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Abstract: We compute the two-loop mixed QCD-Electroweak (QCD-EW) corrections to

the production of a Higgs boson and a gluon in gluon fusion through a loop of light quarks.

The relevant four-point functions with internal massive propagators are expressed as mul-

tiple polylogarithms with algebraic arguments. We perform the calculation by integration

over Feynman parameters and, independently, by the method of differential equations. We

compute the two independent helicity amplitudes for the process and we find that they are

both finite. Moreover, we observe a weight drop when all gluons have the same helicity. We

also provide a simplified expression for the all-plus helicity amplitude, which is optimised

for fast and reliable numerical evaluation in the physical region.
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1 Introduction

The discovery of the Higgs boson at the LHC [1, 2] has marked a turning point in the

exploration of the Standard Model of particle physics. Not only is the Higgs boson the

only elementary scalar particle in the Standard Model, but it is also related to the Electro-

Weak (EW) symmetry breaking mechanism, which is believed to be responsible for the

observed values of the masses of all elementary particles. For this reason, the discovery

of the Higgs boson and the measurement of its properties allow us to investigate the least

studied aspects of the Standard Model.

Theory has to support this program by providing precise predictions for the Higgs

production cross sections. A special role here is played by the process gg → H +X, which

represents by far the largest Higgs production channel at the LHC. The main contribution

to this channel is provided by those Feynman diagrams where the Higgs boson couples to

the gluons through a top quark loop. Given its importance, this process started receiving

attention already many decades ago, and today it is known up to next-to-leading order

(NLO) in QCD [3–6]. While in those papers it was shown that the NLO corrections can

be as large as O(100%), an NNLO calculation with full top-mass dependence remains

prohibitively complicated still today, primarily due to the complexity of the relevant three-

loop massive scattering amplitudes. We note that recently the first numerical results for

the relevant three-loop contributions have been obtained in [7].

A surprisingly reliable way to estimate higher-order QCD corrections to the gg →
H +X cross-section is provided by studying this process in the limit of infinite top quark
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mass, where the interaction between gluons and the Higgs boson is shrunk to a point-

like effective vertex. Calculations in this limit are substantially simpler than in the full

theory, which made it possible to push the perturbative expansion to NNLO [8–10] and

more recently up to N3LO [11, 12] in perturbative QCD. The N3LO corrections amount

to around ∼ 5% of the total cross section and show a very good convergence of the QCD

perturbative series, reducing the scale-uncertainty to ∼ 2% [13].

At this level of precision, other contributions to Higgs production cannot be neglected

anymore. One such contribution is given by the class of two-loop diagrams where the

gluons couple to a loop of massless quarks, followed by two massive electroweak vector

bosons, which finally fuse into a Higgs boson. Clearly, at this perturbative order, also

other classes of diagrams contribute, where the Higgs boson couples directly to top-quarks.

These contributions are particularly difficult to compute because of the large number of

internal masses, but we expect their size to be less than ∼ 15% compared to those induced

by massless quarks, at least close to threshold production [14]. For this reason, in what

follows we will limit ourselves to consider massless quarks only. These EW corrections have

been computed at LO and have been shown to contribute up to ∼ 5% to the gluon-fusion

cross section [15, 16]. Given that NLO QCD corrections to gluon induced processes are

typically large, it becomes very important to have a reliable estimate of the QCD corrections

to this class of diagrams. Unfortunately, the calculation of these mixed NLO QCD-EW

corrections is highly non-trivial, as it involves virtual three-loop three-point diagrams and

real-emission two-loop four-point diagrams with massive internal propagators. While the

former have been recently computed with full dependence on the Higgs and on the vector-

boson masses [17], the computation of the latter has remained an outstanding challenge and,

before this paper, only the relevant planar master integrals were known analytically [18].

To overcome the complexity of the full calculation, different approximations have been

employed to estimate the impact of these corrections. In particular, the mixed QCD-EW

corrections have first been computed in the unphysical limit mV � mH [19], where they

effectively reduce to a Wilson coefficient for the operator O = HGµνGµν and one therefore

expects a K-factor similar to the one in the NLO QCD heavy-top approximation. This

a priori unphysical approximation has recently been improved in [20], where the exact

results for the virtual amplitudes computed in Ref. [17] have been combined with the

real radiation computed in the soft-gluon approximation. The soft-gluon approximation

is known to work relatively well for Higgs boson production [21–23] and the calculation

showed that accounting for finite vector boson masses in the virtual corrections provides

consistent results with the Wilson-coefficient approximation employed in [19].

The soft-gluon approximation amounts to the factorisation of the QCD and EW correc-

tions in the real corrections. One could therefore wonder if a breaking of this factorisation

in the real-radiation pattern could modify the K-factor in a non-trivial way. To estimate

how good this approximation is, the mixed QCD-EW corrections have also been considered

in the limit mV → 0 [24]. This study confirmed that for small vector boson masses, the

non-factorisable QCD-EW corrections remain negligible. Clearly, this does not exclude the

possibility that keeping full dependence on the masses of the electroweak vector bosons

could induce non-negligible modifications to the NLO corrections. It remains therefore

– 2 –



very desirable to compute exactly the missing two-loop QCD-EW real amplitudes in order

to provide a definite answer to this question. As hinted to above, this calculation is also

interesting on a formal level, in particular due to the large number of scales and to the

vector boson masses in the internal propagators, which translate into an involved analytic

structure of the corresponding Feynman integrals.

Specifically, we find that the relevant Feynman integrals can be expressed in terms of

multiple polylogarithms [25–28] with algebraic arguments, involving multiple square roots.

While the standard approach to compute such integrals would go through the derivation

and solution of differential equations in canonical form [29–32], the complexity of the

alphabet makes this strategy extremely cumbersome in practice. Interestingly, though, we

find that all relevant integrals can be computed by integrating over Feynman parameters

using the algorithms described in [33, 34]. The results thus obtained turn out to be very

compact, but not extremely efficient for the numerical evaluation of the amplitude in

Minkowski kinematics. This provides us with the ground to discuss a general strategy for

their simplification and to present alternative results for the amplitude which are of more

direct use for phase-space integration.

Finally, we stress that in this paper we only consider the two-loop real scattering

amplitudes for the NLO QCD-EW corrections to gg → Hg. While we do not expect

them to constitute any additional complexity, we do not consider quark-initiated partonic

channels, whose contribution has been shown to be negligible at this precision [35].

The rest of the paper is organised as follows. In section 2 we give our notation and de-

scribe how to compute the helicity amplitudes for gg → Hg by decomposing the amplitude

into form factors with the help of d-dimensional projection operators. After describing the

reduction to master integrals and our choice of basis, we explain in sections 3 and 4 the

calculation of the master integrals with two independent approaches, i.e. using differential

equations and by parametric integration, respectively. We discuss our final result for the

helicity amplitudes in section 5 and finally conclude in section 6.

2 The scattering amplitudes

We are interested in computing the two-loop mixed QCD-EW corrections to the production

of a Higgs boson and a gluon in gluon fusion at the LHC. We begin by considering the

process in the decay kinematics

H(p4)→ g(p1) + g(p2) + g(p3) (2.1)

where the Higgs couples to the gluons through a pair of massive vector bosons V = Z,W±

and a massless quark loop, see Figure 1.

The scattering amplitude for this process depends on the three Mandelstam variables

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p2 + p3)2 , with s+ t+ u = m2
h , (2.2)

and on the mass of the vector boson that mediates the interaction with the Higgs and

which we will generically denote as mV . We use mh to indicate the Higgs mass. Since the
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Figure 1: Representative planar (a) and non-planar (b) Feynman diagrams for the LO

mixed QCD-EW corrections to gg → Hg. The internal wavy lines represent the massive

vector bosons.

QCD-EW contributions to gg → Hg start at two-loop order, the amplitudes computed in

this paper are finite, as long as all external gluons are fully resolved.

In order to perform the computation, we begin by decomposing the scattering ampli-

tude for H → ggg into Lorentz- and gauge-invariant tensor structures. We extract the

dependence on the SU(3) color structure fabc and write

A(p1, p2, p3) = fa1a2a3εµ1 ε
ν
2ε
ρ
3Aµνρ(s, t, u,m

2
V ) (2.3)

where, for each j = 1, 2, 3, εj is the polarisation vector of the gluon of momentum pj , while

aj is its color label. Aµνρ(s, t, u,m2
V ) must be a rank-3 tensor under Lorentz transformations

and, imposing gauge invariance for each of the external gluons, it can be written as a linear

combination of four independent form factors. Following the conventions introduced in [36],

we require that the gluons are transverse and make a cyclic choice for their gauge fixing

condition

εj · pj = 0 , ε1 · p2 = ε2 · p3 = ε3 · p1 = 0 . (2.4)

With this choice, one easily finds [36]

Aµνρ(s, t, u,m2
V ) = F1(s, t, u,m2

V )gµνpρ2 + F2(s, t, u,m2
V )gµρpν1

+ F3(s, t, u,m2
V )gνρpµ3 + F4(s, t, u,m2

V )pµ3p
ν
1p
ρ
2 , (2.5)

where the Fj(s, t, u,m
2
V ) are Lorentz-invariant form factors. We stress that in this decom-

position no parity-violating terms appear. This can be justified by noticing that, if we

only consider massless quarks, the axial contribution drops when summing over degenerate

isospin doublets. Clearly, this cancellation does not happen for the third quark doublet,

where the mass degeneration is broken and the contribution from the bottom quark alone is

not well defined without the corresponding top-induced diagrams. As it is common practice

when working in the framework of massless QCD, we deal with this issue by not allowing

bottom quarks to propagate in the diagrams where W bosons are exchanged, but by keep-

ing them in all other diagrams. The missing axial contributions from these diagrams are
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expected to be suppressed.1 With this, we can write for each form factor

Fj(s, t, u,m
2
V ) = −(ααs)

3/2mW

16π sin3 θW
CV

(
F (0)
j (s, t, u,m2

V ) +O(αs, α)
)
, j = 1, . . . , 4, (2.6)

where

CW = 4 , CZ =
2

cos4 θW

(
5

4
− 7

3
sin2 θW +

22

9
sin4 θW

)
, (2.7)

andO(αs, α) indicates higher order contributions both in the QCD and in the EW coupling.

