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Abstract: We show that the Grossman-Nir (GN) bound, Br(KL → π0νν̄) ≤ 4.3Br(K+ →
π+νν̄), can be violated in the presence of light new physics with flavor violating couplings.
We construct three sample models in which the GN bound can be violated by orders of mag-
nitude, while satisfying all other experimental bounds. In the three models the enhanced
branching ratio Br(KL → π0 + inv) is due to KL → π0φ1, KL → π0φ1φ1, KL → π0ψ1ψ̄1

transitions, respectively, where φ1(ψ1) is a light scalar (fermion) that escapes the detec-
tor. In the three models Br(K+ → π+ + inv) remains very close to the SM value, while
Br(KL → π0 + inv) can saturate the present KOTO bound. Besides invisible particles in
the final state (which may account for dark matter) the models require additional light
mediators around the GeV-scale.
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1 Introduction

In the SM, the KL → π0νν̄ and K+ → π+νν̄ decays proceed through the same short
distance operator, involving the fields of the quark level transition (s→ dνν̄). The matrix
elements for the KL → π0νν̄ and K+ → π+νν̄ transitions are thus trivially related through
isospin, leading to the Grossman-Nir (GN) bound [1]

Br(KL → π0νν̄) ≤ 4.3Br(K+ → π+νν̄). (1.1)
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The bound remains valid in the presence of heavy New Physics (NP), i.e., for NP modifi-
cation due to new particles with masses well above the kaon mass. The bound is saturated
for the case of maximal CP violation, if lepton flavor violation can be neglected (see Ref. [2]
for counter-examples).

In this paper we investigate to what extent NP contributions toK → π+inv decays can
violate the GN bound. Simple dimensional counting shows that for large violations of the
GN bound the NP needs to be light, of order of a few GeV at most (see Section 2 and Refs. [3,
4]). Such light NP faces stringent experimental constraints from rare meson decays and
collider/beam dump searches as well as from astrophysics and cosmology. Nevertheless, the
couplings needed to modify the rare K → π+ inv decays are small enough that interesting
modifications of the GN bound are indeed possible. We identify three sample models that
achieve this through the following decays:

• Model 1: KL → π0φ1, where the mass of the light scalar, φ1, can be anywhere from
mφ1 . mK −mπ to a few MeV or even less,

• Model 2: KL → π0φ1φ1, where the mass of the light scalar, φ1, is required in a large
part of the parameter space to be above mφ1 & mπ/2 in order to avoid constraints
from invisible pion decays,

• Model 3: KL → π0ψ1ψ̄1, with ψ1 a light fermion whose mass is required to be above
mψ1 & mπ/2 in most of the phenomenologically viable parameter space.

The φ1 and ψ1 particles are feebly interacting and escape the detector, resulting in the
KL → π0 + inv signature, as does the SM transition, KL → π0νν̄. The NP is thus detected
through an enhanced Γ(KL → π0 + inv) rate. Furthermore, the three models can be
distinguished from the SM and each other by measuring the energy distribution of the
neutral pion, dΓ(KL → π0 + inv)/dEπ, see Fig. 1 for several sample distributions. While
the two body decay in Model 1 results in a fixed pion energy, the three body decays in
Model 2 and 3 can be close to the SM distribution for light φ1 and ψ1 masses and differ
from it for non-negligible masses. Let us mention in passing that the lightness of the scalars
could be due to them being a pseudo Goldstone boson of a broken global symmetry whereas
for fermions light masses are natural due to chiral symmetry.

In all three models the branching ratio Br(K+ → π+ + inv) remains close to the SM
value, Br(K+ → π+νν̄)SM = (8.4±1.0)×10−11 [5–7], and thus below the preliminary NA62
bound Br(K+ → π+νν̄)exp < 1.85× 10−10 [8], while Br(KL → π0 + inv) can be enhanced
well above its SM value, Br(KL → π0νν̄)SM = (3.4± 0.6)× 10−11 [5–7]. The NP induced
KL → π0 + inv transitions can even saturate the present upper experimental bounds from
KOTO Br(KL → π0νν̄)exp < 3.0× 10−9 [9].1

1For two body decays the bound is somewhat stronger, Br(KL → π0νν̄)exp < 2.4× 10−9, for mφ1 . mπ

[9]. If the new preliminary data are interpreted as a signal, they instead correspond to a rate of Br(KL →
π0 + inv)KOTO =

(
2.1+2.0
−1.1

)
× 10−9 [10, 11] (note though, that some of the observed events are likely due to

previously unidentified backgrounds [12]). Furthermore, in the numerics we quote the experimental bounds
on three body decays, K → πφ1φ1 K → πψ1ψ̄1, assuming the experimental efficiencies are the same as
for the SM K → πνν̄ transition. In reality, we expect the bounds to be weaker, since the experimental
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Figure 1. Left: The normalized decay width distributions as functions of the pion energy, Eπ, for
the SM (black line), for the decay dominated by the two body NP transition (Model 1), KL → π0φ1,
for two choices of invisible scalar masses, mφ1

= 1 MeV, 200 MeV (red lines) and for three body NP
decay (Model 2), KL → π0φ1φ1, with mφ1 = 1 MeV, 120 MeV (blue lines). Right: The branching
ratio distributions, where NP contributions saturate the present KOTO bound [9]. At the kinematic
endpoint, Eπ → mπ, we have dΓSM ∝ p3

πdEπ while for NP Model 2 dΓKL→π0φ1φ1
∝ pπdEπ, where

pπ = (E2
π −m2

π)1/2 (similarly for Model 3, Section 5, dΓKL→π0ψ1ψ̄1
∼ pπdEπ unless the Yukawa

couplings yij are purely real). This follows from the partial wave expansion, dΓ/dEπ ∼ p2l+1
π ,

adapted to EFTs [22]. In the K → πνν̄ rate the V -A SM interaction induces a negligible S-
wave contribution proportional to the neutrino mass, whereas the scalar interactions in our model
induce a non-suppressed S-wave. The maximum recoil, Eπ → Eπ

∣∣
max

, in contrast, is controlled
by a single power of the ν/φ1-velocity in the qµ rest frame, βν,φ1 = (1 − 4m2

ν/φ1
/q2)1/2 (where

q2 = m2
K + m2

π − 2mKEπ). For small mν/φ1 this velocity goes to 1 for most values of q2, leading
to a sharp cut-off at Eπ

∣∣
max

.

The three models considered in this work differ from the other proposed NP solutions
to the KOTO anomaly in that they allow for large violations of the GN bound at the
level of the amplitudes already. In contrast, Ref. [13] relies on the fact that the available
phase space is larger for neutral kaon decays due to mKL −mπ0 > mK+ −mπ+ and thus
K+ → π+Xinv decays can be forbidden by a finely tuned choice for the mass of the invisible
final state Xinv. Ref. [11] instead obtains, in one of the models, an apparent violation of
the GN bound from the experimental set-up; the produced light NP particles decay on
experimental length-scales, and are not observed in NA62 but are observed in KOTO due
to the geometry of the experiments. Finally, the NP models of Refs. [11, 14–21] do not
violate the GN bound, but can allow for a large signal in KOTO since NA62 is not sensitive
to Xinv with a mass close to the pion mass.

The paper is organized as follows. In section 2 a general Effective Field Theory analysis

efficiencies are highest for larger values of Eπ, while NP decays considered here are less peaked towards
maximal Eπ (as compared to the SM).

– 3 –



is presented. The three models are discussed consecutively in Sections 3, 4 and 5 with the
main plots collected in Figs. 5, 6, in Figs. 15, 16 and in Figs. 19, 20 for Model 1, 2 and 3,
respectively, with constraints due to K0 − K̄0 mixing, cosmology and invisible pion decays
discussed in the respective sections. The paper ends with conclusions in Section 6, while
details on decay rates and integral conventions are deferred to two short appendices.

2 The EFT analysis

We first perform an Effective Field Theory (EFT) based analysis, assuming that the SM is
supplemented by a single light scalar, ϕ, while any other NP states are heavy and integrated
out. The light scalar has flavor violating couplings and is created in the K0 → π0ϕ decay.
The effective Lagrangian inducing this transition is given by2

Leff = c(4)
(
s̄d
)
ϕ+

∑
i

c
(7)
i

Λ3

(
s̄Γid

)(
d̄Γ′id

)
ϕ+ · · · , (2.1)

where we only keep the parity-even operators of lowest dimension and work in the quark
mass basis. There is a single dimension 4 operator, and the sum runs over the dimension 7
operators, where Γi,Γ

′
i include both Dirac and color structures.

At the quark level the dimension 4 operator induces the s → dϕ transition and thus
contributes equally to K0 → π0ϕ and K+ → π+ϕ decays, see the first diagram in Fig. 2.
The resulting matrix elements for the KL → π0ϕ and K+ → π+ϕ decays are

{M(4)(KL → π0ϕ),M(4)(K+ → π+ϕ)} =
m2
K −m2

π

ms −md
f+(0){Im c(4), c(4)}. (2.2)

The KL → π0ϕ decay is CP violating and vanishes in the limit of zero weak phases,
Im c(4) → 0. These contributions therefore obey the Grossman-Nir relation,

|M(4)(KL → π0ϕ)| ≤ |M(4)(K+ → π+ϕ)|. (2.3)

The dimension 7 operators, on the other hand, contribute to K0 → π0ϕ and K+ → π+ϕ

decays in a qualitatively different way. The KL → π0ϕ decay can proceed through the
weak annihilation type contractions of valence quarks, i.e., through the third diagram in
Fig. 2. The K+ → π+ϕ transition requires the d̄d internal line to close in a loop (cf. the
2nd diagram in Fig. 2). Such contractions also contribute to KL → π0ϕ. Using at first
perturbative counting the latter contributions are suppressed, giving parametric estimates

{M(7)(KL → π0ϕ),M(7)(K+ → π+ϕ)} ∝ m3
K

Λ3

{
Im c

(7)
i ,

1

(4π)2

(αs
4π

)n
c

(7)
i

}
, (2.4)

where we neglected mπ compared to mK and do not write factors that are parametrically
of the same size but may differ by O(1), such as different form factors in the two cases.

2The full Lagrangian is L = c4
(
s̄d

)
ϕ + c′4

(
s̄γ5d

)
ϕ + · · · , but we display only the operators that are

parity even and thus contribute to the K → π decay. The dimension 5 operator (s̄γµd)∂µϕ can be traded
for the dimension 4 operator (ms −md)(s̄d)ϕ via equations of motion (EOMs). Similarly, the dimension 6
operator (s̄

←→
D µd)∂µϕ can be traded for s̄dϕ via EOM, leaving the dimension 4 and dimension 7 operators

in (2.1) as operators of lowest dimension.
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Figure 2. Contributions from dimension 4 (first diagram) and dimension 7 (2nd and 3rd diagrams)
EFT operators to the K → πϕ transition. The last diagram contributes to KL → π0ϕ only.
The quark-loop diagram in the middle corresponds to the S,E classes of diagrams and the weak
annihilation diagram on the right to the W,C classes of diagrams in the lattice computation of
Ref. [23].

Depending on the Dirac-color structures Γ
(′)
i of the operator one or more gluon exchanges

may be required leading to additional (αs/4π)n-factors shown in (2.4).
A priori this leaves two classes of NP models with potentially sizeable violations of the

GN bound. The first possibility is heavy NP, with a suppressed c(4) Wilson coefficient such
that dimension 7 operators dominate. The other possibility is light NP such that the EFT
assumption, on which the above analysis is based on, is violated.

