
DESY 18–196,
DO–TH 19/31
TTP 19–045
SAGEX 19–34

The O(α2) Initial State QED Corrections

to e+e−→ γ∗/Z∗0
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Abstract

We calculate the complete O(α2) initial state radiation corrections to e+e− annihilation
into a neutral vector boson in a direct analytic computation without any approximation.
The corrections are represented in terms of iterated incomplete (elliptic) integrals over
alphabets of square–root valued letters. Performing the limit s� m2

e, we find discrepancies
with the earlier results of Ref. [1] and confirm results obtained in Ref. [2] where the effective
method of massive operator matrix elements has been used, which works for all but the
power corrections in m2

e/s. In this way, we also confirm the validity of the factorization of
massive partons in the Drell–Yan process. We add non–logarithmic terms at O(α2) which
have not been considered in previous calculations. The final results in the limit s � m2

e

can be given in terms of Nielsen integrals.
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1 Introduction

e+e− colliders operating at high energy and at large luminosity measure the fundamental pa-
rameters of the Standard Model with high precision and perform crucial tests on the structure
of the Standard Model. In the past the experiments at LEP obtained very precise results on
the parameters of the Z-boson [3]. The future large scale facilities like the ILC, CLIC [4–7],
the FCC ee [8], and muon colliders [9] are planned to operate at even higher energies and lumi-
nosities. There one can perform in addition also precise scans of the tt̄-threshold measuring the
properties of the top quark in detail and produce the Higgs boson under very clean conditions
in ZH-final states, which will finally allow to understand more properties of the Higgs boson in
great detail.

One important condition to perform these highly precise measurements is the exact knowledge
of the QED radiative corrections for the process e+e− → γ∗/Z∗, which has to be known to two–
loop order in the fine structure constant α, adding further logarithmic contributions in higher
orders. A first calculation of the O(α2) initial state radiative corrections to this process has
been performed in Ref. [1]. In this reference various approximations have been made in the
integrands of the Feynman diagrams, to simplify the integration process. In 2011 it has been
noticed, however, in a second calculation based on massive operator matrix elements (OMEs) [2]
that the results deviated in all channels for the constant term at O(α2), while the O(α) result
and the logarithmic terms at O(α2) agreed. In the latter calculation it was assumed that the
Drell–Yan process with massive external lines factorizes. At that time, the new results did not
yield a thorough counter argument against the results in [1], since one might have argued that
there is no factorization in the massive Drell–Yan process.

There is actually only one way to decide which of the results is correct. One has to perform
the complete calculation of the scattering cross section without any approximation or assumption
analytically. In the final result one will of course expand in the ratio m2

e/s ≈ 3 · 10−11, where me

denotes the electron mass and s the cms energy squared to obtain a compact result.
In Ref. [1] some processes which only contribute to the O(α2) term and have no logarithmic

contributions were not considered. A first calculation, however, in the massless case, was per-
formed in [10] and later in [11] for the Drell–Yan process in Quantum Chromodynamics (QCD).
Furthermore, differences appearing in the calculation of the contributing vector and axial–vector
terms were not considered in [1].

In the present paper we perform a thorough analytic calculation of all contributing terms. We
confirm the results given in [2] before and we add the pure O(α2) terms, which cannot be derived
using the method of massive OMEs [12]. The calculation in Ref. [2] has been performed for vector
couplings. Here we add also the axial–vector contributions, whenever they are not suppressed
by power corrections of O(m2

e/s). Our final results are expanded in m2
e/s and we maintain all

terms up to O((m2
e/s)

0). The final radiators can be expressed by Nielsen integrals [13]

Sp,n(x) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dt

t
lnn−1(t) lnp(1− zt), (1)

Sn−1,1(x) = Lin(x), (2)

which cover the classical polylogarithms [14].
The radiator functions have the general structure

R
(
z, α,

s

m2

)
= δ(1− z) +

∞∑
k=1

( α
4π

)k
Ck

(
z,

s

m2

)
(3)
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Ck

(
z,

s

m2

)
=

k∑
l=0

lnk−l
( s

m2

)
ck,l(z). (4)

The respective differential cross sections are then given by

dσe+e−

ds′
=

1

s
σe+e−(s′)R

(
z, α,

s

m2

)
, (5)

with σe+e−(s′) the scattering cross section without the initial state radiation (ISR) corrections
and

z =
s′

s
, (6)

where s′ is the invariant mass of the produced (off-shell) γ/Z boson. Here and in the following
the mass m denotes the electron mass me, if not stated otherwise.

The paper is organized as follows. In Section 2 we present the Born cross section for the
process. The O(α) corrections are given in Section 3. General aspects of the integration at
two–loop order are discussed in Section 4. In Section 5 we present the results for the different
processes contributing to the two–photon corrections. The non–singlet process of the e+e− pair
radiation process is discussed in Section 6. The contribution due to the radiation of heavier final
states in the non–singlet process is calculated in Section 7, followed by those due to the pure–
singlet process, Section 8, and the interference term between the non–singlet and the pure singlet
terms, Section 9, in the case of e+e− emission. In Section 10, we give the results for processes
that have no logarithmic contributions at O(α2). The axial–vector contributions are discussed
for the processes they contribute to. In all other cases the radiators are the same as in the vector
case. Finally, we discuss the soft–photon exponentiation contributions beyond the radiative
corrections to O(α2) in Section 11, and Section 12 contains the conclusions. Numerical results
on the Z peak, for the ZH production process and tt production have already been presented
in Ref. [15]. There and in [16] we also line out the numerical differences to [1]. In Appendix A
we present details on phase–space integrals which have been performed in the present paper.

2 The Process

We consider the process of e+e− annihilation into a virtual photon γ∗ or virtual Z∗0 boson above
a mass threshold of s′ ≥ 4m2

µ or larger, with mµ the muon mass and s the cms energy squared
of the annihilation process. Also the production of other fermionic final states can be considered
such as τ+τ−, massless qq̄ and the corresponding heavy quark pairs. The phase space limit on s′

is s′ ≥ 4m2
f . We will usually assume s′ ≥ 4m2

µ or a more conservative cut. The differential Born
cross section is given by

dσ
(0),I

e+e−

ds′
= δ(s− s′)σ(0)(s′), (7)

where σ(0)(s′) denotes the integrated cross section of one of the above processes. It corresponds
to the annihilation diagram in Figure 1. For s-channel e+e− annihilation into a virtual gauge
boson (γ∗, Z∗), which decays into a fermion pair ff̄ , the scattering cross section reads

dσ(0)(s)

dΩ
=

α2

4s
NC,f

√
1− 4mf

s
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p−

p+

q

Figure 1: The Born cross section for the process e+e− → Z∗/γ∗.

×

(1 + cos2 θ +
4m2

f

s
sin2 θ

)
G1(s)−

8m2
f

s
G2(s) + 2

√
1−

4m2
f

s
cos θG3(s)


×G(s) , (8)

σ(0)(s) =
4πα2

3s
NC,f

√
1− 4mf

s

[(
1 +

2m2
f

s

)
G1(s)− 6

m2
f

s
G2(s)

]
G(s) , (9)

see e.g. [17, 18].1 Here the final state fermions are considered not to be electrons, to obtain an
s-channel Born cross section. In Eqs. (8, 9) the electron mass is neglected kinematically. α
denotes the fine structure constant, NC,f is the number of colors of the final state fermion, with
NC,f = 1 for colorless fermions, and NC,f = 3 for quarks. The function G(s) is set to 1 in the
case of the pure perturbative calculation. s is the cms energy, Ω the spherical angle, θ the cms
scattering angle, and the effective couplings Gi(s)|i=1...3 read

G1(s) = Q2
eQ

2
f + 2QeQfvevfRe[χZ(s)] + (v2

e + a2
e)(v

2
f + a2

f )|χZ(s)|2, (10)

G2(s) = (v2
e + a2

e)a
2
f |χZ(s)|2, (11)

G3(s) = 2QeQfaeafRe[χZ(s)] + 4vevfaeaf |χZ(s)|2. (12)

The reduced Z–propagator is given by

χZ(s) =
s

s−M2
Z + iMZΓZ

, (13)

where MZ and ΓZ are the mass and the with of the Z–boson and mf is the mass of the final
state fermion. Qe,f are the electromagnetic charges of the electron (Qe = −1) and the final state
fermion, respectively, and the electro–weak couplings vi and ai are given by

ve =
1

sin θw cos θw

[
I3
w,e − 2Qe sin2 θw

]
, (14)

ae =
1

sin θw cos θw
I3
w,e, (15)

vf =
1

sin θw cos θw

[
I3
w,f − 2Qf sin2 θw

]
, (16)

af =
1

sin θw cos θw
I3
w,f , (17)

where θw is the weak mixing angle, and I3
w,i = ±1/2 the third component of the weak isospin for

up and down particles, respectively.

