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1 Introduction

The recent years have seen a transition of the Large Hadron Collider (LHC) from a discovery

machine to a precision machine. The reason for this is the absence of a direct observation

of New Physics which, even after the discovery of the Higgs boson [1, 2], is needed to clarify

questions left open by the Standard Model. Forthcoming searches for physics Beyond the

Standard Model (BSM) will focus on systematic studies of possible small deviations from

Standard Model predictions in precision observables. A reliable theoretical description of

such observables within the Standard Model is an important prerequisite for the success of

this research program.

A case in point is the hadronic production of charged leptons via a virtual photon

and/or the Z boson, the celebrated Drell-Yan (DY) process [3] (see [4] for a review).

Its high production rate and distinct signature make it extremely useful for luminosity

monitoring [5–7] and detector calibration [8]. Being theoretically well-understood, this

process is also suited for electroweak (EW) precision physics, such as the measurement

of the weak mixing angle [8, 9]. Moreover, DY production is used in parton distribution

function (PDF) fits [10–13] and for searches for New Physics at high energies [14]. In

such analyses, the rapidity distribution of the Z boson and the dilepton invariant mass,

respectively, are of particular interest.

The inclusive next-to-leading order (NLO) QCD corrections to Drell-Yan production

were first computed four decades ago [15]. Inclusive results at next-to-next-to-leading order

(NNLO) in QCD have also been known for many years [16–18]. Arbitrary infrared safe
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kinematic distributions are also available through NNLO QCD accuracy [19–24]. In addi-

tion, threshold effects at next-to-next-to-next-to leading order (N3LO) have been studied

in Refs. [25, 26]. EW corrections to pp → ℓ+ℓ− were computed in Refs. [27, 28].

Recently, an important milestone in the quest for high precision theoretical predic-

tions for LHC processes has been reached with the calculation of Higgs boson production

in hadronic collisions at N3LO QCD [29]. Since techniques developed in the course of that

calculation put the N3LO QCD corrections to the Drell-Yan process within reach, it be-

comes important to know the mixed QCD-EW O(αsα) corrections as well since, based on

the sizes of strong and EW coupling constants, one expects both contributions to be com-

parable in magnitude. The computation of mixed QCD-EW O(αsα) corrections requires

the evaluation of complicated two-loop diagrams with up to two massive propagators, as

well as the respective real-virtual and double-real contributions where a photon and/or a

parton is emitted in the final state. All these contributions contain intertwined QCD and

QED singularities, which need to be extracted and cancelled properly.

Several ingredients required for the calculation of O(αsα) corrections to DY production

have already appeared in the literature. In Ref. [30] integrated double-real contributions to

the production of a single on-shell gauge boson have been computed using the method of

reverse unitarity [31]. Furthermore, the two-loop master integrals needed for the double-

virtual contributions were recently presented in Ref. [32]. Nevertheless, up to now, the

various ingredients have not been combined in a way that allows one to compute physical

observables.

Given the absence of the full calculation, different approximations have been used in the

past to estimate mixed QCD⊗EW corrections. In Ref. [33] NNLO QCD corrections have

been combined additively with the NLO EW ones. Results for genuine mixed QCD⊗EW

effects in the leading-logarithmic approximation were presented in Ref. [34], under the

assumption that the NLO QCD and EW corrections factorise. This work also included

the matching of the NLO QCD and EW corrections to QCD parton showers and multiple

photon emissions.

Although the generic Drell-Yan process pp → l+l− is the target of many experimental

analyses, the theoretical description of the on-shell production of Z bosons pp → Z → l+l−

offers significant simplifications. Indeed, for an on-shell Z boson, virtual and real contri-

butions that connect incoming partons and outgoing leptons are suppressed by the ratio of

the Z boson width to its mass, ΓZ/MZ . The EW corrections to the production of a lepton

pair via an on-shell Z boson can thus be separated into gauge-invariant subsets according

to whether the correction is associated with the production of the Z boson (initial) or with

its decay (final). Similarly, mixed QCD⊗EW corrections can be divided into an initial-

initial and an initial-final contribution. Based on the magnitude of various contributions

observed at next-to-leading order, the initial-final corrections were argued to provide the

dominant contribution to mixed QCD⊗EW corrections [35] and were subsequently studied

in Ref. [36].

Recently, mixed QCD⊗QED corrections to the inclusive production of an on-shell Z

boson in hadronic collisions have been computed in Ref. [37]. These corrections provide

a gauge-invariant subset of the initial-initial QCD⊗EW corrections; they can be obtained
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from the known NNLOQCD corrections to on-shell Z boson production through an abelian-

isation procedure. The mixed QCD⊗QED corrections computed in Ref. [37] turned out to

be quite significant at the LHC, being smaller than the NNLO QCD corrections by only a

factor of three. This rather modest suppression of the initial-initial QCD⊗QED corrections

to the inclusive cross section relative to NNLO QCD corrections makes it interesting to

study the mixed corrections to more exclusive observables.

In addition, the computation of mixed QCD⊗QED corrections to Z boson production

is an important step towards the calculation of the such corrections to the production of

an on-shell W boson at the LHC, which is of high relevance for the W -mass determination.

