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Abstract

Strengthening constraints on new physics from the B̄ → Xsγ branching ratio requires improv-
ing accuracy in the measurements and the Standard Model predictions. To match the expected
Belle-II accuracy, Next-to-Next-to-Leading Order (NNLO) QCD corrections must be calcu-
lated without the so-far employed interpolation in the charm-quark mass mc. In the process
of evaluating such corrections at the physical value of mc, we have finalized the part coming
from diagrams with closed fermion loops on the gluon lines that contribute to the interference
of the current-current and photonic dipole operators. We confirm several published results
for corrections of this type, and supplement them with a previously uncalculated piece. Tak-
ing into account the recently improved estimates of non-perturbative contributions, we find
Bsγ = (3.40 ± 0.17) × 10−4 and Rγ ≡ B(s+d)γ/Bcℓν̄ = (3.35 ± 0.16) × 10−3 for Eγ > 1.6 GeV
in the decaying meson rest frame.

http://arxiv.org/abs/2002.01548v1


1 Introduction

Flavour Changing Neutral Current (FCNC) processes receive the leading Standard Model (SM)
contributions from one-loop diagrams only, often with additional suppression factors originating
from the Glashow-Iliopoulos-Maiani (GIM) mechanism [1]. It makes them sensitive to possible
existence of new weakly-interacting particles with masses ranging up to O(100 TeV). Significant
deviations from the SM predictions are observed in the GIM-unsuppressed FCNC processes
mediated by the b → sµ+µ− transition (see, e.g., the recent summary in Ref. [2]). On the other
hand, no deviations are seen in the closely related b → sγ transition, despite higher accuracy
of both the measurements and the SM predictions in its case.

The physical observable giving the strongest constraints on the b → sγ amplitude is the
inclusive Bsγ branching ratio, i.e. the CP- and isospin- averaged branching ratio of B̄ → Xsγ
and B → Xs̄γ decays, with B̄ and B denoting (B̄0 or B−) and (B0 or B+), respectively. The
states Xs and Xs̄ are assumed to contain no charmed hadrons. Bsγ is being measured [3–8] with
Eγ > E0 for E0 ∈ [1.7, 2.0] GeV, and then extrapolated to the conventionally chosen value of
E0 = 1.6 GeV to compare with the theoretical predictions (that would be less accurate at higher
E0). The current experimental world average for Bsγ at E0 = 1.6 GeV reads (3.32 ± 0.15) ×
10−4 [9], which corresponds to an uncertainty of around ±4.5%. With the full Belle-II dataset,
the world average uncertainty at the level of ±2.6% is expected [10, 11]. Achieving a similar
accuracy in the SM predictions is essential for improving the power of Bsγ as a constraint on
beyond-SM theories. It is the goal of the calculations we describe in what follows.

The SM prediction for Bsγ (see Refs. [12, 13]), is based on the formula

B(B̄ → Xsγ)Eγ>E0
= B(B̄ → Xcℓν̄)
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where αem = αon shell
em , while the so-called semileptonic phase-space factor C is given by
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∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2
Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
. (1.2)

Its numerical value is determined [14] using the Heavy Quark Effective Theory (HQET) methods
from measurements of the B̄ → Xcℓν̄ decay spectra. The quantity P (E0) is defined through
the following ratio of perturbative inclusive decay rates of the b quark:

Γ[b → Xp
s γ]Eγ>E0

|Vcb/Vub|2 Γ[b → Xp
ueν̄]

=

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2
6αem

π
P (E0), (1.3)

with Xp
s and Xp

u denoting all the possible charmless partonic final states in the respective
decays (Xp

s = s, sg, sqq̄, . . .). The non-perturbative contribution from N(E0) in Eq. (1.1) is
estimated1 at the level of around 4% of Bsγ. To achieve O(3%) precision in P (E0), evaluation
of the Next-to-Next-to Leading (NNLO) QCD corrections to this quantity is necessary.

1 See Sec. 3 for details on the current uncertainty budget.
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Figure 1: Sample Feynman diagrams contributing to Ĝ
(2)
27 at O(α2

s ). The vertical dotted lines
indicate possible unitarity cuts. The dotted, dashed and solid propagators correspond to quarks with
masses 0, mc and mb, respectively.

