε0

P1 A(2),[−1]/A(1) −0.604318842260586 + 0.554150870358548i

P2 A(2),[−1]/A(1) −6.09083779674665− 6.83926633649785i

LRLL

1/NC ε0

P1 A(2),[−1]/A(1) −1.004215354701388 + 0.569698273209762i

P2 A(2),[−1]/A(1) 1.48368538287541 + 1.38326340829964i

Table 5: Evaluation of the two-loop helicity amplitudes for the phase space points defined

in eqs. (5.2) and (5.3) for the sub-leading colour contribution, which is finite after mass

renormalisation. We normalise by the one-loop amplitude A(1)|ε=0 and set the renormali-

sation scale µ = 2mW .

(a) Helicity LLLL (b) Helicity LRLL

Figure 8: Absolute value of the vector-vector plus axial-axial part of the one-loop helicity

amplitudes.

For the one-loop amplitudes we construct a uniform, dense 99 by 99 grid in terms

of the variables β and cos θ defined in (5.1) with step sizes of 0.01 and 0.02 in the ranges

[0.01, 0.99] and [−0.98, 0.98] respectively. The absolute value of the two independent helicity

amplitudes are plotted in figure 8. We stress that the helicity amplitudes presented here

depend on the polarisation vectors of the on-shell W bosons, see eqs. (5.7) and (5.8). To

avoid this one can project onto helicity dependent form factors defined in refs. [1, 7, 8].

For the two loop amplitude we use a sparse grid for the bulk of phase space, 0.1 ≤
β < 0.8. The step size in β is 0.1 and cos θ ranges from −0.8 to 0.8 in steps of 0.2 with an

additional border at cos θ = ±0.96. For the production threshold, 0.01 ≤ β < 0.1 we use

a step size of 0.01 and same resolution for cos θ as in the bulk region. In the high-energy

region 0.8 ≤ β ≤ 0.99 we also use the step size of 0.01 for β, but increase resolution in cos θ

with a step size of 0.04 in the range from −0.96 to 0.96.

In total 1156 points have been computed to produce plots for the two-loop helicity

amplitudes. In figure 9 and 10 we plot the interference of the finite remainder with the
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(a) Helicity LLLL (b) Helicity LRLL

Figure 9: Finite remainder of the vector-vector and axial-axial part of the two-loop,

leading colour (NC), helicity amplitudes interfered and normalised by the leading order

amplitude, see eq. (5.9). We set the renormalisation scale µ = 2mW .

(a) Helicity LLLL (b) Helicity LRLL

Figure 10: Finite remainder of the vector-vector and axial-axial part of two-loop, sub-

leading in colour (1/NC), helicity amplitudes interfered and normalised by the leading

order amplitude, see eq. (5.9). We set the renormalisation scale µ = 2mW .

one-loop amplitude,

2Re
[
F (2)A(1)?

]
|A(1)|2

. (5.9)

For illustration purposes we only show the vector-vector and axial-axial part of the ampli-

tudes in these plots.

6 Conclusions

In this paper we computed the contribution of the third generation quarks to the two-

loop helicity amplitudes for W boson pair production in gluon fusion. We use projection

operators to obtain form factors that can be calculated using integration-by-parts integral

reduction. To overcome the computational bottleneck of the reduction step, we fix the

masses of the top quark and the W bosons to integer numbers close to their experimentally
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determined values. The master integrals are evaluated numerically by solving a system

of differential equations with respect to the top mass parameter. This approach allows

for arbitrary precision and is especially efficient for processes involving massive internal

particles.

The present calculation opens up the possibility to include the contribution of third

generation quarks into NLO QCD corrections to the cross section of W pair production

in gluon fusion. More generally, this method can be used for numerical calculations of

many loop amplitudes with massive particles. As higher order virtual corrections to many

processes involving internal masses are currently beyond the reach of analytic methods,

this approach represents an alternative way forward.
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Name Definition

one-loop squared
(l2 + p3)

2, (l2 − p1 − p2 + p3)
2, l21 −m2

t , l
2
2 −m2

t , (l1 − p1)2 −m2
t ,

(l1 + p2)
2 −m2

t , l1 · l2, l1 · p3, l2 · p2.

planar

1
l22, (l1 + l2 − p1 + p3)

2, l21 −m2
t , (l1 − p1)2 −m2

t , (l1 + p2)
2 −m2

t ,

(l2 + p3)
2 −m2

t , (l2 − p1 − p2 + p3)
2 −m2

t , l1 · p3, l2 · p2.

2
l21, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2, (l1 + l2 − p1 + p3)

2,

(l2 − p1 − p2 + p3)
2, l22 −m2

t , l1 · p3, l2 · p2.

3
l21, l

2
2, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2 −m2

t ,

(l1 + l2 − p1 + p3)
2 −m2

t , (l2 − p1 − p2 + p3)
2 −m2

t , l1 · p3, l2 · p2.

4
(l1−p3)2, (l1 + l2−p1−p2)2, (l2−p1−p2 +p3)

2, l21−m2
t , l

2
2−m2

t ,

(l1 − p1)2 −m2
t , (l2 − p2)2 −m2

t , l1 · p2, l2 · p3.