Indeed, while interactions of W bosons with photons introduce additional subtleties in

the computation of such corrections compared to the Z boson case, understanding the

infrared structure of mixed corrections in pp → Z is a prerequisite for the analysis of

mixed corrections to pp → W±.

The goal of this paper is to present the calculation of the fully-differential mixed

QCD⊗QED corrections to the production of an on-shell Z boson in hadronic collisions

(the initial-initial corrections). This contribution features the most complex structure

of infrared singularities and, for this reason, represents an important step towards the

computation of full QCD⊗EW corrections to Z boson production. In addition to mixed

initial-initial corrections, we also compute initial-final corrections that arise through an

interplay of QCD corrections to Z production and QED corrections to its decay. Compar-

isons of the two contributions for various observables will allow us to quantify the degree

of dominance of the initial-final corrections over the initial-initial ones.

The calculation is performed by extending the nested soft-collinear subtraction scheme

presented in Ref. [38] for NNLO QCD computations through the abelianisation procedure

of Ref. [37]. We make use of the NNPDF3.1luxQED PDF set [39–41], whose evolution

is correct through O(αsα); this enables us to remove collinear singularities from initial

state radiation in a consistent way. We use the resulting code to study the impact of the

QCD⊗QED corrections on several distributions of phenomenological interest, including the

transverse momentum and the rapidity spectra of the Z boson, the transverse momentum

distributions of leptons and distributions in one of the so-called Collins-Soper angles θ∗ [42].

The rest of this paper is organised as follows. In Section 2 we briefly summarise

technical details of the calculation and explain how a transition from NNLO QCD to

mixed QCD⊗QED corrections is accomplished. In Section 3 we present phenomenological

results. We conclude in Section 4.

2 Technical aspects of the calculation

Our goal is to compute mixed QCD⊗QED corrections starting from the existing implemen-

tation of NNLO QCD corrections to the on-shell Z boson production at a fully-differential

level [43]. We describe the relevant technical aspects of this calculation in this section.
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2.1 Preliminary remarks

As we mentioned in the introduction, the mixed QCD⊗QED corrections to the production

cross section of an on-shell Z boson and its subsequent leptonic decay can be divided into

initial-initial and initial-final contributions, while the interference between production and

decay sub-processes is suppressed by the ratio of the Z boson width to its mass, ΓZ/MZ .

The required initial-final matrix elements can be constructed from the O(αs) and O(α)

helicity amplitudes for the production and decay sub-processes, respectively. The infrared

singularities arising from these corrections can be handled using standard NLO techniques;

we employ the Frixione-Kunszt-Signer subtraction scheme [44, 45] to deal with these. The

only subtlety is that spin correlations between production and decay processes caused by

the spin-one nature of the intermediate Z boson need to be properly accounted for.

The initial-initial corrections pose a greater challenge. The main ingredients required

for the computation of these corrections are:

• the tree-level matrix elements for the parton-initiated processes qq̄ → Z + γ + g,

qq̄ → Z + q + q̄, qq → Z + q + q and qg → Z + q + γ;

• the tree-level matrix elements for the photon-initiated processes qγ → Z + q + g and

gγ → Z + q + q̄;

• the matrix elements for the one-loop QED correction to the parton-initiated processes

qq̄ → Z + g and qg → Z + q;

• the matrix elements for the one-loop QCD correction to the parton-initiated process

qq̄ → Z + γ ;

• the matrix elements for the one-loop QCD correction to the photon-initiated process

qγ → Z + q;

• the matrix elements for the two-loop mixed QCD⊗QED correction to qq̄ → Z pro-

duction.

All these matrix elements contain infrared singularities due to soft and/or collinear emis-

sions of gluons, photons and quark-antiquark pairs. These singularities have to be reg-

ularised and removed in an appropriate subtraction scheme, yielding a fully-differential

description of on-shell Z boson production suitable for numerical integration. We achieve

this goal by abelianising the NNLO QCD calculation of Z boson production performed

within the nested soft-collinear subtraction scheme [38, 43, 46–48]. The abelianisation pro-

cedure was recently described in Ref. [37]; in essence this is a set of rules that allows one to

replace the SU(3) colour factors in the NNLO QCD formulas in such a way that the com-

putation of mixed QCD⊗QED corrections becomes possible. We discuss these replacement

rules in the next section.

2.2 The mapping of colour factors

There are three SU(3) colour factors, C2
F , CACF and CFTR, which appear in NNLO QCD

corrections to Z boson production. For the purpose of turning a NNLO QCD computa-
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tion into a computation of QED⊗QCD corrections, these colour factors require different

modifications. We discuss them in turn.

We first consider the NNLO QCD computation of Z boson production from either a

quark-antiquark or a quark-quark initial state. The colour factor CFTR appears in diagrams

with two disjoined quark lines, see e.g. Fig. 1(a). When such diagrams are squared and

sums over colours of initial- and final-state particles are computed, two independent colour

traces appear. These colour traces are of the form Tr(T aT b)Tr(T bT a) = CFTR. When a

gluon is replaced by a photon in these diagrams the colour traces become Tr(T a)Tr(T a) and

vanish. Similarly, partonic processes qiqj → Z + qi + qj for i 6= j that contribute at NNLO

QCD become irrelevant for O(ααs) corrections. We note that the consequence of that is the

absence of terms proportional to products of two different electric quark charges in mixed

QCD⊗QED contributions. We conclude that NNLO QCD contributions proportional to

the colour factor CFTR have no counter-parts in the computation of QED⊗QCD corrections

and need to be removed. We achieve this by setting TR to zero in the expressions for NNLO

QCD corrections provided in Ref. [43].