1Note a missing term in [1], Eq. (2.5).
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For the radiative corrections studied below, we will consider the integrated cross section (9)
in the energy region of the Z–peak.

In the following we will use the fine structure constant with the normalization

a =
α

4π
. (18)

The scattering cross section including the contributions due to initial state radiation can be
expressed as follows

σ(s) =

∫ 1

0

dzR(z; a, L)σ0(zs), (19)

where R(z; a, L) is the distribution–valued [19] radiation function, with

L = ln

(
s

m2
e

)
. (20)

The different radiators calculated in the present paper sum to the following distribution

R(z; a, L) = aRγ
1(z, L) + a2

[
Rγγ

2 (z, L) +Re+e−,NS
2 (z, L) +Rff̄ ,NS

2 (z, L) +Re+e−,PS
2 (z, L)

+Re+e−,NS−PS interf.
2 (z, L) +Re+e−,nonlog

2 (z, L)
]

+Rsoft,3(z; a, L). (21)

3 The One–Loop Corrections

At one–loop order only photonic corrections contribute. We will work in D = 4 dimensions.
This allows to treat axial–vector couplings without an additional finite renormalization.

p−

p+

k

q

p−

p+ k

q

Figure 2: The O(α) e+e− annihilation graphs into a photon and a virtual gauge boson.

p−

p+

q

p−

p+

q

Figure 3: The O(α) virtual corrections to e+e− annihilation into virtual gauge boson.
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The Dirac algebra was performed using FORM [20]. In the integration of the scalar integrals also
the packages Sigma [21,22], HarmonicSums, [23–31] were used. Later, for finding representations
of iterated integrals over special alphabets we used also the package HolonomicFunctions [32],
and private implementations [33].

The photon radiation and virtual diagrams are given in Figures 2 and 3, respectively. We
parameterize the different contributions by

Rγ
1 = δ(1− z)

[
T S1

1 (λ,me, L, ε) + TV1
1 (λ,me, L)

]
+ θ(1− z − ε)TH1

1 (L, z),

(22)

where the indices S, V, and H stand for soft, virtual and hard. Let ∆ denote the energy cut–off
for soft–photon bremsstrahlung. Then

ε =
2∆

s
� 1. (23)

Here λ denotes a soft–photon mass, with λ � me. This parameter can be introduced in an
Abelian gauge theory calculation and it cancels in the final result.

One obtains

T S1
1 (λ,me, L, ε) = 4

[
1

2
L2 − ln

(
λ2

m2
e

)
(L− 1) + 2 ln(ε)(L− 1)− 2ζ2

]
, (24)

and ζk =
∑∞

l=1(1/lk), k ∈ N, k ≥ 2 is the Riemann ζ-function at integer argument.
The virtual corrections are obtained from the one-loop massive Dirac form factor in the limit

s� m2
e

TV1
1 (λ,me, L) = 2ReF (1)(s), (25)

with [34–36]

F (1)(s) = −L2 + 2 ln

(
λ2

m2
e

)
(L− 1) + 3L− 4 + 8ζ2 + iπ

(
2L− 2 ln

(
λ2

m2
e

)
− 3

)
. (26)

The Pauli form factor is power suppressed in the limit s � m2
e. Finally, the hard contribution

is given by

TH1
1 (L, z) = 4

1 + z2

1− z
(L− 1). (27)

Here there is also a lower bound on z from the minimal value of s′ ≥ 4m2
f . One obtains for (22)

the well–known result

Rγ
1 = P (0)

ee (z)(L− 1)θ(1− z − ε) + 2
(
4ζ2 − 4 + 3L+ 4(L− 1) ln(ε)

)
δ(1− z), (28)

cf. [1], [2], Eqs. (40, 96), where

P (0)
ee (z) = 4

1 + z2

1− z
(29)

denotes the first order electron–electron splitting function. It can be promoted to a +-distribution
where the +-prescription is defined by∫ 1

0

dx [f(x)]+ g(x) =

∫ 1

0

dxf(x) [g(x)− g(1)] . (30)

Then one can drop the θ-function and all contributions proportional to ln(ε).
The above relations were derived for the vector case. The same corrections are obtained in

the axial–vector case in the limit s� m2
e since the difference at one–loop order is suppressed by

power corrections in m2
e/s.
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4 Analytic Integration of the O(α2) Corrections

For the O(α2) terms, non–trivial phase space integrals are occurring given by fourfold integrals.
Details on their calculation are presented in Appendix A. They are given by two angular integrals
and two further integrals over invariants. In course of these integrations one obtains square–root
valued arguments in logarithms and polylogarithms, which are nested in part and have to be
rationalized or transformed to single roots to perform the next integration.2 The principal way to
obtain the corresponding square root–valued iterated integrals, containing real parameters in the
letters, has been described already in Refs. [39, 40]. Square root–valued iterated integrals based
on rational parameters have been considered earlier in [30]. They occur as Mellin inversions of
finite binomial and inverse binomial sums.

In total, up to weight w = 3 iterated integrals emerge. We aim on an analytic iterated
integral representation over an alphabet also containing square root–valued letters and will keep
the complete dependence on

ρ =
m2
e

s
. (31)

Using special variables, it is also possible to expand in ρ� 1 prior to the last integration is carried
out. The integration has been performed using Mathematica. After this expansion one obtains
a large number of logarithms and classical polylogarithms Li2(gi(z)),Li3(gi(z)) with involved,
partly complex arguments. They have to be mapped to logarithms and polylogarithms of the
convenient arguments z and 1 − z. For this we use associated differential equations. Some of
the polylogarithms also depend on G-functions [30,41–43], containing square root–valued letters.
Here the G-functions are defined by

G({b,~a}, x) =

∫ x

0

h({b}, x)G({~a}, x), G({∅}, x) = 1, h({ci}, x) ∈ A′, (32)

over an alphabet A′. The different letters h({ci}, x) are not yet independent w.r.t. the associated
differential field. Adding all contributions, the G-functions cancel.

We finally compare the exact analytic result, not expanded in ρ, with the expanded result
including the O(ρ0) terms, numerically. The expansion in ρ can also be performed starting
with the complete result. This requires the introduction of suitable regularizations. We have
performed the last step in the non–singlet case and obtained the same result as expanding below
the last integral, using appropriate variables. In all cases the numerical comparison shows a
relative agreement of O(10−7) at s = M2

Z , which is the expected result in this approximation.
It shows that the formulae expanded in the light fermion mass can be used for experimental
analyses.

The complete analytic results will be given in terms of iterative integrals over a certain
alphabet of letters A, which are mostly square–root valued and contain real parameters. Some
of them were occurring already in earlier investigations [30]. They are labeled by vi. Other
letters are new and are named by di. The iterative integrals are given by

H∗b,~a(x) =

∫ 1

x

dyfb(y)H∗~a(y), H∗∅ = 1. (33)

The different letters of the alphabet, fk(t; z, ρ) ≡ fk are :

d1 =
1

√
1− t

√
16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

, (34)

2For an algorithmic approach to rationalization see [37,38].
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d2 =
t

√
1− t

√
16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

, (35)

d3 =
1

t
√

1− t
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (36)

d4 =
1(

16ρ2 + (4z − 8ρ(1 + z))t+ (1− z)2t2
)√

1− t
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (37)

d5 =
t(

16ρ2 + (4z − 8ρ(1 + z))t+ (1− z)2t2
)√

1− t
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (38)

d6 =
1(

16ρ2 + (4z − 8ρ(1 + z))t+ (1− z)2t2
)√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (39)

d7 =
t(

16ρ2 + (4z − 8ρ(1 + z))t+ (1− z)2t2
)√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (40)

d8 =
1− z(

4ρ− (1− z)t
)√

1− t
, (41)

d9 =
1(

16ρ2 + 4
(
z − 2ρ(1 + z)