5
l21, l

2
2, (l1 − p1)2, (l2 − p2)2, (l1 + l2 − p1 − p2)2,

(l1 − p3)2 −m2
t , (l2 − p1 − p2 + p3)

2 −m2
t , l1 · p2, l2 · p3.

6
l22, (l2 + p2)

2, (l1 − p3)2, (l1 + l2 + p2 − p3)2, l21 −m2
t ,

(l1 − p1)2 −m2
t , (l2 + p1 + p2 − p3)2 −m2

t , l1 · p2, l2 · p3.

7
(l1 + l2 +p2)

2, (l1−p1 +p3)
2, (l2 +p1 +p2−p3)2, l21−m2

t , l
2
2−m2

t ,

(l1 − p1)2 −m2
t , (l1 + p2)

2 −m2
t , l2 · p2, l2 · p3.

8
l21, l

2
2, (l1 − p1)2, (l1 + p2)

2, (l1 + l2 + p2)
2,

(l1 − p1 + p3)
2 −m2

t , (l2 + p1 + p2 − p3)2 −m2
t , l2 · p2, l2 · p3.

9
(l1+p3)

2, (l1+l2+p1)
2, (l1−p2+p3)

2, (l2+p1+p2−p3)2, l21−m2
t ,

l22 −m2
t , (l1 + p1)

2 −m2
t , l2 · p2, l2 · p3.

nonplanar

1
l21, (l1 − p1)2, (l1 + p2)

2, (l2 + p3)
2, (l1 − l2 + p2 − p3)2,

l22 −m2
t , (l1 − l2 − p1)2 −m2

t , l2 · p1, l2 · p2.

2
l22, (l2 − p2)2, (l1 − p3)2, (l1 − l2 + p2 − p3)2, l21 −m2

t ,

(l1 − p1)2 −m2
t , (l1 − l2 − p1)2 −m2

t , l2 · p1, l2 · p3.

3
l21, l

2
2, (l1 − p1)2, (l2 − p2)2, (l1 − l2 − p1)2,

(l1 − p3)2 −m2
t , (l1 − l2 + p2 − p3)2 −m2

t , l2 · p1, l2 · p3.

4
l22, (l2 − p1)2, (l1 + p3)

2, (l1 − l2 + p3)
2, (l1 − l2 − p2 + p3)

2,

(l1 − p1 − p2 + p3)
2, l21 −m2

t , l2 · p2, l2 · p3.

5
l21, (l1 − l2 + p3)

2, (l1 − l2 − p2 + p3)
2, l22 −m2

t , (l2 − p1)2 −m2
t ,

(l1 + p3)
2 −m2

t , (l1 − p1 − p2 + p3)
2 −m2

t , l2 · p2, l2 · p3.

Table 6: Definitions of the integral families. l1 and l2 are loop momenta while p1, p2, and

p3 are external momenta defined in eq. (2.1).

A Integral families

We define 26 integral families for integral reductions. There is a single one-loop squared

family, 18 planar families labelled planar 1 to 9, each with p1 and p2 crossed as well. In

the nonplanar case, we define 7 families labelled nonplanar 1 to 5 together with crossed

versions of nonplanar 2 and 3.
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B Boundary condition of the differential equation

The explicit expressions for the boundary integrals in figure 4 are listed below [43–47],

I1 = − exp(εγE)Γ(−1 + ε), (B.1)

I2 = − exp(2εγE)Γ(−1 + ε)2
Γ(2− ε)Γ(−1 + 2ε)

Γ(ε)
, (B.2)

I3(q
2) = exp(εγE)Γ(ε)(−1)ε(q2)−ε

Γ(1− ε)2

Γ(2− 2ε)
, (B.3)

I4(q
2) = − exp(2εγE)Γ(−1 + 2ε)(−1)−1+2ε(q2)1−2ε

Γ(1− ε)3

Γ(3− 3ε)
, (B.4)

I5(q
2) = exp(2εγE)Γ(2ε)(−1)2ε(q2)−2ε

Γ(1− 2ε)2Γ(1− ε)2Γ(ε)

Γ(2− 3ε)Γ(2− 2ε)
, (B.5)

I6(q
2) = exp(2εγE)(−1)2+2ε(q2)−2−2ε

[
− Γ(1− ε)Γ(1 + ε)Γ(1− 2ε)4Γ(1 + 2ε)3

ε4Γ(1− 4ε)2Γ(1 + 4ε)

+
Γ(1− ε)2Γ(1 + ε)Γ(1− 2ε)Γ(1 + 2ε)

2ε4Γ(1− 3ε)
3F2(1,−4ε,−2ε; 1− 3ε, 1− 2ε; 1)

+
−4Γ(1− ε)2Γ(1− 2ε)Γ(1 + 2ε)

ε2(1 + ε)(1 + 2ε)Γ(1− 4ε)
3F2(1, 1, 1 + 2ε; 2 + ε, 2 + 2ε; 1)

+
−Γ(1− ε)3Γ(1 + 2ε)

2ε4Γ(1− 3ε)
4F3(1, 1− ε,−4ε,−2ε; 1− 3ε, 1− 2ε, 1− 2ε; 1)

]
, (B.6)

where q2 corresponds to the four-momentum squared of the external legs. Note that I1
and I3 are one-loop integrals, thus they enter the boundary condition through the products

among themselves.
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