(a) (b)

Figure 1: Contributions to the colour factors CFTR (left) and CACF (right).

The case of the colour factor CACF is very similar. The colour factors CA originate

either from diagrams with three-gluon vertices (see Fig. 1(b)) or from the non-commutative

nature of generators of SU(3) colour algebra in the fundamental representation. Neither

of these issues apply to the case of mixed QCD⊗QED corrections. The corresponding

contributions can be eliminated by setting CA to zero in the NNLO QCD computation.

Finally, we need to understand how C2
F colour factors should be modified for the

purpose of computing mixed QCD⊗QED corrections. We consider a collision of a quark q

with an anti-quark q̄, assume that the electric charge of the quark is eq, and discuss a few

illustrative examples.

Consider the double-virtual corrections, shown on the top line of Fig. 2. Upon setting

CA to zero, colour traces that appear in both planar and non-planar diagrams provide a

colour factor C2
F . Since any of the two gluon lines can be replaced by a photon line in

any of these diagrams, the required modification of the colour factor is C2
F → 2CF e

2
q . It is

easy to see that the same holds for real-virtual contributions, shown on the second line of

Fig. 2, and for interferences that arise between double-real contributions (see the final line

Fig. 2).

A distinct situation arises in cases when two gluons appear in the final state, shown

in Fig. 3. In this case, two diagrams in the QCD case are mapped onto two diagrams in

the QCD⊗QED case; hence, it appears at first sight that for these diagrams the correct
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replacement rule is C2
F → CF e

2
q, so that the factor of two is missing. However, this is

not the case because contributions of diagrams with two gluons to the cross section are

multiplied by a factor 1/2! to account for the symmetric final state. Clearly, there is no

such factor in case of the g + γ final state. This mismatch is accounted for if the colour

factor C2
F in the qq̄ → Z + g + g contribution is again replaced by 2CF e

2
q, in accord with

what is needed for double-virtual and real-virtual contributions.

,

,

,

Figure 2: Contributions to the colour factor C2
F and their abelianised counterparts.

Hence, after an examination of all the cases, we conclude that for processes with an

incoming quark-antiquark pair or interference-like contributions with two identical quarks,

we replace

C2
F → 2CF e

2
q , TR → 0 , CA → 0 , (2.1)

in the formulas that describe NNLO QCD corrections to Z boson production and obtain

results for mixed QCD⊗QED corrections. In Eq. (2.1), eq is the electric charge of the

incoming quark.
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Figure 3: Contributions to the colour factor C2
F and their abelianised counterparts.

For processes with an incoming (anti)quark and a gluon, there is no symmetry factor,

and the two possible ways to replace a gluon by a photon amount to the two distinct

processes qg → Z + q + γ and qγ → Z + q + g. The replacement rules become

C2
F → CF e

2
q , CA → 0 . (2.2)
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Similarly, for processes induced by two gluons, replacing a gluon by a photon leads to the

processes gγ → Z + qq̄ and γg → Z + qq̄. We then have the replacement rule

C2
F → CF e

2
q , CA → 0 . (2.3)

We also note that, if photon-induced contributions are obtained from gluon-induced pro-

cesses, the averaging over colour charges of the incoming partons has to be changed as

well.

Making use of the procedure described above, we abelianised the fully-differential de-

scription of the on-shell Z boson production given in Ref. [43], including regulated double-

real and real-virtual contributions, integrated subtraction terms and the virtual contri-

butions. This gives us an opportunity to compute mixed QCD⊗QED corrections to any

infrared-safe observable in the production of an on-shell Z boson.

2.3 Implementation of Z boson decay

We now discuss the treatment of the decay of the Z boson into massless leptons, Z → ℓ+ℓ−,

in QCD and QED perturbative expansions. At leading order, the cross section for the

production of an on-shell Z boson is computed from the tree-level process qq̄ → Z → ℓ+ℓ−,

where the square of the propagator of an intermediate Z boson is replaced by its narrow

width limit
1

(Q2 −M2
Z)

2 +M2
ZΓ

2
Z

→ π

MZΓZ
δ(Q2 −M2

Z) . (2.4)

In Eq. (2.4) Q is the four-momentum of the Z boson and ΓZ is its width. In principle,

the width of the Z boson in Eq. (2.4) receives perturbative corrections. These corrections

should, partially, cancel QED corrections to Z → ℓ+ℓ− that are included in our calculation.