The full QCD-EW corrections can then be obtained by summing the contributions with

V = Z or W .

The form factors Fj , or equivalently the F (0)
j , are not the objects that we are ultimately

interested in. Indeed, often substantial simplifications occur when one combines the form

factors to compute so-called helicity amplitudes. For the case at hand, each gluon can have

two different helicities for a total of eight different combinations. By use of Bose symmetry,

parity and charge conjugation, one can easily show that only two of them are independent.

We indicate the helicity of the gluon of momentum pj by λj and write for a generic helicity

amplitude and for a given vector boson V

Aλ1λ2λ3(s, t, u,m2
V ) = εµ1,λ1(p1)εν2,λ2(p2)ερ3,λ3(p3)Aµνρ(s, t, u,m2

V ) (2.8)

whereAµνρ(s, t, u,m2
V ) was defined in eq. (2.3). We proceed by choosing as two independent

helicity amplitudes A++±(s, t, u,m2
V ). It is straightforward to find compact expressions for

these amplitudes in terms of the form factors in eq. (2.5) using the spinor-helicity formalism,

see [37] and references therein. We choose for the polarisation vectors of the external gluons

εµj,+(pj) =
〈qj |γµ|j]√

2〈qjj〉
, εµj,−(pj) = − [qj |γµ|j〉√

2[qjj]
, (2.9)

where qj is an arbitrary reference vector with q2
j = 0 and qj · pj 6= 0. While in principle the

vector qj can be chosen freely, the conditions in eq. (2.4) force us to pick q1 = p2, q2 = p3

and q3 = p1. With this, the two independent helicity amplitudes become

A+++(s, t, u,m2
V ) =

m2
h√

2〈12〉〈23〉〈31〉
Ω+++(s, t, u,m2

V ) ,

A++−(s, t, u,m2
V ) =

[12]3√
2[13][23]m2

h

Ω++−(s, t, u,m2
V ) ,

(2.10)

where the Ω++± are linear combinations of the original form factors

Ω+++ =
su

m2
h

(
F1 +

t

u
F2 +

t

s
F3 +

t

2
F4

)
, Ω++− =

m2
hu

s

(
F1 +

t

2
F4

)
. (2.11)

1Moreover, these contributions should be proportional to the color factor dabc, which drops in the cross-

section when contracted with the leading tree-level amplitudes for the process gg → gH coming from the

infinite top mass effective theory.
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Similarly to eq. (2.6), we can explicitly extract the LO EW and QCD couplings from the

amplitudes and write for the perturbative expansion of the helicity coefficients

Ω++±(s, t, u,m2
V ) = −(ααs)

3/2mW

16π sin3 θW
CV

(
Ω

(0)
++±(s, t, u,m2

V ) +O(αs, α)
)
, (2.12)

such that, again, the full QCD-EW contributions are obtained by summing the correspond-

ing helicity amplitudes with V = Z,W .

2.1 The evaluation of the helicity amplitudes

The helicity amplitudes in eq. (2.11) receive contribution from 21 different two-loop Feyn-

man diagrams, see Figure 1 for two representative ones. The contribution of each of these

diagrams to the helicity coefficients can be computed by deriving d-dimensional projector

operators. The standard approach consists of introducing 4 independent projectors which

single out the contribution to each of the form factors defined in eq. (2.5)∑
pol

Pµνρj (εµ1 )∗εµ11 (εν2)∗εν12 (ερ3)∗ερ13 Aµ1ν1ρ1(s, t, u,m2
V ) = Fj(s, t, u,m

2
V ) , (2.13)

where, for consistency with eq. (2.4), we must use∑
pol

(εµ1 (p1))
∗
εν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (2.14)

∑
pol

(εµ2 (p2))
∗
εν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (2.15)

∑
pol

(εµ3 (p3))
∗
εν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (2.16)

We stress at this point that all Lorentz indices in eq. (2.13) have to be understood as

d-dimensional. Each projector can be decomposed in terms of the same tensor structures

as in eq. (2.5) as follows

Pµνρj =
1

d− 3

[
c

(j)
1 gµν pρ2 + c

(j)
2 gµρ pν1 + c

(j)
3 gνρ pµ3 + c

(j)
4 pµ3p

ν
1p
ρ
2

]
, (2.17)

where j ∈ {1, 2, 3, 4}. By imposing that eq. (2.13) is satisfied we find

c
(1)
1 =

t

s u
, c

(1)
2 = 0 , c

(1)
3 = 0 , c

(1)
4 = − 1

s u
,

c
(2)
1 = 0 , c

(2)
2 =

u

s t
, c

(2)
3 = 0 , c

(2)
4 = − 1

s t
,

c
(3)
1 = 0 , c

(3)
2 = 0 , c

(3)
3 =

s

t u
, c

(3)
4 = − 1

t u
,

c
(4)
1 = − 1

s u
, c

(4)
2 = − 1

s t
, c

(4)
3 = − 1

t u
, c

(4)
4 =

d

s t u
.

(2.18)

We can either use these projectors to evaluate the four form factors independently, or

we can use them, together with the definition of the helicity coefficients in terms of form
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factors in eq. (2.11), in order to derive new helicity-projectors [38] that directly project on

the physical helicity amplitudes

Pµνρ+++ =
1

2m2
h(d− 3)

[
t gµν pρ2 + u gµρ pν1 + s gνρ pµ3 + (d− 6) pµ3p

ν
1p
ρ
2

]
,

Pµνρ++− =
m2
h

2s2(d− 3)

[
t gµν pρ2 − u g

µρ pν1 − s gνρ p
µ
3 + (d− 2) pµ3p

ν
1p
ρ
2

]
,

(2.19)

such that∑
pol

Pµνρ++± (εµ1 )∗εµ11 (εν2)∗εν12 (ερ3)∗ερ13 Aµ1ν1ρ1(s, t, u,m2
V ) = Ω++±(s, t, u,m2

V ) . (2.20)

Since the helicity amplitudes are the physical objects that we will be ultimately interested

in, we prefer to follow this second approach.

In practice, we generate all relevant two-loop diagrams using QGRAF [39] and we use

FORM [40] to apply the projectors in eq. (2.19) and write them as linear combinations of

scalar two-loop Feynman integrals. We find that all diagrams can be mapped on Feynman

integrals of two integral families, one planar (PL) and one non-planar (NP), up to crossings

of the external legs. We define these two families as follows:

Itop(a1, a2, . . . , a8, a9) =

∫
DdkDdl

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7 D

a8
8 D

a9
9

, (2.21)

where top ∈ {PL,NP} labels the families and the denominators D1, . . . , D9 are given in

table 1. We use dimensional regularization with d = 4 − 2ε, and our convention for the

integration measure for each loop is

Ddk =
ddk

iπd/2Γ(1 + ε)
. (2.22)

With the definitions given in Table 1, the two diagrams in figure 1 can be described

using the first 7 propagators of the two families respectively, and all other diagrams which

contribute to the process can be obtained by permutations of the external gluons and by

pinching of the propagators.2 Although quite standard, the reduction to a subset of master

integrals [41–43], is non-trivial due both to the large number of scales and the presence

of massive internal propagators. We used Reduze2 [44] to map the diagrams to the rele-

vant integral families and performed a complete reduction of all integrals with KIRA [45].3

Finally, we found it convenient to use FiniteFlow [47] to speed up the substitution of the

reduction identities produced by KIRA in the helicity amplitudes of eq. (2.11) and their

simplification.

We find that the two independent helicity amplitudes can be expressed in terms of

116 master integrals, counting also the ones obtained through permutations of the external

2We stress here that if we are interested in computing the mixed QCD-EW corrections in the qq̄ channel,

some more integrals are required. We ignore their calculation presently and focus on the gg channel only.
3We have also double-checked the IBP-reduction required to derive the differential equations for the

master integrals with FIRE5 [46], see section 3.