Perturbative calculations of P (E0) are most conveniently performed in the framework of
an effective theory obtained from the SM via decoupling of the W boson and all the heavier
particles. The relevant weak interactions are then given by the following Lagrangian density2

Lweak =
4GF√

2
V ⋆
tsVtb

8
∑

i=1

Ci(µb)Qi. (1.4)

Evaluation of the Wilson coefficients Ci to the NNLO accuracy (O(α2
s )) at the renormalization

scale µb ∼ mb required computing electroweak-scale matching up to three loops [15], and QCD
anomalous dimensions up to four loops [16]. Since Ci in the SM have no imaginary parts, one
can write the perturbative decay rate as

Γ(b → Xp
s γ) =

G2
F m5

b, pole αem

32π4
|V ∗

tsVtb|2
8

∑

i,j=1

Ci(µb)Cj(µb)Ĝij, (Ĝij = Ĝji), (1.5)

where Ĝij come from interferences of amplitudes with insertions of the operators Qi and Qj.

The dominant NNLO effects come from Ĝ17, Ĝ27 and Ĝ77 that originate from the operators

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL), Q2 = (s̄LγµcL)(c̄Lγ
µbL), Q7 = emb

16π2 (s̄Lσ
µνbR)Fµν . (1.6)

Whereas Ĝ77 has been known up to O(α2
s ) since a long time [17–21], no complete NNLO

calculation of Ĝ17 and Ĝ27 at the physical value of the charm quark mass mc has been finalized
to date. Instead, calculations of these quantities at mc ≫ mb [22, 23] and mc = 0 [13] gave a
basis for estimating their physical values using interpolation [13]. The related uncertainty in
Bsγ (due to the mc-interpolation only) has been estimated at the level of ±3%, which places it
among the dominant contributions to the overall theoretical uncertainty (see Sec. 3).

2 For simplicity, we refrain here from displaying those terms in Lweak that matter for subleading electroweak
or CKM-suppressed effects only. Such effects have been included in the numerical analysis of Refs. [12, 13].
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Figure 2: Sample three-loop propagator-type integrals that parameterize large-z expansions of the
MIs. Massless and massive internal propagators are denoted by dotted and solid lines, respectively.
The thin dotted lines indicate the unitarity cuts.

To calculate the interferences Ĝij at the physical value of mc, it is convenient to express
them in terms of propagator diagrams with unitarity cuts. Examples of such four-loop diagrams
contributing to Ĝ27 at O(α2

s ) are shown in Fig. 1, with the light quarks (u, d, s) treated as
massless. Similar diagrams for Ĝ17 differ from the Ĝ27 ones by simple colour factors only. For
definiteness, we shall focus on Ĝ27 in what follows.

By analogy to what has been done in the Ĝ77 case [17–21], evaluation of O(α2
s ) contributions

to Ĝ27 is performed in two steps. First, no restriction on the photon energy Eγ is assumed. Next,
one performs the calculation for Eγ < E0, which requires considering diagrams with three- and

four-body cuts only. The desired result Ĝ
Eγ>E0

27 = Ĝ
anyEγ

27 − Ĝ
Eγ<E0

27 is then obtained without
necessity of determining the differential photon spectrum close to the endpoint Emax

γ = 1
2
mb.

In the present paper, we describe our calculation of Ĝ
(2)
27 in

Ĝ27 =
αs

4π
Ĝ

(1)
27 +

(αs

4π

)2

Ĝ
(2)
27 + O(α3

s ) (1.7)

at the physical value of mc, and with no restriction on Eγ . Final results are presented for
contributions originating from diagrams with closed fermion loops on the gluon lines, like those
in the first row of Fig. 1. They undergo separate renormalization and are gauge invariant on
their own, so they serve as a useful test case for our calculation of the complete Ĝ

(2)
27 . Most of

such contributions have already been determined in the past [24–27] and implemented in the
phenomenological analysis [12, 13]. We confirm the published results, and supplement them
with a previously uncalculated piece. Some of the previous results have been obtained by a
single group only, which makes our verification relevant.

The article is organized as follows. In the next section, our algorithm for evaluation of the
complete Ĝ

(2)
27 is sketched, and the current status of the calculation is summarized. Next, we

focus on the closed fermionic loop contributions, displaying our numerical results and comparing
them with the literature wherever possible. In Sec. 3, the SM prediction for the branching ratio
is updated, taking into account the recently improved estimates of non-perturbative effects [28].
We conclude in Sec. 4. In the Appendix, large-z expansions of our final results are presented,
and one of the counterterm contributions is discussed.
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Figure 3: Contributions to Ĝ
(2)
27 from diagrams with closed loops of massless fermions - see the text.