)
t+ (1− z)2t2

)√
1− t

, (42)

d10 =
t(

16ρ2 + 4
(
z − 2ρ(1 + z)

)
t+ (1− z)2t2

)√
1− t

, (43)

d11 =
1

t
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2
, (44)

d12 =
1

16ρ2 + 4
(
z − 2ρ(1 + z)

)
t+ (1− z)2t2

, (45)

d13 =
t

16ρ2 + 4
(
z − 2ρ(1 + z)

)
t+ (1− z)2t2

, (46)

d14 =
1

t(1− z)− 4ρ
, (47)

d15 =
1√

1− t(t(1− z)− 4ρ)
, (48)

d16 =
1√

t(1− t)
√
t(1− z)2 − 16ρ2

, (49)

d17 =
1√

t(1− t)(t(1− z)− 4ρ)
√
t(1− z)2 − 16ρ2

, (50)

d18 =
1

√
t
√
t(1− z)2 − 16ρ2

, (51)

d19 =
1

√
t(t(1− z)− 4ρ)

√
t(1− z)2 − 16ρ2

, (52)

d20 =
1√

t2(1− z)2 − 8ρt(1 + z) + 16ρ2
, (53)

d21 =
1

√
1− t

√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (54)

d22 =

√
t√

t(1− z)2 − 16ρ2
√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (55)
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d23 =

√
t√

t(1− z)2 − 16ρ2
(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2

) , (56)

d24 =
1(

t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2
)√

t2(1− z)2 − 8ρt(1 + z) + 16ρ2
, (57)

d25 =
t(

t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2
)√

t2(1− z)2 − 8ρt(1 + z) + 16ρ2
, (58)

d26 =
1

√
1− t

(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2

)√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (59)

d27 =
t

√
1− t

(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2

)√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (60)

d28 =
1

√
t
√
t(−1 + z)2 − 16ρ2

√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (61)

d29 =
1

√
t
√
t(1− z)2 − 16ρ2

(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2

) , (62)

d30 =
1

√
t
√
t(1− z)2 − 16ρ2

(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2)

× 1√
t2(1− z)2 − 8ρ(1 + z)t+ 16ρ2

, (63)

d31 =

√
t√

t(1− z)2 − 16ρ2
(
t2(1− z)2 − 8ρ(1 + z)t+ 4tz + 16ρ2

)√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

,

(64)

d32 =
1

t
√

1− t
√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (65)

d33 =
t

√
1− t

√
t2(1− z)2 − 8ρt(1 + z) + 16ρ2

, (66)

v1 =
1

√
1− 4t

√
16t2 − 8(1 + z)t+ (1− z)2

, (67)

v2 =
1

t
√

1− 4t
√

16t2 − 8(1 + z)t+ (1− z)2
, (68)

v3 =
1

√
1− 4t

(
4t− (1 + x)

)√
16t2 − 8(1 + z)t+ (1− z)2

, (69)

v4 =
1

t
√

1− t
. (70)

We call the iterated integrals containing both Kummer–type letters [29] and the above letters,
Kummer–elliptic integrals, since some of them integrate to elliptic structures, although they do
so as indefinite integrals,3 which are still iterative if compared to complete elliptic integrals and
their extensions, cf. [46].

We label the processes using the same scheme as in Ref. [1], i.e. process I: the photon emission
case; process II: the non–singlet case for fermion-pair production; process III: the pure singlet
process; process IV: the interference term between the non–singlet case for e+e− pair emission
and the pure singlet case. Furthermore, we denote contributions not covered in [1] but belonging

3For related alphabets occurring in other calculations see e.g. [44,45].
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to the O(a2) QED corrections as process B, in accordance with Ref. [10].
A few remarks on the size of the present calculation are in order. i) the size of the amplitudes

amounts to 10 Gb (process I), 25 kb (process II), 56 kb (process III) and 124 kb (process IV).
The calculation of process I required several months of code design and 30h of computation time.
The reduction to the basis of iterative integrals took 1 day (process II), 1 month (process III),
and 2 months (process IV). The integration time for processes II–IV amounted to minutes, 2h
and 5h. No essential resources were necessary to perform the calculation for process B. The
size of the project mainly resulted from the fact that only in the last step an expansion in the
parameter ρ has been performed. The required computer power was not available at the time
when Ref. [1] was worked out. This also applies to several computer-algebraic and mathematical
calculation techniques we were able to apply, which became available only recently.

Now we turn to the calculation of the individual sub–processes at two–loop order.

5 The Photonic Two-Loop Corrections

The photonic two–loop corrections consist out of the following six contributions

Rγγ
2 = T S2

2 + TV2
2 + T S1V1

2 + T S1H1
2 + TV1H1

2 + TH2
2 , (71)

with

1. T S2
2 : both emitted photons are soft, Figure 4

2. TV2
2 : both photons are virtual, Figure 5

3. T S1V1
2 : one photon is soft, one is virtual, Figure 6

4. T S1H1
2 : one photon is soft, one is hard, Figure 4

5. TV1H1
2 : one photon is virtual, one is hard, Figure 6

6. TH2
2 : both emitted photons are hard, Figure 4.

We will calculate the different contributions in this order.
Due to the energy cut–off ε on the photon energy all contributions are functions. However,

one can introduce +-distributions and drop the dependence on the photon cut–off. We still use
the abbreviation

Dn(z) =

(
lnn(1− z)

1− z

)
+

, n ∈ N, (72)

besides of the δ(1 − z)-distribution. However, using the ε cut–off the +-distributions can be
understood as simple functions.

The double soft photon correction is obtained calculating the graphs given in Figure 4 in the
soft photon approximation. Since the soft corrections are factorizing, one obtains

T S2
2 =

1

2
(T S1

1 )2 − 32(L− 1)2ζ2, (73)

cf. [1, 47,48]. Here the last term stems from the integral

c2 = − lim
ε→0

32(L− 1)2

∫ ∆

ε

dz1

z1

∫ ∆

∆−z1

dz2

z2

= −32(L− 1)2ζ2. (74)

10



The diagrams for the double virtual corrections are shown in Figure 5, and TV2
2 is given by

TV2
2 = |F1(s,me, λ)|2 + 2ReF2(s,me, λ), (75)

cf. (26) with

ReF2(s,me, λ) = 16

[
1

32
L4 − 3

16
L3 +

(
17

32
− 5

4
ζ2

)
L2 +

(
−21

32
+ 3ζ2 +

3

2
ζ3

)
L+

2

5
ζ2

2 −
9

4
ζ3

−3ζ2 ln(2)− 1

2
ζ2 +

405

216
+

1

8
ln2

(
λ2

m2
e

)
(L2 − 2L+ 1− 6ζ2)− 1

8
ln

(
λ2

m2
e

)
×(L3 − 4L2 + (7− 20ζ2)L− 4 + 26ζ2)

]
, (76)

cf. [35, 36, 49, 50]. Again, the Pauli Form Factor does not contribute in the limit s � m2. The
soft corrections given in [49] were corrected in [50].

p−

p+ k1

k2

q p−

p+ k2

k1

q p−

p+ k1

k2

q

p−

p+ k2

k1

q

p−

p+

k2

k1

q

p−

p+

k1

k2

q

Figure 4: The e+e− annihilation graphs into two photons and a virtual gauge boson.

Figure 5: The double virtual corrections of O(a2) to e+e− annihilation into a virtual gauge boson.The
external self-energy corrections are not shown.
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The virtual–soft corrections, Figure 6, are given by

TV1S1
2 = T S1

1 TV1
1 . (77)

The virtual–hard corrections, Figure 6, read

TV1H1
2 =

16
(
1 + z2

)
1− z

(L− 1)2 ln

(
λ2

m2
e

)
−

8
(
1 + z2

)
1− z

L3 + L2

(
32
(
1 + z2

)
1− z

−
8
(
1 + z2

)
1− z

ln(z)

)
+ L

(
−

8
(
7− z + 8z2

)
1− z

+
8
(
3 + 4z + 3z2

)
1− z

ln(z)

+
16
(
1 + z2

)
1− z

ln(1− z) ln(z)−
8
(
1 + z2

)
1− z

ln2(z) +
16
(
1 + z2

)
1− z

Li2(1− z)

+
64
(
1 + z2

)
1− z

ζ2

)
+

8
(
1 + 3z + 4z2

)
1− z

−
8
(
1 + 12z + 3z2

)
1− z

ln(z)−
8
(
1 + z2

)
3(1− z)

ln3(z)

+
32z2

1− z
S1,2(1− z)−

64
(
1− z + 2z2

)
1− z

ζ2 +

(
16(1− z)−

8
(
2 + 6z − 3z2

)
1− z

ln(z)

+
8
(
1 + z2

)
1− z

ln2(z)

)
ln(1− z) + 16z ln2(1− z) +

4
(
3 + z2

)
1− z

ln2(z)

+

(
−

8
(
2 + 6z − 3z2

)
1− z

− 16(1 + z) ln(1− z) +
16
(
1 + z2

)
1− z

ln(z)

)
Li2(1− z)

+32(1 + z)Li3(1− z). (78)

p−

p+

k

q

p−

p+

q

k

p−

p+

q

k

p−

p+

k

q

p−

p+

k

q

p−

p+

q

k

p−

p+

q

k

p−

p+

k

q

Figure 6: The O(a2) virtual corrections to e+e− annihilation graphs into one photons and a virtual
gauge boson.The external self-energy corrections are not shown.