– 7 –



Denominator integral family PL integral family NP

D1 k2 k2

D2 l2 −m2
V (k − l)2

D3 (k − l)2 (k − p1)2

D4 (k − p1)2 (l + p3)2 −m2
V

D5 (k − p1 − p2)2 (k − p1 − p2)2

D6 (k − p1 − p2 − p3)2 (l − p1 − p2)2 −m2
V

D7 (l − p1 − p2 − p3)2 −m2
V (k − l − p3)2

D8 (l − p1)2 (l − p1)2 −m2
V

D9 (l − p1 − p2)2 (k − p1 − p3)2

Table 1: Definition of the planar (PL) and non-planar (NP) integral families. The loop

momenta are denoted by k and l, while mV indicates the mass of the vector boson. The

prescription +iε is understood for each propagator and not written explicitly.

gluons as independent ones. If we limit ourselves to the un-permuted integrals, we find 43

planar and 18 non-planar master integrals, see appendix A for the full list. To construct

our initial basis of master integrals, we select integrals whose maximal cuts are defined by

integrands with unit leading singularities [32, 48, 49]. Our choice avoids the appearance

of irreducible denominator factors that mix the kinematical variables and the dimensional

regularization parameter d during the IBP reduction. This reduces the complexity of

intermediate expressions, similarly as described in [36], and recently automated in [50, 51].

In the next two sections we will describe two different strategies that we used to

compute the master integrals in terms of multiple polylogarithms.

3 Computation of the master integrals with differential equations

The standard approach to compute a complete set of multiloop, multiscale Feynman inte-

grals goes through deriving and solving their system of differential equations with respect

to the masses and momenta, as first worked out in full generality in [31]. In each of the

invariants ξ = (s, t, . . . ,m2, . . . ), a basis of master integrals always fulfils a linear system of

differential equations with rational coefficients. By indicating with I the vector of master

integrals, we can write this system as

d I(ξ) = B(ε, ξ) I(ξ) ,

where the entries of the matrix B(ε, ξ) are differential one-forms that are rational in the

kinematics and in the dimensional regulator ε. One then usually tries to solve these equa-

tions as a Laurent series in ε, i.e. for d → 4. The effectiveness of this approach relies on

the ability to find a solution of the homogeneous part of the system above, in the limit

ε→ 0. While this would be a daunting task given a generic system of coupled differential

equations, it turns out that an integral representation for the homogeneous solution can
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always be obtained by analysing the maximal cuts of the corresponding Feynman inte-

grals [52–54], whose computation becomes particularly simple using the so-called Baikov

representation [55–57].

While the approach described above is completely general, it was shown that in many

cases the solution of the differential equations can be greatly simplified by the choice of

a so-called canonical basis of master integrals [32]. If such a basis F can be found, the

corresponding system of master integrals becomes

d F(ξ) = εA(ξ) F(ξ) , (3.1)

where the new matrix A(ξ) does not depend on ε. In addition to the factorisation of ε, an

important condition for the basis to be canonical is that the matrix takes a particularly

simple, “d log” form

A(ξ) =
J∑
j=1

Aj d logPj (ξ) , (3.2)

where Aj are matrices of rational numbers and Pj are algebraic functions of ξ, which

constitute the alphabet {P1, . . . , PJ} of the problem. It follows from eq. (3.2), that the

master integrals of a canonical d log basis can be expressed, order by order in ε, as iterated

integrals of the forms d log(Pj). Furthermore, whenever the alphabet consists entirely of

rational functions Pj (or if this can be achieved by an algebraic change of variables), then

these iterated integrals can be expressed as linear combinations of the functions

G(σ1, . . . , σk;x) =

∫ x

0

dτ

τ − σ1
G(σ2, . . . , σk; τ) , G(~0k;x) =

1

k!
logk x, G(;x) = 1 , (3.3)

where the arguments σi and x will be certain algebraic functions of ξ. The iterated integrals

(3.3) are known as multiple polylogarithms [28] and hyperlogarithms [58] of weight k.4 For

most of the Feynman integrals that have been studied so far, finding a canonical d log

basis comes along with an expression for the corresponding master integrals in terms of

multiple polylogarithms (with potentially complicated algebraic arguments). However, no

general method to construct an expression of this kind is known if the alphabet cannot be

rationalized5 such that, in some cases where a canonical form for the differential equations

is known, the issue of the existence of a polylogarithmic expression for the master integrals

remains matter of discussion, see for example [61].6 In fact, more recently it was shown that

there exist iterated integrals of d log forms which cannot be expressed in terms of multiple

polylogarithms [63]. In conclusion, whether or not Feynman integrals with a canonical d log

form can be expressed through multiple polylogarithms, remains an intricate problem.

With these general comments in mind, let us consider now the form of the system of

differential equations for the problem at hand. First of all, it is interesting to notice that, in

order to evaluate all the master integrals required for the amplitude, we need to introduce

two additional master integrals that would otherwise not appear in our problem, namely

4The notation using “G” was introduced in [59] as a Generalization of harmonic polylogarithms.
5For general algorithms, see for example [60].
6One possible approach is the algorithm described in [62], which is based on an ansatz for the solution.
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IPL(2, 2, 0, 0, 0, 1, 0, 0, 0) and IPL(2, 2, 0, 0, 0, 1, 1, 0, 0). These additional master integrals

appear in the non-homogeneous part of the differential equations for some of the top-sector

master integrals, and it can immediately be seen that they are obtained by pinching some

of the internal lines of the diagrams in Fig. 1 (see Appendix A for a complete list of the

master integrals). All master integrals are functions of at most four independent variables,

which in this section we choose to be t, u, m2
h, and m2

V (V = W,Z). Since Feynman

integrals are homogeneous functions in the kinematic invariants and in the masses, it is

convenient to introduce the dimensionless variables

y = − t

m2
h

, z = − u

m2
h

, ρ = −
m2
V

m2
h

, (3.4)

in order to factorise the dependence of each master integral on m2
h as a simple power,

namely (m2
h)d−a1−...−a9 , where the ai are the powers of the propagators, see eq. (2.21). For

the remainder of this section, we can hence set m2
h to 1. To determine the expressions of

the master integrals in terms of the remaining variables we derive differential equations in

y, z, and ρ for them and cast this system into a canonical form, as in eq. (3.1). This was

achieved by starting from a basis of master integrals whose maximal cuts have unit leading

singularities (see appendix A), and then applying the algorithm described in [64].

If we limit ourselves to the 48 planar master integrals, see eq. (A.1), then the differential

equations take a very simple form and, in particular, all letters are rational functions of

y, z, ρ and a single square root,

R0 =
√

1 + 4ρ . (3.5)

As it is well known, this root can be rationalized by the change of variables

ρ =
1− x
x2

, (3.6)

and all integrals of the family PL can be expressed in terms of multiple polylogarithms

whose arguments are rational functions of x, y, z, as it was shown explicitly in [18], which

we refer to for the explicit form of the differential equations and of the canonical basis.

Unfortunately, even if there is only a small number of new, non-planar integrals, their

differential equations turn out to be substantially more complicated. In this case, the

vector of planar and non-planar master integrals F contains 64 entries, and the alphabet{
y, z, ρ, 1 + y, 1 + z, 1 + ρ, y + z, ρ− y, ρ− z, 1 + y + z, ρ− y − z, ρ+ y + z + 1,

ρ− y2 − y, ρ− z2 − z, ρ− (y + z)2 − y − z,R0, R1, R2, R3, R0 +R1, R0 + 2y + 2z + 1,

y (y + z + 1)− ρz, ρ (y + 1)− z (y + z + 1), ρ (y + 1)2 − z (y + z + 1), yz + ρ(y + z)2,

z (y + z + 1)− ρy, ρ (z + 1)− y (y + z + 1), ρ (z + 1)2 − y (y + z + 1), yz − ρ(y + z),

R0 + 2y + 1, R0(y + z) + y − z,R0(y + 1) + y + 2z + 1, R1R2y + 2ρ (1− y + z)− y,
R0 + 2z + 1, R1(y + z) + y − z,R0(z + 1) + 2y + z + 1, R1R3z + 2ρ (1− z + y)− z,
R2 + 2z + 1, R2 + 2y + 2z + 1, y(1 +R2) + 2z (1 + y + z), R0 +R2, 1 +R2, 1 +R1,

R3 + 2y + 1, R3 + 2y + 2z + 1, z(1 +R3) + 2y (1 + y + z), R0 +R3, 1 +R3, 1 +R0

}
(3.7)
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depends on three additional square roots, defined as

R1 =
√

1− 4ρ/(y + z) ,

R2 =
√

1 + 4ρ(1 + z)(1 + z/y) ,

R3 =
√

1 + 4ρ(1 + y)(1 + y/z) .

(3.8)

We provide both the vector of canonical functions F and the d log forms of eq. (3.2) in the

ancillary files of this paper.