In order to account for that, we rewrite the cross section for pp → Z → ℓ+ℓ− as follows

dσpp→Z→ℓ+ℓ− =
dσpp→Z dΓZ→ℓ+ℓ−

ΓZ
= BrZ→ℓ+ℓ− × dσpp→Z × dΓZ→ℓ+ℓ−

ΓZ→ℓ+ℓ−
. (2.5)

In Eq. (2.5) we introduced the branching ratio of the Z boson decay to a massless ℓ+ℓ−

pair BrZ→ℓ+ℓ− ; we will treat it as an experimental input parameter and will not expand

it in αs and α. However, all other terms in Eq. (2.5) will be treated within QCD/QED

perturbation theory. In particular, the ratio dΓZ→ℓ+ℓ−/ΓZ→ℓ+ℓ− must be expanded to first

order in α. We write

ΓZ→ℓ+ℓ− =Γ
(0)
Z→ℓ+ℓ−

+ Γ
(1)
Z→ℓ+ℓ−

+O(α2) ,

dΓZ→ℓ+ℓ− =dΓ
(0)
Z→ℓ+ℓ−

+ dΓ
(1)
Z→ℓ+ℓ−

+O(α2) ,
(2.6)

and expand the ratio

dΓZ→ℓ+ℓ−

ΓZ→ℓ+ℓ−
=

dΓ
(0)
Z→ℓ+ℓ−

Γ
(0)
Z→ℓ+ℓ−

+






−
dΓ

(0)
Z→ℓ+ℓ−

Γ
(1)
Z→ℓ+ℓ−

(

Γ
(0)
Z→ℓ+ℓ−

)2 +
dΓ

(1)
Z→ℓ+ℓ−

Γ
(0)
Z→ℓ+ℓ−






+O(α2) . (2.7)

– 7 –



By construction, the above expression integrates to one over the unrestricted decay phase-

space, so that terms in the square brackets integrate to zero. The expansion coefficients of

the leptonic Z width read

Γ
(0)
Z→ℓ+ℓ−

=
GFM

3
Z

6
√
2π

(

1

4
+

(

1

2
− 2 sin2 θW

)2
)

, (2.8)

Γ
(1)
Z→ℓ+ℓ−

= Γ
(0)
Z→e+e−

× 3α

4π
. (2.9)

We now go back to Eq. (2.5) and expand all relevant ingredients in series in the strong

and electromagnetic coupling constants. To present the results of such an expansion, we

denote the O(αn
s αm) contribution to the Z production cross section as σ

(n,m)
pp→Z , and find

the following results for pp → Z → ℓ+ℓ− cross sections1

dσLO = BrZ→ℓ+ℓ− × dσ
(0,0)
pp→Z × dΓ(0)

Γ(0)
, (2.10)

dσ
(αs)
NLO = BrZ→ℓ+ℓ− × dσ

(1,0)
pp→Z × dΓ(0)

Γ(0)
, (2.11)

dσ
(α)
NLO = BrZ→ℓ+ℓ− ×

[

dσ
(0,1)
pp→Z × dΓ(0)

Γ(0)
+ dσ

(0,0)
pp→Z ×

(

dΓ(1)

Γ(0)
− dΓ(0)

Γ(0)
× 3α

4π

)]

, (2.12)

dσ
(α2

s)
NNLO = BrZ→ℓ+ℓ− × dσ

(2,0)
pp→Z × dΓ(0)

Γ(0)
, (2.13)

dσ
(αsα)
NNLO = BrZ→ℓ+ℓ− ×

[

dσ
(1,1)
pp→Z × dΓ(0)

Γ(0)
+ dσ

(1,0)
pp→Z ×

(

dΓ(1)

Γ(0)
− dΓ(0)

Γ(0)
× 3α

4π

)]

. (2.14)

Note that terms in round brackets in Eqs. (2.12) and (2.14) integrate to zero over an

unrestricted phase-space, such that the inclusive cross section is given by a product of

the branching fraction and the production cross section, as expected from Eq. (2.5). We

emphasise again that we consider massless leptons throughout this paper.

To present our results for QCD⊗QED corrections, we define ratios of contributions to

the cross section at different perturbative orders. We write

∆α =
σ
(α)
NLO

σLO + σ
(αs)
NLO

, ∆α2
s
=

σ
(α2

s)
NNLO

σLO + σ
(αs)
NLO

, ∆αsα =
σ
(αsα)
NNLO

σLO + σ
(αs)
NLO

. (2.15)

To discuss kinematic distributions, we define differential bin-by-bin corrections in a similar

fashion

d∆α =
dσ

(α)
NLO

dσLO + dσ
(αs)
NLO

, d∆α2
s
=

dσ
(α2

s)
NNLO

dσLO + dσ
(αs)
NLO

, d∆αsα =
dσ

(αsα)
NNLO

dσLO + dσ
(αs)
NLO

. (2.16)

2.4 Checks of the computation

Although the abelianisation procedure is, in principle, straightforward, its implementation

in a fully-differential NNLO QCD computation is tedious. For this reason, it is important

1From now on we drop the subscripts in ΓZ→ℓ+ℓ− and dΓZ→ℓ+ℓ− .
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to check the implementation. We did this in the following way. In addition to abelianising

the fully-differential NNLO QCD computation in Ref. [43], we also abelianised the analytic

NNLO QCD coefficients for inclusive Z boson production given in Ref. [16] and compared

these to analytic expressions for mixed QCD⊗QED corrections given in appendix B of

Ref. [37]. We then used our abelianised analytic expressions to compute the inclusive on-

shell production cross section of pp → Z and check that it agrees with the cross section

obtained using the fully-differential implementation of mixed QCD⊗QED corrections.

