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Abstract: The Heavy Quark Expansion (HQE) has become an extremely powerful tool

in flavor physics. For charm decays, where the expansion parameters αs(mc) and ΛQCD/mc

are bigger than for bottom decays, it remains to be seen if the HQE can be applied with

similar success. Nevertheless, to make optimal use of the plethora of data already available

and coming in the near future, a better understanding of HQE for charm decays is crucial.

This paper discusses in detail how the HQE for charm decays is set up, what is the role

of four-quark (weak annihilation) operators and how this compares to the well understood

bottom decays. Subtleties concerning radiative corrections and the charm mass scheme are

briefly discussed. An experimental study of the relevant HQE hadronic matrix elements

will then show if the HQE expansion for charm converges well enough. Besides serving as

an important cross check for inclusive B decays, in the end, this study might open the road

for inclusive |Vcs| and |Vcd| extractions.
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1 Introduction

Precision calculations for B meson decays rely heavily on the Heavy Quark Expansion

(HQE), which makes use of the fact that for sufficiently heavy quarks, the various observ-

ables can be expressed as a double expansion in αs(mQ) as well as in ΛQCD/mQ, where mQ

is the mass of the heavy quark. For inclusive semileptonic b → c`ν transitions the HQE

has become quite sophisticated and high orders in both expansion parameters have been

studied [1–14].

In combination with large data samples from CDF, CLEO, DELPHI and B facto-

ries [15–27], the HQE allows to determine the CKM parameters |Vub| and |Vcb| with a

precision of about 6% and 2%, respectively [28–33].

For charm decays, however, one may wonder if the HQE can be applied with similar

success. Clearly, the expansion parameters αs(mc) and ΛQCD/mc are still less than unity,

however they are not particularly small, and hence the HQE cannot be expected to converge

as fast as for the bottom quark. This vice can be turned into a virtue: since ΛQCD/mc

is not so small, charm decays are more sensitive to higher-order terms in the HQE than

bottom decays. Inclusive charm decays may therefore serve as a tool to study the anatomy
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of the subleading terms of the HQE. Such a study requires a more detailed understanding

of the HQE in charm decays, to which this paper aims.

One of the main challenges in setting up the HQE for charm is that the charm mass is

dangerously close to the region where QCD is no longer perturbative. Possible violations

of the quark-hadron duality might actually lead to a general failure of the operator product

expansion (OPE) at a scale as low as mc. This can be seen, for instance, in the ground-

state charmed-hadron lifetimes which are predicted to be identical in the heavy quark limit,

while data show that the D± lifetime is about two and a half times the D0 lifetime. On

the contrary, for hadrons containing a bottom quark (but no charm) all lifetimes are equal

within a 10% range. These differences are due to four-quark operators in the HQE, the

weak annihilation (WA) and Pauli interference contributions. These operators are sensitive

to the flavour of the spectator quark. Although these terms are formally suppressed by

three powers of mQ, they are numerically enhanced by a factor 16π2 and they account for

the bulk of lifetimes differences in charm decays [34, 35].

For inclusive semileptonic D decays the situation seems to be better since the widths

of the various charmed hadrons are found to be quite similar [36]:

Γ(D+ → Xe+νe)/Γ(D0 → Xe+νe) = 0.985± 0.015± 0.024 ,

Γ(D+
s → Xe+νe)/Γ(D0 → Xe+νe) = 0.828± 0.051± 0.025 . (1.1)

The validity of the HQE for these decays was already studied in the 1990s [37, 38]. The

effect of WA operators was studied in detail in Ref. [39]. Here it was discussed that the WA

contribution is concentrated at the end point of the lepton spectrum q2 = M2
B. The WA

contribution is more pronounced in charm decays, therefore CLEO data of the inclusive

semileptonic charm decays [36] were used to determine the size of the WA operators [40, 41].

The effects of the WA operators was found to be small, which gives confidence in the validity

of the HQE for charm decays. On the other hand, in the quest for the highest precision these

effects have to be studied in more detail as they contribute both to inclusive B → Xu`ν [40–

43] and B → Xs,d`` decays [44, 45]. Therefore, it is important to further constrain the

size of WA and the uncertainty associated to it, which requires precise measurements of

inclusive c→ s`ν and c→ d`ν transitions.

In charm, there are impressive data sets available and coming up in the near future.

Both Belle II and BES III have specific experimental programs dedicated to leptonic and

semileptonic D meson decays [46, 47]. Moreover, two new Super Tau-Charm Factories, have

been proposed at Novosibirsk BINP [48], Russia, and Hefei USTC [49], China, to study

charm physics in e+e− collisions close to the DD̄ threshold with high statistics. In view

of this wealth of experimental data, the successful application of the HQE to semileptonic

B decays and the hints of its applicability also to D, a detailed reanalysis of the HQE for

charm is timely and crucial to exploit the full data set. Besides, providing information

on the non-perturbative HQE elements and the link to B decays, such a study may also

open the road to an inclusive measurement of |Vcs| and |Vcd|. Theoretically, the two main

challenges are: to understand the anatomy of the non-perturbative power corrections in

the HQE at higher order and the inclusion of higher-order terms in the αs expansion both
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in the partonic rate and the subleading 1/mc corrections. Also, and related to this, the

proper choice of the mass scheme for charm is a subtlety that must be addressed. The

purpose of the present paper is to set up the HQE for charm decays as an expansion in

three parameters, which are αs(mc), ΛQCD/mc and ms/mc, instead of two as in the b→ c

case. By making use of the method of regions [50, 51], we explicitly construct the OPE

up to and including terms of order Λ4
QCD/m

4
c and (ms/mc)

4. We will show that compared

to the case of b → c`ν̄, this expansion allow us to systematically take into account the

additional power corrections given by hadronic matrix elements of four-quark operators.

These matrix elements should then be extracted from q2 and energy moments of inclusive

semileptonic D decays. Finally, after such a future extraction of the power-suppressed

matrix elements, their sizes will indicate if the HQE for charm decays works well enough.

The paper is organized as follows: we first discuss in section 2 four different cases for

setting up the HQE and then we focus on the c → s transition. The c → d transition

can be trivially obtained from our results, as we discuss later. We subsequently discuss in

section 3 the method of regions and the ms/mc expansion, the perturbative matching and

the mixing of operators in sections 4 and 5. In section 6, we give our new HQE matrix

elements that should be extracted from data. We discuss some subtleties concerning QCD

corrections and the link between HQE from B and D decays in sections 7 and 8. We end

with a short outlook and conclusion.

2 The Heavy Quark Expansion for Charm

The HQEs for the charm and bottom quark are fundamentally different due to the hierarchy

between the mass of the heavy quark Q in the initial state and the quark q in the final

state. We distinguish four cases:

I: mQ ∼ mq � ΛQCD This is the usual point of view adopted in the OPE for b → c`ν̄

decays and for the determination of |Vcb|. The quark q is treated as a heavy degree

of freedom and therefore the operators arising at tree level are two-quarks operators

of the form Q̄v(iD
µ1 . . . iDµn)Qv containing only gluons and the quasi-static field

Qv(x) = exp(imQv · x)Q(x).1 The ratio mq/mQ, which is assumed to be of order

one, appears in the Wilson coefficients of the OPE. Starting at order 1/m3
Q, the

HQE develops an infrared sensitivity to the mass of the quark q in the form of a

bare logarithm log(mq/mQ) — there are also power-like singularities like 1/m2
q terms

starting from order 1/m5
Q [12].