Building viable heavy NP models that violate the GN bound faces several obstacles.
First of all, c(4) would have to be heavily suppressed, c(4) � mq/Λ, well below naive
expectations. If this is not the case, the “heavy” NP scale needs to be quite light. For
instance, for c(4) ∼ mq/Λ, c(7)

i ∼ O(1) the dimension 4 operator contributions dominate over
the dimension 7 ones already for Λ & O(3 GeV) (see also the discussion in [3]). Furthermore,
even if the hierarchy c(4) � c(7) was realised, it is not clear whether the GN bound could
be violated by more than a factor of a few. The scaling estimates in (2.4) were based on
perturbative expansion, while the kaon decays are in the deep non-perturbative regime of
QCD. One can get an idea of the size of theM(7)

K ∝ 〈πϕ|O(7)|K〉 matrix elements by linking
them to the ones for K → π`+`− decays that were explored in lattice QCD for light quark
masses above their physical value (mπ = 430 MeV andmK = 625 MeV) [23]. Figure 5 in Ref.
[23] indicates that the quark-loop and weak annihilation contractions, corresponding to the
middle and the right diagrams in Fig. 2, lead to contributions of comparable size, contrary
to the perturbative expectations in (2.4). If these results carry over to K → πϕ decays, it
would seem that the ratio ofM(7)(KL → π0ϕ)/M(7)(K+ → π+ϕ) would not easily exceed
a factor of ∼ 2 in models of heavy NP. It is unclear, however, whether this qualitative
feature, based on the evaluation of the SM V − A four quark operators [23], would carry
over to a model with scalar-scalar four quark operators, originating from a scalar mediator.
For instance, for V − A operators the weak annihilation topology is chirally suppressed in
the factorisation approximation, while this is not the case for scalar operators.

In conclusion, for heavy mediators the GN bound might or might not be violated in
the case c(4) � c(7). In this manuscript we therefore focus on the second possibility, the
possibility of light NP mediators, where we can use Chiral Perturbation Theory (ChPT)
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Figure 3. Diagrams for the K → πφ1 decay in Model 1 with the GN-violating contribution to the
very right. These diagrams enter the matrix elements in Eqs. (3.13), (3.14). Note that the η in the
loop contributes to the KL decay only. Diagrams which we neglect, such as the diagrams of O(p4)

or O(g3
qq′), are not shown.

with light NP states as a reliable tool to make predictions.

3 Model 1 - scalar model leading to two-body kaon decays

In the first example we introduce two real scalar fields, φ1 and φ2. The enhancement of the
K → π+inv branching ratio over the SM is due to the K → πφ1 decay, while K → πφ2 is
kinematically forbidden, i.e., we take mφ2 > mK−mπ. The φ1 interacts feebly with matter
and escapes the detector, resulting in a missing momentum signature3. The relevant terms
in the Lagrangian are

L ⊃ g(i)
qq′(q̄Lq

′
R)φi + h.c.+ λmSφ

2
2φ1 , (3.1)

where q, q′ = {u, d, s} and summation over repeated indices is implied. The couplings g(i)
qq′

are complex, and their imaginary parts trigger the KL → π0φ1 decay.
Large violations of the GN bound arise when there is a large hierarchy among the

following couplings,
g

(1)
sd � g

(2)
sd � g

(2)
dd , (3.2)

while all other couplings are further suppressed. In our benchmarks these remaining cou-
plings as well as g(1)

sd will be set to zero. Before proceeding to predictions for branching
ratios and the numerical analysis, it is instructive to perform a naive dimensional analysis
(NDA). This will give us insight into why large violations of the GN bound are possible as
well as to how large these violations can possibly be.

Taking mS ∼ mφ2 ∼ mK the NDA estimate for the two decay amplitudes are,

M(KL → π0φ1) ∝ Im g
(1)
sd +O(1)× λ Im g

(2)
sd Im g

(2)
dd , (3.3)

M(K+ → π+φ1) ∝ g(1)
sd +O(1)× 1

16π2
λ g

(2)
sd g

(2)
dd , (3.4)

where the first term in each line is due to the 1st diagram in Fig. 3. The second term in
(3.3) is due to the 3rd diagram in Fig. 3, which is absent in the K+ → π+φ1 decay. This

3The φ1 could also decay to neutrinos, φ1 → νν̄, so that the final state can even be the same as in the
SM, though with the νν̄ pair forming a resonant peak. We do not explore this possibility any further.
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Figure 4. The contributions to the K → πφ1 decay in Model 1 proportional to 〈φ2〉 (right), and
the related one-loop tadpole diagram (left).

is the crucial difference between the two decays and leads to large violations of the GN
bound, provided g(1)

sd is small.
However, violations of the GN bound cannot be arbitrarily large. Even if g(1)

sd is set to
zero, the K+ → π+φ1 transition is generated at the loop level from the 2nd diagram in Fig.
3, giving the 2nd term in (3.4). Without fine-tuning the ratioM(KL → π0φ1)/M(K+ →
π+φ1) is thus at best as large as the loop factor, 16π2 ∼ 103. Taking into account the present
experimental results, this is more than enough to saturate the present KOTO bound while
only marginally modifying the K+ → π++inv decay.

In order to simplify the discussion we assume below that the vacuum expectation values
(vevs) of the scalar fields φ1,2 vanish, 〈φ1〉 = 〈φ2〉 = 0. If this is not the case the K → πφ1

decays receive additional GN-conserving contributions, see Fig. 4 (right). More precisely,
it is the renormalised vevs that are set to zero, 〈φ1〉ren = 〈φ2〉ren = 0, since we work to
one loop order. That is, we set the sum of the two diagrams in Fig. 4 to be zero. Had
we set them instead to their natural value, 〈φi〉ren ∼ mKg

(i)
dd /16π2, our results would not

change qualitatively. While M(K+ → π+φ1) would be modified by an O(1) factor, in
M(KL → π0φ1) such contributions are always subleading and one would thus still have
large violations of the GN bound.

3.1 Estimating the transition rates using ChPT

We use ChPT to calculate the transition rates. In constructing the ChPT we count φ1 ∼
φ2 ∼ O(p).4 As far as QCD is concerned φ1,2 are external sources and can be treated as
spurions [24, 25] when building the low energy effective Lagrangian. The QCD Lagrangian,
including (3.1), can be conveniently rewritten as,

LQCD+φ =q̄(i/∂ + gs /G
a
T a)q − q̄Mqq −

∑
i

φi q̄(χ
(i)
S − iχ

(i)
P γ5)q, (3.5)

4That is, we count mφ1 and mφ2 both as O(p) ∼ mK −mπ, even though φ2 is mK −mπ by a factor of
a few in large part of the parameter space that we consider. Hence for heavy φ2 our ChPT based results
should be taken as indicative only and could receive corrections of O(1). Since we only wish to demonstrate
that large deviations of the GN bound are possible this suffices. However, should an anomalously large
KL → π0+inv rate be experimentally established our results should be revisited, say, for mφ2 towards and
above 1 GeV.
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where we keep only the light quarks, q = (u, d, s). The diagonal mass matrix is Mq =

diag(mu,md,ms), while χ
(i)
S,P are 3× 3 Hermitian matrices describing the quark couplings

to φ1,2, [
χ

(i)
S

]
qq′

= −1

2

(
g

(i)
qq′ + g

(i)∗
q′q

)
,

[
χ

(i)
P

]
qq′

= − i
2

(
g

(i)
qq′ − g

(i)∗
q′q

)
. (3.6)

Since we set the couplings to the up quark to zero they have the following form5

χ
(i)
S = −

0 0 0

0 Re g
(i)
dd ḡ

(i)
ds

0 ḡ
(i)
sd Re g

(i)
ss

 , χ
(i)
P =

0 0 0

0 Im g
(i)
dd ĝ

(i)
ds

0 ĝ
(i)
sd Im g

(i)
ss

 . (3.7)

The off-diagonal couplings in (3.7),

ḡ
(i)
ds = ḡ

(i)∗
sd = 1

2

(
g

(i)
ds + g

(i)∗
sd

)
, ĝ

(i)
ds = ĝ

(i)∗
sd = − i

2

(
g

(i)
ds − g

(i)∗
sd

)
, (3.8)

are the origin of the flavor violations.
The Lagrangian for QCD with the flavor violating φ1,2, LQCD+φ, is formally invariant

under a global SU(3)R × SU(3)L transformation, qR,L → gR,LqR,L, provided χ
(i)
S,Pφi and

Mq are promoted to spurions transforming as

s+ ip→ gR(s+ ip)g†L, (3.9)

where s and p stand for

s =Mq +
∑
i

χ
(i)
S φi, p =

∑
i

χ
(i)
P φi, (3.10)

with χ(i)
S,P given in (3.7).

The LO ChPT Lagrangian, with φ1,2 included as light degrees of freedom, is given by

L(2)
ChPT+φ =

f2

4
Tr
(
∂µU∂

µU †
)

+B0
f2

2
Tr
[
(s− ip)U + (s+ ip)U †

]
+

1

2
∂µφi∂

µφi −
m2
φi

2
φ2
i + λmSφ

2
2φ1 + · · · ,

(3.11)

where the ellipses stand for additional terms in the scalar potential. Here U(x) = exp(iλaπa/f)

is the unitary matrix parametrizing the meson fields [24, 25], B0 is a constant related to
the quark condensate, B0(µ = 2 GeV) = 2.666(57) GeV, f is related to the pion decay
constant f ' fπ/

√
2 = 92.2(1) MeV [26], with normalization 〈0|ūγµγ5d(0)|π−(p)〉 = ipµfπ.

The kaon decay constant fK = 155.6 ± 0.4 MeV [27] accommodates SU(3) breaking at
times.

In this paper we work to partial NLO order: all LO terms in the chiral expansion
O(p2) are kept, as well as the one loop corrections which are of order O(p4) and all finite.

5For light φ2, which is our preferred scenario, assuming g(2)uu 6= 0 would not introduce new qualitative
features. According to chiral counting, g(2)uu 6= 0 induces a K+π−φ1-term at O(p4), and is thus subleading
to KLπ

0φ1-terms that we consider. Hence we set g(2)uu to zero for simplicity rather than necessity.
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The complete O(p4)-expressions for decay amplitudes involves additional contact terms
(counter-terms or low energy constants), parametrically of the same size as the one loop
corrections. However, since φ1,2 are propagating degrees of freedom in our EFT the values
of the low energy constants in O(p4)-ChPT are generally different from the ones in pure
QCD and therefore unknown. The associated error in KL → π0φ1 is small, since the NLO
corrections are always subleading, while in K+ → π+φ1 they could give O(1) corrections
but would not invalidate our conclusions. For simplicity they are set to zero throughout
and we do not discuss them any further.

Next we calculate the K → πφ1 decay amplitudes. Expanding in the meson fields the
O(p2) Lagrangian reads

L(2)
ChPT+φ ⊃ B0f

∑
i

φi

(√
2ĝ

(i)
ds K̄

0 +
√

2ĝ
(i)
sdK

0 − Im g
(i)
ddπ

0 + 1√
3

Im
(
g

(i)
dd − 2g(2)

ss

)
η
)

+B0

∑
i

φi

{
Re(g

(i)
dd + g(i)

ss )K0K̄0 + Re(g
(i)
dd )
(

1
2(π0)2 − 1√

3
ηπ0
)
+

+ Re g(i)
ssK

+K− + Re g
(i)
ddπ

+π−+

+
[
ḡ

(i)
sd

(
− 1√

2
K0π0 +K+π− − 1√

6
K0η

)
+ h.c.