The two hard photon corrections, Figure 4, yield

TH2
2 = 16

{
−2

1 + z2

1− z
(L− 1)2 ln(ε) +

{
1 + z2

1− z

[
2 ln(1− z)− 1

2
ln(z)

]
− 1 + z +

1

2
(1 + z)

12



× ln(z)

}
L2 +

{
1 + z2

1− z
[−4 ln(1− z) + ln(z)]− z ln(z) +

7

2
(1− z) +

1

4
(1 + z)

× ln2(z)

}
L− 1 + z2

1− z

[
S1,2(1− z) +

1

2
ln(z)Li2(1− z) +

3

2
ln2(z)−

(
7

6
+ ζ2

)

× ln(z)− 2 ln(1− z)

]
− 1

2
(1 + z)(Li3(1− z) + 2S1,2(1− z))− 2

3
zζ2

−1

6
(3 + 4z)Li2(1− z)− 1

6
(10− 25z) ln(z) +

2

(1− z)2
ln2(z)− 1

12
(3 + 28z) ln2(z)

+
1

2
(1− z)− 2

3

z

1− z

[
1 +

2

1− z
ln(z) +

1

(1− z)2
ln2(z)

]}
= 64D1(z)(L− 1)2 + T̃H2

2 . (79)

All corrections but the virtual–hard corrections agree with the results in [1].
The complete photonic corrections are given by

Rγγ
2 = δ(1− z)

{
32(L− 1)2 ln2(ε) +

(
48L2 − (112− 64ζ2)L+ 64− 64ζ2

)
ln(ε)

+(18− 32ζ2)L2 − (45− 88ζ2 − 48ζ3)L+ 76 + (6− 96 ln(2))ζ2 − 72ζ3 −
96

5
ζ2

2

}
+θ(1− z − ε)

{
64(L− 1)2D1 +

(
48L2 − (112− 64ζ2)L+ 64− 64ζ2

)
D0

−L2

(
8(5 + z) + 32(1 + z) ln(1− z) +

8
(
1 + 3z2

)
1− z

ln(z)

)
+ L

(
8(14 + z)

+
8
(
5 + 2z + 7z2

)
1− z

ln(z)−
4
(
1 + 3z2

)
1− z

ln2(z) +
16
(
1 + z2

)
1− z

Li2(1− z)

−32(1 + z)ζ2 +

[
64(1 + z) +

16
(
1 + z2

)
1− z

ln(z)

]
ln(1− z)

)
−

8
(
18 + z − 15z2

)
3(1− z)

−
8
(
1 + z2

)
3(1− z)

ln3(z) +
4

3(1− z)3

(
12− 33z + 51z2 − 51z3 + 13z4

)
ln2(z)

+
32

3
(3 + 8z)ζ2 − 32(1 + z)ζ3 −

(
16(1 + 3z) +

8
(
2 + 6z − 3z2

)
1− z

ln(z)

−
8
(
3− z2

)
1− z

ln2(z)

)
ln(1− z) + 16z ln2(1− z)−

(
8
(
6 + 3z + 26z2 − 27z3

)
3(1− z)2

+
16
(
1− 3z2

)
1− z

ζ2

)
ln(z) +

(
−

8
(
9 + 19z − 13z2

)
3(1− z)

− 16(1 + z) ln(1− z)

+
8
(
5− 3z2

)
1− z

ln(z)

)
Li2(1− z) + 24(1 + z)Li3(1− z) + 32(1 + z)Li3(z)

}
. (80)

We now turn to the fermion–pair emission contributions in different channels.

6 O(α2) Non–Singlet Corrections due to e+e− Emission

The non–singlet contributions can be given by

Re+e−,NS
2 = δ(1− z)

(
Re+e−,NS,S

2 +Re+e−,NS,V
2

)
+ θ(1− z − ε)Re+e−,NS,H

2 , (81)
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where Re+e−,NS,S
2 , Re+e−,NS,V

2 and Re+e−,NS,H
2 denote corrections due to soft, virtual and hard

fermion-pair radiation respectively. The first two contributions were correctly given in [1] and
read

Re+e−,NS,S
2 =

8

9
L3 − 40

9
L2 +

(
448

27
− 32

3
ζ2

)
L− 2624

81
+

160

9
ζ2 +

64

3
ζ3 +

64

9
ln3(ε)

−
(

160

9
− 32

3
L

)
ln2(ε) +

(
896

27
− 160

9
L+

16

3
L2 − 64

3
ζ2

)
ln(ε) (82)

Re+e−,NS,V
2 = −8

9
L3 +

76

9
L2 − 4

27
(265− 72ζ2)L+

3064

27
− 176

3
ζ2 (83)

In the following we will calculate the hard contributions. They can be expressed by iterative
integrals H~a(u) ≡ H~a up to weight w = 2 over the alphabet given in Section 4 and u = 4ρ/(1−√
z)2. The contributing diagrams are shown in Figure 7.

The correction to the scattering cross section for electron pair emission is given by

Re+e−,NS,H
2 =

s(1−
√
z)2∫

4m2
f

ds′′
16

3s s′′ 2

√
1−

4m2
f

s′′
(2m2

f + s′′)

{

−
λ1/2(s, s′, s′′)

[
2s s′ s′′ +m2

i

(
s2 + (s′ − s′′)2

)
+ 4sm4

i

]
s s′ s′′ +m2

i

(
s2 + (s′ − s′′)2 − 2s (s′ + s′′)

)
+

(s′ + s′′)2 + 4m2
i (s− s′ − s′′) + s2 − 8m4

i

β(s− s′ − s′′)
ln

(
s− s′ − s′′ + βλ1/2(s, s′, s′′)

s− s′ − s′′ − βλ1/2(s, s′, s′′)

)}
, (84)

with

β =

√
1− 4m2

e

s
(85)

and

λ(s, s′, s′′) = s2 + s′
2

+ s′′
2 − 2ss′ − 2ss′′ − 2s′s′′. (86)

p−

p+ q

k+

k−

p−

p+

q

k+

k−

Figure 7: The e+e− annihilation graphs into a fermion pair and a gauge boson (process A).
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One performs the transformation

t =
4m2

s′′
, z =

s′

s
(87)

in order to introduce dimensionless quantities. This yields

Re+e−,NS,H
2 =

t+∫
t−

dt
8

3t2
√

1− t(2 + t)

{
16ρ2 + 4ρt(t− 2z) + t

(
t+ z(8 + zt)

)
16ρ2 − 8ρ(1 + z)t+ t

(
4z + (1− z)2t

)
×
√

16ρ2 − 8ρ(z + 1)t+ (z − 1)2t2

−
8ρ2
(
t(t+ 2)− 2

)
+ 4ρt

(
z(t− 2)− t

)
− (z2 + 1) t2

√
1− 4ρ(4ρ− (1− z)t)

× ln

(
4ρ− (1− z)t−

√
1− 4ρ

√
16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

4ρ− (1− z)t+
√

1− 4ρ
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

)}
, (88)

with

t− = 1, t+ =
4ρ

(1−
√
z)2

. (89)

Integrating this expression exactly, one obtains

Re+e−,NS
2 =

{
64

3
z(1− z)(1 + z − 4ρ)H∗v4,d7 +

256

3
zρ(1 + z − 4ρ)H∗v4,d6

+
128z(1− 4ρ2)(1− z + 2ρ)(1− z − 4ρ)

