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Abstract:

We give a short account of recent advances in our understanding of the π-dependent

terms in massless (Euclidean) 2-point functions as well as in generic anomalous dimensions

(ADs) and β-functions. We extend the considerations of [1] by two more loops, that is

for the case of 6- and 7-loop correlators and 7- and 8-loop renormalization group (RG)

functions. Our predictions for the (π-dependent terms) of the 7-loop RG functions for

the case of the O(n) φ4 theory are in full agreement with the recent results from [2]. All

available 7- and 8-loop results for QCD and the scalar O(n) ϕ4 theory obtained within the

large Nf approach to the quantum field theory (see, e.g. [3]) are also in full agreement

with our results.
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1 Introduction

Since the seminal calculation of the Adler function at order α3
s [4] it has been known that

p-functions in QCD demonstrate striking regularities in terms proportional to π2n (or,

equivalently, even zetas1, with n being positive integer. Indeed, it was demonstrated in

[4] for the first time a mysterious complete cancellation of all contributions proportional

to ζ4 ≡
π4

90 (which generically appear in separate diagrams) while odd zetas terms (that is

those proportional to ζ3 and ζ5 in the case under consideration) do survive and show up

in the final result. Here by p-functions we understand (MS-renormalized) Euclidean Green

functions2 or 2-point correlators or even some combination thereof, expressible in terms of

massless propagator-like Feynman integrals (to be named p-integrals below).

Since then it has been noted many times that all physical (that is scale-invariant)

p-functions are indeed free from even zetas at order α4
s (like corrections to the Bjorken

(polarized) DIS sum rule) and some of them—like the Adler function—even at the next,

in fact, 5-loop, αeα
4
s order [6]. On the other hand, the first appearance of ζ4 in a one-scale

physical quantity has been demonstrated in [7] for the case of the 5-loop scalar correlator.

It should be stressed that the limitation by QCD p-functions in the above discussion

is essential. In general case scale-invariant p-functions do depend on even zetas already at

4 loops (see eq. (11.8) in [1]).

1As is well known every even power 2n of π is uniquely related to the corresponding Euler ζ-function

ζ2n ≡
∑

i>0

1

i2n
, according to a rule ζ2n = r(n) π2n, with r(n) being a (known) rational number [5].

2Like quark-quark-qluon vertex in QCD with the external gluon line carrying no momentum.
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To describe these regularities more precisely we need to introduce a few notations and

conventions. Let

Fn(a, ℓµ) = 1 +

0≤j≤i
∑

1≤i≤n

gi,j (ℓµ)
j ai (1.1)

be a (renormalized) p-function in a one-charge theory with the coupling constant a3. Here

Q is an (Euclidean) external momentum and ℓµ = ln µ2

Q2 . The integer n stands for the

(maximal) power of a appearing in the p-integrals contributing to Fn. In the case of one-

charge gauge theory and gauge non-invariant F we will always assume the case of the

Landau gauge. In particularly all our generic considerations in this paper are relevant for

QCD p-functions with a = αs(µ)
4π .

The F without n will stand as a shortcut for a formal series F∞. In terms of bare

quantities4

F = Z FB(aB , ℓµ), Z = 1 +

1≤j≤i
∑

i≥1

Zi,j
ai

ǫj
, (1.2)

with the bare coupling constant, the corresponding renormalization constant (RC) and AD

being

aB = µ2ǫZa a, Za = 1 +

1≤j≤i
∑

i≥1

(

Za

)

i,j

ai

ǫj
, (1.3)

( ∂

∂ℓµ
+ β a

∂

∂a

)

F = γ F , (1.4)

γ(a) =
∑

i≥1

γi a
i, γi = −iZi,1. (1.5)

The coefficients of the β-function βi are related to Za in the standard way:

βi = i (Za)i,1 . (1.6)

A p-function F is called scale-independent if the corresponding AD γ ≡ 0. If γ 6= 0 then

one can always construct a scale-invariant object from F and γ, namely:

F si
n+1(a, ℓµ) =

∂

∂ℓµ
(lnF )n+1 ≡

((
γ(a)− β(a)a ∂

∂a

)
Fn

Fn

)

n+1

. (1.7)

Note that F si
n+1(a, ℓµ) starts from the first power of the coupling constant a and is formally

composed fromO(αn+1
s ) Feynman diagrams. In the same time is can be completely restored

from Fn and the (n + 1)-loop AD γ.

3We implicitly assume that the coupling constant a counts loops.
4 We assume the use of the dimensional regularization with the space-time dimension D = 4− 2 ǫ.
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If not otherwise stated we will assume the so-called G-scheme for renormalization [8].

The scheme is natural for massless propagators. All ADs, β-functions and Z-factors are

identical in MS- and G-schemes. For (finite) renormalized functions there exists a simple

conversion rule. Namely, in order to switch from an G-renormalized quantity to the one in

the MS-scheme one should make the following replacement in the former: lnµ2 → lnµ2+2

(µ is the renormalization scale, the limit of ǫ → 0 is understood).

An (incomplete) list of the currently known regularities5 includes the following cases.

1. Scale-independent QCD p-functions Fn and F si
n with n ≤ 4 are free from π-dependent

terms.

2. Scale-independent QCD p-functions F si
5 are free from π6 and π2 but do depend on

π4.

3. The QCD β-function starts to depend on π at 5 loops only [13–15] via ζ4. In addition,

there exits a remarkable identity [1]

βζ4
5 =

9

8
β
(1)
1 βζ3

4 , with F ζi = lim
ζi→0

∂

∂ζi
F.

4. If we change the MS-renormalization scheme as follows:

a = ā (1 + c1 ā+ c2 ā
2 + c3 ā

3 +
1

3

β5

β
(1)
1

ā4), (1.8)

with c1, c2 and c3 being any rational numbers, then all known QCD functions F̂ si
5 (ā, ℓµ)

and the (5-loop) QCD β-function β̄(ā) both loose any dependence on π. This remark-

able fact was discovered in [9].