II: mQ � mq � ΛQCD In this case it is convenient to first set up an OPE at a scale

µ ∼ mQ where the quark q is still a dynamical degree of freedom. Four-quark

operators of the form (Q̄vΓq)(qΓ̄Qv) then appear in this expansion. After that, the

Wilson coefficients are scaled down to µ ∼ mq � ΛQCD via the renormalization group

equation (RGE), where the quark q decouples. Then, we perform a second matching,

this time only onto two-quark operators, so that four-quark operators involving the

1Also four-quark operator with quarks lighter than q can appear.
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quark q are removed. Compared to case I, the log(mq/mQ) are produced as an RGE

effect.

III: mQ � mq ∼ ΛQCD Now, the light quark q remains a dynamical degree of free-

dom and cannot be integrated out, therefore four-quark operators containing q re-

main in the OPE. The infrared sensitivity to the light degrees of freedom appears

as additional non-perturbative parameters, which first appear at 1/m3
Q. The non-

analytic term log(mq/mQ), which arises in case I and II, does not explicitly appear

as it is hidden inside hadronic matrix elements of four-quark operators of the form

〈H| (Q̄Γq) (q̄Γ†Q) |H〉. We show that these operators can be absorbed into new non-

perturbative HQE parameters.

IV: mQ � ΛQCD � mq This case applies to b→ u and c→ d transitions, since the up

and down quark can safely be considered massless. In fact, this case is related to case

III by taking the massless limit.

We focus on the c→ s transition, which has ms ∼ ΛQCD and falls into case III. Therefore,

compared to b → c, we have a third expansion parameter, ms/mc ∼ 1/12, which has to

be treated to be of the same order as ΛQCD/mc in the HQE. The expansion in ms/mc

allows us to systematically determine the four-quark operator contributions to total rate

and spectral moments and at the same time to establish order by order in the HQE their

connection to the two-quark operators via the renormalization group evolution. To this

end, we will perform the OPE directly on the expressions for these observables rather

than on the differential rate — along the same lines as in ref. [52] — therefore after phase

space integration. Our aim is to determine the power corrections to the total rate Γ and

the moments of kinematical distributions 〈M (n)[w]〉,2 in terms of a common set of HQE

parameters that we denote with Xi.

The total width for inclusive semileptonic D meson decay is determined as the imagi-

nary part of the forward scattering amplitude [53–55]

Γ =
1

MD
Im 〈D| i

∫
d4x e−ipD·xT

{
H†W (x),HW (0)

}
|D〉 =

1

MD
Im 〈D|R |D〉 , (2.1)

where the weak Hamiltonian is

HW =
4GF√

2
VCKM

(
q̄γµLc

)
(ν̄`γLµ`) =

4GF√
2
VCKM Jµq J`µ, (2.2)

with γµL = γµPL, PL = (1− γ5)/2 the left-handed projector, GF the Fermi constant, VCKM

the relevant element in the CKM matrix, Jµq and Jµ` the hadronic and the leptonic currents,

respectively. The composite operator R in (2.1) admits an OPE written in term of local

operators:

ImR = Γ0

∑
i,k

C2q
k (µ)

mi
c

O2q
i+3,k +

∑
i,j

C4q
j (µ)

mi
c

O4q
i+3,j

 , (2.3)

2For the definition see (4.1).
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where the superscript 2q and 4q stand for two- and four-quark operators. We define

Γ0 = G2
Fm

5
c |VCKM|2/(192π3), Ck are the Wilson coefficients of the operators O2q

n,k and O4q
n,j

of mass dimension n. The spectral moments can be described using a similar OPE in

terms of the same two- and four-quark operators. We postpone their discussion to the next

session.

The computation for c→ q`ν decays proceeds in three steps:

Step 1: Matching in Perturbation Theory The matching consists of the extraction

of the Wilson coefficients Cn(µc) at a scale µc ∼ mc. As the OPE is a relation

among operators, we can determine the Cn by calculating on both the left- and

right-hand side of eq. (2.3) matrix elements with free quark and gluon states. At

this stage, we set up a systematic expansion in ms/mc employing the method of

regions. This expansion produces simple power corrections in (ms/mc)
n that match

onto two-quark operators of the form mn
s c̄v(iD

µ1 . . . iDµn)cv. Logarithms of the form

log(µ/ms) appear as well on the l.h.s. of (2.3). However on the r.h.s. of (2.3) the

same singularities arise from the one-loop matrix elements of four-quark operators,

leaving the Wilson coefficients free of any occurrence of log(µ/ms).

Step 2: Renormalization Group Evolution The Wilson coefficients must be evolved

to a lower scale µ < mc via the computation of the anomalous dimensions and the

solution of the Renormalization Group Equation (RGE). We determine the running

just at the leading order α0
s. Even if it is rather trivial at this level, it is instruc-

tive for understanding the connection between all the log(µ/mc) and the four-quark

operators.

Step 3: Non-Perturbative Regime Total rate and spectral moments are then written

in terms of a common set of parameters — denoted generically by Xi(µ) — which

correspond to non-perturbative matrix elements of the local operators in the OPE:

2MDXi(µ) ≡ 〈D|Oi |D〉
∣∣∣
µ
. (2.4)

Since all log(µ/mc) terms in the coefficients of two-quark operator are generated by

the mixing of the four-quark ones,

C2q(µ) = C2q(mc) + log

(
µ

mc

)∑
j

γ̂TijC
4q
j (mc), (2.5)

where γ̂ is the anomalous dimension matrix, we can introduce a set of µ-independent

parameters τi by combining together four-quark matrix elements with those of two-

quark carrying a log(µ/mc) dependence:

τi ∼ 〈D|O4q
i |D〉+ log(µ2/m2

c)γ̂
T
ij 〈D|O2q

j |D〉 . (2.6)

We will find that just one (three) parameter(s) contributes to the total rate and

spectral moments up to 1/m3
c (1/m4

c).
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Figure 1. The zero, one and two gluon matrix elements contributing to the OPE of

ImT{H†W ,HW }.

3 Setting up the OPE

We now discuss how the method of regions [50, 51] allows us to set up a systematic ex-

pansion in ms/mc. In order to perform the matching of Wilson coefficient, we first have

to consider in perturbative QCD matrix elements with quarks and gluons on the l.h.s.

of eq. (2.3). Let us consider the diagram 1a, which corresponds to the transition c → c

without any gluon emission. Its imaginary part gives the rate of c→ seν:

〈c| 2 ImR |c〉 =

∫
[d3pe][d

3pνe ][d
3ps]hµν(ps)L

µν(pe, pνe) (2π)4 δ4(pc − pe − pνe − ps)

=

∫
dq2

2π

∫
[d3q][d3ps]hµν(ps) (2π)4 δ4(pc − q − ps)

×
∫

[d3pe][d
3pνe ]L

µν(pe, pνe) (2π)4δ4(q − pe − pνe), (3.1)

where the momenta of the charm, strange, electron and neutrino are pc, ps, pe and pνe ,

respectively, q = pe + pνe , [d3pi] = d3pi
(2π)32Ei

, hµν(ps) is the hadronic tensor while the

leptonic one is

Lµν = 2
(
pµe p

ν
νe + pνep

µ
νe − gµνpe · pνe ± iεµναβpeα pνeβ

)
, (3.2)

where the upper (lower) sign of the Levi-Civita tensor is for semileptonic bottom (charm)

decays. For simplicity we omit an overall constant 8G2
F |Vcs|2 in eq. (3.1). Rewriting

[d3pi] = d4pi
(2π)4

(2π)δ+(p2i −m2
i ) and integrating w.r.t. d4ps, we can express the total rate as

〈c| 2 ImR |c〉 =

∫
dQ2

2π

∫
d4q

(2π)4
(2π)δ+((pc−q)2−m2

s)(2π)δ+(q2−Q2)hµν(pc−q)Lµν(q)

=

∫
dQ2

2π
2 Im

[∫
d4q

(2π)4
ū(pc)γ

µ
L

i

/pc − /q −ms + iε
γνLu(pc)

i

q2 −Q2 + iε
Lµν(q)

]
, (3.3)

where we defined the integrated leptonic tensor as

Lµν(q) =

∫
[d3pe][d

3pνe ]L
µν(pe, pνe) (2π)4δ4(q − pe − pνe). (3.4)

We have written the total rate as the imaginary part of a loop integral containing two

massive propagators, 1/(q2 − Q2) and 1/[(pc − q)2 − m2
s]. We calculate 〈c| 2 ImR |c〉 by
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dividing the integral in (3.3) in two different domains and expanding the integrand into a

Taylor series, one where pc − q ∼ mc (large region) and the other one where pc − q ∼ ms

(small region).