3 Results

In this section we discuss mixed QCD⊗QED corrections to various observables in pp →
Z → ℓ+ℓ− and compare them to other corrections. We consider the LHC with 13 TeV

center-of-mass collision energy. We use MZ = 91.1876 GeV for the mass of the Z bo-

son, and consider its decay to a single flavour of massless leptons with a branching ratio

BrZ→ℓ+ℓ− = 0.033632. We compute the couplings of the Z boson to leptons and quarks

using GF = 1.16639 × 10−5 GeV−2, MW = 80.398 GeV and sin2 θW = 0.2226459 as the

input parameters. We use the NNPDF3.1luxQED set with five active flavours [41] as

provided by the LHAPDF interface [49], and take all quark to be massless. To compute

the ∆-corrections defined in the previous Section, we always use parton distributions at

NNLO accuracy to calculate all the relevant contributions. We set the renormalisation

and factorisation scales to µR = µF = MZ . The strong coupling constant is taken to be

αS(MZ) = 0.118 which is compatible with values provided by the NNPDF set. We describe

photon interactions with leptons and quarks by the fine structure constant evaluated at

the renormalisation scale µ = MZ ; numerically, it is equal to α = 1/128.

3.1 Inclusive cross sections

We use the above setup to compute the inclusive cross section of Z boson production at

various (NLO QED, NNLO QCD and mixed QCD⊗QED) approximations. Using notations

introduced in the previous section, we find2

∆α = 3.2 · 10−3 , ∆α2
s
= −6.4 · 10−3 , ∆αsα = 2.9 · 10−4 . (3.1)

We note that the ∆ ratios in Eq. (3.1) receive contributions from corrections to the produc-

tion only, since corrections to the decay of the Z boson Z → ℓ+ℓ− cancel with corrections

to the partial decay width ΓZ→ℓ+ℓ− , as explained in the previous Section.

It follows from Eq. (3.1) that the magnitude of mixed QCD⊗QED corrections to the

inclusive cross section pp → Z is consistent with expectations. Indeed, they are smaller

than NLO QED (NNLO QCD) corrections by a factor ten (twenty), respectively. These

suppression factors are in accord with our expectations, based on the relative magnitude

of strong and electromagnetic coupling constants.

We note that our results for the corrections to the inclusive cross section are different

from the results of Ref. [37]. In particular, this reference reported a smaller suppression

2 We neglect contributions of top quarks to Z-boson production cross section including the top-bottom

triangle correction to the axial current. Such contributions were shown to be small in Ref. [50].
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of the mixed QCD⊗QED corrections relative to the NNLO QCD one. The reason for this

is that Ref. [37] employs a four-flavour scheme to compute both NNLO QCD and mixed

QCD⊗QED corrections. Since both NNLO QCD and mixed QCD⊗QED corrections ex-

hibit a strong sensitivity to input parameters, thanks to a very strong cancellation between

(large) corrections to qq̄ and qg partonic channels at the LHC energies [37], even small

changes in the input can lead to significant changes in final results for corrections. We

have confirmed that if we use the same input, we agree with the results of Ref. [37].3

Finally, we comment on the scale dependence of the total NNLO cross section that

includes the ∆α2
s
and ∆αsα corrections. Although this dependence is small, O(0.5− 0.7%),

it is entirely dominated by pure QCD effects and it is not possible to unambigously identify

the impact of QCD⊗QED corrections on it. For this reason, we decided to avoid present-

ing results for the scale dependence of the NNLO cross section. Instead, to understand

the dependence of the QCD⊗QED corrections on the scale choice, we consider the ∆αsα

correction where the cancellation between the µ-dependence of parton distribution func-

tions and the explicit scale dependence of the NNLO contribution cannot be expected.

Because of that, it is not surprising that these corrections appear to be rather sensitive

to the choice of the factorisation and the renormalisation scales µ. Indeed, by choosing

the scale µ = [MZ/2,MZ , 2MZ ], we obtain the corrections ∆αsα = [5.6, 2.9,−0.28] · 10−4.

Although a stronger sensitivity of the correction ∆αsα to the choice of the scale is expected,

there is yet another reason for large variations in ∆αsα. In fact, the enhanced dependence

on µ can be also traced back to a strong cancellation between quark- and gluon-initiated

contributions to ∆αsα which is affected by the change of the scale µ in a significant way.

As we discuss in the next Section, the cancellation between qq̄ and qg channels is also an

important feature of mixed corrections to fiducial cross sections. We therefore expect that

for the fiducial cases the scale variation of mixed corrections will exhibit similar behaviour.

For this reason, we will not discuss the scale dependences of those corrections any further

in the next section.

3.2 Fiducial cross sections

Fiducial cross sections are defined through kinematic selection criteria applied to physical

objects in final states. We define the selection criteria for pp → Z → ℓ+ℓ− as

p⊥,ℓ1 > 24 GeV , p⊥,ℓ2 > 16 GeV , |yℓi | < 2.4 , 50 GeV < mℓℓ̄ < 120 GeV , (3.2)

where ℓ1,2 denote leptons with leading and subleading transverse momenta, respectively.