As described above, once a canonical form for the differential equations is obtained,

the standard procedure consists of constructing a solution as a Dyson series in ε whose

coefficients consist of iterated integrals. In case of a three scale problem, the usual strategy

consists in solving the partial differential equations sequentially, as described for example

in Refs. [31, 65]. We start with one variable and solve the corresponding linear differential

equation up to a function of the other two variables, then we write down a differential

equation with respect to a second variable. We check that the right-hand side of this new

equation is independent of the first variable and we solve this equation in terms of multiple

polylogarithms up to a function of the last variable. After the last differential equation

is integrated, a solution is obtained up to constants which are then fixed by choosing ap-

propriately the boundary conditions. While this strategy can be applied straightforwardly

when the alphabet is linear in all variables, the presence of several algebraically indepen-

dent square roots makes it frequently unfeasible in practice, since at a given step, it is not in

general possible to find a representation for the result where the corresponding integration

variable appears only in the last argument of the various polylogarithms.

Despite this, it turns out that in our problem the four square roots appear in the

differential equations in a very structured pattern, which allows us to devise a solution

strategy that is always guaranteed to terminate and to produce a result in terms of mul-

tiple polylogarithms. First of all, we find it convenient to rationalize the root R0, which

appears consistently throughout the whole system of equations, by the change of variables

of eq. (3.6). We then notice the following crucial structural features of the differential

equations:

• R1 appears only in the differential equations for the canonical functions F51, F61,

F62, F63, F64;

• R2 appears only in F55, F56,F57, F61, F62, F63, F64;

• R3 appears only in F58, F59,F60, F61, F62, F63, F64;

• all the other equations contain at most the root R0;

• when solving the equations for F61, F62, F63, F64, at most two square roots are

integrated at once and only from weight 3 on: either {R1, R2} or {R1, R3}.

This separation of square roots allows us to perform different changes of variables depending

on the canonical functions we want to evaluate, in particular depending on which roots

enter a particular integration.
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First of all, as customary when dealing with canonical master integrals, we normalise

our basis such that all integrals start at order ε0 with a weight 0 constant (which could

of course be zero). We start by solving the equations for the canonical functions Fi,

i ∈ {1, . . . , 50, 52, 53, 54}, where no square roots appear in (x, y, z). We integrate first in

y, then in z and at last in x, obtaining expressions of uniform weight written in terms

of multiple polylogarithms up to some constant factors which will be fixed by imposing

boundary conditions. We move then to the canonical function F51, where also R1 appears.

The relevant letters can be rationalized through the change of variable

y =
4(1− x)

x2 − u2
− z , (3.9)

and then solved first in u and subsequently in x. Only two variables appear here, because

F51 is a three-point function.

The triplet F{55,56,57} contains the square root R2. We consider the whole subset

of functions that enters the differential equation of such triplet, given by Fi, i ∈ {1, 3,
4, 6, 7, . . . , 12, 17, 18, . . . , 22, 24, 25, 33, 34, 35, 36, 41, 46, 47, 55, 56, 57}, and rationalize R2 by

y =
4(1− x)z(z + 1)

(v2 − 1)x2 − 4(1− x)(z + 1)
. (3.10)

The resulting equations are integrated first in v, then in z, and then in x, in terms of

multiple polylogarithms.

We proceed in the same way for the triplet F{58,59,60}, containing R3, and the corre-

sponding subset of canonical functions Fi, i ∈ {1, 3, 4, 6, 7, . . . , 12, 17, 18, . . . , 22, 25, 26, 31,

32, 35, 36, 42, 44, 45, 58, 59, 60}. The rationalization of R3 is achieved through

z =
4(1− x)y(y + 1)

(w2 − 1)x2 − 4(1− x)(y + 1)
. (3.11)

The order of integration is w, y, z. Also here, the result is expressed in terms of multiple

polylogarithms.

The group of canonical functions F{61,62,63,64}, corresponding to the master integrals

of the top non-planar sector, is the most difficult one. As observed above, up to order ε2

no square roots are present in the variables (x, y, z), therefore the integration in terms of

multiple polylogarithms is straightforward, and is carried out following the procedure used

for F{1,...,50,52,53,54}.

Starting from order ε3 all square roots R{1,2,3} appear, but always in such a way that a

single nested integration contains at most two of them, specifically either R1 and R2, or R1

and R3. We start by removing R1 via the change of variables of eq. (3.9). This change of

variables is sufficient to take care of the nested integrations coming from the homogeneous

part of the differential equations, as well as of the one coming from the non-homogeneous

terms related to Fi, i ∈ {1, . . . , 54}. Despite the fact that only rational functions are now

present for this subset of terms (allowing us to represent this part of the solution in terms

of multiple polylogarithms), many cumbersome letters arise, as for example

z −
4
(
−u2x3 + u2x2 + x5 − 5x4 + 8x3 − 4x2

)
u4x2 − u4x+ u4 − 2u2x4 + 6u2x3 − 6u2x2 + x6 − 5x5 + 5x4

.
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Considering now the terms related to F{55,56,57}, a second change of variables to rationalize

also R2 is performed “on the fly”, and reads

z =
4v(1− x)x(vx− 2x+ 4)

(x2 − u2) (vx+ 2)(vx− 2x+ 2) + 16(1− x)2
. (3.12)

An analogous “on the fly” change of variables is performed on the terms related to F{58,59,60},

to get rid of R3:

z =
16w2(1− x)2

(
−u2 + x2 − 4x+ 4

)
(u2 − x2)

(
w2 (−u2x2 + x4 − 16x2 + 32x− 16) + x2 (u2 − x2)

) . (3.13)

Implementing such changes of variables allows us to write the ε3 coefficients of F{61,62,63,64}
again in terms of multiple polylogarithms, at the price of having three different sets of

independent variables: (x, u, z), (x, u, v), and (x, u, w).

To integrate one of the above subsystems, we integrate first in z, or v, or w, according

to preferred variables just discussed. After the integration in z, we verify that plugging

these solutions in one of the remaining differential equations gives a matrix of coefficients

which is independent of z, where this condition must be satisfied considering also the hidden

dependence through v and w. The expressions that arise are so cumbersome that we do not

see any chance to perform this check analytically. On the other hand, we see numerically

(we use GiNaC, [66, 67] to evaluate multiple polylogarithms) with very high accuracy that

our expressions are independent of z. However, we cannot simply substitute z = 0 (which

corresponds to v = 0 and w = 0), because individual terms may be singular in this limit.

To address this issue, we use shuffle relations to extract carefully all such singular terms

as z → 0 explicitly as powers of log(z). We confirm numerically that the sum of the three

contributions in terms of different variables as well as its limit at z → 0 is independent

of z. Once this is done, we proceed by integrating in u, and we check that the remaining

differential equation is independent of u, in a similar way as we did for z. After having

solved all differential equations up to integration constants, we fix these constants using

boundary conditions in the large-mass limit, x→ 0. Here we use well-known prescriptions

in a graph-theoretical language for limits typical of Euclidean space – see, e.g., [68].

The procedure described above can be applied to obtain the ε4 part as well, but the

manipulations required are extremely cumbersome and, a posteriori, not needed. Indeed,

in the next section we will show how to obtain these integrals in a much simpler way by

direct integration over their Feynman/Schwinger parametrisation. In any case, we believe

that the approach we used to solve the differential equations presented here can be used

also in other situations where many different square roots appear and only subsets of them

are rationalizable at once. The key point of this procedure is to check that in each nested

integration only one subset of simultaneously rationalizable square roots is present, and

then to perform a “local” change of variables “on the fly” to rationalize them.

4 Computation of the master integrals by parametric integration

While an expression for the master integrals in terms of multiple polylogarithms can in prin-

ciple be obtained from the differential equations, the procedure was rather cumbersome as
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explained in the previous section. An entirely different approach, which one might attempt,

consists in computing all integrals starting from their Feynman/Schwinger parametrisation.

This can be in general quite difficult, in particular in multiloop/multileg problems, where

one typically needs to integrate over a large number of Feynman parameters. Nevertheless,

it turns out that in our problem all integrands are linearly reducible [34, 69], which means

that the algorithms described in [33] can be applied rather directly.

In order to make this approach feasible, it is helpful to choose a basis of master integrals

that is finite in the limit d→ 4. We expect such a change of basis to be particular useful in

the case at hand since the two-loop amplitude is, effectively, a leading-order amplitude and

therefore expected to be finite. In practice, however, we found it sufficient to replace only

the most divergent master integrals with more than 5 propagators by finite counterparts. To

achieve this, we generated finite integrals by considering the corresponding six-dimensional

integrals, including higher powers of the propagators. For each of the integrals in the

families in table 1 we can obtain the corresponding (d+ 2)-dimensional integral by [70, 71]

Id+2
top (a1, a2, . . . , a8, a9) =

4

∆

∫
DdkDdl

G(k, l, p1, p2, p3)

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7 D

a8
8 D

a9
9

(4.1)

where G(p1, . . . , pn) is the Gram-determinant of the n momenta p1, . . . , pn, and

∆ = G(p1, p2, p3)(d− 4)(d− 3) =
s t u

4
(d− 4)(d− 3) .

It is pretty easy to see that, at least in the case at hand, as long as we choose UV finite

integrals and all powers of the massless propagators equal to unity, the Gram determinant

G(k, l, p1, p2, p3) cures all IR divergences, both in the collinear and in the soft limits. This

allows us to easily generate a large number of finite integrals. We stress that this is

particularly straightforward here due to the presence of two internal massive propagators.

