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Little hierarchies solve the little fine-tuning problem:
a case study in supersymmetry with heavy guinos
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Radiative corrections with new heavy particles coupling to Higgs doublets destabilize the elec-
troweak scale and require an ad-hoc counterterm cancelling the large loop contribution. If the mass
scale m1 of these new particles in in the TeV range, this feature constitutes the little fine-tuning
problem. We consider the case that the new-physics spectrum has a little hierarchy with two particle
mass scales mi,2 and ma = O(10m1) and no tree-level couplings of the heavier particles to Higgs
doublets. As a concrete example we study the (next-to-)minimal supersymmetric standard model
((N)MSSM) for the case that the gluino mass M3 is significantly larger than the stop mass parame-
ters mp,r and show that the usual one-loop fine-tuning analysis breaks down. If my, g is defined in
the dimensional-reduction (DR) or any other fundamental scheme, corrections enhanced by powers
of M;?/mzLﬁR occur in all higher loop orders. After resumming these terms we find the fine-tuning
measure substantially improved compared to the usual analyses with M3 < mz gr. In our hierarchi-
cal scenario the stop self-energies grow like M2, so that the stop masses mgsR in the on-shell (OS)
]B,Pk This feature permits a novel

scheme are naturally much larger than their DR counterparts m
solution to the little fine-tuning problem: DR stop masses are close to the electroweak scale, but
radiative corrections involving the heavy gluino push the OS masses, which are probed in collider
searches, above their experimental lower limits. As a byproduct, we clarify which renormalization

scheme must be used for squark masses in loop corrections to low-energy quantities such as the

B—B mixing amplitude.

INTRODUCTION

Theoretical attempts to unify gauge forces necessarily
lead to new particles with masses way above the elec-
troweak scale v = 174 GeV defined by the vacuum ex-
pectation value (vev) of the Standard-Model (SM) Higgs
boson. Such heavy particles generally lead to unduly
large radiative corrections to v2, in conflict with the nat-
uralness principle which forbids fine-tuned cancellations
between loop contribution and counterterm for any fun-
damental parameter in the lagrangian [IH4]. The obser-
vation that in supersymmetric field theories [5] correc-
tions to the electroweak scale vanish exactly [6H8] made
supersymmetric models the most popular framework for
studies of beyond-Standard-Model (BSM) phenomenol-
ogy.

Supersymmetry breaking introduces a mass splitting
between the SM particles and their superpartners. In-
creasing lower bounds on the masses of the latter de-
rived from unsuccessful searches at the LEP, Tevatron,
and LHC colliders brought the fine-tuning problem back:
Specifically, stops heavier than 1 TeV induce loop correc-
tions to the Higgs potential which must be cancelled by
tree-level parameters to two or more digits. Owing to this
little fine-tuning problem low-energy supersymmetry has
lost some of its appeal as a candidate for BSM physics.
Nevertheless, analyses of naturalness in supersymmetric
theories, which are under study since the pre-LEP era,
still receive a lot of attention [9H42].

In this paper we study the little fine-tuning problem
for the case of a hierarchical superpartner spectrum, with

gluinos several times heavier than the stops. The gluino
mass is less critical for fine-tuning, because gluinos cou-
ple to Higgs fields only at the two-loop level. In such
a scenario the usual fine-tuning analyses based on fixed
order perturbation theory break down. Denoting the left-
chiral and right-chiral stop mass parameters by m7 5 and
the gluino mass by M3 we identify n-loop corrections en-

n—1
hanced by [M??/m%ﬂ}
are not captured by renormalization-group (RG) analyses
of effective Lagrangians derived by successively integrat-

ing out heavy particles at their respective mass scales,
which instead target large logarithms.

and resum them. These terms

Our findings do not depend on details of the Higgs
sector, and we exemplify our results for both the Min-
imal Supersymmetric Standard Model (MSSM) and its
next-to-minimal variant NMSSM. The results also triv-
ially generalise to non-supersymmetric theories with lit-
tle hierarchies involving a heavy scalar field coupling to
Higgs fields and a heavier fermion coupling to this scalar.