The Large Region: The first contribution arises from the region where the loop

momentum in (3.3) is large compared to the strange mass, i.e. pc − q ∼ mc � ms. This

allows us to Taylor expand the propagator of the strange quark. At the same time we

implement the heavy quark expansion by writing the free charm momentum pc = mcv+ k

which splits the quarks momentum into a large part mcv and a residual part with k � mc.

The strange propagator can be written as a series

1

/pc − /q −ms
=

1

mc/v − /q
∞∑
n=0

(
(−/k +ms)

1

mc/v − /q

)n
. (3.5)

Actually, the 1/mc expansion in the large region is most conveniently derived following [11,

12, 56] by introducing a background field propagator for the intermediate strange quark

and expanding it in the following way:

SBGF(S) =
1

/S + i /D −ms
=

1

/S

∞∑
n=0

(
(−i /D +ms)

1

/S

)n
, (3.6)

with S = mcv − q. It yields the usual HQE plus the power corrections in ms/mc. The

large region in the end corresponds to the initial phase space integration (3.1), where the

light quark in the final state is taken massless. Since the phase space integral is not finite

in four dimensions, we must employ dimensional regularization in its the evaluation. All

the 1/ε poles arising from this region will eventually cancel out against those coming from

the small region.

The Small Region: The second contribution comes from the region where the loop

momentum ps = pc − q ∼ ms � mc, such that the strange propagator must be left unex-

panded, while the other one depending on Q2 is rewritten as (shifting the loop momenta

according to q = pc − ps):
1

(pc − ps)2 −Q2
=

1

p2c −Q2

∞∑
n=0

(
2pc · ps − p2s
p2c −Q2

)n
. (3.7)

The first term in the expansion for (3.3) gives

〈c| 2 ImR |c〉small =∫
dQ2

2π
2 Im

[
i

p2c −Q2 + iε

∫
ddps
(2π)d

ū(pc)γ
µ
L

i

/ps −ms + iε
γνLu(pc)Lµν(pc − ps)

]
. (3.8)

The imaginary part of (3.8) is given solely by the imaginary part of the 1/(p2c −Q2 + iε)

propagator (−πδ(p2c −Q2)) because the integral w.r.t. ps correspond to a tadpole diagram

and therefore it is real. The integration w.r.t. Q2 yields the condition Q2 = m2
c . Note in

addition that higher order terms in the series (3.7) do not contribute since

Im

(
1

p2c −Q2 + iε

)n+1

=
π

n!

dn

dQ2n
δ(p2c −Q2). (3.9)
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Integrating by parts we would bring the derivatives on the one-loop integral, which however

is Q2-independent. Eventually the contribution of the small region is:

〈c| 2 ImR |c〉small =

∫
ddps
(2π)d

ū(pc)γ
µ
L

1

/ps −ms + iε
γνLu(pc)Lµν(pc − ps). (3.10)

Note that the Lµν(q) must be evaluated in d dimensions. The leptonic tensor is transverse

for massless leptons, qµLµν = 0, so that its most general form is

Lµν(q, v) =
(
qµqν − gµνq2

)
L1(q2, q · v) + iεµναβvαqβ L2(q2, q · v)

+

(
vµ − qµ v · q

q2

)(
vν − qν v · q

q2

)
L3(q2, q · v) . (3.11)

For the total rate and the q2 moments L2,3 = 0, however for other observables, as e.g.

the energy moments, the complete structure has to be considered. Evaluating (3.11) at

q = pc − ps and expanding it up to second order in mc, i.e. substituting pc − ps = mcv + t

with t� mc, we find the most general expression for the leptonic tensor in Eq. (3.8):

Lµν(pc − ps, v)

m2
c

=

(
vµvν − gµν +

vµtν + tµvν − 2gµνv · t
mc

)
L1(m2

c ,mc)

+
v · t(vµvν − gµν)

mc
L′1(m2

c ,mc) + iεµναβvαtβ L2(m2
c ,mc) + . . . (3.12)

with L′1 = [2 ∂
∂q2

+ ∂
∂v·q ]L1 and where the dots represent higher order terms in the mc

expansion. The structure L3 starts to contribute only in the sub-sub-leading term pro-

portional to t2. The expansion (3.12) allows us to systematically identify each term in

〈c| 2 ImR |c〉small as one-loop matrix elements of four-quark operator Oi: 〈c|Oi |c〉. WA

contributions therefore naturally arise once we set up an ms/mc expansion, and they are

given by the contraction of the two hadronic currents Jµq J
†ν
q with the leptonic tensor taken

at the end point q2 = m2
c . This fact was discussed already in [39], however it is based

on the analysis of intermediate state saturation of eq. (2.1) when both the energy and the

momentum of the hadronic final state are small compared to mc.

In addition to the zero gluon matrix element considered so far, we have to take into

account for the OPE also matrix elements with soft gluon emission (see figure 1b,c). Indeed

a simple expansion in the residual momentum k yields only the symmetric parts of an

operator like c̄v(iD
µ1 . . . iDµn)cv. In order to pin down the antisymmetric part, we must

consider also c→ c+ n gluon matrix elements, where the hadronic tensor has the form

ū(pc)γ
µ
L

[
1

/ps −ms
/ε1T

a1 1

/ps + /r1 −ms
. . . /εnT

an 1

/ps + · · ·+ /rn −ms
+ perm.

]
γνLu(pc),

(3.13)

with ri, ai and εi the momentum, color index and polarization vector of the i-th gluon. The

ms expansion proceeds along the same line as for the zero-gluon matrix element, keeping

in mind that since all the gluons are soft we have r1, . . . , rn ∼ ΛQCD � mc. Also in

this case we separate two regions: a large one where each of the propagator in (3.13) is
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expanded similarly to eq. (3.5). The small region requires the expansion of 1/(q2 − Q2).

Therefore, 〈c+ ng| 2 ImR |c〉small can be seen also as the n-gluon matrix elements of four-

quark operators 〈c+ ng|Oi |c〉 (see figure 5b and 5c).

4 The matching

c c

e

νe

HW HW

s̄ s̄

Figure 2. The four-quark matrix element contributing to the OPE of ImT{H†W ,HW }.