They have already been multiplied by nl = 3, i.e. the number of flavours we treat as massless.

2 The NNLO contribution to Ĝ27

The quantity Ĝ
(2)
27 is given by a few hundreds of four-loop propagator diagrams with unitarity

cuts, as those presented in Fig. 1. We generate them using QGRAF [29] and/or FeynArts [30,31].

After performing the Dirac algebra with the help of FORM [32], we express the full Ĝ
(2)
27 in terms

of several hundred thousands scalar integrals grouped in O(500) families.3 Next, the Integration
By Parts (IBP) identities [33–35] for each family are generated and applied using KIRA [36,37],

as well as FIRE [38, 39] and LiteRed [40, 41]. In effect, Ĝ
(2)
27 becomes a linear combination of

Master Integrals (MIs). The IBP reduction is the most computer-power demanding part of the
calculation, with O(1 TB) RAM nodes and weeks of CPU time needed for the most complicated
families.

After setting the renormalization scale squared to µ2
b = eγm2

b/(4π) (with γ being the Euler-
Mascheroni constant), the MIs are multiplied by appropriate powers of mb, to make them
dimensionless. They depend on two parameters only: the dimensional regularization parameter
ǫ, and the quark mass ratio z = m2

c/m
2
b . In each family separately, the MIs Mk(z, ǫ) satisfy the

3 Integrals in a family differ only by indices, i.e. the powers to which the propagators and/or irreducible
numerators are being raised.
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Figure 4: Contributions to Ĝ
(2)
27 from diagrams with closed loops of massive fermions - see the text.

Differential Equations (DEs)

d

dz
Mk(z, ǫ) =

∑

l

Rkl(z, ǫ)Ml(z, ǫ), (2.8)

where the rational functions Rkl(z, ǫ) on the r.h.s. are determined [42–44] from the IBP, too.4

Similar equations are explicitly displayed in Eq. (3.6) of Ref. [45] where ultraviolet counterterm

contributions to Ĝ
(2)
27 have been determined.

We solve the DEs using the same method as in Refs. [26, 45, 46]. The MIs are expanded in
ǫ to appropriate powers, with the expansion coefficients being functions of z only. Boundary
conditions for these functions at large z are found using asymptotic expansions [47]. Next, the
variable z is treated as complex, and the DEs are numerically solved along half-ellipses in the
z-plane, to bypass singularities on the real axis.

In practice, the codes q2e and exp [48,49] are used to determine the asymptotic expansions
at large z. Coefficients at subsequent powers of 1/z are given in terms of one-, two- and three-
loop single-scale integrals, either massive tadpoles or propagator-type ones with unitarity cuts
(see Fig. 2). Only at the level of the latter integrals, we perform cross-family identification,
which gives us O(50) essentially different and non-vanishing integrals. They are evaluated [50]
using various techniques, in particular the Mellin-Barnes one. Once the large-z expansions
are found, numerical solutions of the DEs starting from the boundary at z = 20 are worked
out using the code ZVODE [51] upgraded to quadrupole-double precision with the help of the
QD [52] computation package. Half-ellipses of various sizes are considered to test the numerical
stability.

At present, our IBP reduction for the full Ĝ
(2)
27 is (almost) completed, and the evaluation of

the boundary conditions is being finalized [50]. However, for the diagrams with closed fermionic
loops (as the ones in the first row of Fig. 1), the DEs are already solved, and we are ready to
present the final results. They are plotted in Figs. 3 and 4 as functions of z.

4 Getting a closed system of such DEs usually requires including several new MIs w.r.t. those entering the

expression for Ĝ
(2)
27 .
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Figure 5: Diagrams corresponding to the last (lower) plot in Fig. 3.