In fact, even for integrals with fewer propagators (and therefore with poor UV behaviour),

we can simply raise the powers of the massive propagators ad libitum in order to obtain

UV-finite integrals, without spoiling their IR behaviour. We note that, in a general case,

finite integrals can be found algorithmically also in the absence of massive propagators,

see for example the algorithm described in [72]. We list the finite integrals used in this

calculation in Appendix B.

4.1 Planar integrals

The parametric representation [73, 74] of an integral family such as (2.21) has the form

Idtop(a1, . . . , a9) =
(−1)ω+dΓ(ω)

Γ(1 + ε)2

(
9∏

k=1

∫ ∞
0

xak−1
k dxk
Γ(ak)

)
δ(1− xj)
Ud/2−ωtop F ω

top

, (4.2)

where ω = a1 + · · · + a9 − d. The polynomials U = detA and F = U(BᵀA−1B − C) are

determined by the quadratic (A), linear (B) and constant (C) parts of the quadratic form

x1D1 + · · ·+ x9D9 = `ᵀA`+ 2Bᵀ`+ C

– 14 –



in the two loop momenta ` =
(
k
l

)
, given by the denominators from Table 1. All integrals

that we are interested in for this calculation, for both integral families, are chosen such

that a8 = a9 = 0, which allows us to eliminate the parameters x8 and x9. The remaining

denominators D1, . . . , D7 are the inverse scalar propagators of the graphs shown in Figure 1.

Concretely, in the planar case we find the Symanzik polynomials to be

U = x3(x1 + x2 + x4 + x5 + x6 + x7) + (x2 + x7)(x1 + x4 + x5 + x6) and

F = −m2
h

(
(x1x2 + x1x3 + x2x3)(x6 + x7) + x6x7(x1 + x2) + x2x7(x4 + x5)

)
− sx5 (x1x2 + x1x3 + x1x7 + x2x3)− ux4 (x2x6 + x3x6 + x3x7 + x6x7)

+m2
V (x2 + x7)U .

(4.3)

An analysis by polynomial reduction [69] shows that the set {U ,F} is linearly reducible.

This means that the integrals (4.2) can be expressed algorithmically in terms of the hyper-

logarithms defined in eq. (3.3). In fact, this works to all orders of the ε expansion, and for

arbitrary integer values of a1, . . . , a7.

The algorithm described in [34] applies directly only to convergent integrals. As ex-

plained above, we therefore adjusted our basis to consist mostly of finite integrals. The

remaining divergences in this basis (see Appendix B) occur only in integrals with 4 or fewer

propagators, and six further integrals with 5 or 6 propagators, where they can be resolved

easily through integration by parts in the parameters xk, following the method of [72, 75].

In order to perform the polynomial reduction, resolution of divergences, and integration

over the Feynman parameters explicitly, we used the code HyperInt [33]. Starting from

the polynomials (4.3), HyperInt identifies x1, x4, x5, x6, x3 as an admissible order for the

first five integrations. They result in expressions with hyperlogarithms whose arguments

σi are rational functions of s, t, u,m2
V and x2, x7. We pick j = 7 for the constraint x7 = 1

in (2.21), leaving the final integral over x2. At this stage, the algorithm needs to solve for

the roots of the polynomial m2
V (1 + x2)2 −m2

hx2, which introduces the first square root

r =
√
m2
h(m2

h − 4m2
V ) = (−m2

h)R0, (4.4)

which we saw also in (3.5). Consequently, the final expressions for the coefficients of

the ε-expansion of the integrals IPL are linear combinations of hyperlogarithms, whose

coefficients and arguments are rational functions of s, t, u,m2
V and r.

4.2 Non-planar integrals

For the non-planar integral family, the corresponding polynomials are

U = (x1 + x3 + x5)(x2 + x4 + x6 + x7) + (x2 + x7)(x4 + x6),

F = m2
V (x4 + x6)U −m2

h

(
x1x6(x4 + x7) + x2x4x5 + x4x6(x2 + x3 + x5 + x7)

)
− s
(
x1x5(x2 + x4 + x6 + x7) + x1x2x6 + x4x5x7

)
− tx2x3x4 − ux3x6x7,

(4.5)

and it was pointed out in [75, Figure 10] that they are linearly reducible too. As an

admissible order for the first integrations we use x1, x3, x5, x2, x7. Setting x6 = 1, the final

integration over x2 introduces three further square roots in addition to r:√
1− 4m2

V /(t+ u) = R1,
√
r2 − 4m2

V su/t = −m2
hR2,

√
r2 − 4m2

V st/u = −m2
hR3, (4.6)
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which we encountered also in the differential equations, see (3.8). Our results for the inte-

grals INP from the basis (B.1) therefore consist of linear combinations of hyperlogarithms

with coefficients and arguments that are rational functions of s, t, u,m2
V , r and the three

roots in (4.6). In fact, the polynomial reduction shows that the quadratic polynomials re-

sponsible for R2 and R3 are not compatible [69] with each other. Explicitly, this manifests

itself in the fact that our results admit a decomposition

A
(
s, t, u,m2

V , r, R1, R2

)
+B

(
s, t, u,m2

V , r, R1, R3

)
(4.7)

into expressions A and B whose hyperlogarithm arguments σk in (3.3) are rational functions

of the listed arguments only, i.e. the roots R2 and R3 do not mix. This property corresponds

to the structure of the differential equations described in section 3, and makes it possible

to rationalize the pieces A and B individually. For the parametric integration, however,

such rationalizations provide no advantage. In contrast, the bare expressions with the

(unrationalized) roots are much more compact.

Remark. We stress that the hyperlogarithm expressions obtained from HyperInt are valid

for all values of the kinematic parameters such that the integral (4.2) converges. In partic-

ular, by giving a small positive imaginary part to s, t and u in order to implement the iε

prescription, these hyperlogarithms can be evaluated directly in the physical region, for ex-

ample using GiNaC [67]. This is a very valuable property, because the analytic continuation

of polylogarithms with algebraic arguments is typically much more delicate.

For all ε-expansion coefficients of the integrals (B.1) that contribute to the helicity

amplitudes (2.11), we find that only hyperlogarithms of weight k ≤ 4 arise. This weight

bound is consistent with other known two-loop amplitudes in four dimensions. In ancillary

files to this publication, we provide the explicit expressions thus obtained for all coefficients

of the ε-expansions of the integrals in our basis (B.1) that are required for the computa-

tion of the helicity amplitudes. The ancillary files also include instructions and code to

reproduce these calculations.

5 The helicity amplitudes

Combining our results for the Feynman integrals, we obtain expressions for the helicity

amplitudes Ω
(0)
++±. At this step, we see that all poles in ε stemming from individual

divergent integrals, as well as from the coefficients in the reduction of the amplitudes to

the Feynman integrals, completely cancel each other. As expected, the helicity amplitudes

thus turn out to be finite. Furthermore, we notice that:

• In the case of Ω
(0)
+++, all hyperlogarithms of weight 4 cancel out, leaving only functions

of weight at most 3 in the result. A similar weight drop was found in mixed QCD-EW

corrections to gg → H, see [17, 76], where the two- and three-loop amplitudes turn

out to have maximum weight three and five, respectively.

• In the case of Ω
(0)
++−, hyperlogarithms of weight 4 do not cancel completely and persist

in the result.
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These weights may at first seem surprising, in particular because no such weight drop

shows up in the corresponding Higgs Effective Field Theory (HEFT) amplitudes, see for

example [77]. But for our mixed QCD-EW corrections the weight drop can be a posteriori

justified, rather heuristically, as follows. If we consider the possible unitarity cuts of the

Ω
(0)
+++ helicity amplitude, we find that supersymmetric ward identities ensure that all cuts

which go through two massless quark lines are zero in ε = 0, while non-zero contributions

are only obtained cutting through at least one of the massive vector bosons. We expect that

the weight four part of the amplitude should be proportional to the master integrals whose

coefficients can be obtained by projecting over the former type of cuts. Their vanishing in

d = 4 can therefore be seen as an argument in favour of the observed weight drop. Clearly,

the same argument applies equally well to gg → H, where the only helicity amplitudes

different from zero are for equal-helicity gluons. On the other hand, this reasoning fails

Ω
(0)
++− and no weight drop is observed.

After some simplification, our result for the helicity amplitude Ω
(0)
+++ takes the form

Ω
(0)
+++(s, t, u) = −16 +

4m2
V

m2
h

[
H(s, t, u) +H(t, s, u) +H(u, t, s)

]
, (5.1)

where the hyperlogarithms H = H1 +H2 +H3 are given in weight 1 and 2 explicitly as

H1(s, t, u) =

(
1− s

m2
V

)
log

(
1− s

m2
V

)
−
(

1−
m2
h

m2
V

)
log

(
1−

m2
h

m2
V

)
+

2r

3m2
V

log
r −m2

h

r +m2
h

H2(s, t, u) = −
(

2 +
su

m2
V t

+
st

m2
V u

)
Li2

(
t+ u

m2
h −m2

V

)
−
(

1 +
su

m2
V t

+
st

m2
V u

)
Li2

(
s

m2
V

)
+

(
1 +

tu

m2
V s

)(
Li2

(
s+ ut/m2

V

m2
h −m2

V

)
− 1

2
log2

(
1−

m2
h

m2
V

))
. (5.2)

The expression for H3, the hyperlogarithms of weight 3, is provided in the ancillary files.