With the set-up introduced in the previous section, we can now compute the matching

conditions for the total rate and the moments of kinematical distributions. We can define

the normalized moments in a generic way as the phase-space integral of the differential rate

multiplied by an appropriate weight function w [14]:

〈M (n)[w]〉 =
1

Γ0

∫
dΦwn(v, pe, pν)WµνLµν . (4.1)

where Wµν is the hadronic tensor encoding the non perturbative dynamics.3 The weight

function w can also contain a phase space cut in the form of Heaviside functions. The

uncut moments of the charged lepton energy Ee and the leptonic invariant mass q2 are

given by:

Q(n) =
1

Γ0

∫ q̂2max

0
(q̂2)n

dΓ

dq̂2
dq̂2, Y(n) =

1

Γ0

∫ ŷmax

0
ŷn
dΓ

dŷ
dŷ, (4.2)

with q̂2 = q2/m2
c and y = 2Ee/mc, with the corresponding weight functions w(v, pe, pν) =

q2/mc and w(v, pe, pν) = 2v ·pe/mc, respectively. Also the spectral moments have an OPE:

2 ImR
(n)
q2

=
∑
i,k

C
(n)
q2 k

mi
c

O2q
i+3,k +

∑
i,j

C
(n)
q2 j

mi
c

O4q
i+3,j ,

2 ImR
(n)
E =

∑
i,k

C
(n)
E k

mi
c

O2q
i+3,k +

∑
i,j

C
(n)
E j

mi
c

O4q
i+3,j . (4.3)

Here R
(n)
q2

and R
(n)
E denote the two composite operators giving rise to the q2 and electron

energy moments, respectively. Formally they can be written in terms of the modified

Hamiltonian Hq2 ∝ (q̄γµPLc)�(ν̄`γµPL`) and HE ∝ (q̄γµPLc)(ν̄`γµPLv · ∂`). In practice,

3Actually the ratio 〈M (n)[w]〉/〈M (0)[w]〉 is measured experimentally. In the following, we concentrate

on the OPE for the numerators, as the ratio can be easily obtained from 〈M (n)[w]〉.
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however the OPE for the moments can be determined by inserting the weight function w

into the definition of the leptonic tensor in eq. (3.3),

Lµνw (q, v) =
1

Γ0

∫
[d3pe][d

3pν ]wn(v, pe, pνe)L
µν(pe, pνe) (2π)4δ(4)(q − pe − pν) . (4.4)

4.1 Four-quark operators

At tree-level, there are two four-quark operators of dimension six:

O1 = (c̄v/vPLs) (s̄/vPLcv),

O2 = (c̄vγ
µPLs) (s̄γµPLcv). (4.5)

At dimension seven, there are four:

O3 =
1

2

[
(c̄vγ

µPLs)(v · i∂ s̄γµPLcv)− (v · i∂ c̄vγµPLs)(s̄γµPLcv)
]
,

O4 = (c̄v/vPLs)(i∂
µ s̄γµPLcv)− (i∂µ c̄vγµPLs)(s̄/vPLcv),

O5 =
1

2

[
(c̄v/vPLs)(v · i∂ s̄/vPLcv)− (v · i∂c̄v/vPLs)(s̄/vPLcv)

]
,

O6 =
1

2
(−iεµνραvα)

[
(c̄vγ

µPLs)(i∂
ρ s̄γνPLcv)− (i∂ρ c̄vγ

µPLs)(s̄γ
νPLcv)

]
, (4.6)

where the derivatives act on both fields inside a bilinear. The coefficients 1/2 are intro-

duced for convenience when calculating Feynman rules. QCD radiative corrections may

induce additional operators where the identity in color space appearing inside the bilinear

is substituted with Gell-Mann matrices TA.

We keep the /v inside the definition of the operators, even though it can be rewritten via

the equations of motion, as it simplifies the computation of the one-loop matrix elements.

Also, since the coefficients of the four-quark operators are derived from the (transverse)

leptonic tensor evaluated near the end point q2 ∼ m2
c (3.12), only the following three

combinations actually appear in the total rate and the spectral moments up to order 1/m4
c :

O0 = O1 −O2 +
O4 − 2O3

mc
,

Om = O5 −O3 ,

Oε = O6 . (4.7)

Their Wilson coefficients are computed by considering matrix elements with quark states:

〈cs̄| 2 ImR |cs̄〉. For the total rate we have

〈cs̄| 2 ImR |cs̄〉 = Γ0
128π2

m5
c

(qµqν − gµνq2) (s̄γµPLc) (c̄γνPLs) . (4.8)

By substituting q = mcv + t and expanding in powers of mc up to second order as we did

in (3.12),

〈cs̄| 2 ImR |cs̄〉 = Γ0128π2
[
vµvν − gµν

m3
c

+
vµtν + vνtµ − 2 v · t gµν

m4
c

]
(s̄γµPLc) (c̄γνPLs) ,

(4.9)
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we find as matching conditions:

C0 = 128π2, Cm = 0, Cε = 0 . (4.10)

To calculate the matching for the q2 moments we use the weight function wn(v, pe, pν) =

(q2/m2
c)
n into (4.4):

〈cs̄| 2 ImR
(n)
q2
|cs̄〉 =

128π2

m5
c

(
q2

m2
c

)n
(qµqν − gµνq2) (s̄γµPLc) (c̄γνPLs) . (4.11)

The Wilson coefficients for the q2-moments are therefore:

C
(n)
q2, 0

= 128π2, C
(n)
q2,m

= 128π2 (2n), C
(n)
q2, ε

= 0. (4.12)

For the charged lepton energy moments we must employ instead wn(v, pe, pν) = (2pe ·
v/mc)

n. The leptonic tensor then depends on both q and v, however its expression cannot

be cast in a simple form for a generic n, q and v, as for the other two cases. Nevertheless,

one can substitute in the integrand q = mcv+ t and expand in t up to second order in mc:

〈cs̄| 2 ImR
(n)
E |cs̄〉 = 128π2 (s̄γµPLc) (c̄γνPLs)

[
vµvν − gµν

m3
c

+
vµtν + vνtµ − (2 + n)v · tgµν + n v · t vµvν ± i(n/2)εµναβ t

αvβ

m4
c

+ . . .

]
. (4.13)

Therefore, the coefficients for the electron energy moments are

C
(n)
E, 0 = 128π2, C

(n)
E,m = 128π2 n, C

(n)
E, ε = ±128π2

n

2
, (4.14)

where the sign in CE, ε is plus (minus) for the c→ s (b→ c) transition.

4.2 Two-quark operators

The evaluation of the Wilson coefficients of the two-quark operators is more involved. They

cannot be determined naively from the known expression for the b → c`ν. We define the

HQE operators up to order 1/m4
c following refs. [13, 14]:

Oµ3 = c̄vcv, OrG = c̄v [(iDµ) , (iDν)] [(iDµ) , (iDν)] cv ,

Oµπ = c̄v(iD)2cv, OrE = c̄v [(ivD) , (iDµ)] [(ivD) , (iDµ)] cv ,

OµG = c̄vσ ·Gcv, OsB = c̄v [(iDµ) , (iDα)] [(iDµ) , (iDβ)] (−iσαβ)cv ,

OρD =
1

2
c̄v [iDµ, [ivD, iDµ]] cv , OsE = c̄v [(ivD) , (iDα)] [(ivD) , (iDβ)] (−iσαβ)cv ,

OδρD =
1

2
c̄v
[
iDµ,

[
(iD)2, iDµ

]]
cv , OsqB = c̄v [iDµ , [iDµ , [iDα , iDβ]]] (−iσαβ)cv ,

(4.15)

with σ ·G ≡ −iσµν(iDµ)(iDν) and σµν = i
2 [γµ, γν ]. In addition, we note that

Oµ3 = 1 +
1

2m2
c

(OµG −Oµπ) , Oρ̃D = OρD +
1

2mc
OδρD . (4.16)
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Equations (4.15) and (4.16) constitute a set of operators which describe observables invari-

ant under a reparametrization transformation v → v+ δv, such as the total rate and the q2

moments [13]. The prediction for non-RPI observables, like the electron energy spectrum,

depend at tree-level up to 1/m4
c on a larger set of operators, which include the additional

operators:

OρLS =
1

2
c̄v

{
iDα, [(ivD), iDβ] (−iσαβ)

}
cv ,

OδρLS =
1

2
c̄v

{
iDα,

[
(iD)2, iDβ

]
(−iσαβ)

}
cv ,

OδG1 = c̄v((iD)2)2cv,

OδG2 = c̄v{(iD)2, σ ·G}cv , (4.17)

Besides, for charm decays the power corrections in ms/mc are defined via the dimension-

seven operators:

Om4
s

= m4
s c̄vcv , Om2

sµπ
= m2

s c̄v(iD)2cv , Om2
sµG

= m2
s c̄vσ ·Gcv . (4.18)

The coefficients of the two-quark operators, C2q, are determined from eq. (2.3). One first

starts with 〈c| 2 ImR |c〉 on the l.h.s. of (2.3) where the c → c transition is mediated by

the effective Hamiltonian, and then divides the computation into large and small region as

discussed in the previous section. This sets up the ms/mc expansion as well as the HQE.