5. It should be also noted that no terms proportional to the first or second powers of π

do ever appear in all known (not necessarily QCD!) p-functions and even in separate

p-integrals at least at loop number L less or equal 5. This comes straightforwardly

from the fact that the corresponding master p-integrals are free from such terms.

The latter has been established by explicit analytic calculations for L = 2, 3 [8],

L = 4 [16–18] and finally at L = 5 [19]. Note for the last case only a part of 5-loop

master integrals was explicitly computed. However, there are generic mathematical

arguments in favor of absence of contributions with weight one and two, that is π

and π2 in p-integrals at least with the proper choice of the basis set of transcendental

generators [20, 21]. By proper choice here we mean, essentially, a requirement that

transcendental generators should be expressible in terms of rational combinations of

finite p-integrals [22, 23]. without use of π as a generator.

Our results below are in full agreement with these arguments.

5 For discussion of particular examples of π-dependent contributions into various QCD p-functions we

refer to works [9–12].
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L p-integrals L+1 Z

0 rational 1 rational/ǫ

1 rational/ǫ 2 rational/ǫ2

2 ζ3 3 ζ3/ǫ

3 ζ3/ǫ, ζ4, ζ5 4 ζ3/ǫ
2, {ζ4, ζ5}/ǫ

4 ζ3/ǫ
2, {ζ4, ζ5}/ǫ, ζ

2
3 , ζ6, ζ7, 5 ζ3/ǫ

3, {ζ4, ζ5}/ǫ
2, {ζ23 , ζ6, ζ7}/ǫ

5 ζ3/ǫ
3, {ζ4, ζ5}/ǫ

2, {ζ23 , ζ6, ζ7}/ǫ, 6 ζ3/ǫ
4, {ζ4, ζ5}/ǫ

3, {ζ23 , ζ6, ζ7}/ǫ
2,

ζ3ζ4, ζ8, ζ3ζ5, ζ5,3, ζ
3
3 , ζ9 {ζ3ζ4, ζ8, ζ3ζ5, ζ5,3, ζ

3
3 , ζ9}/ǫ

Table 1: The structure of p-integrals (expanded in ǫ up to and including the constant ǫ0 part)

and RCs in dependence on the loop number L. The inverse power of ǫ stands for the maximal one

in generic case; in particular cases it might be less.

It should be stressed that eventually every separate diagram contributing to Fn and

F si
n+1 contains the following set of irrational numbers: ζ3, ζ4, ζ5, ζ6 and ζ7 for n = 4, ζ3, ζ4

and ζ5 for n = 3 as illustrated in Table 1. Thus, the regularities listed above are quite

nontrivial and for sure can not be explained by pure coincidence.

In this paper6 we first present a short discussion of recent advances in studying the

structure of the π-dependent terms in massless (Euclidean) 2-point functions as well as

in generic anomalous dimensions and β-functions. Then we extend the considerations of

[1] by two more loops. Finally, we discuss remarkable connections between ǫ-expansion of

4-loop p-integrals and the D = 4 values of finite 5-, 6-, and 7-loop p-integrals.

2 Hatted representation: general formulation and its implications

The full understanding and a generic proof of points 1–5 above have been recently achieved

in our work [1]. The main tool of the work was the so-called “hatted” representation of

transcendental objects contributing to a given set of p-integrals.

Let us reformulate the main results of [1] in an abstract form. We will call the set of

all L-loop p-integrals PL a π-safe one if the following is true.

(i) All p-integrals from the set can be expressed in terms of (M + 1) mutually inde-

pendent (and ǫ-independent) transcendental generators

T = {t1, t2, . . . , tM+1} with tM+1 = π. (2.1)

This means that any p-integral F (ǫ) from PL can be uniquely7 presented as follows

F (ǫ) = F (ǫ, t1, t2, . . . , tM , π) +O(ǫ), (2.2)

where by F (ǫ) we understand the exact value of the p-integral F while the combination

ǫL F (ǫ, t1, t2, . . . , tM , π) should be a rational polynomial8 in ǫ, t1 . . . , tM , π. Every such

6A preliminary version of the present work (not including the 8-loop case) was reported on the Interna-

tional Seminar “Loops and Legs in Quantum Field Theory” (LL2018) in St. Goar, Germany and published

in [24].
7 We assume that F (ǫ, t1, t2, . . . , π) does not contain terms proportional to ǫn with n ≥ 1.
8 That is a polynomial having rational coefficients.
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polynomial is a sum of monomials Tα of the generic form
∑

α

rαTα, Tα = ǫn
∏

i=1,M+1

tni

i , (2.3)

with n ≤ L, ni and rα being some non-negative integers and rational numbers respectively.

A monomial Tα will be called π-dependent and denoted as Tπ,α if nM+1 > 0. Note that

a generator ti with i ≤ M may still include explicitly the constant π in its definition, see

below.

(ii) For every ti with i ≤ M let us define its hatted counterpart as follows:

t̂i = ti + ǫ
∑

α

hiα(ǫ) Tπ,α, (2.4)

with {hiα} being rational polynomials in ǫ and Tπ,α are all π-dependent monomials as

defined in (2.3). Then there should exist a choice of both a basis T and polynomials {hiα}

such that for every L-loop p-integral F (ǫ, ti) the following equality holds:

F (ǫ, t1, t2, . . . , t̂M , π) = F (ǫ, t̂1, t̂2, . . . , t̂M , 0) +O(ǫ). (2.5)

We will call π-free any rational polynomial (with possibly ǫ-dependent coefficients) in

{ti, i = 1, . . . ,M}.

As we will discuss below the sets Pi with i = 3, 4, 5 are for sure π-safe (well, for L = 5

almost) while P6 highly likely shares the property. For the case of P7 the situation is more

complicated (but still not hopeless!) as discussed in Section 5. In what follows we will al-

ways assume that every (renormalized) L-loop p-function as well as (L+1)-loop β-functions

and anomalous dimensions are all expressed in terms of the generators t1, t2, . . . , tM+1.