Their arguments are rational functions of s, t, u,m2
V and the roots

r = (−m2
h)
√

1− 4m2
V /m

2
h, rs =

√
r2 − 4m2

V ut/s,

rt =
√
r2 − 4m2

V su/t and ru =
√
r2 − 4m2

V st/u.
(5.3)

The amplitude Ω
(0)
++− is more complicated, not only because it involves hyperlogarithms

of weight 4, but also since their arguments require two additional square-roots,

rst =
√

1− 4m2
V /(s+ t) and rsu =

√
1− 4m2

V /(s+ u). (5.4)

These roots arise from R1 in the crossed versions (s↔ t or s↔ u) of the integrals that we

computed in section 3 and section 4. Similarly, crossing is responsible for the appearance

of the root rs in (5.3). The explicit form of Ω
(0)
++− is provided in the ancillary files.

The results so obtained can be evaluated rather straightforwardly in any region of

phase-space, in particular both in the Euclidean, s, t, u < 0, and in the physical7 Minkowskian

7The physical values of the boson masses fix m2
h/m

2
V to either ≈ 2.425 (V = W ) or ≈ 1.885 (V = Z),

so in particular, m2
V < m2

h < 4m2
V is fulfilled.
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point in phase-space Ω
(0)
+++

(
s, t, u,m2

V

)
Ω

(0)
++−

(
s, t, u,m2

V

)
pph

1 −7.2015542− 0.8783012 i −6.6933149− 0.9982990 i

pph
1 (s↔ t) −7.2015542− 0.8783012 i −14.7100602− 13.1607693 i

pph
1 (s↔ u) −7.2015542− 0.8783012 i −6.8240815− 1.5445788 i

pph
2 −7.1894251− 0.7143046 i −7.0299953− 0.8180534 i

peu
1 5.3960378 5.3720766

peu
2 4.3872778 4.3814106

Table 2: Numerical values for the two helicity amplitudes in the Euclidean and in the

physical region, at the points defined in eqs. (5.6) and (5.7).

region where

t, u < 0 < m2
V < m2

h < 4m2
V and hence s > m2

h = s+ t+ u. (5.5)

Indeed, the hyperlogarithms can be evaluated numerically with GiNaC [67], provided a

small imaginary part is given to s, t and u. This is needed, also in the Euclidean region,

because individual hyperlogarithms in the expression are not necessarily single-valued, and

a consistent determination for all of them must be picked. In the Euclidean region, all

choices for the signs of the infinitesimal imaginary parts produce the same, real, result.

The correct result in the physical region, however, is obtained by ensuring that both s and

m2
h = s+ t+ u have a positive imaginary part (according to the iε prescription).

For reference, table 2 provides numerical results for the helicity amplitudes in two

points in the Euclidean region and two points (plus two crossings) in the physical region.

We pick two points in the physical region (5.5) with m2
h = (125/90)2m2

V such that

pph
1 =

{
s→ 1225

324
m2
V , t→ −

25

81
m2
V

}
, pph

2 =

{
s→ 937

324
m2
V , t→ −

275

324
m2
V

}
, (5.6)

and two points in the Euclidean region with

peu
1 =

{
s→ −1225

324
m2
V , t→ −

25

81
m2
V , u→ −

500

324
m2
V

}
,

peu
2 =

{
s→ −937

324
m2
V , t→ −

275

324
m2
V , u→ −

37

324
m2
V

}
.

(5.7)

It is interesting to notice that, in a rather large portion of the physical phase-space

(i.e. s > m2
h), the two helicity amplitudes are numerically similar. This is in part due to

the fact that the two amplitudes are expected to go to the same value both in the limit

mV →∞ and when the gluon p3 becomes soft, see section 5.2 for details.

For completeness, in table 2 we also show the value of the helicity amplitudes in the

physical region but for crossed kinematics. Clearly Ω+++ is symmetric under pi ↔ pj ,

while Ω++− is not and, instead, the two crossings p1 ↔ p3 and p2 ↔ p3 correspond to the

missing helicity amplitudes Ω−++ and Ω+−+, respectively.

– 18 –



5.1 Polylogarithm expressions for Ω
(0)
+++

While the amplitudes in the form discussed above are guaranteed to produce the correct

result, if the Feynman iε prescription is applied, the numeric evaluation of the hyperloga-

rithms is not particularly efficient, especially in the physical region. In order to obtain a

fast and stable method to evaluate the helicity amplitudes, we rewrite the hyperlogarithms

in terms of simpler functions. In particular, classical polylogarithms [78] of weight k,

Lik(z) =

∞∑
n=1

zn

nk
for |z| < 1, (5.8)

are readily available for speedy evaluation in many computer algebra systems. It was

demonstrated in [79] that every hyperlogarithm of weight 3 can be expressed as a lin-

ear combination of Li3’s with suitable arguments, plus products of Li2’s and logarithms.

However, in deriving such an expression for Ω
(0)
+++, great care is required due to the multi-

valuedness of polylogarithms. The principal branches have discontinuities on the rays

(−∞, 0] for log, and [1,∞) for Lik . (5.9)

An expression built out of principal branches of polylogarithms typically develops discon-

tinuities whenever an argument crosses one of these branch-cuts. It is therefore not always

possible to find a single expression that captures the desired branches over the entire phase-

space. Instead, different expressions must be derived in various sub-regions of phase-space.

In the ancillary files, we therefore provide two different expressions for Ω
(0)
+++ written in

terms of Li3,Li2 and logarithms only:

• one expression is valid in the entire Euclidean region defined by s, t, u < 0 < m2
V .

• one expression is valid in the entire physical region defined in eq. (5.5).

Note that due to the symmetry of Ω
(0)
+++ under permutations of s, t and u, the latter region

completely determines this helicity amplitude in the entire physical region of interest.

In the Euclidean case, the four roots (5.3) are positive and real. The arguments of the

polylogarithms Li2 and Li3 in our expression are chosen to be real and less than 1, over

the entire Euclidean region. Hence, the resulting expression is manifestly real in the entire

Euclidean region and efficient to evaluate.

After analytic continuation, in the physical region the roots (5.3) take the values

r = −i · |r| , rs = −i · |rs| , rt = −i · |rt| , ru = −i · |ru| , (5.10)

and we ensured that the arguments of all polylogarithms in our corresponding expression

stay away from the branch cuts (5.9), throughout the entire region (5.5). Our second poly-

logarithm expression for Ω
(0)
+++, tailored for the physical region and given in the ancillary

files, can thus be evaluated in that region efficiently and robustly, without any ambiguities.

Remark. A priori, it is not guaranteed that such an expression, single-valued throughout

the entire physical region, even exists at all. Further subdivisions of phase-space might

have been required, see for example [62, 64, 80].
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In order to derive the expressions for Ω
(0)
+++ discussed above, we followed roughly the

approach outlined in [81]. First, we computed the symbol of the amplitude, which we find

to produce 39 letters, namely

s

m2
V

, 1− s

m2
V

, 1 +
m2
V s

tu
, 1− s(t+ u)

m2
hm

2
V

, 1− r

m2
h

, 1− r + 2u

m2
h

,
r + rs
m2
h

,

m2
h

m2
V

, 1−
m2
h

m2
V

,
s+ t

m2
V

, 1−
m2
V (t+ u)

tu
, 1− rs

m2
h

, 1− rs + 2u

m2
h

, 1−
rs + 2m2

V

m2
h

,

(5.11)

and their conjugates under crossings. We then transformed this symbol into a basis of

Lyndon words [82], which separates the Li3-contributions from the products of Li2’s and

log’s. Finally, we matched this expression to an ansatz of Li3(z)’s, where the arguments z

are constructed such that:

• z and 1− z both factorize over the alphabet (given by (5.11) and conjugates),

• z never crosses the branch-cut [1,∞).

The second condition selects different arguments for the Euclidean and physical regions,

leading to different final expressions. To check for the factorizations in the first condition,

we used integer relation techniques as detailed in [83, section 3].

For the other helicity amplitude Ω
(0)
++−, the result includes hyperlogarithms of weight

up to and including four, and the corresponding symbol alphabet is more involved due to

the presence of the two extra square roots in (5.4). In a similar way as above, it would be

possible to rewrite our expressions in terms of simpler polylogarithms, reducing the set of

transcendental functions to log,Li2,Li3,Li4 and Li2,2, as explained for example in [84]. We

leave this to future work.