3(1− z)2
H∗d8,d7

+
512zρ(1− 4ρ2)(1− z + 2ρ)(1− z − 4ρ)

3(1− z)3
H∗d8,d6

+
16

9(1− z)2

[
(1 + z)2

(
4− 9z + 4z2

)
+ 2
(
9− 16z + 13z2 − 2z3

)
ρ+ 32ρ2

]
H∗d2

+
512zρ

9(1− z)4

[
3(1− z)4z − (1− z)3

(
4 + z2

)
ρ− 2

(
9− 29z + 38z2 − 17z3 + 3z4

)
ρ2

− 4(2− z)
(
3 + 6z − 5z2

)
ρ3 + 16

(
7− 8z + 9z2

)
ρ4 + 128(3− z)ρ5

]
H∗d4

− 16

9(1− z)4

[
3− 34z + 129z2 − 212z3 + 129z4 − 34z5 + 3z6 + 8

(
2− 16z + 9z2

+ 4z3 − 5z4 + 2z5
)
ρ+ 16z

(
12− 13z + 18z2 − z3

)
ρ2 + 32

(
1 + 22z − 7z2

)
ρ3
]
H∗d1

− 128z

9(1− z)4

[
1 + 7z − 47z2 + 86z3 − 47z4 + 7z5 + z6 − 2

(
7− 55z + 54z2

+ 16z3 − 17z4 + 3z5
)
ρ− 4

(
39− 16z + 16z2 + 4z3 + 5z4

)
ρ2

+ 16
(
8− 23z + 22z2 + 9z3

)
ρ3 + 128

(
7 + 2z − z2

)
ρ4
]
H∗d5 −

64

3
(2z + (1− z)ρ)H∗d3

+

[
16

3
√

1− 4ρ
(1 + z − 4ρ)H∗v4 +

32(1− 4ρ2)(1− z + 2ρ)(1− z − 4ρ)

3(1− z)3
√

1− 4ρ
H∗d8

]
× ln

(
1− z − 4ρ−

√
1− 4ρ

√
(1− z)2 − 8(1 + z)ρ+ 16ρ2

1− z − 4ρ+
√

1− 4ρ
√

(1− z)2 − 8(1 + z)ρ+ 16ρ2

)}
. (90)
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To obtain the expansion in the case of the emission of an e+e− pair one cannot simply set me → 0
in (88) as has been done in Refs. [1, 51]; see, however, Section 7. One first rewrites the integral
(88) by ∫ t+

t−

dt[f(t, ρ, z)− fρ(t, ρ, z)] +

∫ t+

t−

dtfρ(t, ρ, z). (91)

Here fρ(t, ρ, z) denotes the integrand f(t, ρ, z), expanded in ρ, including the ρ0 term. For the
first term in Eq. (92) the variable transformation

t =
1

1 + (ξ−1 − 1)t̄
, ξ =

4ρ

(1−
√
z)2

(92)

is performed leading to t̄ ∈ [0, 1]. After that, the integrand can be expanded in ρ. A further
variable transformation is necessary to rationalize the root√

(t̄− 1)[t̄(1−
√
z)2 − (1 +

√
z)2]. (93)

One may choose

t̄ =
(1− v)(v − z)

v(1−
√
z)2

, v ∈ [z,
√
z]. (94)

The integral can now be performed. This leads to the correct result in the limit m2
e � s. Of

course we can also expand Eq. (90) in ρ. We checked that both methods agree. Including the
term ρ0 one obtains

Re+e−,NS,H
2 =

8
(
1 + x2

)
3(1− x)

L2 +

[
−

16
(
11− 12x+ 11x2

)
9(1− x)

+
32
(
1 + x2

)
3(1− x)

ln(1− x)

−
16
(
1 + x2

)
3(1− x)

ln(x)

]
L+

32
(
1 + x2

)
3(1− x)

ln2(1− x)− 16x2

3(1− x)
Li2(1− x)

+
32

9(1− x)3

(
7− 13x+ 8x2 − 13x3 + 7x4

)
− 16x

9(1− x)4

(
3− 36x+ 94x2

− 72x3 + 19x4
)

ln(x)−
32
(
1 + x2

)
3(1− x)

ζ2 −
(

32
(
11− 12x+ 11x2

)
9(1− x)

+
32
(
1 + x2

)
3(1− x)

ln(x)

)
ln(1− x)− 8x2

3(1− x)
ln2(x) +O

(
ρL2
)
. (95)

This result differs from the one presented in Refs. [1,51] exactly by the term given in [16], Eq. (8)
and agrees with the result obtained in Ref. [2] based on massive operator matrix elements. The
reason for this disagreement lays in the neglection of some of the electron mass terms before all
integrals have been performed. The full radiator therefore reads

Re+e−,NS
2 = δ(1− z)

(
4L2 − 68

3
L+

6568

81
− 368

9
ζ2 +

64

3
ζ3 +

64

9
ln3(ε) +

(
32

3
L− 160

9

)
ln2(ε)

+

(
16

3
L2 − 160

9
L+

896

27
− 64

3
ζ2

)
ln(ε)

)
+ θ(1− z − ε)Re+e−,NS,H

2 (96)
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7 Heavier Fermionic Final States in the Non–Singlet Pro-

cess

If in e+e− annihilation a heavier fermion pair ff̄ with mf � me is radiated via a virtual photon
from the initial state electrons one may use, cf. [51] and [1], Erratum,

dσII

ds′
= a2σ0s

′

s
NC,fQ

2
f

s(1−
√
z)2∫

4m2

ds′′
16

3s s′′ 2

√
1− 4m2

s′′
(2m2 + s′′)

×

{
−2λ1/2(s, s′, s′′) +

s2 + (s′ + s′′)2

s− s′ − s′′
ln

(
s− s′ − s′′ + λ1/2(s, s′, s′′)

s− s′ − s′′ − λ1/2(s, s′, s′′)

)}
, m� me.

= NC,fQ
2
f

t+∫
t−

dt
8

3t2
√

1− t(2 + t)

{
2
√

16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

+
16ρ2 + 8ρzt+ (z2 + 1) t2

4ρ− (1− z)t
ln

(
4ρ− (1− z)t−

√
16ρ2 − 8ρ(1 + z)t+ (1− z)2t2

4ρ− (1− z)t+
√

16ρ2 − 8r(1 + z)t+ (1− z)2t2

)}
,

(97)

with NC,f = 1, Qf = −1 for f = µ, τ and NC,f = 3, Qf = (2/3,−1/3, 2/3) for f = c, b, t. Here
we consider the case of heavier charged lepton pairs and heavy quark (c, b, t) pairs. One obtains

dσ(2),II(z, 0,mf = m)

ds′
= a2σ

(0)(s′)

s

s(1−
√
z)2∫

4m2

ds′′
16

3s s′′ 2

√
1− 4m2

s′′
(2m2 + s′′)

{

− 2λ1/2(s, s′, s′′) +
s2 + (s′ + s′′)2

s− s′ − s′′
ln

(
s− s′ − s′′ + λ1/2(s, s′, s′′)

s− s′ − s′′ − λ1/2(s, s′, s′′)

)}
.

(98)

This result agrees with those of Refs. [1, 51].
One may derive it also using the method of massive operator matrix elements. Here, the

external lines in Figure 7, [2], have to be taken massless, since me � m, and m denotes the mass

of the internal fermion line. Γ
(1),II
ee in (41), [2], reads then [52]

AMS,II
ee,µ =

β0,H

4
γ(0)
ee (N) ln2

(
m2
µ

µ2

)
+

1

2
γ̂(1),II
ee (N) ln

(
m2
µ

µ2

)
+ a(2),NS

ee,µ − β0,H

4
γ(0)
ee (N)ζ2 (99)

and Eq. (75) in [2] has to be replaced by Eq. (4.16) in [52] for QED. Here the relation

P
(k)
ij (N) = −γ(k)

ij (N) (100)

holds and

γ̂
(k)
ij = γ

(k)
ij (NF + 1)− γ(k)

ij (NF ), (101)

where NF denotes the number of massless fermions, which is NF = 1 here. The term T µ
+µ−

II

corresponding to the one in (95) for µ+µ− pair radiation reads

T µ
+µ−

II = 16

{
1

6

1 + z2

1− z
L2
µ +

[
1

3

1 + z2

1− z

(
2 ln(1− z)− ln(z)− 5

3

)
− 2

3
(1− z)

]
Lµ
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1 + z2

1− z

[
2

3
ln2(1− z)− 2

3
ln(z) ln(1− z) +

1

12
ln2(z)− 10

9
ln(1− z) +

5

9
ln(z)

−1

6
Li2(1− z)− 2

3
ζ2 +

28

27

]
− 1

3
(1− z)

(
4 ln(1− z)− 2 ln(z)− 19

3

)
− 1

3
ln(z)

+
1

6
(1 + z)

(
1

2
ln2(z) + Li2(1− z)

)}
, (102)

with Lµ = ln(s/m2
µ).