]
+ · · ·

}
,

(3.12)

where we only kept terms relevant for the calculation of the K → πφ1 transition, and the
analysis of experimental bounds on the φ1-couplings.

The NP contributions to the decay amplitude for the KL → π0φ1 and K+ → π+φ1

transitions are, see Fig. 3,

M(KL → π0φ1)NP =

{
2 Im ĝ

(2)
sd Im g

(2)
dd ∆φ2(m2

K)∆φ2(m2
π)λmSB0fKfπ

+ Im ḡ
(1)
sd −

Im ḡ
(2)
sd

8π2
λmSB0F (2)

L (I)
}
B0 ,

(3.13)

M(K+ → π+φ1)NP = −
{
ḡ

(1)
sd −

ḡ
(2)
sd

8π2
λmSB0F (2)

+ (I)
}
B0 , (3.14)

where ∆X(k2) ≡ 1/(k2 −m2
X) hereafter and

F (2)
L (Y ) = Re g(2)

ss Y (mK) + Re g
(2)
dd

(
Y (mK) + Y (mπ)− 1

3Y (mη)
)
, (3.15)

F (2)
+ (Y ) = Re g(2)

ss Y (mK) + Re g
(2)
dd Y (mπ) , (3.16)

are structures occurring in all three models. They depend on the loop function I(mX) =

C0(m2
K ,m

2
φ1
,m2

π,m
2
X ,m

2
φ2
,m2

φ2
), with C0 the standard scalar three-point Passarino-Veltman

function (cf. App. B). In the mφ2 � mK ,mX limit we have I(mX)→ −1/m2
φ2
. Moreover,

the replacement f2 → fπfK/2 accounts for the main SU(3) breaking effects.
Note that the amplitude vanishes in the limit of no CP violation, Im ĝ

(i)
sd , Im ḡ

(i)
sd → 0.

The first term in (3.13), proportional to ĝ(2)
sd , is the O(p2) contribution due to the tree level

exchange of φ2, see the 3rd diagram in Fig. 3. It is isospin violating since it gives rise to
the KL → π0φ1 transition but not to K+ → π+φ1. The first term in the second line of
Eq. (3.13) is the remaining O(p2) contribution, due to the emission of φ1 directly from the
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meson line, see the 1st diagram in Fig. 3. This contribution is isospin conserving – it is
present for both KL → π0φ1 and K+ → π+φ1 transitions. It is proportional to ḡ(1)

sd and is
thus small due to the assumed hierarchy among the couplings, Eq. (3.2).

The hierarchy of couplings |g(2)
sd,ds| � |g

(1)
sd,ds| thus leads to maximal violation of the GN

bound by NP contributions. However, this violation cannot be arbitrarily large. Even in
the ḡ(1)

sd → 0 limit we still have isospin conserving NP contributions generated at one loop,
see the 2nd diagram in Fig. 3, giving the last term in (3.13). If φ2 is heavy and integrated
out these radiative corrections match onto the φ1 − Kπ vertex, which is then radiatively
induced. Moreover the KL → π0φ1 and K+ → π+φ1 decays receive contributions from
π0 − φ1 mixing where flavor violation comes from the SM K → ππ transition. For our
choices of parameters these contributions are always negligible.

The NP contributions add coherently to the SM rate,

Γ(KL → π0 + inv) = Γ(KL → π0νν̄)SM + Γ(KL → π0φ1)NP, (3.17)

and the partial decay width due to NP is

Γ(KL → π0φ1)NP =
1

8π

∣∣M(KL → π0φ1)NP|2
pπ
m2
K

, (3.18)

where pπ = λ1/2(m2
K ,m

2
π,m

2
φ1

)/(2mK) is the pion’s momentum in the KL rest frame and
λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz the kinematic Källén function. The expressions
for the K+ → π+ + inv decay is completely analogous. Numerically, this gives (the SM
predictions are taken from Refs. [5–7, 28])

Br(KL → π0 + inv) = (3.4± 0.6)× 10−11︸ ︷︷ ︸
SM

+ 6.0× 10−9

(
Im ĝ

(2)
sd

5 · 10−9

)2( Im g
(2)
dd

10−3

)2( λmS

1 GeV

)2(1 GeV

mφ2

)8

︸ ︷︷ ︸
NP

,
(3.19)

where we kept only the leading term for the NP contribution. The typical values of the
inputs parameters for the NP contribution were chosen such that they reproduce roughly
the KOTO anomaly (in fact slightly larger, but within 1σ). Note the very high scaling
in the φ2 mass, underscoring that φ2 needs to be relatively light in order to have large
violations of the GN bound. For the charged kaon decay the numerical result is

Br(K+ → π+ + inv) = (8.4± 1.0)× 10−11︸ ︷︷ ︸
SM

+ 5.0× 10−11

∣∣∣∣ ḡ(1)
sd

10−13

∣∣∣∣2︸ ︷︷ ︸
NP

, (3.20)

where in the NP contribution we only kept the tree level term and set the value of ḡ(1)
sd to

be similar to the one-loop threshold correction ḡ(1)
sd ∼ ḡ

(2)
sd g

(2)
dd /8π

2, cf. Eq. (3.14), with the
typical values of the later couplings as in (3.19). While the correction to K+ → π+ + inv

is O(1) of the SM branching ratio, the correction to KL → π0 + inv can be orders of
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magnitude above the SM, giving large violations of the GN bound. Note that NP in Model
1 contributes to the 2-body decayK+ → π++X0 only, and for massless X0 is subject to the
bound Br(K+ → π+ +X0) < 0.73× 10−10 from E949 [29], which is slightly stronger than
the preliminary NA62 bounds on the 3-body decay Br(K+ → π+ + inv)exp < 2.44× 10−10

and the 2-body decay Br(K+ → π+ +X0)exp . 1.9× 10−10 (for massless X0) [8].

3.2 Constraints on ĝ
(i)
ds from K0 − K̄0 mixing

The K0 − K̄0 mixing is an important constraint on the model. The contributions to the
meson mixing matrix element are

M12 = MSM
12 +MNP

12 =− 1

2mK
〈K0|LSM

eff (0)|K̄0〉 − i

4mK
×

×
∫
d4x〈K0|TL(2)

ChPT+φ(x),L(2)
ChPT+φ(0)}|K̄0〉+ · · · ,

(3.21)

where the tree-level exchanges of φ2 is

MNP
12 = − (ĝ

(2)
ds B0fK)2

2mK(m2
φ2
−m2

K)
+ · · · , (3.22)

with the ellipses denoting higher order terms (we also neglect the NP contributions to the
absorptive mixing amplitude since it only enters at one loop). The replacement f → fK/

√
2

accounts for the SU(3) breaking.
We consider two constraints, ∆mK and εK which are CP conserving and CP violating

respectively. Using the relation ∆mK = 2ReM12 and conservatively assuming, due to the
relatively uncertain SM predictions of ∆mK , that the NP saturates the measured ∆mK ,
we obtain in the limit mφ2 � mK ,

∆mK

mK
' 0.69

∣∣Re(ĝ
(2)
ds )
∣∣(1 GeV

mφ2

)2

, (3.23)

and with the experimental value ∆mexpt.
K = 3.484(6)× 10−12 MeV [27], this translates to√∣∣Re(ĝ

(2)
ds )
∣∣ < 1.0 · 10−7×

(
mφ2

1 GeV

)
. (3.24)

To obtain the bounds on non-SM CP violating contributions to K0− K̄0 mixing we use the
normalized quantity

CεK =
|εSM+a
K |
|εSM
K |

. (3.25)

For the theoretical prediction of εK we use the expression [30]

εK = eiφε sinφε

(
ImM12

∆mK
+ ξ

)
, (3.26)

where
ξ ' Im Γ12

∆ΓK
. (3.27)
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We take the values for ∆mK = mL−mS , ∆ΓK = ΓS −ΓL, and φε = arctan(2∆mK/∆ΓK)

from experiment [27]. With the SM prediction for |εK | from [31], and the NP contribution
to M12, Γ12 from Eq. (3.22) we get

δCεK = CεK − 1 = −5.8× 1016 Im
[
(ĝ

(2)
ds )2

](1 GeV

mφ2

)2

, (3.28)

The global CKM fit by the UTFit collaboration results in 0.87 < CεK < 1.39 at 95% CL
[32, 33], which translates to the following 1σ bounds

− (2.6× 10−9)2

(
mφ2

1 GeV

)2

< Im
[
(ĝ

(2)
ds )2

]
< (1.5× 10−9)2

(
mφ2

1 GeV

)2

. (3.29)

These bounds will improve in the future, once the improved prediction for εK [31] is imple-
mented in the global CKM fits.

3.3 Constraints on representative benchmarks

To highlight the typical values of couplings that can lead to sizable correction inK → π+ inv
decays, while passing all other constraints, we form a benchmark 1 (BM1) and a benchmark
2 (BM2),

BM 1 : g
(2)
dd = (1+i)√

2
gdd , ḡ

(2)
sd = ĝ

(2)
sd = (1+i)√

2
gsd , (3.30)

BM 2 : g
(2)
dd = igdd , ḡ

(2)
sd = 0 , ĝ

(2)
sd = igsd . (3.31)

These depend on two real parameters, gdd and gsd, parametrizing couplings of φ2 to quarks.
All the remaining couplings of φ2 to quarks as well as all the direct couplings of φ1 to quarks
are set to zero in accordance with previous discussions. The triple scalar coupling is fixed
to λSmS = 1 GeV (and other potentially relevant scalar couplings assumed to be small, see
Section 3.4.1). The mass of φ1 is taken to be small, mφ1 = 1 MeV, while mφ2 is kept as a
free parameter that is varied in the range mφ2 ∈ [0.4, 1.5] GeV, cf. footnote 4.

The form of couplings in BM1, Eq. (3.30), is such that the NP contributions to εK
are maximized. This benchmark is thus representative of the parameter space that is
most constrained. Fixing gdd = 10−3 the allowed regions are shown in Fig. 5. The red
regions are excluded by the NA62 bound on Br(K+ → π+φ1)exp . 1.9 × 10−10 [8], the
E949 bound Br(K+ → π+φ1)exp < 0.73 × 10−10 [29] and by the KOTO bound Br(KL →
π0φ1) < 2.4 × 10−9 [9]. The E949 and NA62 bounds shown are for massless φ1, which
is a good approximation for our benchmarks, where mφ1 = 1 MeV. For heavier masses,
above mπ, the bound is expected to become significantly weaker and completely disappear
for mφ1 ' mπ0 , as in [34]. The green bands denote the 1σ bands of the branching ratio
Br(KL → π0 + inv)KOTO =

(
2.1+2.0
−1.1

)
× 10−9 [10, 11] that corresponds to the anomalous

KOTO events. The blue line denotes the GN bound, showing that large violations of the
GN bound are possible in this model.