Since we work with massless leptons, their transverse momenta are not collinear-safe

observables; for this reason, we need to introduce an analog of QCD jets for leptons by

combining leptons with collinear photons. Such recombination procedures are also used in

experimental measurements to define “physical” electrons subject to selection cuts.

For the purposes of the computation of mixed QCD⊗QED corrections, we choose a

simplified version of the standard recipe [51]. To this end, we begin by computing two

quantities Rℓ±γ =
√

(yℓ± − yγ)2 + (ϕℓ± − ϕγ)2 where yℓ±,γ are the rapidities and ϕℓ±,γ the

3We thank D. de Florian for clarifications and help with this comparison.
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azimuthal angles of the lepton or antilepton, and the photon, respectively. If Rℓ±γ for the

photon and one of the leptons is smaller than some Rmin, the photon is recombined with

the lepton by adding their momenta; the new object is treated as a lepton inasmuch as

the selection cuts Eq. (3.2) are concerned. In this paper, we use the standard value [51]

Rmin = 0.1.

As we already mentioned, there are three distinct sources of QED corrections. To show

them separately, we decompose the NLO QED and mixed QCD⊗QED results according

to whether the QED correction is associated with the production of the Z boson (P ), its

decay (D), or its decay width ΓZ→e+e− (W ). Using the definitions for ∆’s in the previous

Section, we find

∆α = (3.0 · 10−3)P − (7.2 · 10−3)D − (1.6 · 10−3)W ,

∆α2
s
= −(1.2 · 10−2) ,

∆αsα = −(1.5 · 10−4)P⊗P − (4.9 · 10−3)P⊗D − (0.3 · 10−3)P⊗W .

(3.3)

The many results in Eq. (3.3) can be compared in different ways. First, we note that

the QCD corrections are larger than in the inclusive case by almost a factor of two whereas

the NLO QED corrections (initial) do not change significantly. The mixed QCD⊗QED

correction to the production is, on the other hand, smaller by a factor of two than in the

inclusive case. Similar to the inclusive case, the relative magnitude of NLO QED, NNLO

QCD and mixed QCD⊗QED corrections to the fiducial Z boson production cross section

is consistent with expectations based on the relative sizes of QCD and QED couplings,

despite the somewhat larger relative magnitude of the NNLO QCD correction.

It is interesting to understand how the final result for QCD⊗QED corrections to the

production comes about. To this end, it is instructive to decompose [∆αsα]P⊗P into con-

tributions of particular partonic channels, see Table 1. We observe a sizeable, almost an

order-of-magnitude cancellation between qq̄ and qg channels. In fact a similar cancellation

reduces the magnitude of NNLO QCD corrections which could have been quite a bit bigger

than what they are if this cancellation was not present.

It is seen from Table 1 that contributions of photon-induced channels are very small, as

expected. However, due to the aforementioned cancellation, they still contribute roughly

twenty percent to the total result for mixed initial-initial corrections. It is also interesting

that the photon-induced contributions are larger than those of qq channels. This implies

that neglecting contributions with photons in the initial state is not a good approximation

if QCD⊗QED precision is desired.

A rather different situation arises if we look at contributions to Eq. (3.3) that involve

corrections to Z boson decays. They are described by [∆α]D and by [∆αsα]P⊗D for the

QED and QCD⊗QED corrections, respectively. Inspecting Eq. (3.3), we observe that both

of these contributions are large and that [∆αsα]P⊗D is smaller than [∆α]D by only thirty

percent in spite of being suppressed by one power of αs. This implies that for fiducial

cross sections QED radiation in the decay is very strongly affected by QCD radiation in

the production.

This result illustrates that the selection criteria shown in Eq. (3.2) are strongly im-

pacted by the non-vanishing transverse momentum of the Z boson that in the case of
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Partonic Channel [∆αsα]P⊗P · 104
qq̄ 5.60

qq 0.13

qg + gq -7.01

qγ + γq -0.32

γg 0.06

Total -1.54

Table 1: Contributions of the different partonic channels to [∆αsα]P⊗P .

a fixed-order computation is provided by the initial state QCD radiation. In addition,

Rmin = 0.1 is probably too small an isolation cone to allow a stable perturbative descrip-

tion of QED radiation off the outgoing leptons. To illustrate this remark, we point out

that, with Rmin = 0.1 and an additional selection cut p⊥,γ > 5 GeV, the rate of the Z

boson decay to three QED jets becomes close to four percent and thus much larger than

a naive expectation based on α/π ∼ 2 × 10−3 suppression of events with additional ra-

diation. It is clear that a quasi-collinear fragmentation of a lepton to a photon, allowed

by the selection cuts, may strongly change the observable cross section by reducing the

transverse momentum of the lepton. Furthermore, we also observe that by rejecting events

with two leptons and a photon and keeping events with only Born-like kinematics, the size

of [∆αsα]P⊗D gets reduced relative to [∆α]D.
4

3.3 Kinematic distributions

We continue with the discussion of the impact of QCD⊗QED corrections on kinematic

distributions for the production of two leptons via an on-shell Z boson at the LHC. Below

we show the respective distribution at NLO QCD accuracy in upper panels and the relative

corrections ∆α2
s
, [∆αsα]P⊗P and [∆αsα]P⊗D in lower panels. We use the selection criteria

shown in Eq. (3.2) and Rmin = 0.1 throughout this section.