Moreover, for any polynomial P (t1, t2, . . . , π) we define its hatted version as

P̂ (t̂1, t̂2, . . . , t̂M ) := P (t̂1, t̂2, . . . , t̂M , 0).

Let FL is a (renormalized, with ǫ set to zero) p-function, γL and βL are the corresponding

anomalous dimension and the β-function (all taken in the L-loop approximation). The

following statements have been proved in [1] under the condition that the set PL is π-safe

and that both the set T and the polynomials {hiα(ǫ)} are fixed.

1. No-π Theorem

(a) FL is π-free in any (massless) renormalization scheme for which corresponding β-

function and AD γ are both π-free at least at the level of L+ 1 loops.

(b) The scale-invariant combination F si
L+1 is π-free in any (massless) renormalization scheme

provided the β-function is π-independent at least at the level of L+ 1 loops.

2. π-dependence of L-loop p-functions

If FL is renormalized in MS-scheme, then all its π-dependent contributions can be expressed

in terms of F̂L|ǫ=0, β̂L−1|ǫ=0 and γ̂L|ǫ=0.

3. π-dependence of L-loop β-functions and AD

– 5 –



If βL and γL are given in the MS-scheme, then all their π-dependent contributions can be

expressed in terms of β̂L−1|ǫ=0 and β̂L−1|ǫ=0, γ̂L−1|ǫ=0 correspondingly.

3 π-structure of 3,4,5 and 6-loop p-integrals

A hatted representation of p-integrals is known for loop numbers L = 3 [25], L =4 [16] and

L = 5 [19]. In all three cases it was constructed by looking for such a basis T as well as

polynomials hiα(ǫ) (see eq. (2.4)) that eq. (2.5) would be valid for sufficiently large subset

of PL.

Let us consider the next-loop level, that is P6. In principle, the strategy requires the

knowledge of all (or almost all) L-loop master integrals. On the other hand, if we assume

the π-safeness of the set P6 we could try to fix polynomials hiα(ǫ) by considering some

limited subset of P6.

Actually, we do have at our disposal a subset of P6 due to work [17] where all 4-

loop master integrals have been computed up to the transcendental weight 12 in their ǫ

expansion. Every particular 4-loop p-integral divided by ǫn can be considered as a (4 + n)

loop p-integral. The collection of such (4+n)-loop p-integrals form a subset of P4+n which

we will refer to as P4/ǫ
n. We have tried this subset for n = 1 and 2.

Our results are given below. (To make resulting formulas shorter we use even zetas

ζ2 = π2/6, ζ4 = π4/90, ζ6 = π6/945, ζ8 = π8/9450 and ζ10 = π10/93555 instead of the

corresponding even powers of π).

ζ̂3
L=6

:= ζ3 +
3ǫ

2
ζ4

︸ ︷︷ ︸

L=3

−
5ǫ3

2
ζ6

︸ ︷︷ ︸

δ(L=4)

+
21ǫ5

2
ζ8

︸ ︷︷ ︸

δ(L=5)

−
153ǫ7

2
ζ10

︸ ︷︷ ︸

δ(L=6)

, (3.1)

ζ̂5
L=6

:= ζ5
︸︷︷︸

L=3

+
5ǫ

2
ζ6

︸ ︷︷ ︸

δL=4

−
35ǫ3

4
ζ8

︸ ︷︷ ︸

δ(L=5)

+63ǫ5ζ10
︸ ︷︷ ︸

δ(L=6)

, (3.2)

ζ̂7
L=6

:= ζ7
︸︷︷︸

L=4

+
7ǫ

2
ζ8

︸ ︷︷ ︸

δ(L=5)

−21ǫ3ζ10
︸ ︷︷ ︸

δ(L=6)

, (3.3)

ζ̂5,3
L=6

= ζ5,3 −
29
12ζ8 −

15ǫ

2
ζ4ζ5

︸ ︷︷ ︸

L=5

−
2905ǫ2

376
ζ10 +

25ǫ3

2
ζ5ζ6

︸ ︷︷ ︸

δ(L=6)

, (3.4)

ζ̂9
L=6

:= ζ9
︸︷︷︸

L=5

+
9

2
ǫ ζ10

︸ ︷︷ ︸

δ(L=6)

, (3.5)
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ζ̂7,3
L=6

:= ζ7,3 −
793
94 ζ10 + 3ǫ(−7ζ4ζ7 − 5ζ5ζ6)

︸ ︷︷ ︸

L=6

, (3.6)

ζ̂11
L=6

:= ζ11
︸︷︷︸

L=6

, (3.7)

ζ̂5,3,3
L=6

:= ζ5,3,3 + 45ζ2ζ9 + 3ζ4ζ7 −
5
2ζ5ζ6

︸ ︷︷ ︸

L=6

. (3.8)

Here multiple zeta values are defined as [26]

ζn1,n2
:=

∑

i>j>0

1

in1jn2

, ζn1,n2,n3
:=

∑

i>j>k>0

1

in1jn2kn3

. (3.9)

Some comments on these eqs. are in order.

• The boxed entries form a set of π-independent (by definition!) generators for the

cases of L = 3 (eq. (3.1, 3.2), L = 4 (eqs. (3.1—3.3)), L = 5 (eqs. (3.1–3.5)) and

L = 6 (eqs. (3.1—3.8)). In what follows we will use for the boxed combinations in

eqs. (3.1 -3.8) the notation

ζn1,n2,...
:= ζ̂n1,n2,...|ǫ=0. (3.10)

• There is no terms proportional to single or second powers of π outside boxed combi-

nations in relations (3.1–3.8). This fact directly leads to the absence of such terms in

the (renormalized) 6-loop p-integrals and generic ADs and β-functions with the loop

number not exceeding 7. Later we will see that the same is true for 7-loop p-integrals

and 8-loop RG functions (assuming the conservative scenario as described in Section

5).