This violation is most apparent in Fig. 5 (right) which gives the allowed values of
gsd as a function of mφ2 , with the dashed lines denoting contours of the ratio Br(KL →
π0 + inv)/Br(K+ → π+ + inv). The present KOTO bound is saturated by values for this
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Figure 5. The parameter space for Model 1, BM1, for gdd = 10−3 in (3.30). The GN bound
is denoted with blue lines, while the green regions give the 1σ bands corresponding to KOTO
anomalous events [10, 11]. Left: the predictions for Br(K+ → π+ + inv), Br(KL → π0 + inv),
varying mφ2

∈ [0.4, 1.5] GeV and for two values of gsd (black lines). The values closest to the SM
(black cross) are reached for mφ2 = 1.5 GeV. Blue regions are the 1σ SM prediction bands, with
the central values denoted by the dashed lines and a star, red regions are excluded by NA62 [35],
E949 [29] and KOTO [9]. Right: Contours of Br(KL → π0 + inv)/Br(K+ → π+ + inv) (dashed
lines) as functions of gsd, mφ2

, with the hatched regions excluded by K0−K̄0 mixing and π0 → inv

bounds. The region around the kaon mass is masked out (gray region).

ratio of around 20, while still satisfying the εK constraint, Eq. (3.29), and the π0 → inv

constrain discussed below, see Eq. (3.34). The excluded regions are shown hatched in Fig.
5 (right).

The solid black lines in Fig. 5 (left) show the values of Br(KL → π0+inv) and Br(K+ →
π+ + inv) for gsd = 5 · 10−10 and gsd = 2 · 10−9, varying mφ2 ∈ [0.4, 1.5] GeV, while
fixing gdd = 10−3 (the grey dotted parts of the lines are excluded by a combination of
K0 − K̄0 and π0 → inv constraints). The SM predictions for the two branching ratios,
Br(K+ → π+νν̄)SM = (8.4±1.0)×10−11 and Br(KL → π0νν̄)SM = (3.4±0.6)×10−11 [5–
7], are denoted with blue bands (1σ ranges). For the larger value, gsd = 2 · 10−9, the
prediction is still quite far away from the SM for mφ2 = 1.5 GeV, but would of course tend
to the SM for mφ2 → ∞. For larger values of gsd deviations from the SM prediction for
Br(K+ → π+ + inv) at the level of a few are predicted for this benchmark and subject
to the indicated constraints from E949, while for smaller values of gsd the deviations in
Br(K+ → π+ + inv) become negligibly small. That is, it is possible to explain the KOTO
anomalous events without having any appreciable NP effects in the charged kaon decay nor
in K0 − K̄0 mixing.

We next move to BM2. The form of couplings in Eq. (3.31) was deliberately chosen
such that there is no NP CP violation in K0− K̄0 mixing, in order to avoid the εK bound.
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Figure 6. The preferred parameter space for Model 1, BM2. Color coding is the same as in Fig.
5. See end of Section 3.3 for comments on these figures.

The bound from ∆mK , Eq. (3.24), on CP conserving contributions to K0 − K̄0 mixing is
much weaker, giving the hatched excluded region in Fig. 6 (right). This means that for the
same mass of φ2 the flavor violating couplings to quarks can be much larger than in BM1.
In Fig. (right) 6 we show the gdd = 3× 10−5 slice of the parameter space, in which case gsd
can be as large as 10−7. Furthermore, the form of couplings in BM2, Eq. (3.31), is such
that there is no NP effect at all in Br(K+ → π+ +inv), to the order we are working, and the
E949 bound is completely avoided. In contrast, the effect on Br(KL → π0+inv) can be very
large and easily saturate KOTO’s present upper bound, as shown for two representative
couplings gsd = 3 × 10−9, 8 × 10−8 (black lines, with dashed parts of the lines excluded
by ∆mK). BM2 comes with enhanced symmetry; φ2 is a pure pseudoscalar and φ1 a pure
scalar. This has implications for flavor conserving couplings of φ1, to which we turn next.

3.4 Constraints on the φ1-couplings

So far the scalar mass φ1 has been fixed to 1 MeV. Next, we show that for the two bench-
marks the radiatively generated couplings of φ1 to pions, nucleons, and photons are all well
below the bounds for a large range of φ1 masses (including mφ1 = 1 MeV). Figs. 5 and 6
are thus valid for a larger set of φ1 masses, as long as mφ1 � mK .

3.4.1 Invisible pion decays

If kinematically allowed, π0 → φ1φ1 can be an important phenomenological constraint. In
Model 1 this decay can proceed through φ2− π0 mixing though the loop diagram shown in
Fig. 12 (left). In the mφ2 � mπ,η limit the decay amplitude is

M(π0 → φ1φ1) =
1

12π2

(λmS)2B2
0f

m4
φ2

Re g
(2)
dd

(
2 Im g

(2)
dd − Im g(2)

ss

)
. (3.32)
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The corresponding width is given by

Γ(π0 → φ1φ1) =
|M|2

32πmπ
βφ1 , (3.33)

where here βφ1 ≡
(
1 − 4m2

φ1
/m2

π

)1/2, so that in the limit mφ1 � mπ � mφ2 , one has for

the branching ratio (setting Im g
(2)
ss = 0 for simplicity)

Br(π0 → φ1φ1) = 1.2× 10−9

(
Re g

(2)
dd

10−3

)2(
Im g

(2)
dd

10−3

)2(
λmS

GeV

)4(GeV
mφ2

)8

. (3.34)

The preliminary 90% C. L. experimental bound reported very recently by NA62 [8]

Br(π0 → φ1φ1) < 4.4× 10−9 , (3.35)

improves the E949 bound of 2.7×10−7 [36] by almost two orders of magnitude. BM2 obeys
this bound trivially, since π0 → φ1φ1 if forbidden by parity (Re g

(2))
dd = 0). For BM1, on

the other hand, the bound on Br(π0 → inv), Eq. (3.35), represents a stringent constraint,
as shown in Fig. 5 (right).

Finally, the π0 → φ1φ1 decay could also proceed at tree level via an additional interac-
tion term in (3.11) of the form δL = λ′mSφ2φ

2
1. Whereas, contrary to Model 2, λ′ plays no

role in the K → πφ1 decays per se, it is potentially dangerous for the invisible pion decay.
In the absence of a UV completion we may choose its initial value to be sufficiently small
(zero in practice) to pass the constraint.

3.4.2 φ1 − π0 mixing

The φi mix with light pseudoscalars through the g(i)
qq′ couplings, Eq. (3.1). The φ1 − π0

part of the mass matrix to one loop receives contributions in Fig. 7, and is parametrized
by the Lagrangian, mφ2 � mφ1,π,η,

Leff ⊃ −g1πB0fφ1π
0, (3.36)

with the effective φ1 − π0 coupling given by

g1π = Im g
(1)
dd +

1

8π2

(
λmSB0

m2
φ2

){
Im g

(2)
dd Re g

(2)
dd L(mπ)

+
1

3

(
Im g

(2)
dd − 2 Im g(2)

ss

)
Re g

(2)
dd L(mη) +

(
g

(2)
ds ĝ

(2)
sd + h.c.

)
L(mK)

}
,

(3.37)

where we have exceptionally kept the g(2)
ds -terms since they are leading in BM2. The first

term is due to tree level mixing, see Fig. 7 (left), the second term are the one loop corrections
due to diagram in Fig. 7 (right). The loop function L(mX) ≡ −m2

φ2
C0(0, 0, 0,m2

X ,m
2
φ2
,m2

φ2
)

is normalized such that L(mX)→ 1 for mφ2 � mX . In the following we will take for sim-
plicity this limit, which provides a reasonable approximation for the parameter region of
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Figure 7. The leading order and one loop induced φ1 − π0 mixing.
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Figure 8. CP violating contributions to φ1 → γγ, matching onto the coupling g1γγ .

interest, since Lπ ' 0.8, LK,η ' 0.4 for mφ2 = 400 MeV. In the two benchmarks (3.30),
(3.31), the effective φ1 − π0 couplings are

BM 1 : gBM1
1π = 2.3× 10−8

( gdd
10−3

)2
(
GeV
mφ2

)2

, (3.38)

BM 2 : gBM2
1π = 0 . (3.39)

In BM2 there is no φ1 − π0 mixing φ1 is a pure scalar and parity is conserved.
Working in the mass insertion approximation for the off-diagonal mass term, Eq. (3.36),

the φ1 − π0 mixing angle, sθ ≡ sin θ ≈ θ, between the interaction states φ1 and the mass
eigenstate φ′1 ≈ φ1 − sθπ0 is

sθ =
B0f

m2
π −m2

φ1

g1π . (3.40)

Note that this expression for the mixing angle is only valid for mφ1 sufficiently far away
from mπ. For the two benchmarks, we have

BM 1 : sBM1
θ = 3.0× 10−7

( gdd
10−3

)2
(
GeV
mφ2

)2

, (3.41)

BM 2 : sBM2
θ = 0 . (3.42)

The φ1− π0 mixing is thus very small in most of the viable parameter space, justifying the
use of the mass insertion approximation.

3.4.3 Couplings of φ1 to photons

The dominant decay channel of φ1 is to two photons. In the limitmφ1 � mπ the interactions
with two photons are described by the effective Lagrangian

Leff ⊃ −
1

8
g1γγφ1F

µνF ρσεµνρσ −
1

4
h1γγφ1F

µνFµν . (3.43)

The dominant contribution to the CP violating coupling g1γγ is from the π0 anomaly term
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Figure 9. CP conserving contributions to φ1 → γγ, matching onto the coupling h1γγ .
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Figure 10. Tree level and one loop contributions matching onto the effective couplings g1ππ/g1KK .

via the φ1 − π0 mixing, see Fig. 8. Working in the mass insertion approximation for the
off-diagonal mass term, Eq. (3.36), gives

g1γγ = sθ

√
2α

πfπ
≈ g1π

6.2× 10−3 GeV
m2
π −m2

φ1

mφ1�mπ−−−−−−→ g1π 0.34GeV−1 , (3.44)

with g1π given in (3.37).
The CP conserving h1γγ coupling receives the first relevant contributions from radiative

corrections with K+ and π+ running in the loop cf. Fig. 9. For our benchmarks the first
nonzero contributions arises at two loops, while for BM2 the numerically most important
contribution arises at three loops

h1γγ = h1+2 loop
1γγ + h3 loop

1γγ . (3.45)

In the mφ2 � mK (mπ � mφ1 by assumption) limit the one and two loop contributions,
in Fig. 9, assume the form

h1+2 loop
1γγ =

α

12π

(
g1ππ

m2
π

+
g1KK

m2
K

)
, (3.46)

whereas the effective couplings of φ1, Leff ⊃ φ1 (g1πππ
+π− + g1KKK

+K−), to two light
charged mesons evaluate to

g1ππ = B0

[
Re g

(1)
dd +

λB0mS

8π2m2
φ2

(
(Re g

(2)
dd )2 + |g(2)

sd |2
)]

, (3.47)

and g1KK = g1ππ|dd→ss. The first term in (3.47) is the tree level term from (3.12), see
Fig. 10 (left). In both benchmarks, BM1 and BM2, this contribution was set to zero. The
second term in (3.47) is the one loop correction, see Fig. 10 (right). We kept the flavor
violating contribution proportional to ḡsd even though it is numerically negligible.