CORRECTIONS TO THE HIGGS MASS
PARAMETERS IN THE (N)MSSM

We consider only small or moderate values of the ratio
tan 5 = vy /v1 of the vacuum expectation values (vevs) of
the two Higgs doublets Hy = (hY,h )T, Hy = (hg,h9)7,
so that all Yukawa couplings are small except for the
coupling y; of the (s)tops to Hs. Our (N)MSSM loop
calculations involve the gluino-stop-top vertices as well
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FIG. 1. Resummed contributions to m3,.

as the couplings encoded in the superpotential
W=y, (EREL 1O — irby h;) (1)

and the supersymmetry-breaking Lagrangian
~Loon = Ay (Enfy b — Erby b ) + Hee.

+m3 (i +bibe ) +mi, (A58 +hi*h)

+m3, (h?’*h? + h;’*h;) +m tath,

+ % Ms 115 (2)
with the stop, sbottom, and gluino fields 71, z,br. g,

respectively. In the notation of Ref. [43] the (Z3 sym-
metric) NMSSM Higgs potential reads

2 2
Vaiggs =|ris® = MSRS|” + (m3s + 25| g
2 21.12V(70 2 92 0 2 2 2
-Hm@+ABUM4+-4Q%]{mD
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Note that g? = (g3 +92)?/2 and terms with charged fields
are dropped. The singlet field s acquires the vev vs. The
electroweak scale is represented by the Z boson mass M.
Minimizing Vhiggs gives

5 m3jcos? B —m3,sin® B
z sin’ 8 — cos? 3

with the tree-level contributions

(4)

DN | —

miy” = mi, + Nl may”
In the MSSM Egs. and (5)) hold with the replacements
AS, AUs = pp, A\ K, Ax — 0, and Axs, Ayvs — Buy with
the higgsino mass term p;, and the soft supersymmetry
breaking term Buy,. In the following we identify uj, = Av,
and By, = A)vs, which allows us to use the same nota-
tion for MSSM and NMSSM. Next we integrate out the
heavy sparticles and thereby match the (N)MSSM onto
an effective two-Higgs-doublet model. We parametrize
the loop contributions as

=mj, + Nv,[®. (5)
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FIG. 2. Stop self-energies with gluino loop and counterterm.

with the well-known one-loop term

| 2

2,31 3|y m3
m22():_167r2 m%(l—loquL>+L—>R
- 3|A, > m% — mplog TE —mF + m7 log Tk

1672 m? —m% (7)

in the modified dimensional reduction (DR) scheme. p =
O(myg,g) is the renormalization scale. The corrections
to other mass parameters like m?; are small as long as
|A¢l, |n| are not too large. At one-loop order the fine-
tuning issue only concerns the first term in mg’(l), which
requires sizable cancellations with mg%) to reproduce the
correct Mz in Eq. (4).

At n-loop level with n > 2 we only consider the con-

n—1
tributions enhanced by (Mg/m%R) with respect to

mgz(l) stemming solely from Feynman diagrams with n—1

stop self-energies shown in Fig. [I] Other multi-loop dia-

grams involve fewer stop propagators and do not con-

tribute to the highest power of M3/mj . The self-

energies involve a luino—top loop and a stop mass coun-
2

terterm, see Fig.[2] We decompose m§2(") as
2(n 2(n 2(n
m22( ) = m22(1) + m22(1)1 (8)

for the two sets of diagrams in Fig. |1l The left diagrams

constituting mgé? have n stop propagators while the

right ones summing to mié'})] have n+1 stop propagators.

Inspecting the UV behaviour of the stop loop shows that
only m§2(21) contains a logarithm log(Msz/my, g). Explicit

calculation of the two-loop diagrams yields

2@ _s() luil* M}
22 47'('3
2
1% p M;
—|1+log— 1+ 2log —————
( + OgMg)( + OgmLmR>
w2 m%R
—+0 J 9
+ 3 + <M§ } (9)

in the (DR) scheme. If one considers very large mass
splitting between my, g and M3, one may choose to inte-
grate out these sparticles at different scales and finds p ~
M3 more appropriate than p = O(mp, g) in as(p) and the

first logarithm in Eq. (@) mgz(QI)I has no log(Ms/my r)



and amounts to only ~ 10% of m§2(21) for the numerical

examples considered below.
For M3 > my, g we find for the resummed higher-order
contributions:

2(>3) 3|yt >
221 7 qgp2 Zk +L_>R
=2
3 [y
= S 6+ (1= €&)log(l —&1)] + L — R
(10)
m2® 203 _ 3JAP &
22]1 22]1 - 1671'
k=1
~3JA°
= Tz 108l &) (11)
with
das(p) M3 I
= _ L4+log o | + A& R (12
§L.R 3 m%,R +OgM32 + Aérr. (12)

A&y g controls the renormalization scheme of the stop
masses, Ay, g = 0 for the DR scheme. For simplicity
we quote the numerically less important term in Eq.

for the special case m; = mp. For M3 ~ 5mp r one

finds &1, r ~ —1, so that m22(71)1 is of similar size as

2(1) SSiOnS 2(n)
Moo 1,17~ The expressions above define my, ; ;; at the

scale ;1 ~ mp r. We minimize the Higgs potential at the
lower scale m; (denoting the top mass) where

6ly* p
ma(me) = (1= g log o) mdy (), (13)

while the running of m?, and m?2, = Bpuy, is negligible.
Next we switch to the on-shell (OS) scheme for the
stop masses. For clarity we consider the case of small
|A¢| and |pp|, so that stop mixing is negligible and mgsR
coincide with the two mass eigenstates. In the OS scheme

the counterterm A¢; g in Eq. cancels the stop self-
2 (>3) 2(2)

energies and renders &7, g = 0. Thus mj 2201 =

0, while m§2(21) is non-zero due to the dlfferent UV behav-

ior of the stop momentum loop:

2
g (1) lye|” M3 ?
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+og M2+3+O<M§>} (14)

Thus with stop pole masses no Mgz/miR enhanced terms
appear beyond two loops and the resummation of the
higher-order terms is implicitly contained in the shift
mr.r — mg%, which absorbs the higher-order terms

into m;? and mézz). The p dependence in Eq. re-
sults from the stop loop integration, i.e. the superscript
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FIG. 3. Fine-tuning measure A(myg) for different values of

the lighter on-shell stop mass (essentially equal to m®S in

our analysis) and Ms. The number gives the mean of 100
sample points that correctly reproduce Mz = 91 GeV and
my = 125 GeV [44] [45].

“OS” in Eq. only refers to the definition of the stop
mass, while m3, is still DR renormalized.

For the fine-tuning issue there are several important
lessons: Most importantly, m?% OS is larger than m?2 R by
terms o M2, meaning that the LHC lower bound on
m9 L S, permits a DR mass m, g closer to the electroweak

scale complying with naturalness. That is, m?’SR could
well be dominated by the gluino-top self-energy. In the
on-shell scheme we observe moderate fine-tuning in m2, if
we vary mr, R, partly because the large radiative piece of
m9 T R depends only logarithmically on my, g, and partly

because the effects from m2(1) and ng( ) have opposite

signs and tend to cancel out. This behavior can be bet-
ter understood if we solely work in the DR scheme: For
mp, g close to the electroweak scale none of the infinite

number of terms mg) is individually so large that it calls

for a fine-tuned m( ) in Eq. (@) We may instead be con-
cerned about the ﬁne tuning related to a variation of Mj:
In a perturbation series truncated at order n we see a
powerlike growth with terms up to £}  in the sum in
Eq. ( ., with the terms of different loop orders having
similar magnitude and alternating signs. However, the
resummation tempers this behaviour to m%,RgL,R ~ M3.
We have numerically checked that we obtain the same re-
sults for m3, in both approaches, i.e. by either employing
the explicit resummation in the DR scheme or converting
the stop masses to the OS scheme.

NUMERICAL STUDY OF THE FINE-TUNING

We use the Ellis-Barbieri-Giudice fine-tuning measure
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where p stands for any Lagrangian parameter. Using

DR stop masses as input we calculate the OS masses
which enter the loop-corrected Higgs potential through
Egs. and . For the latter we determine all two-
loop contributions to m2;, m3,, and m2, involving o, ¥,
Ay exactly. E.g. we go beyond the large- M3 limit of the
previous section and calculate 205 two-loop diagrams in
total. For this we have used the Mathematica packages
FeynArts [40] (with the Feynman rules of Ref. [47]) and
Medusa [48], 9], which performs asymptotic expansions in
small external momenta and large masses. The analytic
methods involved are based on Refs. [50H55].