The displayed results correspond to various contributions to Ĝ
(2)
27 renormalized in the MS

scheme with µ2
b = m2

b (or, equivalently, in the MS scheme with µ2
b = eγm2

b/(4π)). The renor-
malization has been performed with the help of the counterterm contributions evaluated5 in
Refs. [45,46]. In all the plots, the black dots correspond to numerical solutions that we have ob-
tained using the DEs. Dots corresponding to the physical value of z are bigger and highlighted
in red. Blue dots of similar size on the left boundaries of each plot indicate the z → 0 limits for
each contribution, known from the calculation in Ref. [13]. Thin dashed curves continuing to
large values of z describe our large-z expansions evaluated up to O(1/z2) (see the Appendix).
The dash-dotted vertical lines indicate the cc̄ production threshold at z = 1/4, in the vicinity
of which neither the large-z nor the small-z expansions are expected to converge well.

In Fig. 3, three distinct contributions from diagrams with closed massless fermion loops are
presented. The first (upper left) plot corresponds to diagrams with two-body cuts. The thin
dashed line in the small-z region shows the analytic expansion in powers of z evaluated in
Ref. [25]. It is the only case for which such an expansion is known. The solid blue curve shows
the numerical fit corresponding to Eq. (3.2) of Ref. [26] where a numerical method (identical
to ours) has been used.

The second (upper right) plot of Fig. 3 shows all the four-body-cut contributions except
the diagrams displayed in Fig. 5. The latter diagrams have been skipped in evaluating the
photon spectrum in the Brodsky-Lepage-Mackenzie (BLM) [53] approximation by the authors
of Refs. [24,27]. The solid blue curve is based on the numerical fit from Eq. (3.6) of Ref. [13] that
corresponds to no restriction on Eγ , and has been obtained as a by-product of the calculation
in Ref. [27].

The third (bottom) plot in Fig. 3 corresponds to the very diagrams from Fig. 5. In this
case, no numerical result valid for arbitrary mc has existed prior to our present calculation. For
z < 1

4
, we can describe our findings by the following fit:

∆4-b✘✘BLM

m=0
Ĝ

(2)
27 = 3

[

0.164 + 0.13 z
1

2 − 21.51 z + 68.10 z
3

2 − 46.12 z2 + (−3.23 z + 18.23 z2) ln z
]

. (2.9)

5 In the charm loop case (the right plot in Fig. 4), we had to rely on our so-far unpublished results for the
UV counterterms – see the Appendix.
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It is shown as a solid blue curve in the considered plot. A quick look at Fig. 5 is sufficient to
realize that ∆4-b✘✘BLM

m=0
Ĝ

(2)
17 = −1

6
∆4-b✘✘BLM

m=0
Ĝ

(2)
27 , due to the identity T aT bT a = −1

6
T b for the SU(3)c

generators. The same relative colour factor is valid for all the plots in Figs. 3 and 4.
Fig. 4 shows contributions to Ĝ

(2)
27 from diagrams with closed loops of quarks with masses mb

(left) and mc (right). Only the two-body cuts are included. The solid blue lines correspond to
the numerical fits from Eqs. (3.3) and (3.4) of Ref. [26]. In these cases, no four-body cuts are
allowed, as the state Xp

s in Eq. (1.5) is assumed to contain no charm quarks. We do not consider
three-body cuts here, as their effect can be included by multiplying the well-known three-body
contribution to Ĝ

(1)
27 by finite coefficients originating from6 ZOS

G Z2
g −1. The corresponding term

in Eq. (3.8) of Ref. [13] comes at the end of the first line of the expression for K
(2)
27 .

As evident from the plots, our results are in perfect agreement with all the previously avail-
able expansions and fits. It is particularly important in the massive case (Fig. 4) where our
verification comes as the first one from an independent group. The massless results from the
upper two plots of Fig. 3 have already been cross-checked before.

As far as the new contribution (the third plot in Fig. 3) is concerned, it has so far been
included in the interpolated part of the NNLO correction, and resulted in a tiny effect, around
one per-mille of the decay rate only. Now we remove it from the interpolated part and replace
by the fit in Eq. (2.9). It turns out that the interpolation estimate was correct within ∼10%
of the considered contribution, so the effect remains tiny.

3 Updated SM predictions for Bsγ and Rγ

In the present section, we work out updated SM predictions for Bsγ , as well as for the ratio
Rγ ≡ B(s+d)γ/Bcℓν̄ , where Bcℓν̄ is the CP- and isospin-averaged branching ratio of the inclusive
semileptonic decay. Our main motivation for performing an update right now is not due to the
NNLO corrections evaluated in the previous section. The new contribution is tiny, while the
sizeable ones (that we have confirmed) were already included in the phenomenological analysis
of Ref. [13]. However, there has been an important progress in estimating non-perturbative
effects (see below). An update of the SM prediction should thus be performed right now, even
though the mc-interpolation uncertainty remains essentially unchanged.