8 The pure singlet corrections

The diagrams contributing to the pure singlet case are shown in Figure 8. Here one has to
distinguish between the vector and axial–vector case since different corrections are obtained.
The radiator in the vector case is given by

Re+e−,v,PS
2 =

[
4(1− z)

(
4 + 7z + 4z2

)
3z

+8(1 + z) ln(z)

]
L2 −

[
128(1− z)

(
1 + 4z + z2

)
9z

+
8
(
4 + 6z − 3z2 − 8z3

)
3z

ln(z)−
(

16(1− z)
(
4 + 7z + 4z2

)
3z

+32(1 + z) ln(z)

)
ln(1− z) + 16(1 + z) ln2(z)

−32(1 + z)Li2(1− z)

]
L−

4
(
12 + 21z − 27z2 − 4z3

)
3z

ln2(z)

+
2(1− z)

27z(1 + z)2

(
− 80 + 2463z + 5041z2 + 2949z3 + 163z4

)
−

16(1− z)
(
2− z + 2z2

)
3z

ζ2 + 96(1 + z)ζ3 −
(

256(1− z)
(
1 + 4z + z2

)
9z

+
16
(
4 + 6z − 3z2 − 8z3

)
3z

ln(z) + 32(1 + z) ln2(z)

)
ln(1− z)

+

(
16(1− z)

(
4 + 7z + 4z2

)
3z

+ 32(1 + z) ln(z)

)
ln2(1− z)

+

(
64(1− z)

(
1 + 4z + z2

)
3z

ln(1 + z)− 4

9z(1 + z)3

(
40 + 3z − 345z2

−445z3 + 213z4 + 318z5 + 64z6
))

ln(z)− 8(1 + z) ln3(z)

+

(
8
(
− 4− 9z + 3z2 + 12z3

)
3z

+ 64(1 + z) ln(1− z)

−48(1 + z) ln(z)

)
Li2(1− z) +

(
64(1− z)

(
1 + 4z + z2

)
3z

−64(1 + z) ln(z)

)
Li2(−z)− 64(1 + z)Li3(1− z)
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+128(1 + z)Li3(−z)− 32(1 + z)S1,2(1− z) + TIII,v,int (103)

and consists of the direct terms and the interference terms

TIII,v,int =

{(
2 + z +

2

z

)[
32S1,2(1− z)− 96S1,2(−z)− 48 ln2(1 + z) ln(z)− 48ζ2 ln(1 + z)

+40 ln2(z) ln(1 + z)− 96Li2(−z) ln(1 + z)
]

+ 40(1 + z)
[
2Li2(−z) + 2 ln(z) ln(1 + z)

+ζ2

]
− 8

(
6− 3z − 4

z

)
Li3(1− z) + 16

(
10− 3z − 10

z

)
Li3(−z) + 24

(
6− z − 4

z

)
ζ3

+8(10− z)Li2(1− z) ln(z)− 16

3
z ln3(z) + 32

(
2z +

5

z

)
Li2(−z) ln(z)− 52z ln2(z)

+8(10 + z)ζ2 ln(z) + 8(5− 4z)Li2(1− z)− 16(5 + 4z) ln(z)− 160(1− z)

}
. (104)

p− k−

k+p+

q

p− k−

k+p+

q

p− k−

p+ k+

q

p− k−

p+ k+

q

Figure 8: The e+e− annihilation graphs into a fermion pair and a gauge boson (process A).

In the axial–vector case one has to replace TIII,v,int by TIII,a,int in Eq. (103)

TIII,a,int =

{
(2 + z)

[
32S1,2(1− z)− 96S1,2(−z)− 48 ln2(1 + z) ln(z)− 48ζ2 ln(1 + z)

+40 ln2(z) ln(1 + z)− 96Li2(−z) ln(1 + z)
]

+ 8(1 + z)
[
2Li2(−z) + 2 ln(z) ln(1 + z)

+ζ2

]
+ 8(2− z)Li3(1− z)− 16(6− 5z)Li3(−z)− 24(2− 3z)ζ3 + 8Li2(1− z)
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+8(2 + 3z)Li2(1− z) ln(z) + 8(2 + 5z)ζ2 ln(z) + 128Li2(−z) ln(z)− 16

3
z ln3(z)

−4z ln2(z)− 16 ln(z)− 32(1− z)

}
. (105)

The result (103) differs form that in [1] by the term in [16], Eq. (8). Note that the interference
term between the diagrams in the upper line and the ones in the lower line of Figure 8 appeared
in [1] with the wrong sign, see [16], Eq. (9) in the vector case. This term is scheme independent
and it has been calculated in [53] correctly. The axial–vector contribution is newly given. This
contribution is not contained in Ref. [1] but agrees with that of Ref. [10].

9 The interference term between non–singlet and pure

singlet corrections

The radiator for this process is given by

Re+e−,NS−PS interf.
2 (z, L)

= −
[
64− 56z +

16
(
1 + z2

)
1− z

Li2(1− z)

+
8
(
5− 2z2

)
1− z

ln(z) +
8
(
1 + z2

)
1− z

ln2(z)

]
L+

8
(
27− 42z + 23z2

)
1− z

−
8
(
1 + 2z2

)
3(1− z)

ln3(z) +
32
(
1 + 2z2

)
1− z

Li3(1− z) +
64
(
1 + z2

)
1− z

Li3(−z)

+

(
32(1 + z)

1− z
−

112
(
1 + z2

)
1− z

ln(z)

)
ζ2 −

80
(
1 + z2

)
1− z

ζ3 −
(

16(8− 7z)

+
16
(
5− 2z2

)
1− z

ln(z)−
48
(
1 + z2

)
1− z

ln2(z)

)
ln(1− z)

+

(
8

(1− z)2(1 + z)

(
3 + 10z − 11z2 + 22z3 − 8z4

)
+

64(1 + z)

1− z
ln(1 + z)

)
ln(z)

−8(1 + z)2

1− z
ln2(z) +

(
8
(
− 13 + 2z + 6z2

)
1− z

−
32
(
1 + z2

)
1− z

ln(1− z)

+
16
(
5 + 4z2

)
1− z

ln(z)

)
Li2(1− z) +

(
64(1 + z)

1− z
−

32
(
1 + z2

)
1− z

ln(z)

)
Li2(−z)

+
128
(
1 + z2

)
1− z

Li3(z) (106)

It is the same in the vector and axial–vector case, since the amplitude squared has one closed
fermion line only. The result differs from that in [1] by the term in [16], Eq. (9).

10 Further terms with no logarithmic enhancement at

O(α2)

For pure vector couplings there are as well fermion-pair production contributions corresponding
to the terms |B|2, BC and BD in the case of electrons and for |B|2 for heavier radiated fermions,
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cf. [10]. They have no logarithmic enhancement and were not considered in [1]. The B-diagrams
are shown in Figure 9

Figure 9: The e+e− annihilation graphs into a fermion pair and a gauge boson (process B).