• For L = 5 we recover the hatted representation for the set P5 first found in [19]. The

latter coincides with eqs. (3.1-3.3) and (3.5) while instead of (3.4) the authors of [19]

suggest

ζ̂3,5 := ϕ− 3ǫ ζ4 ζ5 +
5ǫ

2
ζ3 ζ6, (3.11)

with

ϕ :=
3

5
ζ5,3 + ζ3 ζ5 −

29

20
ζ8 = ζ6,2 − ζ3,5. (3.12)

Our ζ̂5,3 (eq. (3.4)) is related (up to the corresponding order of ǫ) to ζ̂3,5 from

[19] as ζ̂5,3 = 5
3 (ζ̂3,5 − ζ̂3 ζ̂5)). The reason for this redefinition is that we want every

hatted zeta to be equal to the corresponding unhatted zeta plus terms proportional

to explicit powers of π2 at ǫ0 order as well.
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• We do not claim that the generators

ζ3, ζ5, ζ7, ζ5,3, ζ9, ζ7,3, ζ11, ζ5,3,3 and π (3.13)

are sufficient to present the pole and finite parts of every 6-loop p-integral. In fact,

it is not true [2, 27, 28]. However we believe that it is safe to assume that all

missing irrational constants can be associated with the values of some convergent

6-loop p-integrals at ǫ = 0.

4 π-dependence of 7-loop β-functions and AD

Using the approach of [1] and the hatted representation of the irrational generators (3.13)

as described by eqs. (3.1)-(3.8) we can straightforwardly predict the π-dependent terms

in the β-function and the anomalous dimensions in the case of any 1-charge minimally

renormalized field model at the level of 7 loops.

Our results read (the combination F tα1
tα2

...tαn stands for the coefficient of the mono-

mial (tα1
tα2

. . . tαn
) in F ; in addition, by F (1) we understand F with every generator ti

from {t1, t2, . . . , tM+1} set to zero).

γζ44 = −
1

2
γ
(1)
1 βζ3

3 +
3

2
γζ33 β

(1)
1 , (4.1)

γζ45 = −
3

8
γ
(1)
1 βζ3

4 − γ
(1)
2 βζ3

3 +
3

2
γζ33 β

(1)
2 +

3

2
γζ34 β

(1)
1 , (4.2)

γζ65 = −
5

8
γ
(1)
1 βζ5

4 +
5

2
β
(1)
1 γζ54 , (4.3)

γζ4ζ35 = 0, (4.4)

γζ46 = −
3

10
γ
(1)
1 βζ3

5 −
3

4
γ
(1)
2 βζ3

4 −
3

2
γ
(1)
3 βζ3

3 +
3

2
γζ33 β

(1)
3 +

3

2
γζ34 β

(1)
2 +

3

2
γζ35 β

(1)
1 , (4.5)

γζ66 = −
1

2
γ
(1)
1 βζ5

5 −
5

4
γ
(1)
2 βζ5

4 +
5

2
β
(1)
2 γζ54

+
5

2
β
(1)
1 γζ55 +

3

2
(β

(1)
1 )2βζ3

3 γ
(1)
1 −

5

2
(β

(1)
1 )3γζ33 , (4.6)

γζ86 = −
7

10
γ
(1)
1 βζ7

5 +
7

2
β
(1)
1 γζ75 , (4.7)

γζ4ζ36 = −
3

5
γ
(1)
1 β

ζ2
3

5 + 3β
(1)
1 γ

ζ2
3

5 , (4.8)

γζ4ζ56 = 0, (4.9)

γζ6ζ36 = 0, (4.10)

– 8 –



γζ47 = −
1

4
γ
(1)
1 βζ3

6 −
3

5
γ
(1)
2 βζ3

5 −
9

8
γ
(1)
3 βζ3

4 +
3

2
γζ33 β

(1)
4 − 2γ

(1)
4 βζ3

3

+
3

2
γζ34 β

(1)
3 +

3

2
γζ35 β

(1)
2 +

3

2
γζ36 β

(1)
1 , (4.11)

γζ67 = −
5

12
γ
(1)
1 βζ5

6 − γ
(1)
2 βζ5

5 −
15

8
γ
(1)
3 βζ5

4 +
5

2
β
(1)
3 γζ54 +

5

2
β
(1)
2 γζ55

+
5

2
β
(1)
1 γζ56 +

5

2
β
(1)
1 β

(1)
2 βζ3

3 γ
(1)
1 +

5

4
(β

(1)
1 )2βζ3

4 γ
(1)
1

+ 3(β
(1)
1 )2βζ3

3 γ
(1)
2 −

15

2
(β

(1)
1 )2β

(1)
2 γζ33 −

5

2
(β

(1)
1 )3γζ34 , (4.12)

γζ87 = −
7

12
γ
(1)
1 βζ7

6 −
7

5
γ
(1)
2 βζ7

5 +
7

12
(βζ3

3 )2γ
(1)
1 +

7

2
β
(1)
2 γζ75

+
7

2
β
(1)
1 γζ76 −

7

8
β
(1)
1 γ

(1)
1 β

ζ2
3

5 −
7

8
β
(1)
1 βζ3

3 γζ33

+
21

8
(β

(1)
1 )2γ

ζ2
3

5 +
35

8
(β

(1)
1 )2γ

(1)
1 βζ5

4 −
35

4
(β

(1)
1 )3γζ54 , (4.13)

γζ107 = −
3

4
γ
(1)
1 βζ9

6 +
9

2
β
(1)
1 γζ96 , (4.14)

γζ4ζ37 = −
1

2
γ
(1)
1 β

ζ2
3

6 −
6

5
γ
(1)
2 β

ζ2
3

5 +
3

8
γζ33 βζ3

4 −
1

2
γζ34 βζ3

3 + 3β
(1)
2 γ

ζ2
3

5 + 3β
(1)
1 γ

ζ2
3

6 , (4.15)

γζ4ζ57 =
5

4
γ
(1)
1 β

ζ5,3
6 −

1

4
γ
(1)
1 βζ3ζ5

6 +
3

2
γζ33 βζ5

4 − 2βζ3
3 γζ54 −

15

2
β
(1)
1 γ

ζ5,3
6 +

3

2
β
(1)
1 γζ3ζ56 , (4.16)