We start with the discussion of the NMSSM: With two
of the three minimization conditions we trade the param-
eters m2 and A, for pj, = \vg and tan 8. (The third min-
imization condition is Eq. yielding Mz.) For the illus-
trative example in Fig. [§|we fix the parameters tan 3 = 3,
A =0.64, k = 0.25, = 200 GeV and m\% = 600 GeV.

Then we choose m22 , Ag, mL , mRR7 A, randomly
subject to the contramts that the correct values of My
and the lightest Higgs mass my, = 125 GeV as well as
the smaller stop mass m dlsplayed in Fig. are repro-

duced for a given value of Mj;. We calculate A(my,) for
over 100 different parameter points corresponding to a
given point (m? mgy, S Ms3); the number in the colored square
is the average A(mL) found for these points. For most
of our parameter points mos ~ my, but this feature
is irrelevant because the formulae are symmetric under
my, <> mp. By quoting the average rather than the min-
imum of A(my) we make sure that a good fine-tuning
measure is not due to accidental cancellations.

To illustrate the result of Fig. [3| with an example we

consider the parameter point with

m{® =600GeV  m{) =94GeV Mz =3 TeV
A, =-65GeV A, =453GeV
mPR =611GeV  mBF =902 GeV (16)

which yields mgls = 1 TeV, lying substantially above
my,. Note that M3/my, ~ 5, while the hierarchy in the
physical masses is moderate, M3 /thIS = 3. The fine-
tuning measures for this benchmark point are A(my) =
6.0, A(mp) = 10.8, A(M3) = 6.3, A(A;) = 0.2, and all
other A(p) are negligibly small.

Next we briefly discuss the MSSM. A recent analysis
has found values of A = max, A(p) > 63 for special ver-
sions of the MSSM in scans over the parameter spaces
[42]. Compared to the NMSSM one needs larger stop
masses to accomodate mj; = 125 GeV, which then leads
to larger values of A. Yet also for the MSSM the hier-

archy M3z > mp g with proper resummation of higher-
order terms improves A. We exemplify this with the
parameter point

mi) =124 GeV
tanf =5
A, = 3370 GeV
mp = 1435 GeV

m{) = 1583 GeV
[, = 400 GeV

M; = 4500 GeV

my, = 2787 GeV

The on-shell stop masses for this point are mOS =

2168 GeV and mP® = 3012 GeV. Despite these large
masses the fine-tuning measures A(my) = 13, A(mg) =
25, A(Mj3) = 8 have moderate values while a fine-tuning
measure A(A;) = 41 reflects the large A; needed to ac-
comodate m;, = 125 GeV.

Finally we remark that also low-energy observables like
the B— B mixing amplitude or the branching ratios of
rare meson decays (such as b — sy, K — mv7) involve
higher-order corrections enhanced by a relative factor
of M2 /m% p, if the stop masses are renormalised in a

mass-independent scheme like DR. This remark applies
to supersymmetric theories with minimal flavor violation
(MFV) in which the leading contribution is dominated
by a chargino-stop loop and the gluino is relevant only
at next-to-leading order and beyond. The resummation
of the gluino-stop self-energies on the internal stop lines
is trivially achieved by using the on-shell stop masses in
the leading-order prediction, because the flavor-changing
loop is UV-finite; i.e. we face the same situation as with
m§2(23)' Thus low-energy observables effectively probe
the same stop masses as the collider searches at high pr.

CONCLUSIONS

We have investigated the fine-tuning of the electroweak
scale in models of new physics with a heavy and hierar-
chical mass spectrum. Studying supersymmetric models
with Mz < mp r < Ms we have demonstrated that the
usual fine-tuning analysis employing fixed-order pertur-
bation theory breaks down for M3 ~ 5mr g. Resumming
terms enhanced by M3 /m% r tempers the fine-tuning.
This behavior is transparent if the stop masses are renor-
malized on-shell: The resummation is then encoded in
the shift from the DR masses to the larger on-shell masses
and new allowed parameter ranges with small values of
m% r emerge, because large radiative corrections propor-
tional to asM2 push the physical on-shell masses over
the experimental lower bounds. In these scenarios the
heavy stops are natural, as their masses are larger than
the —parametrically large— self-energies. As a byprod-
uct we have found that low-energy observables probe the
on-shell stop masses.
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