The first improvement in estimating the non-perturbative effects becomes possible thanks
to the new Belle measurement of the isospin asymmetry

∆0− ≡ Γ[B̄0 → Xsγ] − Γ[B− → Xsγ]

Γ[B̄0 → Xsγ] + Γ[B− → Xsγ]
= (−0.48 ± 1.49 ± 0.97 ± 1.15)% [54]. (3.10)

In the SM, the dominant contribution to this asymmetry arises from a process where no hard
photon but rather a hard7 gluon is emitted in the b-quark decay [55]. Next, the gluon scatters
on the valence quark, which results in emission of a hard photon. Instead of the valence quark,

6 ZOS
G stands for the on-shell renormalization constant of the gluon wave-function, while Zg renormalizes the

QCD gauge coupling in the MS scheme.
7 with momentum of order mb but possibly much smaller virtuality
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also a sea quark (u, d or s) can participate in such a Compton-like scattering. Taking this fact
into account, one can write the decay rates as

Γ[B−→ Xsγ] ≃ A + BQu + CQd + DQs,

Γ[B̄0 → Xsγ] ≃ A + BQd + CQu + DQs, (3.11)

where Qu,d,s denote electric charges of the quarks participating in the Compton-like scattering,
while the quantities A, . . . , D are given by interferences of various quantum amplitudes whose
explicit form is inessential here. Since the considered effect gives only a small correction to
the decay rate (B,C,D ≪ A), quadratic terms in Qu,d,s have been neglected above. We have
also neglected isospin violation in the quark masses (mu 6= md) and in the electromagnetic
corrections to the B̄-meson wave functions (suppressed by extra powers of αem).

The leading term A contains the dominant contribution originating from the operator Q7.
The corrections B, C, D are suppressed w.r.t. A both by g2s (as the gluon is hard) and by
Λ/mb, with Λ ∼ ΛQCD. The latter suppression can be intuitively understood by realizing that
the gluon scatters on remnants of the B̄ meson, i.e. on a diluted target whose size scales like
1/Λ. Such a suppression is confirmed in Refs. [55,56] where the Soft-Collinear Effective Theory
(SCET) has been applied to analyze non-perturbative corrections to Bsγ.

From Eq. (3.11), one easily obtains the isospin-averaged decay rate

Γ ≃ A +
1

2
(B + C)(Qu + Qd) + DQs ≡ A + δΓc, (3.12)

and the isospin asymmetry

∆0− ≃ C − B

2Γ
(Qu −Qd). (3.13)

It follows that the relative correction to the isospin-averaged decay rate that arises due to the
considered effect reads

δΓc

Γ
≃ (B + C)(Qu + Qd) + 2DQs

(C − B)(Qu −Qd)
∆0− =

Qu + Qd

Qd −Qu

[

1 + 2
D − C

C − B

]

∆0−, (3.14)

where, in the last step, Qs = −Qu −Qd has been used. The second term in the square bracket
vanishes in the SU(3)F limit, i.e. when the three lightest quarks are treated as mass-degenerate.
In this limit, as observed in Ref. [57], δΓc/Γ and ∆0− are related to each other in a simple
manner that is free from non-perturbative uncertainties. The authors of Ref. [56] suggested
±30% as an uncertainty estimate stemming from the SU(3)F -violating effect in Eq. (3.14).
Following this suggestion, we find

δΓc

Γ
= −1

3
(1 ± 0.3)∆0− = (0.16 ± 0.74)%, (3.15)

where the experimental errors from Eq. (3.10) were combined in quadrature, giving ∆0− =
(−0.48 ± 2.12)%; next, the multiplicative factor was taken into account as follows [58]:

(1 ± 0.3)(−0.48 ± 2.12)% =
(

−0.48 ±
√

2.122 + (0.3 · 0.48)2 + (0.3 · 2.12)2
)

%. (3.16)
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In the above estimates, we have treated the measured ∆0− in Eq. (3.10) as already extrap-
olated from the experimental cutoff of E0 = 1.9 GeV down to our default E0 = 1.6 GeV, even
though no such extrapolation has actually been done in Ref. [54]. However, we expect the
extrapolation uncertainty in this case to be negligible w.r.t. the remaining ones in Eq. (3.10).