γζ4ζ77 = 0, (4.17)

γζ6ζ37 = −
5

12
γ
(1)
1 βζ3ζ5

6 −
15

8
γζ33 βζ5

4 +
5

2
βζ3
3 γζ54 +

5

2
β
(1)
1 γζ3ζ56 , (4.18)

γζ6ζ57 = 0, (4.19)

γζ8ζ37 = 0, (4.20)

γ
ζ4ζ

2

3

7 = −
3

4
γ
(1)
1 β

ζ3
3

6 +
9

2
β
(1)
1 γ

ζ3
3

6 . (4.21)

The results for π-dependent contributions to a β-function are obtained from the above

relations by a formal replacement of γ by β in every term. For instance, the 6 and 7-loop

π-dependent contributions read:

βζ4
6 =

6

5
β
(1)
1 βζ3

5 +
3

4
β
(1)
2 βζ3

4 , (4.22)

βζ6
6 = 2β

(1)
1 βζ5

5 − (β
(1)
1 )3βζ3

3 +
5

4
β
(1)
2 βζ5

4 , (4.23)
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βζ8
6 =

14

5
β
(1)
1 βζ7

5 , (4.24)

βζ4ζ3
6 =

12

5
β
(1)
1 β

ζ2
3

5 , (4.25)

βζ4ζ5
6 = 0, (4.26)

βζ6ζ3
6 = 0, (4.27)

βζ4
7 =

5

4
β
(1)
1 βζ3

6 +
9

10
β
(1)
2 βζ3

5 +
3

8
β
(1)
3 βζ3

4 −
1

2
βζ3
3 β

(1)
4 , (4.28)

βζ6
7 =

25

12
β
(1)
1 βζ5

6 +
3

2
β
(1)
2 βζ5

5 −
5

4
βζ3
4 (β

(1)
1 )3 +

5

8
β
(1)
3 βζ5

4 − 2βζ3
3 β

(1)
2 (β

(1)
1 )2, (4.29)

βζ8
7 =

35

12
β
(1)
1 βζ7

6 +
7

4
(β

(1)
1 )2β

ζ2
3

5 −
35

8
(β

(1)
1 )3βζ5

4 +
21

10
β
(1)
2 βζ7

5 −
7

24
(βζ3

3 )2β
(1)
1 , (4.30)

βζ10
7 =

15

4
β
(1)
1 βζ9

6 , (4.31)

βζ4ζ3
7 =

5

2
β
(1)
1 β

ζ2
3

6 +
9

5
β
(1)
2 β

ζ2
3

5 −
1

8
βζ3
3 βζ3

4 , (4.32)

βζ4ζ5
7 = −

25

4
β
(1)
1 β

ζ5,3
6 +

5

4
β
(1)
1 βζ3ζ5

6 −
1

2
βζ3
3 βζ5

4 , (4.33)

βζ4ζ7
7 = 0, (4.34)

βζ6ζ3
7 =

25

12
β
(1)
1 βζ3ζ5

6 +
5

8
βζ3
3 βζ5

4 , (4.35)

βζ6ζ5
7 = 0, (4.36)

βζ8ζ3
7 = 0, (4.37)

β
ζ4ζ

2

3

7 =
15

4
β
(1)
1 β

ζ3
3

6 . (4.38)

4.1 Tests at 7 loops

With eqs. (4.1)–(4.38) we have been able to reproduce successfully all π-dependent con-

stants appearing in the β-function and anomalous dimensions γm and γ2 of the O(n) ϕ4

model which all are known at 7 loops from [2]. In addition, we have checked that the π-

dependent contributions to the terms of order n6
fα

7
s in the QCD β-function as well as to the

terms of order n6
fα

7
s and of order n5

fα
7
s contributing to the quark mass AD (all computed

in [29–31]) within the framework of large Nf [3, 32–35] approach are in full agreement with

the constraints listed above.

Numerous successful tests at 4,5 and 6 loops have been presented in [1].
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5 Hatted representation for 7-loop p-integrals and the π12 subtlety

Motivated by the success of our derivation of the hatted representation for the 6-loop case

we have decided to look on the next, 7-loop level. Within our approach this requires the

knowledge of the ǫ-expansion of the 4-loop master integrals presented in [17] up to the

transcendental weight 13. In principle, the methods employed by Lee and Smirnov are

powerful enough to find such an expansion. One of the authors of [17] has provided us

with ǫ-expansions for all 4-loop master p-integrals up to and including weight 13.

In fact, we have (well, almost) succeeded in constructing the hatted representation for

the subset P4/ǫ
3 of P7. Our results are presented below9.

ζ̂3
L=7

:= ζ̂3
L=6

+
1705 ǫ9

2
ζ12, (5.1)

ζ̂5
L=7

:= ζ̂5
L=6

−
2805 ǫ7

4
ζ12, (5.2)

ζ̂7
L=7

:= ζ̂7
L=6

+231ǫ5ζ12, (5.3)

ζ̂5,3
L=7

:= ζ̂5,3
L=6

+?ζ12 −
105ǫ5

2
ζ5ζ8, (5.4)

ζ̂9
L=7

:= ζ̂9
L=6

−
165ǫ3

4
ζ12, (5.5)

ζ̂7,3
L=7

:= ζ7,3
L=6

−?ζ12 + ǫ3 (
105

2
ζ5ζ8 + 35 ζ6ζ7), (5.6)

ζ̂11
L=7

:= ζ̂11
L=6

+
11ǫ

2
ζ12, (5.7)

ζ̂5,3,3
L=7

:= ζ̂5,3,3
L=6

+?ζ12 +
3ǫ

2
ζ4ζ5,3 −

105ǫ2

16
ζ5ζ8, (5.8)

ζ̂9,3
L=7

:= ζ9,3 −
75ǫ

2
ζ6ζ7 − 21ǫζ5ζ8 −

81ǫ

2
ζ4ζ9, (5.9)