The corresponding radiator is given by

Re+e−,v,nonlog
2 (z, L) = T|B|2 + T|BC|+|BD| (107)

Re+e−,a,nonlog
2 (z, L) = T|B|2 + T|BC|+|BD| + TA|AB|, (108)

in the vector and axial–vector cases, with

T|B|2 = 2
{
−(1 + z)2

[32

3
Li2(−z) +

16

3
ζ2 −

8

3
ln2(z) +

32

3
ln(z) ln(1 + z)

]
+

8

3
(3 + 3z2

+4z) ln(z) +
40

3
(1− z2)

}
(109)

T|BC|+|BD| = 2
{

(1 + z2 + 3z)
[
32S1,2(1− z) + 16Li2(1− z) ln(z)

]
+ (1 + z)2

[
−48S1,2(−z)

−8Li3(−z) + 24Li2(−z)
[
1 + ln(z)− 2 ln(1 + z)

]
+ 12ζ2

[
1− 2 ln(1 + z)

+2
3

ln(z)
]

+ 20 ln2(z) ln(1 + z)− 24 ln2(1 + z) ln(z) + 24 ln(z) ln(1 + z)

]
+36(1− z2)Li2(1− z) +

4

3
(1 + z2 + 4z) ln3(z) + 4(9 + 11z) ln(z) + 2(6

−15z2 − 8z) ln2(z) + 2(27− 13z2 − 14z)
}
. (110)

and

TA|AB| = 32

{
1 + z2

1− z
ln(z) + 2z ln(z) + 3− z

}
. (111)

The contributions of the diagrams AB vanish due to Furry’s theorem in the vector case. We
performed the calculation in D = 4 dimensions keeping the fermion masses, which were set to
zero at the end of the calculation. We agree with the results of Ref. [10]. The massive operator
matrix element vanishes for these processes and therefore the massive and the massless result
have to agree according to the factorization theorem postulated in Ref. [12]. Due to this, these
contributions have not been included in Ref. [2].
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11 Contributions due to Soft Photon Exponentiation be-

yond O(a2)

The resummation of the soft corrections has been considered early [1]. Here the idea is to resum
first the leading distribution–valued contributions

dσI

ds′
=

1

s
σ(0)(s′)

[
δ(1− z)T V+S

(
a,

s

m2

)
exp[β ln(ε)] + θ(1− z − ε)TH

(
a,

s

m2

)]
(112)

with

β = 8a(L− 1) (113)

and

TH
(
a,

s

m2

)
=
∞∑
k=1

β

(k − 1)!
Dk−1T

V+S
(
a,

s

m2

)
+ T̃H

(
a,

s

m2

)
. (114)

The inclusive cross section reads then

σI =

∫ 1

z0

σ(0)(zs)
[
β(1− z)β−1TV+S

(
a,

s

m2

)
+ T̃H

(
a,

s

m2

)]
, (115)

cf. [47]. The soft–resummed contributions for O(a3) and higher are

σI,≥3,soft =

∫ 1

z0

σ(0)(zs)
{
β(1− z)β−1 − βD0(z)− β2D1(z)

}
TV+S

(
a,

s

m2

)
. (116)

One may extend the soft photon exponentiation by including as well the soft production of
e+e− pairs according to the non–singlet process described in Section 5 in the region z → 1. this
modifies the term β(1− z)β−1 in (115) to

exp
[

1
2
η
(

3
2
− 2γE

)]
Γ(η)

(1− z)η−1 (117)

with

η = −6 ln

(
1− 4

3
aL

)
, (118)

cf. [54]. The Mellin inversion leading to (117) has been calculated in Ref. [55], see also [47].
These are both leading order resummations. One may as well resum the logarithms lnk(z)/z in
the small z region, cf. e.g. [56] leading to associated Bessel functions, as has been known in QCD
before, see e.g. [57].

The leading logarithmic orders O((aL)k), which are process independent, can be treated
rather straightforwardly to rather high orders, accounting both for the non–singlet and singlet
contributions, cf. [56, 58–65]. These corrections include the resummations mentioned and do
even account for more contributions by resumming as well all collinear contributions according to
the QED evolution equations. Note, however, that the sub–leading contributions always require
the inclusion of mass effects due to massive OMEs, cf. [2].
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12 Conclusions

The O(a2) initial state radiative corrections to the process e+e− → γ∗/Z∗ have been computed
in a direct calculation without neglecting the electron mass against the s–channel energy of
the process. The expansion in the ratio m2

e/s has been only performed in a very late stage of
the calculation by controlling the result based on precision numerics in mathematica with the
complete result. The corrections can be grouped into four main processes, I–IV, as already done
in Ref. [1], with the addition of non–logarithmic terms and terms due to soft–exponentiation
for the contributions beyond O(a2). Furthermore, one has to account for differing axial–vector
contributions in some of the channels. For the processes I–IV we find differing results for the
non–logarithmic terms of O(a2) given in [1], while we agree in the logarithmic contributions
and those of O(a). On the other hand, we agree with the results of Ref. [2]. In the case of
process II we agree with Refs. [1, 51] if the initial state fermion radiation concerns µ+µ− or
heavier lepton or quark pairs. We also agree for the pure–singlet interference terms with a
result in Ref. [53]. Furthermore, we agree with non–logarithmic corrections derived first for the
Drell–Yan process [10].

The present calculation proofs, here for QED, that the massive Drell–Yan process factorizes,
and we revise an earlier doubt in Ref. [2]. The present rather voluminous calculation has been the
only way to establish this. Fortunately, mathematical methods are now available to perform the
corresponding integrals analytically and allow to represent them as iterated integrals of square
root–valued alphabets, carrying real parameters. It is this representation which finally allows
the controlled limit m2

e/s→ 0 for the power corrections. A part of the integrals are incomplete
elliptic integrals and generalizations thereof, which does not lead to a further sophistication,
since the corresponding integrals are still iterative. Numerical illustrations of the present results
have been given in Ref. [15]. already.

The numerical accuracy to which both the Z boson mass and width are planned to be
measured at the FCC ee is rather high. It amounts to ∼ 100 keV systematic uncertainty, with
a much higher statistical precision. It is clear from Ref. [15] that the O(a2) ISR corrections will
not yet be sufficient to cope with this accuracy. Therefore, even higher order corrections have to
be calculated to sub–leading levels, cf. [66].

A The phase space integrals

In the following we describe the parameterization of the phase space integrals both for the case
of fermion pair and photon pair radiation, followed by explicit expressions obtained after the
angular integrations. Here the setup is similar to that used in [1, 53].

A.1 Fermion Pair Radiation

For massive fermion pair radiation we only encounter 2→ 3 scattering with the kinematics

p− + p+ = q + k− + k+ (119)

with

(p− + p+)2 = s,

q2 = s′,

p2
− = p2

+ = k2
− = k2

+ = m2. (120)
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We also introduce the invariants

(k+ + q)2 = s3, (121)

(k− + q)2 = s4, (122)

(k− + k2)2 = s′′, (123)

which satisfy the identity

s3 + s4 + s′′ = s+ s′ +m2. (124)

The phase space integral is given by∫
dPS3 =

1

(2π)6

∫
d4q

∫
d4k−

∫
d4k+

{
δ
(
q2 − s′

)
δ
(
k2
− −m2

)
× δ

(
k2

+ −m2
)
δ(4) (p− + p+ − q − k− − k+)

}
=

1

(2π)6

∫
d4k1

∫
d4k2

{
δ([p− + p+ − k1 − k2]2 − s′)δ(k2

1 −m2)

× δ(k2
2 −m2)

}

=
1

(2π)5

∫
dk0

1

∫
d|~k1|

∫
d cos(χ)

∫
dk0

2

∫
d|~k2|

1∫
−1

d cos(θ)

2π∫
0

dφ

×
{
|~k1|2|~k2|2

δ(cos(χ)− cos(χ0))

2|~k1||~k2|
δ(|~k1| −

√
(k0

1)2 −m2)

2|~k1|
δ(|~k2| −

√
(k0

2)2 −m2)

2|~k2|

}

=
1

4(2π)5

∫
dk0

1

∫
dk0

2

1∫
−1

d cos(θ)

π∫
0

dφ

=
1

(4π)4

1

2πs

∫
ds3

∫
ds4

1∫
−1

d cos(θ)

π∫
0

dφ

=
1

(4π)4

1

2πs

∫
ds′′
∫
ds3

1∫
−1

d cos(θ)

π∫
0

dφ. (125)

In deriving these relations, the identities

δ([p− + p+ − k1 − k2]2 − s′) = δ(s− s′ − 2
√
s(k0

1 + k0
2) + 2m2 + 2k1.k2)

= δ(s− s′ − 2
√
s(k0

1 + k0
2) + 2m2 + 2k0

1k
0
2 − 2|~k1||~k2| cos(χ))