If the uncertainty on the r.h.s. of Eq. (3.15) is treated as 1σ of a Gaussian distribution, then
the 95% C.L. range is [−1.3,+1.6]%. The corresponding8 range [−1.4,+2.0]% in Sec. 3.5 of
Ref. [28] is somewhat wider due to a different method of combining uncertainties and using the
PDG [59] central value of −0.6% for ∆0−. When determining our SM predictions below, we
calculate Bsγ without including the photon emission from the valence/sea quarks and, in the
final step, we multiply by

(

1 + δΓc

Γ

)

, employing the number from the r.h.s. of Eq. (3.15).
Another important non-perturbative correction to be considered arises in the interference of

Q1,2 and Q7. Its presence in the inclusive B̄ → Xsγ rate was first pointed out in Ref. [60]. It
amounts to around +3% of Bsγ, as established in Ref. [61] at the leading order of an expansion
in powers of mbΛ/m

2
c . The corresponding leading contribution to N(E0) in Eq. (1.1) reads

δNV = − µ2
G

27m2
c

C7(µb)

(

C2(µb) −
1

6
C1(µb)

)

, (3.17)

where µ2
G ≃ 0.3 GeV2 is one of the HQET parameters that matter in the determination of C

in Eq. (1.2). Since mbΛ/m
2
c is not a small parameter, the authors of Ref. [56] argued that no

expansion in its powers can be used at all. Instead, they estimated the considered correction
in the framework of SCET, where essential constraints on models of the relevant soft function
came from moments of the semileptonic B̄ → Xcℓν̄ decay spectra. A recent update of these
estimates in Ref. [28] implies that δNV (3.17) needs to be multiplied by

κV = 1 − 27m2
cΛ17

mbµ2
G

= 1.2 ± 0.3. (3.18)

The final numerical value above has been derived by us from ranges for Λ17 given in Ref. [28],
assuming that these ranges can be interpreted as 1σ ones. The remaining parameters on which
κV depends were set to the values corresponding to the widest range for Λ17 in Ref. [28].

Since the expression for δNV (3.17) is calculated at the leading order in QCD only, the renor-
malization scheme for m2

c in the denominator is unspecified. We assume that the corresponding
uncertainty is included in the overall ±3% higher-order one that is being retained the same
as in Ref. [13]. As the total effect from δNV amounts to around 3% in Bsγ, uncertainties due
to scheme-dependence of mc in δNV can safely be treated this way. In our numerical calcula-
tions, the quark masses and HQET parameters are included with a full correlation matrix (see
Appendix D of Ref. [13]), except for the very mc in δNV that is now fixed to 1.17 GeV. The
parameter κV (3.18) will be treated as uncorrelated.

Apart from the two effects we have discussed above, the authors of Ref. [56] identified a
third source of uncertain contributions to N(E0) that arise at the order O(Λ/mb). They come
proportional to |C8(µb)|2, where C8 is the Wilson coefficient of the gluonic dipole operator

Q8 = gsmb

16π2 (s̄Lσ
µνT abR)Ga

µν . (3.19)

8 Our δΓc/Γ and their Fexp
78 are estimated in a similar way.
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Previous estimates of these corrections in Refs. [62, 63] focused on large collinear logarithms
ln mb

ms
that are present in the corresponding contributions to P (E0). In Ref. [13], such logarithms

were varied in the range [ln 10, ln 50] ≃
[

ln mB

mK
, ln mB

mπ

]

, which served as a crude estimate of the

very uncertain but otherwise small contributions to Bsγ where light hadron masses are the
physical collinear regulators. However, according to Ref. [56], possible non-perturbative effects
that come multiplied by |C8(µb)|2 can be unrelated to collinear logarithms, and affect Bsγ by
relative corrections in the range [−0.3, 1.9]% with respect to the mb

ms
= 50 case, for µb = 1.5 GeV

and E0 = 1.6 GeV. Numerically, we can reproduce this range by performing a replacement

ln
mb

ms
→ κ88 ln 50 with κ88 = 1.7 ± 1.1 (3.20)

in all the perturbative contributions proportional to |C8(µb)|2.
In the following, we shall treat the quantities δΓc