For the three loop contribution to h1γγ we resort to a NDA estimate, still in the
mφ2 � mK limit,

h3 loop
1γγ ≈ α

4π

λmS

(16π2)2

( B0

fmφ2

)2[(
Im g

(2)
dd

)2
+O(1)× (Im g(2)

ss )2 +O(1)× (Im g
(2)
dd )(Im g(2)

ss )
]
,
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where the O(1) factors are not displayed.
Finally we are in a position to assemble the results for the benchmarks. Using gsd � gdd,

the φ1–photon couplings evaluate to

BM1 : gBM1
1γγ '

7.7× 10−9

GeV

( gdd
10−3

)2
(
GeV
mφ2

)2

,

hBM1
1γγ '

4.8× 10−10

GeV

( gdd
10−3

)2
(
GeV
mφ2

)2

,

(3.48)

in BM1, while for BM2 they turn out to be

BM2 : gBM2
1γγ = 0 ,

hBM2
1γγ ∼

2× 10−14

GeV

(
gdd

3× 10−5

)2(GeV
mφ2

)2

,
(3.49)

and we remind the reader that λmS = 1 GeV for reference. The g1γγ coupling vanishes
in BM2 since φ1 is a parity even scalar in that benchmark. The value quoted for hBM2

1γγ is
the NDA estimate of the flavor conserving 3 loop contribution. For representative values
of gdd in the two benchmarks we used the values in Figs. 5 and Fig. 6 for BM1 and BM2,
respectively.

The above couplings of φ1 to photons are sufficiently small that for both benchmarks
the φ1 is stable on collider scales. More concretely, the φ1 → γγ partial decay width is
given by

Γ1γγ =
1

64π

(
g2

1γγ + h2
1γγ

)
m3
φ1 , (3.50)

and this translates to

BM1 : cτBM1
1γγ = 7× 1011 m

(
MeV
mφ1

)3(10−3

gdd

)4 (mφ2

GeV

)4
, (3.51)

BM2 : cτBM2
1γγ ∼ 1023 m

(
MeV
mφ1

)3(3× 10−5

gdd

)4 (mφ2

GeV

)4
, (3.52)

such that φ1 is stable on solar to cosmological timescales. For such small couplings the
laboratory constraints from, e.g., π+ → φ1e

+ν decays [37] are irrelevant, whereas astro-
physical and cosmological constraints are important (cf. figure 1 in Ref. [38]) and further
discussed in Section 3.4.5.

3.4.4 Couplings of φ1 to nucleons

The couplings of φ1 to protons and neutrons are tree-level and loop-level induced by g(1)
dd

and g(2)
dd respectively, cf. Fig. 11. One can use Heavy Baryon Chiral Perturbation Theory

(HBChPT) [39] to organize different contributions. We only keep only the leading terms
which are (in relativistic notation)

L =
gA
f

(N̄γµγ5t
aN)∂µπ

a +
∑
i

(N̄Y N
i N)φi + · · · , (3.53)
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with ta = σa/2, a = 1, 2, 3 and σa are Pauli matrices, N = (p, n) the isospin doublet of
nucleons, and

Y N
i =

(∑
q Re(g

(i)
qq )σpq/mq 0

0
∑

q Re(g
(i)
qq )σnq /mq

)
, (3.54)

the coupling between φi and nucleons with summation over q = d, s (by assumption the
couplings of φ1,2 to up quarks are zero). For the matrix elements of the scalar current,
σNq ūNuN = 〈N |mq q̄q|N〉 we use the values from [40], σpd = (32 ± 10) MeV, σnd = (36 ±
10) MeV, σps = σns = (41.3 ± 7.7) MeV, along with the quark masses at µ = 2 GeV,
md = 4.67(33) MeV, ms = 93(8) MeV, while gA = 1.2723(23) [27].

In the heavy φ2 limit the following effective Lagrangian

Leff = g1NNmNφ1(N̄N) + 2g̃1NNmNφ1(N̄iγ5t
3N) , (3.55)

provides a good description of the φ1-nucleon system. Assuming mφ2,N � mφ1 , the dia-
grams in Fig. 11, evaluate to

g1NN =
1

mN

[
Y N

1 −
λmS

8π2mN

{
(Y N

2 )2F (r)−
(
gA Im g

(2)
dd

B0

mN

)2
F̃ (r)

}]
, (3.56)

g̃1NN =
gAB0

m2
π −m2

φ1

[
Im g

(1)
dd +

λmS

12π2

(
B0

m2
φ2

)(
2 Im g

(2)
dd − Im g(2)

ss

)
Re g

(2)
dd

]
, (3.57)

where Y N
1 stands for the nucleon-nucleon entries in (3.54). In the F̃ (r) term in (3.56) we

in addition assumed the mπ � mφ1 limit. The real-valued loop functions F (r), F̃ (r), with
r = m2

φ2
/m2

N , are given by 6

F (r) =
(r − 3)

2
log r − 1 + (1− r)

√
1− 4/r log

[
1

2

(√
r − 4 +

√
r

)]
, (3.58)

F̃ (r) =
1

r2
√

1− 4/r
log

[
1

2

(√
r − 4 +

√
r

)]
. (3.59)

In the limit mφ2 � mN we have F (r) → −3/(2r), F̃ (r) → ln r/(2r2). For mφ2 ∈ [0.5, 1.5]

GeV the loop functions take values in the intervals F (r) ∈ [−2.7,−0.46], F̃ (r) ∈ [4.5, 0.13].
The first term in (3.56) is due to the 1st diagram, while the one loop corrections are due to
the 2nd and 5rd diagram in Fig. 11. For the pseudoscalar coupling to nucleons, g̃1NN , we
keep the pion exchange term (dropping the η-exchange) in the 4th and the 5th diagram in
Fig. 11 resulting in the tree level and one loop terms in (3.57). To simplify the expressions
we show the one loop contribution in (3.57) only in the heavy mφ2 limit.

Numerically, we have for BM1, setting mφ2 = 1 GeV,

gBM1
1NN ' 3.5(4.3)× 10−7 GeV−1

( gdd
10−3

)2
, (3.60)

6It is noted that the 3rd diagram, in Fig. 11, does not introduce any infrared (IR) divergences in the
limit mπ → 0. This is a consequence of the derivative couplings of pions, cf. Eq. (3.53). We note in
passing that for a double insertion of this interaction term one cannot use the naive EOM and replace
gA(N̄γµγ5t

aN)∂µπ
a → −2mNgAN̄γ5t

aNπa. For a concise technical discussion we refer the reader to Ref.
[41]. Use of the naive EOM leads to the IR divergence that is linked to the absence of the derivative coupling
in that case. The same applies to the single insertion of the gA-term in 4th and 5th diagram.
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Figure 11. The leading order and one loop induced φ1-couplings to nucleons grouped into parity
conserving coupling g1NN (even in gA) and parity violating coupling g̃1NN in (3.56) (odd in gA).
The 3rd diagram is the only non-vanishing contribution to g1NN in BM2.
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Figure 12. Diagrams for the invisible pion decay, π0 → φ1φ1, in Model 1 (left) and Model 2
(middle and right). The diagram for Model 3 are analogous to Model 2 with the difference that the
graph on the right needs an extra ψ2 propagator as in Fig. 18.

g̃BM1
1NN ' 4× 10−6 GeV−1

( gdd
10−3

)2
, (3.61)

where the gBM1
1NN central value refers to protons (neutrons), while for BM2,

gBM2
1NN ' 8× 10−11 GeV−1

(
gdd

3× 10−5

)2

, (3.62)

g̃BM2
1NN = 0 . (3.63)

Below we analyse the combined constraints from the previous two subsections.

3.4.5 Combined analysis of φ1-constraints

The most important constraint on the φ1-couplings comes from the neutrino burst duration
observed in the supernova SN1987A. The interactions of φ1 with matter inside an exploding
supernova are dominated by its couplings to nucleons. For mφ1 = 1 MeV, used in our
benchmarks, the SN1987A observations exclude geff

1NN ≡ (g̃2
1NN + (3/2)g2

1NN )1/2 in the
range 7 · 10−10 GeV−1 . geff

1NN . 4 · 10−6 GeV−1 [42]. For larger values of geff
1NN the φ1 gets

trapped inside the proto-neutron star (PNS) and does not contribute to the cooling. This
is the case for BM1, see Eqs. (3.60), (3.61). For smaller values of geff

1NN the emission of
φ1 is suppressed sufficiently that it again does not contribute appreciably to the cooling of
PNS. BM2 falls in this regime, see Eqs. (3.62), (3.63).

The photon couplings of φ1 are less relevant for SN1987A since the Primakoff emission
of φ1 is always subdominant relative to the emission of φ1 in nucleon-nucleon scattering.
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Figure 13. The constraints on the gdd coupling in BM1 (left) and BM2 (right) due to couplings
of φ1 to photons and nucleons as a function of the φ1 mass. The purple regions are excluded by
beam dump searches, E949 (K+ → π+X) and NA62(π0 → inv), the red region by SN1987, while
the dashed line shows the upper bound from cosmology in the absence of any other light states or
φ1-couplings. The star denotes the values of gdd and mφ1

in Fig. 5 (Fig. 6) for BM1 (BM2). The
region around mφ1

' mπ0 is masked out (gray region).

This is best illustrated by the fact that SN1987A would exclude the range 10−8GeV−1 .
g1γγ , h1γγ . 10−5GeV−1, if φ1 were to coupled to photons only. The induced couplings
of φ1 to photons are at the lower edge of this range for BM1 and well below for BM2, cf.
Eqs. (3.48) and (3.49) respectively. This should be contrasted with nucleon couplings which
for BM1 traps φ1 inside the PNS as it is above and not below the exclusion window.

The constraints from the SN1987A neutrino burst duration are shown for a range
of φ1 masses for benchmarks BM1 and BM2 in Fig. 13 (left) and (right) as red regions,
respectively. According to the analysis of Ref. [42], the bounds are relevant all the way up
to mφ1 . 300 MeV, though we truncate the plots at 200 MeV. These bounds may however
depend on the details of the SN1987A explosion, and may even be absent if this was due
to a collapse-induced thermonuclear explosion [43].

In addition, Fig. 13 shows with purple shading the constraints from beam dump exper-
iments (we use the combined limit as quoted in [42]), and from the invisible pion decay by
NA62 [8]. The φ1−π0 mixing angle sθ needs to be smaller than about 2× 10−5 in order to
satisfy the K+ → π+X constraints from E949 [29] and NA62 [8]. This imposes a constraint
on gdd that is comparable but slightly less stringent than the beam dump limit. The upper
bound from cosmology, i.e., the impact of φ1 decays on big bang nucleosynthesis and dis-
tortions of cosmic microwave background, are shown with a dashed line [44]. This bound
is very sensitive to the details of the model. For instance, if the φ1 decays predominantly
to neutrinos these bounds would be drastically modified and thus potentially irrelevant.
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Figure 14. The diagrams inducing the K → πφ1φ1 decays in Model 2, with the matrix elements
shown in Eqs. (4.3) and (4.4). The 3rd diagram violates the GN bound.

4 Model 2 - scalar model leading to the three-body kaon decays

Model 2 has the same field content as Model 1, except that we impose a Z2 symmetry under
which the scalar φ1 is odd, φ1 → −φ1. The relevant terms in the Lagrangian are

L ⊃ g(2)
qq′ (q̄Lq

′
R)φ2 + h.c.+ λ4φ

2
2φ

2
1 + λ′mSφ2φ

2
1 + λ′′mSφ

3
2 + · · · . (4.1)

Note that the coupling (q̄Lq
′
R)φ1 is forbidden by the Z2-parity. Because of the Z2 parity

the φ1 always appears in pairs in the final state and we thus focus on the K → πφ1φ1

transitions with leading diagrams shown in Fig. 14.
The 1st diagram in Fig. 14, proportional to the trilinear coupling λ′, gives the same

contribution to both K+ → π+φ1φ1 and K0 → π0φ1φ1 transitions in accordance with
isospin. Since we are interested in violations of the GN bound, we impose the hierarchy

λ′, λ′′ � λ4 , (4.2)

and assume mS = O(mK). For simplicity we further assume that φ1,2 do not have vevs, or
that they are negligibly small (cf. related discussion for Model 1 in Section 3).