=
1

2|~k1||~k2|
δ(cos(χ)− cos(χ0)), (126)

with

cos(χ0) =
s− s′ + 2m2 − 2

√
s(k0

1 + k0
2) + 2k0

1k
0
2

2|~k1||~k2|
, (127)
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were used. The integration variables are transformed according to

s3 = (k2 + q)2 = (p− + p+ − k1)2 = s+m2 − 2
√
sk0

1,

s4 = (k1 + q)2 = (p− + p+ − k2)2 = s+m2 − 2
√
sk0

2,

ds3 = −2
√
sdk0

1,

ds4 = −2
√
sdk0

2, (128)

and the symmetry of the angular integration allows to transform

1∫
−1

d cos(θ)

2π∫
0

dφ = 2

1∫
−1

d cos(θ)

π∫
0

dφ. (129)

The phase space boundaries are given by

4m2 < s′′ < (
√
s−
√
s′)2, (130)

s−3 < s3 < s+
3 , (131)

where the explicit expressions for s−3 and s+
3 are given by

s±3 =
1

2

(
s+ s′ − s′′ + 2m2 ±

√
1− 4m2

s′′
λ1/2(s, s′, s′′)

)
. (132)

We can also change the order of integration in which case we obtain

(
√
s−m)2 < s3 < (

√
s′ −m)2, (133)

s′′
−
< s′′ < s′′

+
(134)

with the explicit expressions

s′′
±

=
1

2s3

(
(s− s3)(s3 − s′) +m2(s+ 2s3 + s′)−m4 ± λ1/2(s, s3,m

2)λ1/2(s′, s3,m
2)
)
. (135)

We can use the following parameterization of the vectors:

p− =

√
s

2

(
1, 0, 0, β

)
p+ =

√
s

2

(
1, 0, 0, −β

)
k1 =

(
k0

1, 0, |~k1|s(θ), |~k1|c(θ)
)

(136)

k2 =
(
k0

2, |~k2|s(φ)s(χ0), |~k2| (c(χ0)s(θ)− c(θ)c(φ)s(χ0)) , |~k2| (c(θ)c(χ0) + c(φ)s(θ)s(χ0))
)

q = p− + p+ − k1 − k2 (137)

with the abbreviation c(x) = cos(x) and s(x) = sin(x). The missing components of the vectors
are given by

k0
1 =

s− s3 +m2

2s
, |~k1| =

λ1/2(s, s3,m
2)

2s
,

k0
2 =

s− s4 +m2

2s
, |~k2| =

λ1/2(s, s4,m
2)

2s
. (138)
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The direction of the 3-vector component of k2 is achieved by rotating ~k1 with angle χ0 around
the x-axis and then with angle φ0 around k1. It is convenient to transform to the dimensionless
variables

t =
s′

s
, x =

s3

s
, y =

4m2

s′′
, (139)

in the explicit calculations. Since all involved particles are massive, the phase space integrals are
convergent and do not need any kind of regularization.

A.2 Photon Radiation

The 2→ 3 scattering can be very similarly parameterized as before. However, the replacements
k− → k1 and k+ → k2 with

k2
1 = k2

2 = 0 (140)

have to be made. Therefore, the limit m → 0 has to be taken in the expressions given in the
previous section. We will give the explicit expressions for completeness.

The phase space integral reads∫
dPS3 =

1

(2π)6

∫
d4q

∫
d4k−

∫
d4k+

{
δ
(
q2 − s′

)
δ
(
k2
− −m2

)
× δ

(
k2

+ −m2
)
δ(4) (p− + p+ − q − k− − k+)

}

=
1

(4π)4

1

2πs

∫
ds3

∫
ds4

1∫
−1

d cos(θ)

π∫
0

dφ (141)

with the explicit parameterization of the vectors

p− =

√
s

2

(
1, 0, 0, β

)
p+ =

√
s

2

(
1, 0, 0, −β

)
k1 =

s− s3

2
√
s

(
1, 0, s(θ), c(θ)

)
(142)

k2 =
s− s4

2
√
s

(
1, s(φ)s(χ0), (c(χ0)s(θ)− c(θ)c(φ)s(χ0)) , (c(θ)c(χ0) + c(φ)s(θ)s(χ0))

)
q = p− + p+ − k1 − k2. (143)

The angle between the two photons is given by

cos(χ0) = 1− 2ss′′

(s− s3)(s− s4)
. (144)

The phase space boundaries simplify to

ss′

s3

≤ s4 ≤ s+ s′ − s3, (145)

s′ ≤ s3 ≤ s.
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They are symmetric in s3 and s4.
It is also possible to only radiate one additional photon. In this case the phase space for

2→ 2 scattering is needed. Using the kinematics

p− + p− = q + k (146)

with k2 = 0, it is given by∫
dPS2 =

∫
d4q

∫
d4kδ(s− s′)δ(k2)δ(4)(p− + p+ − q − k) (147)

=
1

(4π)2

2

s− s′

1∫
−1

d cos(θ).

In this case the vectors can be parameterized by

p− =

√
s

2

(
1, 0, 0, β

)
, (148)

p+ =

√
s

2

(
1, 0, 0, −β

)
,

k =
s− s′

2
√
s

(
1, 0, sin(θ), cos(θ)

)
,

q = p− + p+ − k.

A.3 The Angular Integrals

For the photon emission graphs we find the following denominators

D1 = (p− − k2)2 −m2, D2 = (p− − k1)2 −m2,

D3 = (q − p+)2 −m2, D4 = (q − p−)2 −m2,

D5 = (p+ − k2)2 −m2, D6 = (p+ − k1)2 −m2. (149)

For the angular integrals we again want to map to the angular integrals of the form

Id=4
l,k =

π∫
0

dθ

π∫
0

dφ
sin(θ)

[a+ b cos(θ)]l
1

[A+B cos(θ) + C sin(θ) cos(φ)]k
(150)

For some denominator structures we have to use partial fractioning. Some cases are trivial, like

1

D2D6

=
1

s3 − s

(
1

D1

+
1

D5

)
, (151)

1

D3D4

=
1

s′′ − s

(
1

D3

+
1

D4

)
, (152)

1

D1D5

=
1

s4 − s

(
1

D5

+
1

D6

)
. (153)

The more involved ones read

1

D1D2D3

=
1

s′′

(
1

D1D2

− 1

D1D3

− 1

D2D3

)
, (154)
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1

D2D3D5

=
1

s′ − s3

(
1

D2D3

+
1

D2D5

− 1

D3D5

)
, (155)

1

D1D3D6

=
1

s′ − s4

(
1

D1D6

+
1

D1D3

− 1

D3D6

)
, (156)

1

D1D4D6

= − 1

s′ − s3

(
1

D1D6

− 1

D1D4

+
1

D4D6

)
, (157)

1

D2D4D5

=
1

s′ − s4

(
1

D2D5

+
1

D4D5

− 1

D2D4

)
(158)

1

D4D5D6

=
1

s′′

(
1

D5D6

− 1

D4D5

− 1

D4D5

)
. (159)

For some combinations of denominators we have to interchange the parameterizations of k− and
k+ in order to arrive at angular integrals of the form (150).

If either l or k are negative we can use the relations given in Eqs. (??,??) for D = 4 to arrive
at the angular integrals. If both indices are negative we were not able to find a closed form in
D dimensions. For D = 4 we find

Id=4
−2,−2 = 2π

b4A4 − 2ab3A3B − 2abAB(a2 − 2b2)(B2 + C2)− b2A2
(
2b2B2 − a2(2B2 − C2)

)
(a2 − b2)(A2 −B2 − C2)X2

−
(B2 + C2)

(
2a2b2B2 + b4C2 − a4(B2 + C2)

)
(a2 − b2)(A2 −B2 − C2)X2

− bπ2b2A2B + b2BC2 + 2a2B(B2 + C2)− abA(4B2 + 3C2)

X5/2
ln

(
aA− bB +

√
X

aA− bB −
√
X

)
,

(160)

Id=4
−2,−1 =

2b(bA− aB)π

(a2 − b2)X
+ π

a(B2 + C2)− bAB
X3/2

ln

(
aA− bB +

√
X

aA− bB −
√
X

)
, (161)

Id=4
−1,−2 =

2π(a(B2 + C2)− bAB)

(A2 −B2 − C2)X
+
b(bA− aB)π

X3/2
ln

(
aA− bB +

√
X

aA− bB −
√
X

)
, (162)

Id=4
−1,−1 =

π√
X

ln

(
aA− bB +

√
X

aA− bB −
√
X

)
, (163)

with X = (aA − bB)2 − (a2 − b2)(A2 − B2 − C2). Note that we agree with the results given
in [10,67,68].
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