The result must then be subtracted of the second term in (2.3), i.e. the renormalized one-

loop matrix elements of four-quark operators multiplied by the C4q found in section 4.1

(see figure 3).

C2q ×
c c

=

c c

s

e

νe

HW

HW

∣∣∣∣∣
large

+
c c

s

e

νe

HW

HW

∣∣∣∣∣
small

−C4q ×
c c

s
∣∣∣∣∣
ren

Figure 3. Computation of the Wilson coefficients of two-quark operators. Matrix elements with

either zero, one and two gluon must be considered.

For the total rate and the uncut moments, the first term in figure 3 is most conveniently

obtained by considering the relative two-loop amplitude for 〈c| 2 ImR |c〉, applying the

expansion (3.6) for the strange propagators and then taking the imaginary part. Indeed

the two-loop amplitudes, which we reduced to master integrals using FIRE6 [57], depend

just on one master integral [58]:∫
ddq1
(2π)d

ddq2
(2π)d

1

q21q
2
2(p+ q1 + q2)2

=
(−p2 − iε)d−3

(4π)d(4− d)(3− d)

Γ(5− d)Γ3(d/2− 1)

Γ(3d/2− 3)
. (4.19)
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The computation of the small region is easier as it reduces to one-loop diagrams.

However, in the second diagram in figure 3 the leptonic tensor must be computed in d

dimension. For the total rate (n = 0) and the n-th q2 moment we have:

Lµν(q) =
1

12π

(
q2

m2
c

)n(
q2

µ2

)−ε (
qµqν − gµνq2

) [
1 +

5

3
ε

]
. (4.20)

Since the leptonic tensor is contracted with the hadronic part in eq. (3.8) and multiplied

by the result of the one-loop diagram, the 1/ε pole from the loop picks up the term of

order ε1 in L and gives rise to a finite difference between the second and the third term in

figure 3. Up to first order in t the leptonic tensor is

Lµν(q) =
m2
c

12π

[
1 + ε

(
log

(
µ2

m2
c

)
+

5

3

)]
×
[
vµvν − gµν +

1

mc

(
vµtν + tµvν − 2(1 + n− ε)v · tgµν + 2(n− ε)v · tvµvν

)]
,

(4.21)

the terms of order ε0 reproduces correctly the matching for the four-quark operators found

in the previous section. This guarantees that the IR poles like log(ms) cancel out in the

matching. However the part in L proportional to ε1 gives a finite contribution which is

reabsorbed into C2q. This cancellation can be seen explicitly by considering, for instance,

in the matching of CρD for the total rate:

CρD(µ)〈OρD〉 =

[
58

3
+

8

ε
+ 16 log

(
µ2

m2
c

)]
〈OρD〉

+

[
1 + ε

(
5

3
− log

(
µ2

m2
c

))][
−8

ε
− 8 log

(
µ2

m2
s

)
+

16

3
+ f(ms, r1)

]
〈OρD〉

−
[
−8 log

(
µ2

m2
s

)
+

16

3
+ f(ms, r1)

]
〈OρD〉

=

[
6 + 8 log

(
µ2

m2
c

)]
〈OρD〉 (4.22)

where 〈OρD〉 = 〈cg|OρD |c〉 and f(ms, r1) denotes the finite part from the loop depending

on ms and the gluon momentum r1. The first, second and third term in (4.22) are the

contributions from the large region, the small region and the renormalized one-loop matrix

element of the four-quark operator, respectively. Setting the matching scale at µ = mc we

obtain CρD = 6.

Finally, we can compare with the expression for the b → c`ν decay, which falls into

case I (see the discussion in section 2). Taking only the ρD part for comparison, we find:

Γ(B → Xc`ν)

Γ0

∣∣∣∣∣
ρD

=
ρD
m3
b

[
34

3
+ 8 log

(
m2
c

m2
b

)
+O

(
m2
c

m2
b

)]
, (4.23)

The constant term, which is independent of the quark masses, differs from that one in

eq. (4.22), while the coefficients of the logarithmic term are equal.
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In the matching of the two-quark operators the constant terms are different because

in the OPE for c→ s (but also in the b→ u case) part of these independent contributions

are reabsorbed into the matrix element of four-quark operators. These finite shifts arise

if the four-quark operators are defined as in eqs. (4.5) and (4.6). Defining the operator

basis with fierzed fields, O4q ∼ (c̄αΓcβ)(s̄αΓsβ), would lead to different constant terms.

In particular with fierzed four-quark operators we would obtain CρD = 34/4, as in the

b → c`ν case. Therefore the matching conditions of two-quark operators strictly depend

on the chosen basis for the four-quark ones. This subtlety was recognized in some of the

studies of the inclusive semileptonic b → u`ν decays [59, 60], while in others it has been

overlooked [31, 40, 41, 61], meaning that the four-quark operators are defined without Fierz

transformation, however the coefficient of ρD is inconsistently chosen to be the same one

as in the b→ c`ν transition.

From our expression (4.22), we can formally recover the expression for b → c`ν by

evolving the Wilson coefficients from the heavy quark mass scale mQ to the light one mq

(see next session) and performing a second matching at µ ∼ mq, this time only onto a

two-quark operator set. This procedure corresponds to case II discussed in section 2. Let

us call C̃ρD the coefficient of OρD after the second matching. It is determined by first

expanding the renormalized matrix elements of four-quark operators in the limit mq � ri,

i.e. the gluon momenta are still of order ΛQCD but the light quark mass is assumed to be

a perturbative scale, and adding the result to the matrix element of two-quark operators

(see fig. 4). In our example of ρD, we would obtain:

C̃2q ×
c c

= C2q ×
c c

+ C4q ×
c c

s
∣∣∣∣∣
ren

Figure 4. Second matching of two-quark operators in the OPE of case II (see section 2).

C̃ρD(mq) = CρD(mq) +
∑
i

C4q
i (mq)〈O4q

i 〉

=

[
6 + 8 log

(
m2
q

m2
Q

)]
〈OρD〉+

[
16

3
+O

(
1

m2
q

)]
〈OρD〉

=

[
34

3
+ 8 log

(
m2
q

m2
Q

)]
〈OρD〉, (4.24)

which correctly reproduces the first two terms in (4.23). We explicitly verified that through

this second matching procedure we can correctly reproduce the expression for b → c case

up to 1/m4
b for all two-quark operators. At order 1/m5

Q there are tree-level contributions

to the total rate of the form 1/m2
q [12, 43], which are singular in the massless limit mq → 0.

In a two-step matching point of view, they would arise from the higher-order terms in the

1/mq expansion of the four-quark matrix element.
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5 Operator mixing

c c

s

(a)

c c

s

(b)

c c

s

c c

s

(c)

Figure 5. Diagrams determining the mixing of four-quark operators into two-quark operators.