Γ
(3.15), κV (3.18) and κ88 (3.20) on equal

footing with all the other parameters that Bsγ depends on. Since they account for all the
non-perturbative effects estimated in Refs. [28,56], we shall no longer include the overall ±5%
non-perturbative uncertainty that entered the analysis of Ref. [13] as an input from Ref. [56].
This way we determine our updated SM predictions for Bsγ and Rγ in the SM, namely

Bsγ = (3.40 ± 0.17) × 10−4 and Rγ = (3.35 ± 0.16) × 10−3, (3.21)

for E0 = 1.6 GeV. The overall uncertainties have been obtained by combining in quadrature
the ones stemming from higher-order effects (±3%), interpolation in mc (±3%), as well as the
parametric uncertainty where all the non-perturbative ones are now contained. Not only δΓc

Γ
,

κV and κ88 but several other inputs parameterize non-perturbative effects, too, namely the
collinear regulators (see above), as well as the HQET parameters that enter either directly or
via the semileptonic phase-space factor C (1.2). In the Bsγ case, our parametric uncertainty
amounts to ±2.5% at present. All the input parameters listed in Appendix D of Ref. [13] have
been retained unchanged.

The overall uncertainty in Rγ (3.21) amounts to ±4.8%, noticeably improved w.r.t. to ±6.7%
in Ref. [12]. The main reason for the improvement comes from Ref. [28] where the dominant
non-perturbative uncertainty, stemming from Λ17 in Eq. (3.18), was reduced by a factor of
three. Further improvement requires removing the mc-interpolation, and re-considering the
higher-order and parametric uncertainties. If they remain unchanged, the expected future
accuracy in the SM prediction for Bsγ amounts to

√
32 + 2.52 % ≃ 3.9%, still somewhat behind

the experimental expectation of ±2.6% that was mentioned above Eq. (1.1).

4 Summary

We reported on our calculation of the NNLO QCD corrections to Bsγ without interpolation
in mc, and presented final results for contributions originating from propagator diagrams with
closed fermion loops on the gluon lines. They correspond either to the two-body (sγ) or four-
body (sqq̄γ) final states. In all the previously investigated cases, we confirmed the results from
the literature, some of which had been obtained by a single group only. The new part comes
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from four diagrams with four-particle cuts that had not been determined before, as they are
not included in the BLM approximation. Their contribution turns out to be tiny (∼ 0.1% of
the decay rate) and quite well reproduced by our former interpolation algorithm.

In view of the recent progress in estimating the non-perturbative contributions, we per-
formed an update of the phenomenological analysis within the SM. The obtained results
yield Bsγ = (3.40±0.17)×10−4 and Rγ ≡ B(s+d)γ/Bcℓν̄ = (3.35±0.16)×10−3 for E0 = 1.6 GeV.
The main improvement in the uncertainty came from the analysis in Ref. [28] where non-
perturbative effects in the Q1,2-Q7 interference were re-analyzed including up-to-date con-
straints from moments of the semileptonic decay spectra. In effect, the corresponding un-
certainty was reduced by a factor of three.

The next contribution to suppressing the overall theoretical uncertainty is expected from the
calculation of Ĝ

(2)
17 and Ĝ

(2)
27 for E0 = 0 and at the physical value of mc, thereby removing the

need for mc-interpolation in these quantities.
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Appendix: Large-z expansions and Ĝ
(1)
47 with charm loops

In this appendix, we present large-z expansions of the renormalized contributions to Ĝ
(2)
27 plot-

ted in Figs. 3 and 4. They are shown by the thin dashed lines reaching large values of z in the
corresponding plots. For the three plots in Fig. 3 that describe contributions from diagrams
with closed loops of massless fermions, the respective expansions read

∆2-b

m=0
Ĝ

(2)
27 = 3

[

27650
6561

+ 112
243

L + 8
9
L2 + 1

z

(

10427
30375

− 8
135

π2 − 572
18225

L + 38
405

L2
)

+ 1
z2

(

19899293
125023500

− 8
405

π2 − 1628
893025

L + 86
2835

L2
)]

+ O
(

1
z3

)

,

∆4-b BLM

m=0
Ĝ

(2)
27 = 3

[

1
z

(

41
108

− 10
243

π2
)

+ 1
z2

(

487
3375

− 2
135

π2
)]

+ O
(

1
z3

)