5.2 Checks on the result

Each master integral, with the exception of the weight four piece of the 7-propagator

non-planar integrals, has been successfully checked using the Mathematica [85] package

PolyLogTools [66, 67, 86] to numerically compare its expression obtained via differen-

tial equations to its expression calculated through integration over Feynman parameters

in multiple points inside the Euclidean region. Furthermore, the results from Feynman

parameters integration (including weight four for the 7-propagator integrals) have been

checked numerically against PySecDec [87–93] both in the Euclidean and in the Minkowski

region, finding excellent agreement in all points. Finally, also the results from the differen-

tial equations have been checked in random points in the Euclidean region against FIESTA

[94], finding excellent numerical agreement.

To validate our results for the amplitude we considered two different limits for the

amplitude: the soft-gluon limit and the limit of a vector boson with infinite mass.

In the soft limit, the gg → Hg amplitude Ac1c2c3λ1λ2λ3
factorizes into the leading order

gg → H amplitude Aλ1λ2 times an eikonal factor.8 Using the gauge choice of eq. (2.4), the

8The color structure of the leading order amplitude has been included in the eikonal factor.

– 20 –



factorization takes the form

Ac1c2c3λ1λ2λ3
−−−→
p3→0

−igsf
c1c2c3 p2 · ελ3

p2 · p3
Aλ1λ2 , (5.12)

which can be rewritten in terms of spinor products as

Ac1c2c3+++ −−−→
p3→0

−igsf
c1c2c3

√
2
〈12〉
〈13〉〈23〉

A++ ,

Ac1c2c3++− −−−→
p3→0

−igsf
c1c2c3

√
2

[12]

[31][32]
A++ .

(5.13)

Using the same normalisation for the EW and QCD couplings, the leading order amplitude

for gg → H for gluons of plus helicity can be written schematically as [17]

Aλ1λ2 = ελ1 · ελ2 F
(
m2
h

m2
V

)
, such that A++ =

[12]

〈12〉
F , (5.14)

where F is a non-trivial function of the ratio m2
h/m

2
V . Inserting the expression above into

the soft limit we get

Ac1c2c3soft,+++ = −igsf
c1c2c3

√
2

m2
h

〈12〉〈23〉〈31〉
F ,

Ac1c2c3soft,++− = −igsf
c1c2c3

√
2

[12]3

[13][23]m2
h

F ,
(5.15)

which correspond to our expressions for the amplitude in eq. (2.10). Indeed, we could check

numerically that for t→ 0−, u→ 0−, s→ m2
h, we obtain

lim
p3→0

Ω
(0)
++− = lim

p3→0
Ω

(0)
+++ = F . (5.16)

To check the mV � mh limit we start by recalling that, in this approximation, the

interaction can be encapsulated in a Wilson coefficient for the effective Lagrangian [19, 77]

Leff = −αs
C1

4v
HGaµνG

µν
a , (5.17)

where v denotes the vacuum expectation value of the Higgs field.9 Up to the explicit form

of the Wilson coefficient C1, this Lagrangian is identical to the heavy-top mass Lagrangian.

We can therefore read off the leading order mixed QCD-EW gg → Hg amplitude directly

from the corresponding computation in the heavy-top limit, which is presented in [77] as

Ac1c2c3eff,+++ = αs
C1,EW

v

√
4παsf

c1c2c3
m4
h√

2〈12〉〈23〉〈31〉
,

Ac1c2c3eff,++− = αs
C1,EW

v

√
4παsf

c1c2c3 [12]3√
2[23][13]

,

(5.18)

9We should note here that in the case of gg → Hg also another operator could appear which couples the

Higgs boson directly to a qq̄ pair and a gluon. We do not consider this operator here, since it is suppressed

by one more power in 1/m2
V in the limit mV →∞.
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with C1,EW = −α
(
CW + CZ cos2 θW

)
/
(
16π2 sin2 θW

)
. In order to compare these to our

results, we expand our helicity amplitudes in the limit mV →∞. We find that both helicity

amplitudes agree at leading order in this limit, such that10

Ω
(0)
++±(s, t, u,m2

V ) = −2
m2
h

m2
V

+O
(

1

m4
V

)
. (5.19)

We then infer the corresponding expressions for Ac1c2c3eff,+++ and Ac1c2c3eff,++− via (2.10), and find

agreement with (5.19) after multiplying our results by a factor of i.

For future applications, we note that the soft limit p3 → 0 showed that there is no

relative phase factor between our results for gg → Hg, and gg → H as given in [17].

6 Conclusions

In this paper we described the first calculation of the two-loop mixed QCD-EW corrections

to the production of a Higgs boson and a gluon in gluon fusion through a loop of massless

quarks, with full dependence on the Higgs and on the vector boson masses. The amplitudes

presented here are the last missing building blocks required to compute the NLO mixed

QCD-EW corrections to Higgs production in gluon fusion, overcoming the shortcoming

of the various approximations that have been used to estimate these corrections in the

past. We made use of helicity projector operators to extract the two independent helicity

amplitudes from the two-loop Feynman diagrams that contribute to the process in terms

of scalar Feynman integrals. We reduced all scalar integrals to master integrals by use of

integration by parts identities and computed the master integrals with two independent

methods, namely both starting from their differential equations in canonical form and by

direct integration over their Feynman/Schwinger parametrisation. In both cases, we find

that the result can be expressed in terms of multiple polylogarithms. Achieving this form

by integrating the differential equations turned out to be cumbersome in practice, in spite

of the fact that a canonical form for the differential equations could be found. In fact,

the alphabet of the non-planar master integrals is characterised by the presence of four

independent square roots, that we did not manage to rationalize at the same time. For

this reason, integrating the equations required us to split the master integrals into different

contributions, and to use different changes of variables to rationalize the square roots in

each of these pieces. This was doable in practice thanks to the particular structure of the

system of differential equations, but it produced rather cumbersome results.

Interestingly, the fact that all integrals required for the calculations are linearly re-

ducible, allowed us to get much more easily to a representation in terms of multiple poly-

logarithms by integrating Feynman parameters using the public code HyperInt. The results

obtained in this way are very compact and can be evaluated in any region of the phase

space with a simple addition of a +iε to the kinematic invariants, according to Feynman’s

prescription. For future applications, we constructed a much more efficient representation

of the Ω
(0)
+++ helicity amplitude in terms of classical polylogarithms up to weight three.

10We verified these expansions symbolically for Ω
(0)
+++ and numerically for Ω

(0)
++−. They are valid in all

regions of phase-space.
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A The master integrals

The following 45 planar master integrals are used as a basis for the reduction (as described

in section 2.1) and as a starting point for the computation of the differential equations (see

section 3):

IPL(−1, 1, 1, 1, 1, 1, 1, 0, 0) , IPL(0, 0, 1, 2, 0, 0, 2, 0, 0) , IPL(0, 0, 2, 2, 0, 0, 1, 0, 0) ,

IPL(0, 1, 1, 0, 1, 1, 1, 0, 0) , IPL(0, 1, 1, 1, 0, 1, 1, 0, 0) , IPL(0, 1, 1, 1, 1, 0, 1, 0, 0) ,

IPL(0, 1, 1, 1, 1, 1, 1, 0, 0) , IPL(0, 1, 2, 0, 0, 2, 0, 0, 0) , IPL(0, 1, 2, 0, 1, 0, 1, 0, 0) ,

IPL(0, 1, 2, 0, 2, 0, 0, 0, 0) , IPL(0, 1, 2, 1, 0, 0, 1, 0, 0) , IPL(0, 1, 2, 1, 0, 1, 0, 0, 0) ,

IPL(0, 1, 2, 1, 0, 1, 1, 0, 0) , IPL(0, 1, 2, 1, 1, 0, 1, 0, 0) , IPL(0, 1, 2, 1, 1, 1, 0, 0, 0) ,

IPL(0, 2, 0, 2, 0, 1, 0, 0, 0) , IPL(0, 2, 0, 2, 0, 1, 1, 0, 0) , IPL(0, 2, 1, 1, 0, 1, 1, 0, 0) ,

IPL(0, 2, 1, 1, 1, 1, 0, 0, 0) , IPL(0, 2, 1, 1, 1, 1, 1, 0, 0) , IPL(0, 2, 2, 0, 0, 1, 0, 0, 0) ,

IPL(0, 2, 2, 0, 1, 0, 0, 0, 0) , IPL(0, 2, 2, 0, 1, 0, 1, 0, 0) , IPL(0, 2, 2, 1, 0, 0, 1, 0, 0) ,

IPL(0, 2, 2, 1, 0, 1, 0, 0, 0) , IPL(1, 0, 1, 0, 1, 0, 2, 0, 0) , IPL(1, 0, 1, 1, 1, 0, 2, 0, 0) ,

IPL(1, 0, 2, 0, 1, 0, 2, 0, 0) , IPL(1, 0, 2, 1, 1, 0, 1, 0, 0) , IPL(1, 1, 1, 0, 0, 1, 1, 0, 0) ,

IPL(1, 1, 1, 0, 1, 0, 1, 0, 0) , IPL(1, 1, 1, 0, 1, 0, 2, 0, 0) , IPL(1, 1, 1, 0, 1, 1, 1, 0, 0) ,

IPL(1, 1, 1, 1, 0, 0, 1, 0, 0) , IPL(1, 1, 1, 1, 0, 1, 1, 0, 0) , IPL(1, 1, 1, 1, 1,−1, 1, 0, 0) ,

IPL(1, 1, 1, 1, 1, 0, 1, 0, 0) , IPL(1, 1, 1, 1, 1, 0, 2, 0, 0) , IPL(2, 1, 1, 0, 0, 0, 2, 0, 0) ,

IPL(1, 1, 2, 0, 1, 0, 1, 0, 0) , IPL(2, 2, 0, 0, 1, 0, 0, 0, 0) , IPL(2, 2, 0, 0, 1, 0, 1, 0, 0) ,

IPL(1, 2, 1, 0, 0, 0, 0, 0, 0) , IPL(2, 2, 0, 0, 0, 1, 0, 0, 0) , IPL(2, 2, 0, 0, 0, 1, 1, 0, 0) .