ζ̂13
L=7

:= ζ13 , (5.10)

9Note that the hatted representation of single odd zetas displayed in eqs. ((5.1),(5.2),(5.3),(5.5),(5.7)

and (5.10) is in agreement with the recent findings of [36].
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ζ̂5,5,3
L=7

:= ζ5,5,3 +
145
12 ζ5ζ8 + 25ζ4ζ9 +

275
2 ζ2ζ11 , (5.11)

ζ̂7,3,3
L=7

:= ζ7,3,3 − 4ζ6ζ7 +
29
2 ζ5ζ8 + 28ζ4ζ9 +

407
2 ζ2ζ11 , (5.12)

ζ̂6,4,1,1
L=7

:= ζ6,4,1,1+?ζ12 −
3
2ζ4ζ5,3 +

1
2ζ3ζ4ζ5 +

9
4ζ

2
3ζ6 − 3ζ2ζ7,3 −

7
2ζ2ζ

2
5 − 10ζ2ζ3ζ7

+ǫ

(
5665

32
ζ6ζ7 +

203

2
ζ5ζ8 +

1799

12
ζ4ζ9 −

799

16
ζ3ζ10 +

1

2
ζ33ζ4

)

. (5.13)

The meaning of the question mark in front of ζ12 in eqs. (5.4), (5.8) and (5.13) for hat-

ted form of multiple zeta objects is as follows. Every integral from the set P4/ǫ
3 can either

include at least one (or more) multiple zeta values from the collection ζ5,3, ζ7,3, ζ5,3,3, ζ7,3,3
and ζ6,4,1,1 or not. Thus, the whole set P4/ǫ

3 can be represented as a union of two

(non-intersecting!) subsets, namely, a simple one, S4/ǫ
3, (that is without any dependence

on multiple zeta values) and the rest N4/ǫ
3.

The fact is that the hatted representation does exists for all p-integrals S4/ǫ
3, while

there is no way to replace the question marks in eqs above by some coefficients in order to

meet eq. (2.5) for the p-integrals from N4/ǫ
3. On the other hand, if we formally set to zero

all terms proportional to ζ12 in eqs. (5.1-5.13), then eq. (2.5) will be valid for the whole

set P4/ǫ
3 “modulo” terms proportional to ζ12.

It is quite remarkable that the distinguished role of ζ12 has been already established

in [2] as a result of direct analytical calculations of quite complicated convergent 7-loop

p-integrals.

Thus, we observe a nontrivial interplay between higher terms in the ǫ-expansion of

4-loop p-integrals and 7-loop finite p-integrals.

Certainly, the subset of the 7-loop p-integrals which has led to eqs. (5.1-5.13) is rather

limited and our conclusions about π-structure of P7 are not final. In principle, we can

outline 3 possible scenarios.

Scenario 1 (pessimistic). There is no hatted representation for the set P7.

Scenario 2. (conservative) The master p-integrals from the difference P7 \ P4/ǫ
3 can be

presented in the hatted form modulo (explicitly) π-proportional terms with weight more

or equal 12.

Scenario 3. (optimistic) The master p-integrals from the difference P7 \ P4/ǫ
3 can be

presented in the hatted form modulo ζ12.

6 π-dependence of 8-loop β-functions and AD

In this section we assume the conservative Scenario 2 and extend (following generic prescrip-

tions elaborated in [1]) the predictions from Section 4 by one more loop for π-dependent

terms with the transcendental weight not exceeding 11. The results read:
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γζ48 = −
3

14
γ
(1)
1 βζ3

7 −
1

2
γ
(1)
2 βζ3

6 −
9

10
γ
(1)
3 βζ3

5 +
3

2
γζ33 β

(1)
5 −

3

2
γ
(1)
4 βζ3

4

+
3

2
γζ34 β

(1)
4 −

5

2
γ
(1)
5 βζ3

3 +
3

2
γζ35 β

(1)
3 +

3

2
γζ36 β

(1)
2 +

3

2
γζ37 β

(1)
1 , (6.1)

γζ68 = −
5

14
γ
(1)
1 βζ5

7 −
5

6
γ
(1)
2 βζ5

6 −
3

2
γ
(1)
3 βζ5

5 −
5

2
γ
(1)
4 βζ5

4 +
5

2
β
(1)
4 γζ54 +

5

2
β
(1)
3 γζ55

+
5

2
β
(1)
2 γζ56 +

15

14
(β

(1)
2 )2βζ3

3 γ
(1)
1 +

5

2
β
(1)
1 γζ57

+
15

7
β
(1)
1 β

(1)
3 βζ3

3 γ
(1)
1 +

15

7
β
(1)
1 β

(1)
2 βζ3

4 γ
(1)
1 + 5β

(1)
1 β

(1)
2 βζ3

3 γ
(1)
2 −

15

2
β
(1)
1 (β

(1)
2 )2γζ33

+
15

14
(β

(1)
1 )2βζ3

5 γ
(1)
1 +

5

2
(β

(1)
1 )2βζ3

4 γ
(1)
2 +

9

2
(β

(1)
1 )2βζ3

3 γ
(1)
3 −

15

2
(β

(1)
1 )2β

(1)
3 γζ33

−
15

2
(β

(1)
1 )2β

(1)
2 γζ34 −

5

2
(β

(1)
1 )3γζ35 , (6.2)