Keeping the leading diagrams in the λ′ and λ4g
(2)
dd expansion, i.e., the diagrams in Fig.

14, the KL → π0φ1φ1 decay amplitude reads

M(KL → π0φ1φ1)NP = i

{
4 Im ĝ

(2)
sd Im g

(2)
dd λ4∆φ2(m2

K)∆φ2(m2
π)B0fKfπ

− 2 Im ḡ
(2)
sd λ

′mS∆φ2(q2)− Im ḡ
(2)
sd

4π2
λ4F (2)

L (Ĩ)B0

}
B0 ,

(4.3)

with F (2)
L given in (3.15), while the K+ → π+φ1φ1 decay amplitude is

M(K+ → π+φ1φ1)NP =
{

2ḡ
(2)
sd λ

′mS∆φ2(q2) +
ḡ

(2)
sd

4π2
λ4B0F (2)

+ (Ĩ)
}
B0 , (4.4)

with F (2)
+ defined in (3.16), Ĩ(mM ) = C0(m2

K , q
2,m2

π,m
2
M ,m

2
φ2
,m2

φ2
), and q2 = (p1 + p2)2

is the invariant mass squared of the φ1φ1 final state system. As for Model 1, f2 → fπfK/2

in order to account for the main SU(3) breaking effect.
The structure of the two decay amplitudes is reminiscent of the results in Model 1 in

Eqs. (3.13), (3.14). The main difference is that there is no direct coupling of φ1 to quarks
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due to the Z2 symmetry. The φ1φ1 pair couples to d → s current instead through the
off-shell tree level exchange of φ2, see the 1st diagram in Fig. 14. This leads to isospin
symmetric contributions to K+ → π+φ1φ1 and KL → π0φ1φ1, proportional to the trilinear
λ′ coupling. Hence, in the λ′ → 0 limit, the K+ → π+φ1φ1 transition only receives loop
contributions, and the GN bound is maximally violated. Note that λ′ cannot be arbitrarily
small, since it is generated at one loop through φ2 loop, λ′ ∼ λ4λ

′′/(16π2), and at two
loops with φ2 and π0, η running in the loop: λ′ ∼ λ4(g

(2)
dd )3/(16π2)2. For our benchmarks

this gives a vanishingly small λ′ and thus this contribution can be safely ignored in our
analysis provided the bare value of λ′, λ′′ are set to zero. In this limit the first isospin
conserving contribution is at one loop due to the 2nd diagram in Fig. 14. The GN-violating
contribution instead arises at tree level, see the 3rd diagram in Fig. 14 and the first term
in (4.3).

The total rate of KL → π0φ1φ1 adds coherently to the SM KL → π0νν̄ rate. The
differential rate for KL → π0φ1φ1 is given by

dΓ

dEπ
=

|M|2
128π3mK

pπβφ1 , (4.5)

where pπ =
√
E2
π −m2

π and Eπ = (m2
K + m2

π − q2)/(2mK) are the pion’s momentum and
energy in the KL rest frame, while βφ1 = (1− 4m2

φ1
/q2)1/2.

4.1 Benchmarks for Model 2

The bounds from K0− K̄0 mixing on flavor violating φ2-coupling ĝ
(2)
sd are exactly the same

as for Model 1, Section 3.2. To illustrate the available parameter space we therefore use the
same two benchmarks for the φ2-couplings, Eqs. (3.30), (3.31), with results shown in Figs.
15, 16. In both cases we set λ4 = 1 and all the other couplings, apart from the ones in Eqs.
(3.30, 3.31), to zero (including λ′). In summary, the two benchmarks for Model 2 are thus

Model 2, BM 1 : Eq. (3.30) and mφ1 = 100 MeV, λ4 = 1, λ′ = λ′′ = 0 , (4.6)

Model 2, BM 2 : Eq. (3.31) and mφ1 = 100 MeV, λ4 = 1, λ′ = λ′′ = 0 , (4.7)

while mφ2 is kept as a free parameter. The results in Figs. 15, 16 are fairly independent
of the φ1 mass as long as it is taken to be small, mφ1 � mK , and thus does not modify
the final phase space. The choice of benchmark value mφ1 = 100 MeV is driven by the
constraints of the invisible pion decays, see Section 4.2. BM1 and BM2 thus have three free
parameters: gdd, gsd and mφ2 .

BM1, shown in Fig. 15, has a well restricted {gsd,mφ2} parameter space, since the
tree level exchanges of φ2 contributes a new CP violating source in K0 − K̄0 mixing. This
then restricts gsd to be below the hatched region in Fig. 15 (right), see also Eq. (3.29).
However, large enhancements of Br(KL → π0 + inv) over Br(K+ → π+ + inv) are still
possible in significant parts of the parameter space. For instance, setting gdd = 5 · 10−2,
the KOTO upper bound Br(KL → π0νν̄)exp < 3.0 × 10−9 [9] (red region in Fig. 15) are
obtained for gsd . O(10−9) and mφ2 . O(1 GeV). Fig. 15 (left) shows that in the relevant
region of parameter space the deviations in Br(K+ → π+ +inv) from the SM prediction are
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Figure 15. The parameter space for Model 2, BM1, Eq. (4.6). The color coding is the same as
in Fig. 5. In the predictions for Br(K+ → π+ + inv), Br(KL → π0 + inv) on the left plot (black
lines) we vary mφ2

∈ [0.55, 1.5] GeV for two values of gsd = 2× 10−10, 2× 10−9.

negligible, while Br(KL → π0 + inv) can be enhanced well above the GN bound (blue line).
For illustration we varymφ2 ∈ [0.55, 1.5] GeV, the same range as is shown in Fig. 15 (right),
fix gdd = 5 · 10−2 and show predictions for two choices of gsd = 2 · 10−10, 2 · 10−9 (black
lines). The resulting range in Br(KL → π0 +inv) is denoted with arrows. For gsd = 2 ·10−9

the εK bound is reached, and the exclusion range is shown with gray dotted lines. For both
choices of gsd the enhancements can easily be in the range of the KOTO anomaly (green
band) without violating any other bounds.

For BM2 the allowed {gsd,mφ2} parameter space is much larger, since in this case φ2

exchanges only induce CP conserving contributions to K0 − K̄0 mixing. This gives the
bound in (3.24), denoted in Fig. 16 (right) with the hatched region. Very large violations
of the GN bound (blue line) are thus possible without violating K0−K̄0 mixing constraints.
For instance, for gdd = 3 · 10−3 the KOTO upper bound is reached for gsd ∼ few×10−8 and
mφ2 ∼ 1 GeV. Fig. 16 (left) shows predictions for Br(K+ → π+ +inv), Br(KL → π0 +inv),
for two choices of gsd = 10−9, 10−7 (black lines, gray dotted line excluded by K0 − K̄0

mixing) when varying mφ2 ∈ [0.55, 1.5] GeV, setting gdd = 3 · 10−3. The deviations in
Br(K+ → π+ + inv) = 1.0 · 10−8 vanish in BM2, while over a large region of {gdd, gsd,mφ2}
the KOTO upper limits on Br(KL → π0 + inv) are saturated, while avoiding any other
constraints.
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Figure 16. The preferred parameter space for Model 2, BM2. The color coding is the same as in
Fig. 15. For the model predictions (black lines) in the left panel we set gsd = 10−9, 10−7 and vary
mφ2

∈ [0.55, 1.5] GeV.

4.2 Constraints on the φ1-couplings

The most stringent constraints on the couplings of φ1 to quarks are due to the invisible π0

decay. In the mφ2 � mπ limit, the π0 → φ1φ1 decay amplitude is given by,

M(π0 → φ1φ1) =
B0f

m2
φ2

[
2λ′mS Im g

(2)
dd +

λ4B0

6π2
Re g

(2)
dd

(
2 Im g

(2)
dd − Im g(2)

ss

)]
, (4.8)

where the first term in the parenthesis originates from the tree level exchange of the φ2,
Fig. 12 (middle), the second from the one loop contribution shown in Fig. 12 (right).

Using Eq. (3.33) for the π0 → φ1φ1 partial decay width, the corresponding branching
ratio in the mφ1 � mπ � mφ2 limit are, setting g(2)

ss = 0,

Br(π0 → φ1φ1) =


3.8× 10−3 λ2

4

(
Re g

(2)
dd

3×10−2

)2(
Im g

(2)
dd

3×10−2

)2 (
GeV
mφ2

)4
, for λ′ = 0 ,

2.1× 10−7
(

λ′mS
10−5 GeV

)2
(

Im g
(2)
dd

3×10−2

)2 (
GeV
mφ2

)4
, for λ4 = 0 .

(4.9)

These should be compared with the experimental bound Br(π0 → φ1φ1) < 4.4 × 10−9 [8].
For λ4 ∼ O(1), which is required for large violations of the GN bound, this excludes φ1

masses mφ1 . mπ/2 for BM1. In BM2 the π0 → φ1φ1 is forbidden due to parity, so that
φ1 can be light, as long as the parity breaking term λ′mS is sufficiently small.

The beam dump and SN constraints in BM1 and BM2 are very similar to the ones shown
in Fig. 13 for Model 1, but with rough identification gdd

∣∣
Model 1

→ 1/(4π)×gdd
∣∣
Model 2

and
mφ1

∣∣
Model 1

→ 2mφ1

∣∣
Model 2

, since the transitions now involve two φ1 particles in the final
state. In particular, for the choices of parameters in Figs. 15 and 16 the collider and SN
constraints are presumably satisfied.
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Figure 17. Graph dominating the annihilation cross section of φ1φ1 → π0π0 and ψ1ψ̄1 → π0π0 in
Model 2 and Model 3 respectively.

4.3 φ1 as a dark matter candidate

Since φ1 is odd under the Z2-parity, it is absolutely stable and could be a dark matter (DM)
candidate. If mφ1 > mπ0 the φ1φ1 → π0π0 annihilation channel is open. Below we shall see
that the annihilation cross section is large enough, in part of the parameter space, such that
the correct DM relic abundance is obtained. Note however, that this restricts φ1 to a rather
narrow mass range, mπ0 ≤ mφ1 ≤ (mKL −mπ0)/2, or numerically, 135 MeV . mφ1 . 181

MeV.
The annihilation cross section for φ1φ1 → π0π0 process is dominated by the λ4 vertex

and φ2 − π0-conversion, while the φ2 s-channel resonance contribution is subleading, since
λ′ � λ4, cf. (4.2) and Fig. 17. Assuming a non-relativistic φ1, as is the case at the time of
freeze-out, the leading thermally averaged cross section is given by

〈σv〉 =
1

16π
λ2

4

(
Im g

(2)
dd

)4(B0fπ
m2
φ2

)4 pπ
m3
φ1

, (4.10)

where in this approximation pπ = (m2
ψ1
−m2

π)1/2. Taking mφ1 = 160 MeV as a representa-
tive value gives

〈σv〉 ' 3 · 10−26 cm3

s
× λ2

4

(
Im g

(2)
dd

2.56× 10−2

)4(1 GeV

mφ2

)4

, (4.11)

which is of the right size to get the correct DM relic abundance (3 · 10−26cm3/s ≈ 1 pb).
For mφ1 < mπ0 the φ1φ1 → π0π0 annihilation cross section is kinematically forbidden.