(A.1)
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The last two master integrals, IPL(2, 2, 0, 0, 0, 1, 0, 0, 0) and IPL(2, 2, 0, 0, 0, 1, 1, 0, 0) do not

appear in the amplitude but are required during the computation of the differential equa-

tions, since they play a role in the non-homogeneous part of the equations.

The following 18 non-planar master integrals are used as a basis for the reduction (as

described in section 2.1) and as a starting point for the computation of the differential

equations (see section 3):

INP(0, 1, 1, 0, 1, 1, 1, 0, 0) , INP(1, 1, 1, 1, 1, 1, 1,−1,−1) , INP(0, 1, 1, 1, 1, 0, 1, 0, 0) ,

INP(1, 1, 0, 1, 1, 0, 1, 0, 0) , INP(0, 1, 1, 1, 1, 1, 1, 0,−1) , INP(0, 1, 1, 1, 1, 1, 1, 0, 0) ,

INP(0, 1, 1, 2, 1, 0, 1, 0, 0) , INP(1, 1, 1, 1, 1, 1, 1,−1, 0) , INP(0, 1, 1, 2, 1, 1, 1, 0, 0) ,

INP(1, 1, 0, 1, 1, 1, 1, 0, 0) , INP(1, 1, 1, 0, 0, 1, 1, 0, 0) , INP(1, 1, 1, 0, 0, 2, 1, 0, 0) ,

INP(1, 1, 1, 1, 0, 0, 1, 0, 0) , INP(1, 1, 1, 1, 1, 1, 1, 0,−1) , INP(1, 1, 1, 1, 0, 2, 1, 0, 0) ,

INP(1, 1, 1, 1, 0, 1, 1, 0, 0) , INP(1, 1, 1, 1, 0, 1, 1, 0,−1) , INP(1, 1, 1, 1, 1, 1, 1, 0, 0) ,

(A.2)

In the basis of master integrals used in the differential equations, two more non-planar

master integrals appear:

INP(1, 1, 1, 1, 1, 1, 0, 0, 0) , INP(1, 2, 1, 1, 1, 1, 0, 0, 0) , INP(1, 1, 1, 1, 1, 1, 0, 0,−1) . (A.3)

These integrals can be rewritten in terms of the planar master integrals IPL(1, 1, 1, 1, 1, 0, 1, 0, 0),

IPL(1, 1, 1, 1, 1,−1, 1, 0, 0), and IPL(1, 1, 1, 1, 1, 0, 2, 0, 0) and their subtopologies. We keep

them as they are for simplicity, also in the ancillary files.
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B The less divergent basis

The following list of finite master integrals were calculated by integration of their parametric

representations, see section 4.1:

I(6)
PL (0, 3, 1, 1, 1, 1, 0, 0, 0) , I(6)

PL (0, 4, 1, 1, 1, 1, 0, 0, 0) , I(6)
PL (1, 1, 2, 0, 1, 0, 2, 0, 0) ,

I(6)
PL (1, 0, 1, 1, 1, 0, 3, 0, 0) , I(6)

PL (1, 0, 1, 1, 1, 0, 4, 0, 0) , I(6)
PL (0, 2, 2, 1, 1, 0, 1, 0, 0) ,

I(6)
PL (0, 3, 2, 1, 1, 0, 1, 0, 0) , I(6)

PL (1, 1, 1, 1, 1, 0, 3, 0, 0) , I(6)
PL (1, 1, 1, 1, 1, 0, 2, 0, 0) ,

I(6)
PL (1, 2, 1, 1, 1, 0, 2, 0, 0) , I(6)

PL (0, 2, 2, 1, 0, 1, 1, 0, 0) , I(6)
PL (0, 3, 1, 1, 1, 1, 1, 0, 0) ,

I(6)
PL (0, 2, 1, 1, 1, 1, 1, 0, 0) , I(6)

PL (0, 2, 1, 1, 1, 1, 2, 0, 0) , I(6)
NP(1, 1, 1, 3, 0, 0, 1, 0, 0) ,

I(6)
NP(0, 1, 1, 3, 1, 0, 1, 0, 0) , I(6)

NP(0, 1, 1, 4, 1, 0, 1, 0, 0) , I(6)
NP(1, 1, 1, 0, 0, 3, 1, 0, 0) ,

I(6)
NP(1, 1, 1, 0, 0, 4, 1, 0, 0) , I(6)

NP(1, 1, 1, 2, 0, 1, 1, 0, 0) , I(6)
NP(1, 1, 1, 1, 0, 2, 1, 0, 0) ,

I(6)
NP(1, 1, 1, 2, 0, 2, 1, 0, 0) , I(6)

NP(0, 1, 1, 0, 1, 3, 1, 0, 0) , I(6)
NP(0, 1, 1, 2, 1, 1, 1, 0, 0) ,

I(6)
NP(0, 1, 1, 1, 1, 2, 1, 0, 0) , I(6)

NP(0, 1, 1, 2, 1, 2, 1, 0, 0) , I(6)
NP(1, 1, 1, 2, 1, 1, 1, 0, 0) ,

I(6)
NP(1, 1, 1, 1, 1, 2, 1, 0, 0) , I(6)

NP(1, 1, 1, 3, 1, 1, 1, 0, 0) , I(6)
NP(1, 1, 1, 1, 1, 3, 1, 0, 0) ,

IPL(1, 1, 1, 0, 1, 0, 1, 0, 0) , IPL(1, 1, 1, 0, 1, 0, 2, 0, 0) , IPL(0, 1, 1, 1, 0, 1, 1, 0, 0) ,

IPL(0, 2, 1, 1, 0, 1, 1, 0, 0) , IPL(1, 0, 1, 0, 1, 0, 2, 0, 0) , IPL(1, 1, 1, 0, 0, 1, 1, 0, 0) ,

IPL(1, 0, 1, 0, 1, 0, 2, 0, 0) ,

(B.1)

where the upper index (6) indicates that the corresponding integral is evaluated in d = 6

dimensions (without index, d = 4). The remaining master integrals below are still divergent

and were integrated after regularizing integration by parts in Feynman parameters [72, 75]:

IPL(1, 1, 1, 0, 1, 1, 1, 0, 0) , IPL(1, 1, 1, 1, 0, 1, 1, 0, 0) , INP(1, 1, 0, 1, 1, 0, 1, 0, 0) ,

IPL(0, 1, 1, 0, 1, 1, 1, 0, 0) , IPL(1, 1, 1, 1, 0, 0, 1, 0, 0) , INP(1, 1, 0, 1, 1, 1, 1, 0, 0) ,

IPL(0, 0, 1, 2, 0, 0, 2, 0, 0) , IPL(0, 0, 2, 2, 0, 0, 1, 0, 0) , IPL(0, 1, 2, 0, 0, 2, 0, 0, 0) ,

IPL(0, 1, 2, 0, 1, 0, 1, 0, 0) , IPL(0, 1, 2, 0, 2, 0, 0, 0, 0) , IPL(0, 1, 2, 1, 0, 0, 1, 0, 0) ,

IPL(0, 1, 2, 1, 0, 1, 0, 0, 0) , IPL(0, 2, 2, 0, 0, 1, 0, 0, 0) , IPL(0, 2, 2, 0, 1, 0, 0, 0, 0) ,

IPL(0, 2, 0, 2, 0, 1, 0, 0, 0) , IPL(0, 2, 0, 2, 0, 1, 1, 0, 0) , IPL(0, 2, 2, 0, 1, 0, 1, 0, 0) ,

IPL(0, 2, 2, 1, 0, 0, 1, 0, 0) , IPL(0, 2, 2, 1, 0, 1, 0, 0, 0) , IPL(2, 2, 0, 0, 1, 0, 1, 0, 0) .

IPL(1, 0, 2, 0, 1, 0, 2, 0, 0) , IPL(1, 2, 1, 0, 0, 0, 0, 0, 0) , IPL(2, 1, 1, 0, 0, 0, 2, 0, 0) ,

IPL(2, 2, 0, 0, 1, 0, 0, 0, 0) .

(B.2)

We note that the six integrals in the top two rows of (B.2) have only a single pole as d→ 4

and they appear in the amplitude with a factor of (d− 4), so only the pole (leading order)

of those integrals contributes to the helicity amplitudes in d = 4.
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