We begin with the discussion of the transverse momentum distribution of the two

leptons, p⊥,ℓℓ, shown in the left panels of Fig. 4. It is seen from the plot that both

∆α2
s
and [∆αsα]P⊗P corrections become flat and positive above p⊥,ℓℓ ∼ 20 GeV. In that

region, the NNLO QCD corrections amount to O(40) percent. Although this is quite a

large correction, we note that in this kinematic region they can be considered as NLO

QCD corrections to Z + jet production. The mixed [∆αsα]P⊗P corrections can be thought

of as QED corrections to the NLO QCD distribution; this would suggest a percent-level

correction. In fact, initial-initial corrections in this case turn out to be even smaller, of the

order of two permille for pT,ℓℓ > 20 GeV. This is partially due to the cancellation between

qq̄- and qg-induced contributions that we already discussed. For smaller values of the Z

4 In the future, it may be interesting to combine O(α2
s) corrections to the production of the Z boson

and O(α) to its decay in order to investigate the size of the correction due to a second emission from the

initial state; since the first QCD emission already provides some boost to the Z boson, it is conceivable

that the corrections due to second gluon emission will be much more moderate.
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transverse momentum, the corrections become large and negative; however, resummation

may be needed to obtain a reliable prediction in this region.
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Figure 4: Relative differential corrections ∆ for the transverse momentum (left) and

rapidity (right) of the dilepton system, p⊥,ℓℓ and yℓℓ. See text for further details.

The initial-final correction [∆αsα]P⊗D to the p⊥,ℓℓ distribution of a lepton pair shows

quite a different behaviour, with a maximum at p⊥,ℓℓ ≃ 30 GeV. This feature appears

because of an interplay of a few contributions with different kinematics features. On

the one hand, processes without initial-state QCD radiation but with final-state photon

emission yield a pair of leptons with a total transverse momentum smaller than MZ/2.

Moreover, the selection cuts we use further restrict it to p⊥,ℓℓ . 31 GeV. On the other

hand, processes with initial state radiation boost the Z boson, leading to a tail which

extends beyond this kinematic limit. This behaviour can already be observed in the initial

and final contributions at NLO QED accuracy.

It is also interesting to point out that, although initial-final [∆αsα]P⊗D corrections

are indeed larger than initial-initial corrections [∆αsα]P⊗P for almost all values of the

transverse momentum p⊥,ℓℓ, it is not the case for p⊥,ℓℓ ∼ 30 GeV where the initial-final

correction passes through zero(s). For those values of p⊥,ℓℓ, the initial-final and initial-

initial QCD⊗QED contributions become comparable.

The rapidity distribution of the dilepton system at NLO QCD and the different correc-

tions to it are displayed in the right panels of Fig. 4. The shape of the rapidity distribution

is determined by the selection cuts which flatten the distribution for values |yℓℓ| < 1. Inside

this region, which represents the bulk of the cross section, the NNLO QCD correction is

flat and negative and amounts to a decrease of the NLO QCD result by O(−2) percent.

The NNLO QCD correction then crosses zero at rapidities |yℓℓ| ≃ 1 and increase to O(3)

percent at large rapidities. The mixed [∆αsα]P⊗P correction has a very similar shape; it
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decreases the NLO QCD distribution by O(−0.4) permille in the central region and in-

creases it to O(+0.4) permille outside. In contrast to the previous two corrections, the

initial-final [∆αsα]P⊗D correction is negative for all rapidities and amounts to a decrease

by about O(−7) permille in the central region. For rapidities |yℓℓ| > 1, the initial-final cor-

rection becomes smaller but it remains a factor 5 larger than the initial-initial one. Hence,

it follows that for the rapidity distribution of a lepton pair, the initial-final corrections

always dominate over the initial-initial one.
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Figure 5: Relative differential corrections ∆ for the transverse momentum of the leading

(left) and subleading (right) lepton, p⊥,ℓ1 and p⊥,ℓ2. See text for further details.

We show the transverse momentum distributions of the leading and the subleading

leptons in Fig. 5. For the leading lepton, the NNLO QCD corrections enhance the distri-

bution at large p⊥,ℓ1 , which is consistent with the additional boost that leptons get from

the second initial-state emission. The feature at p⊥,ℓ1 = MZ/2 is a Sudakov shoulder effect,

which is known to appear close to kinematic boundaries. The NNLO QCD correction factor

stabilises at O(40) percent for large values of p⊥,ℓ1. The initial-initial correction [∆αsα]P⊗P

shows a similar behaviour at high p⊥,ℓ1 where it is about two permille. Interestingly, the

initial-initial correction also enhances the distribution at smaller values of the transverse

momentum p⊥,ℓ1 . The initial-final correction [∆αsα]P⊗D is negative at high and positive

at small p⊥,ℓ1 ; this is consistent with the picture of the final state leptons losing energy

to QED radiation and decreasing their transverse momenta. The correction [∆αsα]P⊗D

changes from O(−3) percent for p⊥,ℓ1 > MZ/2 to O(+3) percent for p⊥,ℓ1 < MZ/2.