γζ88 = −
1

2
γ
(1)
1 βζ7

7 −
7

6
γ
(1)
2 βζ7

6 −
21

10
γ
(1)
3 βζ7

5 + βζ3
3 βζ3

4 γ
(1)
1 +

35

24
(βζ3

3 )2γ
(1)
2

+
7

2
β
(1)
3 γζ75 +

7

2
β
(1)
2 γζ76 −

3

4
β
(1)
2 γ

(1)
1 β

ζ2
3

5 −
7

4
β
(1)
2 βζ3

3 γζ33

+
7

2
β
(1)
1 γζ77 −

3

4
β
(1)
1 γ

(1)
1 β

ζ2
3

6 −
7

4
β
(1)
1 γ

(1)
2 β

ζ2
3

5 −
7

4
β
(1)
1 βζ3

3 γζ34

+
21

4
β
(1)
1 β

(1)
2 γ

ζ2
3

5 +
15

2
β
(1)
1 β

(1)
2 γ

(1)
1 βζ5

4 +
21

8
(β

(1)
1 )2γ

ζ2
3

6 +
15

4
(β

(1)
1 )2γ

(1)
1 βζ5

5

+
35

4
(β

(1)
1 )2γ

(1)
2 βζ5

4 −
105

4
(β

(1)
1 )2β

(1)
2 γζ54 −

35

4
(β

(1)
1 )3γζ55

−
15

2
(β

(1)
1 )4βζ3

3 γ
(1)
1 +

21

2
(β

(1)
1 )5γζ33 , (6.3)

γζ108 = −
9

14
γ
(1)
1 βζ9

7 −
3

2
γ
(1)
2 βζ9

6 +
11

7
βζ3
3 γ

(1)
1 βζ5

4 +
9

2
β
(1)
2 γζ96 +

9

2
β
(1)
1 γζ97 +

415

188
β
(1)
1 γ

(1)
1 β

ζ5,3
6

−
33

28
β
(1)
1 γ

(1)
1 βζ3ζ5

6 −
11

4
β
(1)
1 βζ3

3 γζ54 −
2905

376
(β

(1)
1 )2γ

ζ5,3
6

+
33

8
(β

(1)
1 )2γζ3ζ56 + 9(β

(1)
1 )2γ

(1)
1 βζ7

5 − 21(β
(1)
1 )3γζ75 , (6.4)

γζ4ζ38 = −
3

7
γ
(1)
1 β

ζ2
3

7 − γ
(1)
2 β

ζ2
3

6 −
9

5
γ
(1)
3 β

ζ2
3

5 +
3

5
γζ33 βζ3

5 + 3β
(1)
3 γ

ζ2
3

5

− γζ35 βζ3
3 + 3β

(1)
2 γ

ζ2
3

6 + 3β
(1)
1 γ

ζ2
3

7 , (6.5)

γζ4ζ58 =
15

14
γ
(1)
1 β

ζ5,3
7 −

3

14
γ
(1)
1 βζ3ζ5

7 +
5

2
γ
(1)
2 β

ζ5,3
6 −

1

2
γ
(1)
2 βζ3ζ5

6 +
3

2
γζ33 βζ5

5

−
3

2
βζ3
4 γζ54 +

3

2
γζ34 βζ5

4 −
5

2
βζ3
3 γζ55 −

15

2
β
(1)
2 γ

ζ5,3
6

+
3

2
β
(1)
2 γζ3ζ56 −

15

2
β
(1)
1 γ

ζ5,3
7 +

3

2
β
(1)
1 γζ3ζ57 , (6.6)

γζ4ζ78 = 3γ
(1)
1 β

ζ7,3
7 −

3

14
γ
(1)
1 βζ3ζ7

7 +
3

2
γζ33 βζ7

5 −
5

2
βζ3
3 γζ75 − 21β

(1)
1 γ

ζ7,3
7 +

3

2
β
(1)
1 γζ3ζ77 , (6.7)
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γζ6ζ38 = −
5

14
γ
(1)
1 βζ3ζ5

7 −
5

6
γ
(1)
2 βζ3ζ5

6 −
3

2
γζ33 βζ5

5 +
5

2
βζ3
4 γζ54 −

5

2
γζ34 βζ5

4

+
5

2
βζ3
3 γζ55 +

5

2
β
(1)
2 γζ3ζ56 +

5

2
β
(1)
1 γζ3ζ57 +

15

7
β
(1)
1 (βζ3

3 )2γ
(1)
1

+
15

7
(β

(1)
1 )2γ

(1)
1 β

ζ2
3

5 − 3(β
(1)
1 )2βζ3

3 γζ33 − 5(β
(1)
1 )3γ

ζ2
3

5 , (6.8)

γζ6ζ58 =
15

7
γ
(1)
1 β

ζ
7,3

7 −
5

7
γ
(1)
1 β

ζ2
5

7 − 15β
(1)
1 γ

ζ
7,3

7 + 5β
(1)
1 γ

ζ2
5

7 , (6.9)

γζ8ζ38 = −
1

2
γ
(1)
1 βζ3ζ7

7 −
21

10
γζ33 βζ7

5 +
7

2
βζ3
3 γζ75 +

7

2
β
(1)
1 γζ3ζ77 −

9

4
β
(1)
1 γ

(1)
1 β

ζ3
3

6 +
63

8
(β

(1)
1 )2γ

ζ3
3

6 ,

(6.10)

βζ4
8 =

9

7
β
(1)
1 βζ3

7 + β
(1)
2 βζ3

6 +
3

5
β
(1)
3 βζ3

5 − βζ3
3 β

(1)
5 , (6.11)

βζ6
8 =

15

7
β
(1)
1 βζ5

7 +
5

3
β
(1)
2 βζ5

6 −
20

7
β
(1)
2 (β

(1)
1 )2βζ3

4 −
10

7
βζ3
5 (β

(1)
1 )3

+ β
(1)
3 βζ5

5 −
10

7
βζ3
3 (β

(1)
2 )2β

(1)
1 −

6

7
βζ3
3 β

(1)
3 (β

(1)
1 )2, (6.12)

βζ8
8 = 3β

(1)
1 βζ7

7 +
15

8
(β

(1)
1 )2β

ζ2
3

6 − 5(β
(1)
1 )3βζ5

5 +
7

3
β
(1)
2 βζ7

6 +
11

4
β
(1)
2 β

(1)
1 β

ζ2
3

5

− 10β
(1)
2 (β

(1)
1 )2βζ5

4 +
7

5
β
(1)
3 βζ7

5 −
3

4
βζ3
3 β

(1)
1 βζ3

4 + 3βζ3
3 (β

(1)
1 )5 −

7

24
(βζ3

3 )2β
(1)
2 , (6.13)