The four-quark operators mix under renormalization into the two-quark ones. To

determine the evolution of the Wilson coefficients, we calculated to leading terms in αs
the anomalous dimension matrix (ADM). The coefficients of the operators appearing up

to order 1/m4
c in the HQE can be grouped as follows:

~C2q = (Cρd , Cδρd , CrG , CrE , CsB , CsE , CsqB , Cm4
s
, Cm2

sµG
),

~C4q = (C1, . . . , C6). (5.1)

To order α0
s only the coefficients in ~C2q scale under renormalization according to the RGE:

∂ ~C2q

∂ logµ
= γ̂T ~C4q, (5.2)

while for all others we have ∂Ci
∂ log µ = 0. The ADM γ̂T is obtained by computing the

coefficient of the 1/ε pole in the one-loop matrix elements 〈c+ ng|Oi |c〉 with one or two

gluons. At the order considered, under renormalization the four-quark operators never mix

into those in eq. (4.17), which do not appear in RPI observables. This can be understood

from the fact that only the RPI operators can be rewritten in term of quark states and

operators in full QCD [13]. To leading order, the ADM is given by

γ̂T = − 1

8π2
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. (5.3)

The solution of the RGE is a simple additive logarithm:

C2q
i (µ) = C2q

i (mc) + log

(
µ

mc

)∑
j

γ̂TijC
4q
j (mc). (5.4)
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Even if the renormalization group evolution is per se rather trivial at the considered order,

it is instructive to compare for the total rate the logarithmic terms,

Cρ̃D(µ) = Cρ̃D(mc) + 8 log

(
µ2

m2
c

)
, CsE (µ) = CsE (mc) +

8

3
log

(
µ2

m2
c

)
,

CrG(µ) = CrG(mc) +
16

3
log

(
µ2

m2
c

)
, CsqB (µ) = CsqB (mc)−

1

3
log

(
µ2

m2
c

)
,

CrE (µ) = CrE (mc)−
16

3
log

(
µ2

m2
c

)
, Cm4

s
(µ) = Cm4

s
(mc)− 12 log

(
µ2

m2
c

)
,

CsB (µ) = CsB (mc). (5.5)

with the expression for the b→ c case:

Γ(B → Xc`ν)

Γ0
= µ3

(
1− 8ρ− 12ρ2 log ρ

)
− 2

µ2G
m2
b

+

(
34

3
+ 8 log ρ

)
ρ̃3D
m3
b

+

(
64

9
+

16

3
log ρ

)
r4G
m4
b

−
(

16

9
+

16

3
log ρ

)
r4E
m4
b

− 2

3

s4B
m4
b

+

(
50

9
+

8

3
log ρ

)
s4E
m4
b

−
(

25

36
+

1

3
log ρ

)
s4qB
m4
b

+O
(
ρ3, ρ2

Λ2
QCD

m2
b

, ρ
Λ3
QCD

m3
b

, ρ
Λ4
QCD

m4
b

)
, (5.6)

with ρ = m2
c/m

2
b and the HQE elements are defined by taking the forward-matrix element

between B meson states (see [13, 14]). By comparing the two expressions we see that the

log ρ terms in b → c`ν (case I in section 2) are in one to one correspondence with the

log(µ/mQ) generated by the renormalization group evolution for the c→ s`ν decay, which

falls in case III (also for b → u`ν). Similarly, we correctly reproduced these logarithms in

the expressions for the q2-moments and the charged lepton energy moments. The inclusion

in the ADM of higher order corrections in αs would allow us to resum term of the form

αns logn+1(µ/mQ). The phase space logarithms were resummed in [52].

On the contrary, the power-like singularity 1/m2
q that appears at order 1/m5

Q in the

total rate at tree-level are not generated via the RGE mechanism. However, as explained

at the end of section 4.2, they arise from the second matching in case II, once the matrix

element of four-quark operators is further expanded in the limit ri � mq.

6 A new set of HQE parameters

Using the OPE described above, we obtain expressions for the total rate and q2 and energy

moments. They are given in Appendix A. For the two-quark operators in eq. (4.15), we

define the hadronic matrix elements [13, 14]:

2MDX ≡ 〈D|O2q
X |D〉 , (6.1)

while the matrix elements of the four-quark operators given in eqs. (4.5) and (4.6) are

2MDTi(µ) ≡ 〈D|O4q
i |D〉 , with i = 1, . . . , 6. (6.2)
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The four-quark matrix elements always appear in the three combinations defined in eq. (4.7),

together with their log(µ2/m2
c) counterpart associated with the two-quark matrix elements.

It is therefore convenient to define the parameters:

τ0 = 128π2
(
T1 − T2 − 2

T3
mc

+
T4
mc

)
+ log

(
µ2

m2
c

)[
8ρ̃3D +

1

mc

(
16

3
r4G −

16

3
r4E +

8

3
s4E −

1

3
s4qB − 12m4

s

)]
, (6.3)

τm = 128π2 (T5 − T3)

+ log

(
µ2

m2
c

)(
r4G − 4r4E − s4B +

2

3
s4E +

1

6
s4qB − 3m4

s − 2m2
sµ

2
G

)
, (6.4)

τε = 64π2 T6 + log

(
µ2

m2
c

)(
1

3
s4B +

2

3
s4E − r4G −

4

3
r4E −

1

6
s4qB −

4

3
δρ4D + 3m4

s + 2m2
sµ

2
G

)
.

(6.5)

We emphasize that total rate only depends on τ0, while the RPI q2 moments addition-

ally depend on τm. As was pointed out in [13, 14], the q2 moments have the advantage

that they depend on a reduced set of 10 operators, even when including the terms up to

1/m4
c . For the non-RPI energy moments, additional matrix elements (up to 16) have to

be introduced. The values of the two- and four-quark matrix elements should be obtained

from semileptonic charm data. Due to the large reduction of parameters, q2 moments are to

be preferred. However, in principle, also a combination of energy and q2 moments could be

used to extract the parameters. The size of the extracted coefficients would then indicate

whether our OPE for semileptonic charm decays works. Finally, the obtained matrix ele-

ments should be compared to those obtained from B decays. However, in the next sections

we point out some subtleties concerning the extraction of the matrix elements. In addition,

as discussed in Sec. 4, the second matching step gives a finite contribution due to our basis

choice of four-quark operators. In principle, these finite terms can then be reabsorbed into

the τ0,m,ε parameters. This would then alter the coefficients of the matrix elements in the

total rate and spectral moments (in which case they would match the b → c case). Of

course, such a procedure would change the numerical values obtained for the respective τi
elements. We emphasize therefore again the importance of a consistent treatment of the

four-quark operators as detailed in this paper.

The four-quark contributions Ti are usually referred to as weak-annihilation (WA)

operators. Specifically, here we discussed non-valence WA since we study the weak c → s

transition which does not depend on the spectator quark and is thus roughly equal for

D+ and D0 decays. A similar argument holds for Ds decays, bearing in mind that the

spectator does play a role in the hadronisation such that there will be SU(3) breaking

effects that render the Ti different for Ds and D+. For simplicity, we further ignore such

possible SU(3) breaking effects. Besides these non-valence Ti contributions, also valence

T q,vali contributions play a role. They can be obtained through a similar analysis, and by

replacing s→ q in the four-quark operators Oi in eqs. (4.5) and (4.6), where q is the valence

(spectator) quark. The corresponding τ q,vali are obtained by replacing Ti → T q,vali . For D0
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decays only non-valence operators contribute. However, for Ds and D+ both valence Ti and

non-valence T q,vali contribute, with a relative weight depending on the appropriate CKM

factors. The corresponding expression for the total rate and the spectral moments can be

obtained by replacing:

D̄0 : τi

Ds : τi → τi + τ s,vali

D+ : τi → τi +

( |Vcd|
|Vcs|

)2

τd,vali . (6.6)

The valence and non-valence contributions can then be separated by taking the difference

between Dq and D0 (see also [43]). We note that the valence weak annihilation contribu-

tions are therefore in part responsible for the lifetime differences between the Ds/D0 and

D+/D0 in eq. (1.1). As stated early, our results for the c → s weak transition (case III)

can trivially be adapted to the c→ d (case IV) by taking the limit ms → 0. Note however,

the obvious change in CKM elements, explicitly:

D̄0 : τi

Ds : τi → τi +

( |Vcs|
|Vcd|

)2

τ s,vali

D+ : τi → τi + τd,vali . (6.7)

Experimentally however, it is challenging to distinguish the flavor of the light-X final state

and separate the c→ s and c→ d transitions.