,

∆4-b✘✘BLM

m=0
Ĝ

(2)
27 = 3

[

− 32
729

(1 + L) + 1
z

(

− 941
7290

+ 16
1215

π2
)

+ 1
z2

(

− 10852
212625

+ 44
8505

π2
)]

+ O
(

1
z3

)

, (A.1)

where L = ln z. The first expression above coincides with Eq. (5.3) of Ref. [22].
For the closed bottom loops (the left plot in Fig. 4), we find
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∆2-b

m=mb
Ĝ

(2)
27 = 62210

6561
+ 160

729
π2 − 16π

9
√
3
− 16S2 +

(

464
81

+ 160
729

π2 − 16π
9
√
3
− 16S2

)

L + 8
9
L2

+ 1
z

(

−30991
10125

+ 656
3645

π2 + 4π
45

√
3

+ 64
405

ζ3 + 4
5
S2 − 32972

18225
L + 38

405
L2

)

+ 1
z2

(

−38874763
25004700

− 8
1701

π2 + 26π
525

√
3

+ 64
2835

ζ3 + 12
35
S2 − 864896

893025
L− 418

2835
L2

)

+ O
(

1
z3

)

, (A.2)

where S2 = 4
9
√
3

Im
[

Li2
(

eiπ/3
)]

. Finally, for the closed charm loops (the right plot in Fig. 4),
the large-z expansion reads

∆2-b

m=mc
Ĝ

(2)
27 = 11018

6561
+ 128

243
L + 200

243
L2 + 1

z

(

5714
54675

+ 7
81
ζ3 + 2146

18225
L + 52

405
L2

)

+ 1
z2

(

− 62075113
428652000

+ 469
5184

ζ3 − 41987
893025

L + 92
2835

L2
)

+ O
(

1
z3

)

. (A.3)

Our results in Eqs. (A.2) and (A.3) agree with the numerical ones in Eqs. (A.1) and (A.2) of
Ref. [26]. Analytical expressions for the leading terms agree with the findings of Ref. [23].

Determining the renormalized results plotted in Figs. 3 and 4 required taking into account
three-loop counterterm diagrams with vertices proportional to Q4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

namely Ĝ
(1)bare
47 . An expression for this quantity in Eq. (2.4) of Ref. [13] contains no contribu-

tions from closed loops of charm quarks, as all the other results in Sec. 2 of that paper. Such
contributions arise in the two-body channel only. They take the form

∆2-b

m=mc
Ĝ

(1)bare
47 = 16

81ǫ
− 4

243
+ 264π2−2186

729
ǫ + 2Re

[

b(z) + ǫb̃(z)
]

+ O(ǫ2). (A.4)

Small-z expansion of the function b(z) has been given in Eq. (3.9) of Ref. [64], while the large-z
expansion of Re b(z) can be found Eq. (5.2) of Ref. [22]. As far as b̃(z) is concerned, we obtain
the following expansions:

Re b̃(z) = 1144
729

− 46
243

π2 − 8
243

L− 2
81
L2 + 1

z

(

10957
60750

+ 212
2025

L + 1
15
L2

)

+ 1
z2

(

491839
41674500

+ 134
33075

L + 2
63
L2

)

+ O
(

1
z3

)

,

Re b̃(z) =
(

44
3
− 16

9
π2 − 40

9
ζ3 + 16

9
L− 8

9
L2

)

z +
(

304
81

− 128
27

ln 2 − 32
27
L
)

π2z
3

2

+
(

53
3
− 20

27
π2 + 14

3
L− 32

27
π2L + 10

9
L2 − 4

9
L3

)

z2 − 80
27
π2z

5

2

+
(

6830
729

− 292
243

π2 + 80
27
ζ3 + 68

243
L + 64

81
π2L− 124

27
L2 + 16

9
L3

)

z3 + 88
135

π2z
7

2

+
(

1944727
121500

− 304
405

π2 + 32
9
ζ3 − 17239

2025
L− 80

27
L2 + 16

9
L3

)

z4 + 272
2835

π2z
9

2

+
(

34017647
833490

− 1018
189

π2 + 80
9
ζ3 − 113308

3969
L− 182

27
L2 + 40

9
L3

)

z5 + O
(

z
11

2

)

. (A.5)

No explicit expressions for the expansions of b̃(z) have so far been published, even though this
function must have been used for UV renormalization in Ref. [26].
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