βζ10
8 =

27

7
β
(1)
1 βζ9

7 −
2075

376
(β

(1)
1 )2β

ζ5,3
6 +

165

56
(β

(1)
1 )2βζ3ζ5

6

− 12(β
(1)
1 )3βζ7

5 + 3β
(1)
2 βζ9

6 −
33

28
βζ3
3 β

(1)
1 βζ5

4 , (6.14)

βζ4ζ3
8 =

18

7
β
(1)
1 β

ζ2
3

7 + 2β
(1)
2 β

ζ2
3

6 +
6

5
β
(1)
3 β

ζ2
3

5 −
2

5
βζ3
3 βζ3

5 , (6.15)

βζ4ζ5
8 = −

45

7
β
(1)
1 β

ζ5,3
7 +

9

7
β
(1)
1 βζ3ζ5

7 − 5β
(1)
2 β

ζ5,3
6 + β

(1)
2 βζ3ζ5

6 − βζ3
3 βζ5

5 , (6.16)

βζ4ζ7
8 = −18β

(1)
1 β

ζ7,3
7 +

9

7
β
(1)
1 βζ3ζ7

7 − βζ3
3 βζ7

5 , (6.17)

βζ6ζ3
8 =

15

7
β
(1)
1 βζ3ζ5

7 −
20

7
(β

(1)
1 )3β

ζ2
3

5 +
5

3
β
(1)
2 βζ3ζ5

6 + βζ3
3 βζ5

5 −
6

7
(βζ3

3 )2(β
(1)
1 )2, (6.18)

βζ6ζ5
8 = −

90

7
β
(1)
1 β

ζ7,3
7 +

30

7
β
(1)
1 β

ζ2
5

7 , (6.19)

βζ8ζ3
8 = 3β

(1)
1 βζ3ζ7

7 +
45

8
(β

(1)
1 )2β

ζ3
3

6 +
7

5
βζ3
3 βζ7

5 , (6.20)

β
ζ4ζ

2

3

8 =
27

7
β
(1)
1 β

ζ3
3

7 + 3β
(1)
2 β

ζ3
3

6 +
1

5
βζ3
3 β

ζ2
3

5 . (6.21)
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6.1 Tests at 8 loops

Here we summarize all currently available evidence supporting assumptions (that is sce-

narios 2 and 3) leading to eqs. (6.1–6.21).

First of all, we have checked that currently known 8-loop results for ADs and β-

functions are in full agreement to our predictions. Namely, we have successfully checked

the following cases.

• Contributions of order α8
s N

7
f to the QCD β-function [29].

• Contributions of orders α8
s N

7
f and α8

s N
6
f to the QCD quark mass anomalous dimen-

sion [30, 31].

• Contribution of order g8n7 and g8n6 to the β-function, the field anomalous dimension

and to the mass anomalous dimension of the scalar O(n) φ4 theory [35].

The above list give some support to the conservative Scenario 2. In fact, there is an

argument in favor of even less conservative optimistic Scenario 3. Indeed, according our def-

initions the value of any convergent (and expressible in terms of multiple zeta values only)

7-loop p-integral at D = 4 should become completely π-free (modulo terms proportional

to π12) if rewritten in terms of the generators

ζ3, ζ5, ζ7, ζ5,3, ζ9, ζ7,3, ζ11, ζ5,3,3, ζ9,3, ζ13, ζ5,5,3, ζ7,3,3, ζ6,4,1,1. (6.22)

The authors of [21] have published analytic results for a large collection of finite p-

integrals. At 7 loops the collection contains 369 7-loop finite p-integrals which depends on

single and multiple zeta values only10.

We have successfully checked the following.

1. All 369 p-integrals stop to depend on π after being rewritten in terms of the proper

generators (6.22) provided all terms proportional to ζ12 are set to zero by hand.

2. The disappearance of π-dependence in the above point holds not only for all terms

with weight less or equal 11 but also for all (rather numerous) terms with the tran-

scendental weight 12 and 13.

3. In fact, the database [21] contains also many finite p-integrals with loop number 8.

Some of them depend on multiple zeta values only. If one discards in these integrals

all contributions with the transcendental weight strictly larger than 13 then there will

remain exactly two non-vanishing integrals. After rewriting the survivors in terms of

generators (6.22) and setting ζ12 to zero they also cease to depend on π!

10 We do not count uninteresting for our discussion cases of p-integrals depending only on single (odd)

zetas, as the latter do not depend on π at all neither in original nor in hatted forms in the limit of ǫ → 0.
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7 Conclusion

Using as input data essentially only deep ǫ expansions of the 4-loop master integrals [17]

we have extended the hatted representation of 4-loop p-integrals of work [16] to the 5-, 6-

and 7-loop families of p-integrals. At 5-loop level we successfully reproduced the results

of [19] which had been obtained by a direct calculation of a rather large subset of 5-loop

master p-integrals.

We have derived a set of generic model-independent predictions for π-dependent terms

of RG-functions at 7 and 8 loops (at the latter case only for terms with weight less or equal

to 11). All available 7- and 8-loop results are in agreement with our predictions.

Our results demonstrate a remarkable and somewhat mysterious (at least for us) con-

nection between ǫ-expansions of the 4-loop p-integrals and D = 4 values of 5-, 6- and

7-loop finite p-integrals. Indeed, dealing only with 4-loop p-integrals we have been able

to get some non-trivial information about 5-, 6- and 7-loop p-integrals. More precisely, we

have found a set of proper transcendental generators which form a π-free basis for every

known 5-,6, and 7-loop p-integrals provided that (i) the latter is expressible only in terms

of multiple zeta values and (ii) all terms (if any) proportional to ζ12 are discarded.

It would be interesting to see what new information can be extracted from expanding

4-loop master p-integrals to even higher orders in ǫ.
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