The transverse momentum distribution of the subleading lepton at NLO QCD accuracy

has some features which impact the respective corrections. Indeed, in addition to the

Sudakov shoulder at p⊥,ℓ2 = MZ/2, the distribution also features a similar effect at p⊥,ℓ2 =

24 GeV, due to the fact that 24 GeV is a cut on the minimal transverse momentum of
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the leading lepton. Since at leading order the transverse momenta of the two leptons

must be equal to each other, the leading order p⊥,ℓ2 distribution is truncated at this value

also for the subleading lepton and the lower bins are only populated through higher order

corrections.

In order to avoid displaying large fluctuations of radiative effects around the Sudakov

shoulder at p⊥,ℓ2 = MZ/2, we combined two bins between 40 GeV and 48 GeV into a

single bin to present various corrections. Similar to the leading-lepton case, we observe

large positive NNLO QCD and mixed [∆αsα]P⊗D corrections for p⊥,ℓ2 > MZ/2 that can

be as large as O(50) percent for QCD and O(2) permille for mixed QCD⊗QED. The

initial-final correction [∆αsα]P⊗D is negative and takes values between O(−2) and O(−4)

percent.

Finally, we discuss distributions of cos θ∗, where θ∗ is the angle between the three-

momentum of one of the leptons and a unit vector constructed from the difference between

three-momenta of the colliding protons in the rest frame of the dilepton system. Its cosine

is given by the following formula [42]

cos θ∗ =
P+
ℓ−
P−

ℓ+
− P−

ℓ−
P+
ℓ+

√

m2
ℓ+ℓ−

(m2
ℓ+ℓ−

+ p⊥,ℓ+ℓ−)

pz,ℓ+ℓ−
∣

∣pz,ℓ+ℓ−

∣

∣

, (3.4)

where P±
i = (Ei ± pz,i). The cos θ∗-distribution is one of the few observables with strong

sensitivity to the weak mixing angle sin2 θℓeff ; it is used in experimental analyses for this

purpose [9]. The relevant input for this measurement is provided by cos θ∗ distributions

for restricted mℓℓ and |yℓℓ| intervals.
To illustrate how various effects modify the cos θ∗ distributions, in Fig. 6 we show

them for 0.6 < |yℓℓ| < 1.2 and 1.8 < |yℓℓ| < 2.4 rapidity intervals. The panels on the

left describe the rapidity interval 0.6 < |yℓℓ| < 1.2 and feature the distribution at NLO

QCD accuracy with two well-separated maxima in the upper panel and NNLO QCD and

mixed QCD⊗QED corrections in the lower panel. The NNLO QCD corrections are below

a percent level at small values of cos θ∗, but become large and negative at the boundaries

of the distribution. The mixed [∆αsα]P⊗P corrections are relatively flat and amount to

roughly 0.3 permille in the bulk of the distribution. They increase slightly at small values

of cos θ∗, but become large and negative in the outermost non-vanishing bins. The initial-

final [∆αsα]P⊗D contribution is negative for all values of cos θ∗ and is relatively flat, taking

values between one and two permille.

The cos θ∗ distribution for rapidities 1.8 < |yℓℓ| < 2.4 is quite different. First, two

maxima merge into one maximum located at small values of cos θ∗. For this reason, we

only display results in the interval −0.5 < cos θ∗ < 0.5. Second, all corrections in this

case are rather flat. However, their magnitudes are comparable to those in the interval

0.6 < |yℓℓ| < 1.2, with the NNLO QCD corrections being just few percent and the initial-

initial correction [∆αsα]P⊗P below a permille level. The initial-final [∆αsα]P⊗D corrections

are negative and are close to two permille.
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Figure 6: Relative differential corrections ∆ for the cos θ∗ distribution for 0.6 < |yℓℓ| < 1.2

(left) and 1.8 < |yℓℓ| < 2.4 (right). See text for further details.

4 Conclusion and outlook

In this article, we presented the calculation of mixed QCD⊗QED corrections to the pro-

duction of an on-shell Z boson at the LHC. We made use of the nested soft-collinear

subtraction scheme developed for NNLO QCD computations at a fully-differential level,

and extended it to cover the mixed QCD⊗QED corrections. We adopted the abelianisation

procedure introduced in Ref. [37] and included partonic channels with photons in the initial

state. Since we considered production of an on-shell Z boson, interactions between initial

state partons and decay products of the Z boson can be neglected.

As an illustration of the fully-exclusive nature of our computation, we calculated the

mixed QCD⊗QED corrections to a number of observables such as the transverse momentum

distributions of di-leptons and of the leading and subleading leptons, as well as the rapidity

of the dilepton system and one of the Collins-Soper angles θ∗. Initial-initial QCD⊗QED

corrections typically change these distributions at below a permille level whereas initial-

final ones change them by a few permille. This is a factor hundred (ten) smaller than the

effects of NNLO QCD corrections, respectively.

Finally, we note that the production of the on-shell Z boson is a relatively simple

case. In the future, it may be interesting to compute the mixed QCD⊗QED corrections

to the generic off-shell Drell-Yan process and to the production of an on-shell W boson.

Thanks to recent developments, both of these computations are now feasible. The case of

W production will require an extension of the nested soft-collinear subtraction scheme to

the case of a charged resonance. This is an interesting problem that we plan to address in

the future.
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