In that case the dominant annihilation channel becomes φ1φ1 → γγ. The resulting annihi-
lation cross section is so small, that if this were the only annihilation channel, the φ1 would
overclose the universe [45]. This means that φ1 should also couple to other light states.
For instance, φ1 could annihilate into light SM particles, e.g. φ1φ1 → e+e− or φ1φ1 → νν̄.
Alternatively it could annihilate away to other light dark sector particles or dark photons
φ1φ1 → γDγD (if φ1 was gauged under a dark U(1)). Since none of these couplings are
related to K → πφ1φ1 decays we do not explore the related phenomenology any further,
beyond stating the obvious – that φ1 could well be a thermal relic for appropriate values of
these additional couplings.
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Figure 18. The K → πψ1ψ̄1 in the fermion Model 3 with contribution evaluated in Eqs. (4.3) and
(5.8) respectively. The third diagram only contributes to KL → π0ψ1ψ̄1, as the notation suggests,
and is therefore responsible for potential violation of the GN bound in Model 3.

5 Model 3 - light dark sector fermions

In this model we introduce a real scalar, φ, of mass mφ, and two Dirac fermions, ψ1, ψ2,
with masses mψ1,ψ2 , where the couplings relevant for the K → π+inv decay are

L ⊃ g(φ)
qq′ (q̄Lq

′
R)φ+ yijφψ̄L,iψR,j + h.c. . (5.1)

The fermion ψ2 is massive enough such that the decays of K → πψ2ψ̄2 and K → πψ1ψ̄2 are
kinematically forbidden. In contrast and crucially, the decay K → πψ1ψ̄1 is assumed to be
kinematically allowed. The couplings of φ to the quarks are assumed to have a hierarchical
flavor structure

g
(φ)
sd,ds � g

(φ)
dd,ss , (5.2)

reflecting the suppression of flavor changing neutral currents of the SM, whereas the Yukawa
couplings of φ to ψ1,2 are assumed to favor off-diagonal transitions,

y11,22 � y12,21 . (5.3)

While we do not attempt to build a full flavor model we remark in passing that such flavor
structures can easily be realised within Froggatt-Nielsen (FN) type models. Choosing for
instance the U(1)FN charges to be [ψL,2] = [ψR,2] = 0, [ψL,1] = −[ψR,1] = [φ] = 1 and
with ε = 〈φFN〉/MFN the FN spurion carrying the charge [ε] = −1, the Yukawa and mass
matrices take the form

yij ∼
(
ε∗ 1

1 ε

)
, Mψ ∼ m0

(
ε2 ε

ε 1

)
, (5.4)

where the “∼” sign denotes equality up to O(1) factors. Similarly, if [dL,R] � [sR,L], the
g

(φ)
sd,ds can be arbitrarily suppressed in accordance with (5.2).

Keeping the leading diagrams in yij and g
(φ)
dd , shown in Fig 18, gives the following

KL → π0ψ1ψ̄1 decay amplitude

M(KL → π0ψ1ψ̄1)NP =

−i
{

Im ĝ
(φ)
sd Im g

(φ)
dd ∆φ(m2

K)∆φ(m2
π)
[
mψ2y12y21

(
ūPRv

)
∆̄ + |y12|2

(
ūγµPLv

)
∆̄µ
]
B0fKfπ

– 27 –



− Im ḡ
(φ)
sd

16π2

[
mψ2y12y21

(
ūPRv

)
F (φ)
L (Ī4) + |y12|2

(
ūγµPLv

)
F (φ)
L (Īµ4 )

]
B0

+ Im ḡ
(φ)
sd y11

(
ūPRv

)
∆φ(q2)

}
B0 +

{
yij , γ5 ↔ y∗ji,−γ5

}
, (5.5)

where 2PR,L ≡ 1 ± γ5, we have shortened ū ≡ ū(p̄), v ≡ v(p), while q2 = (p + p̄)2 is the
invariant four momentum of the fermion pair. The ∆̄(µ) stands for combinations of fermion
propagators

∆̄ =
[
∆ψ2((pπ+p̄)2) + {p̄↔ p}

]
,

∆̄µ =
[
(pπ + p̄)µ∆ψ2((pπ+p̄)2)− {p̄↔ p}

]
, (5.6)

where ∆X(k2) is defined below (3.13), while F (φ)
L (Z) = F (2)

L (Z)|
g
(2)
qq →g

(φ)
qq

, with the latter
defined in (3.15). Its arguments are given in terms of loop integrals,

Ī4(mM ) = I4(mM , p̄) +
{
p̄→ p

}
,

Īµ4 (mM ) =
{
Iµ4 (mM , p̄) + (p̄+ pπ)µI4(mM , p̄)

}
−
{
p̄→ p

}
, (5.7)

where I4(mM , P ) ≡ D0(m2
π, (pπ+P )2, (pK−pπ−P )2, (pK−pπ)2, P 2,m2

K ,m
2
φ,m

2
M ,m

2
ψ2
,m2

φ)

(cf. Appendix B) and Iµ4 is the same integral with an additional Lorentz-vector kµ in the
integrand.

The decay amplitude K+ → π+ψ1ψ̄1 is analogous, but without the 3rd diagram in
Fig. 18. This gives

M(K+ → π+ψ1ψ̄1)NP =

−
{
ḡ

(φ)
sd

16π2

[
mψ2y12y21

(
ūPRv

)
F (φ)

+ (Ī4) + |y12|2
(
ūγµPLv

)
F (φ)

+ (Īµ4 )
]
B0

− ḡ(φ)
sd y11

(
ūPRv

)
∆φ(q2)

}
B0+

{
yij , γ5 ↔ y∗ji,−γ5

}
,

(5.8)

where F (φ)
+ (Z) = F (2)

+ (Z)|
g
(2)
qq →g

(φ)
qq

with the later defined in (3.16). A formula for the rate,
in differential form, is given in Appendix A.

5.1 Benchmarks for Model 3

The new elements of Model 3 are the Yukawa couplings between φ and ψ1,2, as well as the
absence of the light-scalar φ1. In order to ease comparisons with Model 1 and Model 2, we
use g(2)

qq′ → g
(φ)
qq′ Eqs. (3.30), (3.31)

Model 3, BM 1 : g
(φ)
dd = (1+i)√

2
gdd , ḡ

(φ)
sd = ĝ

(φ)
sd = (1+i)√

2
gsd, y12 = y21 = 1 , (5.9)

Model 3, BM 2 : g
(φ)
dd = igdd , ḡ

(φ)
sd = 0 , ĝ

(φ)
sd = igsd, y12 = y21 = 1 , (5.10)

while all the other couplings are set to zero. In particular, the only nonzero Yukawa
couplings of ψi fermions for φ are the flavor violating ones, y12,21, while the diagonal ones
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Figure 19. The parameter space for Model 3, BM1, Eq. (5.9). The color coding is the same as in
Fig. 5. In the predictions for Br(K+ → π+ + inv), Br(KL → π0 + inv) in the left plot (black lines)
we vary mφ ∈ [0.55, 1.2] GeV for two values of gsd = 10−10, 10−9 and fix mψ2

= 0.8 GeV. Right
(middle) panels show the parameter space as functions of mψ2(mφ), fixing mφ(ψ2) = 0.8 GeV.

are assumed to be vanishingly small, and set to y11,22 = 0. The mass of the lightest fermion
is set to mψ1 = 100 MeV. The benchmarks are thus described by four continuous variables:
the masses mφ,mψ2 and the real parameters gdd, gsd.

The flavor violating coupling, ĝ(φ)
sd , is constrained by K0− K̄0 mixing. The bounds are

the same as for φ2 in Model 1, Section 3.2, and are thus obtained from Eqs. (3.29), (3.24)
through the ĝ(2)

sd → ĝ
(φ)
sd , mφ2 → mφ replacements. BM1 is severely constrained by εK since

tree level exchange of φ induces a new CP violating contribution to K0 − K̄0 mixing. Fig.
19 (middle) and (right) show that large enhancements of Br(KL → π0 + inv)/Br(K+ →
π+ + inv) are possible only for small values of mφ and mψ2 , comparable to the kaon mass.
Still, such light NP states are not excluded experimentally and can saturate the present
KOTO bound. Fig. 19 (left) shows that in this regime it is possible to have values for this
ratio well above the GN bound, in the range of the anomalous KOTO events (green band).

BM2, on the other hand, does not lead to tree level contributions to εK . The constraints
from K0−K̄0 mixing are therefore relaxed compared to BM1 as they are only due to ∆mK .
As shown in Fig. 20, it is thus possible to saturate the present KOTO upper bounds over
a much larger set of parameter space, with masses of mφ and mψ2 up to ∼ 1 GeV for
gdd = 5 · 10−2. Next, we discuss the constraints on the ψ1-couplings.

5.2 Constraints on the ψ1-couplings

The leading diagrams for π0 → ψ1ψ̄1, relevant to the invisible pion constraint, are analogous
to the Model 2 ones shown in Fig. 12 with φ2 → φ, φ1 → ψ1 with a ψ2 inserted in between
the final state pair in the loop diagram. Assuming mφ,ψ2 � mπ,η, the corresponding matrix
element reads

M(π0 → ψ1ψ̄1) =
(
ūPRv

)B0f

m2
φ

M̂+
{
yij , γ5 ↔ y∗ji,−γ5

}
+O(m2

π/m
2
φ,ψ2

) , (5.11)
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Figure 20. Same as Fig. 19 but for Model 3 BM2. In the predictions for Br(K+ → π+ + inv),
Br(KL → π0 + inv) in the left plot (black lines) we vary mφ ∈ [0.55, 1.2] GeV for two values of
gsd = 7 · 10−9, 7 · 10−7 and fix mψ2

= 0.8 GeV.

where M̂ is a shorthand for

M̂ = Im g
(φ)
dd y11 + Re g

(φ)
dd y12y21

1

12π2

B0

mψ2

(
2 Im g

(φ)
dd − Im g(φ)

ss

)
H(x) , (5.12)

where x = m2
φ/m

2
ψ2
, H(x) = (1+x(lnx−1))/(1−x)2 quoting H(0) = 1 and H(1) = 0.5 as

representatitve values. The total rate is easily obtained from the matrix element squared
given in (A.4) and the 1→ 2 decay rate (3.33) (without the symmetry factor 1/2)

Γ(π0 → ψ1ψ̄1) =
(B0fπ)2

m4
φ

(
β2
ψ1

(ReM̂)2 + (ImM̂)2
) mπ

16π
βψ1 , (5.13)

replacing f → fπ/
√

2 and adapting βψ1 = (1 − 4m2
ψ1
/m2

π)1/2. Assuming Im g
(φ)
ss = 0,

mψ1 = 0 and H(x)→ 1 one gets values

Br(π0 → ψ1ψ̄1) =


2.6 · 10−9

(
|y11|

5·10−6

)2
(

Im g
(2)
dd

5·10−2

)2 (
GeV
mφ

)4
, y12y21 = 0 ,

3.3 · 10−9
(
|y12y21|

10−2

)2
(

Re g
(2)
dd

5·10−2

Im g
(2)
dd

5·10−2

)2 (
GeV
mφ

)4 (
4 GeV
mψ2

)2
, y11 = 0 ,

(5.14)

which are close to the upper experimental bound Br(π0 → φ1φ1) < 4.4× 10−9 [8]. Clearly
the tree graph is leading and imposes a constrain |y11| . O(5 · 10−6) on the Yukawa
couplings to the light fermion for the two benchmarks in Figs. 19 and 20. We observe that,
for both BM1 and BM2 the lightest fermion is required to be heavy enough that invisible
pion decay is kinematically forbidden, mψ1 & mπ0/2. Reducing somewhat the value of
|y12y21| ∼ O(10−2), very light ψ1 are possible. Even in this case the KOTO bounds could
be saturated (at least for the BM2 flavor structure of the couplings).