Finally, we stress that [41] already used semileptonic D meson data from CLEO [36]

to extract both the valence and non-valence weak annihilation contribution of order 1/m3
c .

However, their set-up differs from our OPE with three-expansion parameters and in the

definition of the four-quark operators. In that way, the connection between the logarithmic

terms accompanying ρ3D and the weak annihilation operators is much less clear, requiring

to pick a so called weak-annihilation scale. Redoing the analysis with more data and the

so far unavailable q2 moments, would therefore be beneficial.

7 Charm-Quark Mass and QCD Corrections

The HQE has a strong dependence on mQ, therefore, in order to obtain precise predictions

for decay rates the quark mass has to be carefully chosen. This choice is closely intertwined

with the size of the QCD corrections to the decay rates.

Although all perturbative calculations are performed using the pole mass mPole
Q , this

mass definition is not a good choice due to a renormalon ambiguity. This manifests itself

through a bad behaviour of the perturbative series that relates the pole mass to short

distance mass such as e.g. the MS mass. However, we point out that also in the MS mass

scheme, the αs corrections to the semileptonic decay rates have a bad convergence as well

if one uses the normalization point µ = mQ [2–4, 62, 63]. The reason is that µ = mQ is a
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poor choice since the typical energy released in inclusive decays is of the order mQ/5 rather

than mQ. On the other hand, at very low scales the logarithmic running of the MS mass

is considered unphysical [63].

Thus in order to render the QCD corrections small, an appropriate short distance

mass needs to be chosen. One possible choice, which has been tailored for the HQE and

is commonly used in semileptonic B decays, is the kinetic mass. This scheme uses a hard

“Wilsonian” cut off. It is given by [64]

mkin
Q (µ) = mPole

Q − [Λ̄(µ)]pert −
1

2mkin
Q (µ)

[µ2π(µ)]pert +O
(

1

(mkin
Q )2

)
, (7.1)

where the leading-order expression for Λ̄ and µ2π read [64]

[Λ̄(µ)]pert =
16

9

αs
π
µ+O(α2

s) , (7.2)

[µ2π(µ)]pert =
4

3

αs
π
µ2 +O(α2

s) , (7.3)

and µ is the cut-off scale.

Switching to the kinetic scheme, the perturbative coefficients computed in the pole

scheme are modified by [Λ̄(µ)]pert and [µ2π(µ)]pert. In addition, the parameters in the HQE

are also redefined (see also [31, 65]):

µ2π = µ2,kinπ + [µ2π(µ)]pert = µ2,kinπ +
4

3

αs
π
µ2 , (7.4)

ρ3D = ρ3,kinD + [ρ3D(µ)]pert = ρ3,kinD +
8

9

αs
π
µ3 . (7.5)

Therefore, terms of order n in the HQE generate corrections of the order (αs/π)µn/mn
Q.

This makes the choice of the cut-off scale somewhat subtle. On the one hand it has to be

small compared to the heavy quark mass, such that µ/mQ is a small parameter and the

1/mQ expansion remains intact, on the other hand it should be a perturbative scale.

The kinetic scheme has been successfully applied to semileptonic B decays, using a

cut-off scale of 1 GeV (see e.g. [29, 30]), which satisfies the above criteria and leads to a

highly predictive framework for inclusive B decays.

For charm decays, the window for µ is much smaller, if it exists at all. The choice

of µ ∼ 1 GeV is problematic with respect to the HQE, since then µ/mc ∼ 1, while

perturbation theory is still working. In [41], a kinetic mass for the charm with a scale

choice µ ∼ 0.5 GeV is considered, but we emphasize that even such a choice raises questions

on perturbation theory. This issue should be addressed further, especially once a moment

analysis is performed, but this is beyond the scope of the current work.

8 Comparing the HQE Matrix Elements for B and D

One of the motivations to investigate inclusive charm decays is the possibility to extract

the values of the HQE parameters. However, in the definitions we are using, these matrix

elements depend in a non-trivial way on the mass of the heavy quark.
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To relate the HQE elements for bottom and charm, we make use of the fact that in

the mQ → ∞ limit the matrix elements are independent on the heavy quark flavour. In

order to study the mass dependence, we expand all quantities using

LQCD = h̄v(ivD)hv −
1

2mQ
h̄v /D⊥

N∑
n=0

(−(ivD)

2mQ

)n
/D⊥hv (8.1)

Q(x) = e−imQv·x [hv +Hv] = e−imQv·x
[
1 +

(
1

2mQ + ivD

)
i /D⊥

]
hv

= e−imQv·x

[
1 +

1

2mQ
(i /D⊥) +

(
1

2mQ

)2

(−ivD)i /D⊥ + . . .

]
hv (8.2)

where hv is the static field of the heavy quark and the covariant derivative is split into a

spatial and time derivative part via iDµ = vµ ivD + iDµ
⊥.

We start from a general matrix element

〈Q̄vDQv〉 = 〈H(v)|Q̄vDQv|H(v)〉 (8.3)

where H(v) is the heavy meson ground state and D is some combination of QCD covariant

derivatives and Qv(x) = eimQv·xQ(x) with Qv = Qv(0). This matrix element is defined in

full QCD and depends on the heavy-quark mass (and thus they will be different for Q = b

and Q = c). Expanding it using (8.1) and (8.2), gives

〈Q̄vDQv〉 = 〈H̃(v)|h̄vDhv|H̃(v)〉+
1

mQ
〈H̃(v)|O(D)

1/mQ
|H̃(v)〉+O(1/m2

Q) (8.4)

with

O(D)
1/mQ

= h̄v {D, (i /D⊥)}hv +
1

2

∫
d4xT

{
h̄v(x)(i /D⊥)2hv(x), h̄v(0)Dhv(0)

}
(8.5)

where H̃(v) is the heavy meson ground state in the infinite-mass limit. We note that the

first term is the correction to the operators, while the second term is the correction to the

state.

We emphasize that the matrix elements on the right hand side of (8.4) are independent

of the heavy quark mass, which allows us to write

〈D(v)|c̄vDcv|D(v)〉
〈B(v)|b̄vDbv|B(v)〉 = 1 +

(
1

mc
− 1

mb

) 〈H̃(v)|O(D)
1/m|H̃(v)〉

〈H̃(v)|h̄vDhv|H̃(v)〉
+ · · · (8.6)

The ratio on the right-hand side is of order ΛQCD and thus the leading term is of order

ΛQCD/mc which can be as large as 30%.

An exception to this is the leading term, which can be written as [13]

〈Q̄vQv〉 = 〈Q̄Q〉 = 〈Q̄/vQ〉+
1

2m2
Q

〈Q̄(i /D)2Q〉 ≡ 2MHµ3 (8.7)
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which is an exact relation in full QCD. Note that 〈Q̄/vQ〉 = 2MH and hence the matrix

element 〈Q̄Q〉 is normalized up to terms of order 1/m2
Q. Following the results of [13], we

find
2MB

2MD

〈D(v)|c̄c|D(v)〉
〈B(v)|b̄b|B(v)〉 =

mb

mc

(
MD − Λ̄

MB − Λ̄

)
∼ 1.054 , (8.8)

where we used lattice input for Λ̄ = limmQ→∞(MH −mQ) = 0.552 GeV [66] and mb/mc =

3.78 in the kinetic scheme at 1 GeV [66]. Therefore the connection between the HQE

elements in B and D decays is far from trivial, but can be quantified well enough in order

to compare observables from both decays. We also emphasize, that there has been some

progress on calculating the other HQE elements on the lattice in the infinite-mass limit[66].

The comparison between these determinations and those obtained from charm in the future

also deserves further investigation.

9 Discussion and Conclusions

Charm physics will become an increasingly interesting field of research in the coming few

years, since - in addition to BESIII - the dedicated B physics experiments LHCb and

Belle II will collect an enormous amount of charm hadrons. Moreover, two new Super

Tau-Charm Factories have been proposed at BINP, Novosibirsk, and USTC, Hefei.

One of the most developed methods is the HQE in its application to inclusive semilep-

tonic b → c transitions. On the other hand, the theoretical machinery is far from being

as well developed as for bottom physics, mainly because the mass of the charm quark is

between the heavy and the light quark case. While the charm quark is clearly too heavy

to be treated in chiral perturbation theory, it remains to be explored to what extend HQE

methods can be employed in charm decays. Nevertheless, there are indications that HQE

methods are indeed applicable to charm decays.

In the present paper we adapted the HQE to the case of inclusive semileptonic charm

decays. We set up this expansion for the c → s transition by treating ms/mc in the

same way as ΛQCD/mc, assuming both parameters to be of the same size. Our triple

expansion allowed us to systematically show how the four-quark operators are connected

to the two-quark operators via renormalization. Finally, we derived the total rate and

spectral moments up to 1/m4
c , and defined three new parameters that contain four-quark

(weak annihilation) operators. We emphasize, that RPI observables, such as the total rate

and q2 moments, depend on a reduced set of HQE parameters [14]. Therefore, it may be

useful to do an experimental analysis using q2 moments only, as this significantly reduces

the number of free parameters.

Dedicated experimental analyses should then answer the key question: whether the

data for the total rate and the spectral moments are well described by the framework

developed in this paper. Moreover, it can then be tested if the extracted HQE parameters

are compatible with those extracted from B decays. This would then finally show if the

HQE is indeed applicable to inclusive charm decays.

This study sets a first step towards a more systematic study of the HQE in charm

decays. Making optimal use of the wealth of experimental data requires going to higher
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precision, and to settle the discussion on the QCD corrections and the choice of the charm

mass. Eventually, this might lead to precision charm physics and towards an extraction of

Vcs and Vcd from inclusive semileptonic charm decays.
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A Total Rate and spectral moments

The total rate for the inclusive semileptonic charm decays can be written as

Γ(D → Xs`ν)

Γ0
=
(
1− 8ρ− 10ρ2

)
µ3 + (−2− 8ρ)

µ2G
m2
c

+ 6
ρ̃3D
m3
c

+
16

9

r4G
m4
c

+
32

9

r4E
m4
c

− 34

3

s4B
m4
c

+
74

9

s4E
m4
c

+
47

36

s4qB
m4
c

+
τ0
m3
c

, (A.1)

with ρ = m2
s/m

2
c . The rate for the decay D → Xd`ν can be obtained by taking the limit

ms → 0 and by making the relevant change in the four-quark operator definition inside the

parameter τ0.

q2 moments

Q1 =

(
3

10
− 9

2
ρ− 39ρ2

)
µ3 +

(
−7

5
− 79

3
ρ

)
µ2G
m2
c

+
41

3

ρ̃3D
m3
c

+
527

45

r4G
m4
c

− 812

45

r4E
m4
c

− 68

3

s4B
m4
c

+
269

15

s4E
m4
c

+
111

40

s4qB
m4
c

+
τ0
m3
c

+ 2
τm
m4
c

, (A.2)

Q2 =

(
2

15
− 16

5
ρ− 70ρ2

)
µ3 −

(
16

15
+

766

15
ρ

)
µ2G
m2
c

+
278

15

ρ̃3D
m3
c

+
1013

45

r4G
m4
c

− 2168

45

r4E
m4
c

− 539

15

s4B
m4
c

+
1268

45

s4E
m4
c

+
815

180

s4qB
m4
c

+
τ0
m3
c

+ 4
τm
m4
c

, (A.3)
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Q3 =

(
1

14
− 5

2
ρ− 207

2
ρ2
)
µ3 −

(
6

7
+

397

5
ρ

)
µ2G
m2
c

+
775

35

ρ̃3D
m3
c

+
21 493

630

r4G
m4
c

− 26 378

315

r4E
m4
c

− 10 627

210

s4B
m4
c

+
2459

63

s4E
m4
c

+
8803

1260

s4qB
m4
c

+
τ0
m3
c

+ 6
τm
m4
c

, (A.4)

Q4 =

(
3

70
− 72

35
ρ− 696

5
ρ2
)
µ3 −

(
5

7
+

11 576

105
ρ

)
µ2G
m2
c

+
527

21

ρ̃3D
m3
c

+
14 618

315

r4G
m4
c

− 38 852

315

r4E
m4
c

− 6967

105

s4B
m4
c

+
5293

105

s4E
m4
c

+
7951

840

s4qB
m4
c

+
τ0
m3
c

+ 8
τm
m4
c

. (A.5)

Electron energy moments

Y1 =
3

5
− 6ρ− 23ρ2 − (1 + 16ρ)

µ2G
m2
c

+
139

15

ρ3D
m3
c

+
3

5

ρ3LS
m3
c

+
503

90

δρ3D
m3
c

+
3

10

δρ3LS
m3
c

+
1271

180

r4G
m4
c

− 208

45

r4E
m4
c

− 682

45

s4B
m4
c

+
203

15

s4E
m4
c

+
283

180

s4qB
m4
c

+
1

4

δ4G2

m4
c

+
τ0
m3
c

+
τm
m4
c

+
τε
m4
c

,

(A.6)

Y2 =
2

5
− 24

5
ρ− 35ρ2 +

(
1

3
− 4ρ

)
µ2π
m2
c

−
(

11

15
+ 20ρ

)
µ2G
m2
c

+
34

3

ρ3D
m3
c

+
14

15

ρ3LS
m3
c

+
64

9

δρ3D
m3
c

+
2

5

δρ3LS
m3
c

+
536

45

r4G
m4
c

− 74

5

r4E
m4
c

− 872

45

s4B
m4
c

+
866

45

s4E
m4
c

+
167

90

s4qB
m4
c

+
2

15

δ4G1

m4
c

+
8

15

δ4G2

m4
c

+
τ0
m3
c

+ 2
τm
m4
c

+ 2
τε
m4
c

, (A.7)

Y3 =
2

7
− 4ρ− 232

5
ρ2 +

(
4

7
− 8ρ

)
µ2π
m2
c

−
(

4

7
+ 24ρ

)
µ2G
m2
c

+
446

35

ρ3D
m3
c

+
8

7

ρ3LS
m3
c

+ 8
δρ3D
m3
c

+
2

5

δρ3LS
m3
c

+
3469

210

r4G
m4
c

− 394

15

r4E
m4
c

− 5011

210

s4B
m4
c

+
379

15

s4E
m4
c

+
43

20

s4qB
m4
c

+
3

7

δ4G1

m4
c

+
29

35

δ4G2

m4
c

+
τ0
m3
c

+ 3
τm
m4
c

+ 3
τε
m4
c

, (A.8)

Y4 =
3

14
− 24

7
ρ− 287

5
ρ2 +

(
3

4
− 12ρ

)
µ2π
m2
c

−
(

13

28
+ 28ρ

)
µ2G
m2
c

+
481

35

ρ3D
m3
c

+
9

7

ρ3LS
m3
c

+
178

21

δρ3D
m3
c

+
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35

δρ3LS
m3
c

+
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r4G
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c

− 1352

35

r4E
m4
c

− 5993

210

s4B
m4
c

+
1104

35

s4E
m4
c

+
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s4qB
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+
9
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δ4G1
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c

+
79
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. (A.9)
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