5.3 ψ1 as a dark matter candidate

In the minimal version of Model 3, presented in this work, ψ1 and ψ2 are odd under the
Z2-parity. The lightest fermion, ψ1 can thus be a DM candidate. The situation is similar
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to Model 2. For ψ1 in the mass range 135 MeV . mψ1 . 181 MeV, ψ1ψ̄1 → π0π0 is
kinematically allowed, and can lead to the correct relic DM abundance. For lighter ψ1

only the ψ1ψ̄1 → γγ annihilation is allowed. However, if φ were to couple to electrons or
neutrinos, the resulting annihilation cross sections can be large enough such that ψ1 can be
the DM.

For now, let us assume that ψ1ψ̄1 → π0π0 is kinematically allowed. Then at leading
order there are two relevant diagrams as shown in Fig. 17. The corresponding matrix
element reads

M(ψ1ψ̄1 → π0π0) =
(
B0f Im g

(φ)
dd ∆φ(m2

π)
)2 [

mψ2y12y21∆̃
(
v̄PRu

)
+ |y12|2∆̃µ

(
v̄γµPLu

)]
+B0 Re g

(φ)
dd

[
y11∆φ(s)v̄PRu

]
+
{
yij , γ5 ↔ y∗ji,−γ5

}
, (5.15)

where v̄ ≡ v̄(p), u ≡ u(p̄), s ≡ q2 = (p + p̄)2, and by crossing symmetry from the right
diagram in Fig. 18: ∆̃(µ) = ∆̄(µ)|p,p̄→−p̄,−p in (5.6). The cross section is obtained from
the spin-averaged squared matrix element (including a symmetry factor for identical final
states)

dσ

dΩ
=

∣∣M∣∣2
512π2s

βπ
βψ1

, (5.16)

where βπ,ψ1 = (1 − 4m2
π,ψ1

/s)1/2 are the respective velocities in the centre of mass frame.
The thermally averaged cross section at leading order in the non-relativistic expansion is
given by

〈σv〉 =
pπ

32πmψ1

|P |2 , (5.17)

where in this approximation pπ = (m2
ψ1
−m2

π)1/2, and

P = i{B0Re g
(φ)
dd ∆φ(4m2

ψ1
) Im y11 +(

B0fπ Im gdd∆φ(m2
π)
)2

∆ψ2(m2
π−m2

ψ1
)mψ2 Im y21y12} , (5.18)

is the pseudoscalar part in (A.3). It is easily obtained from (5.15) taking into account
that that the role of u and v are interchanged. All other contributions, such as |S|2,
vanish in the non-relativistic approximation. And for values of input parameters, y11 = 0,
mψ1 = 160 MeV, and mφ = 1 GeV one obtains a total cross section

〈σv〉 = 3× 10−26 cm3

s

(
Im g

(φ)
dd

7.5× 10−2

)4(
Im y21y12

1

)2(1 GeV
mψ2

)2

, (5.19)

which is of the right order of magnitude to produce the required relic abundance (1 pb ≈
3 · 10−26cm3s−1). In quoting the dependences in (5.19), we have neglected terms of
O(m2

π,ψ1
/m2

ψ2
).
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6 Conclusions

We have presented three models that can lead to large deviations in Br(KL → π0 + inv),
while leaving Br(K+ → π0 + inv) virtually unchanged from the SM expectation. The three
models are: Model 1 where the invisible decay is the two body transition KL → π0φ1,
Model 2 with KL → π0φ1φ1 and Model 3 with KL → π0ψ1ψ̄1 three body transitions, can
be viewed as representatives of a larger class of models. The scalar φ1 or fermion ψ1 that
escape the detector could be replaced by a dark gauge boson, or more complicated dark
sector final states, without affecting our main conclusions.

Common to all these possibilities is that in addition to the invisible final state particles
(in our case φ1 and ψ1), there has to be at least one additional light mediator with a
O(1 GeV)-mass in order to have large violations of the Grossman-Nir bound. In Models
1 and 2 the mediator is another scalar, φ2, while in Model 3 there are two mediators, the
fermion ψ2 and scalar φ. The scalar mediators mix with KL and π0, which then leads to
enhanced Br(KL → π0 + inv) rates. The required mixings are small, and thus for large
parts of parameter space the most stringent constraints are due to the present KOTO upper
bound on Br(KL → π0 + inv). If the anomalous events seen by KOTO turn out to be a
true signal of new physics, then these models are natural candidates for their explanation.

In Models 2 and 3 the lightest states, φ1 and ψ1, can be dark matter candidates. For
the restricted mass range mπ ≤ mφ1,ψ1 ≤ (mK − mπ)/2 and suitable parameter ranges
these particles can be the thermal relic. For lighter φ1 or ψ1 new annihilation channels
are required. For example the mediators could couple to either electrons or neutrinos, in
addition to the couplings to quarks.

In the numerics we followed the principle of minimality and switched on the minimal
set of couplings required for large violations of the GN bound. We took great care to ensure
that the radiative corrections do not modify the assumed flavor structure and potentially
invalidate our conclusions. In the future, it would be interesting to revisit our simplified
models in more complete flavor models which fix all the couplings to quarks. An even more
ambitious possible research direction could be to explore whether the light mediators could
be tied to the SM flavor puzzle itself, e.g. along the lines of Ref. [46]. We leave this and
related open questions for future investigations.
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A The K → πψ1ψ̄1 decay rate

For completeness we give here the explicit expression for the K → πψ1ψ̄1 differential rate in
Model 3. The expressions become rather involved because of the presence of the fermions
in the final states. For instance, the analytic expression for the rate can only be given
as a double differential rate since both variables enter the loop diagram, cf. Fig. 18, in a
non-trivial way. At the end of the appendix we also comment on how this decay defies the
helicity formalism used for semileptonic and flavor changing neutral currents.

The generic double differential rate in terms of Dalitz plot variables is given by [47]

d2

dq2dQ2
Γ(K → πψ1ψ̄1) =

1

(2π)3

1

32m3
K

|M(K → πψ1ψ̄1)|2 , (A.1)

where q2 ≡ (p+ p̄)2, Q2 ≡ (p+ pπ)2 are the kinematic variables with ranges 4m2
ψ1
< q2 <

(mK −mπ)2 and Q2
− < Q2 < Q2

+, with

Q2
∓ = (Eψ1 + Eπ)2 − (pψ1 ± pπ)2 , (A.2)

Eψ1 = q/2, Eπ = (m2
K − q2 −m2

π)/2q and pi = (E2
i −m2

i )
1/2.

Decomposing the matrix elementM in terms of fermion bilinears

M = Sūv + Pūγ5v + V µūγµv +Aµūγµγ5v + Tµν ūσµνv , (A.3)

the generic matrix element squared, summing over fermion polarizations, reads

|M|2 = 2q2
{
|P |2 + β2

ψ1
|S|2 +

2mψ1

q2
((p+ p̄)·AP ∗ + (p− p̄)·V S∗ + h.c.) (A.4)

+Aµ(mµµ′ − β2
ψ1
gµµ′)A

µ′∗ + V µ(mµµ′ − gµµ′)V µ′∗

+ 2Tµνgµµ′(gνν′ − 2mνν′)T
µ′ν′∗ +

4

q2
(iTµν(mψ1(p̄− p)µA∗ν + p̄µpνP

∗) + h.c.)
}
,

where σµν = i/2[γµ, γν ], βψ1 = (1 − 4m2
ψ1
/q2)1/2 and mµν ≡ 2(p̄µpν + pµp̄ν)/q2. For

completeness we have included the tensor current in (A.3) even though it does not appear
in our models.

The conversion from a formM = LūPLv +RūPRv +LµūγµPLv +RµūγµPRv, used in
(4.3), to the form in (A.3) proceeds via: S[P ] = 1/2(R± L) and V [A]µ = 1/2(R± L)µ. In
particular for KL → π0ψ1ψ̄1

S[P ]L = −iB0

(
B0mψ2 Re[i Im](y12y21)XL + Re[i Im]y11 Im ḡ

(φ)
sd ∆φ(q2)

)
, (A.5)

V [A]µL = −iB2
0/2

(
|y21|2 ± |y12|2

)
Xµ
L , (A.6)

with XL ≡ Im ĝsd∆̄fKfπ − Im ḡsd
16π2 F (φ)

L (Ī4) and Xµ
L = XL|Ī4,∆̄→Īµ4 ,∆̄µ , whereas for K+ →

π+ψ1ψ̄1 (5.8) the decomposition reads

S[P ]+ = B0

(
B0mψ2 Re[i Im](y12y21)X+ + Re[i Im]y11ḡ

(φ)
sd ∆φ(q2)

)
, (A.7)

V [A]µ+ = B2
0/2

(
|y21|2 ± |y12|2

)
Xµ

+ , (A.8)
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with X+ ≡ − ḡsd
16π2F (φ)

+ (Ī4) and Xµ
+ = X+|Ī4→Īµ4 .

It seems worthwhile to point out that this decay cannot be cast in the Jacob-Wick
helicity formalism, since it does not corresponds to a chain of 1 → 2 decays. This also
applies, e.g., to the generalisation of the formalism to effective theories used for B →
K`+`− [48]. The issue is that in Model 3 the φ particle breaks factorization of the fermion
part and the rest in the same way as the photon does between the lepton and the quarks, cf.
Section 5.3. in Ref. [48]. On a technical level, this can easily be seen from the decomposition
of the vector matrix element

V µ = V (p)pµ + V (p̄)p̄µ + V (pπ)pµπ , (A.9)

which necessitates all independent momenta of the decay. In the B → K`+`− case, induced
by the standard dimension six effective Hamiltonian and no QED or electroweak corrections,
the amplitude only depends on pπ, p+ p̄ but not the difference p− p̄. However, using such
a decomposition in the expressions given above does allow in practice for a fast numerical
evaluation of the differential rate thereby retaining one of the main advantages of the helicity
amplitude formalism.

B Integral conventions

For convenience and clarity we collect here the conventions of the Passarino-Veltman func-
tions [49, 50, 50, 51] used in this work. The conventions are are equivalent to those of
LoopTools [50] and FeynCalc [52, 53]. The loop function used are the triangle and box
integrals defined by

C0(p2
1, p

2
2, (p1+p2)2,m2

1,m
2
2,m

2
3) ≡

∫
k

1

(k2 −m2
1)((k+p1)2 −m2

2), ((k+p1+p2)2 −m2
2)
,

(B.1)
and

D0(m2
π, (pπ+P )2, (pK−pπ−P )2, (pK−pπ)2, P 2,m2

K ,m
2
φ,m

2
M ,m

2
ψ2
,m2

φ) ≡∫
k

1

((k+pK)2−m2
φ)((k+pπ)2−m2

φ)((k+pπ+P )2−m2
ψ2

)(k2−m2
M )

,
(B.2)

respectively, with i0-prescription suppressed and
∫
k ≡ (2πµ)4−d/(iπ2)

∫
ddk. The arguments

of the D0 function are those appearing in Model 3 in section 5. It seems worthwhile to
mention that the two-point Passarino-Veltman function does not appear in this paper and
the symbol B0 is used for a quantity related to quark condensate as stated at the beginning
of Section 3.1.
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