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Abstract

We compute three-loop corrections to the Higgs-gluon form factor, incorporat-
ing the top quark mass dependence. Our method is based on the combination of
expansions around the top threshold and for large top quark mass, using conformal
mapping and Padé approximation to describe the form factor over the full kinematic
range.
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1 Introduction

The precise measurement of the properties of the Higgs boson, in particular the coupling
strength to other particles and to itself, will be among the main focuses in particle physics
in the coming years. The success of this enterprise crucially depends on the accuracy of
the predictions provided by the theory community.

A quantity which is available to high perturbative order is the total cross section for the
production of a Higgs boson at the Large Hadron Collider (LHC). For a comprehensive
collection of relevant works we refer to Ref. [1], but we remark here that QCD corrections
including the exact dependence on the top quark mass, mt, have been available at next-
to-leading order (NLO) for about 25 years [2]. At higher orders only approximate results
are available; at NNLO the infinite top quark mass results from Refs. [3–5] have been
complemented by power-suppressed terms in the inverse top quark mass in [6–9]. The
N3LO result has been obtained in the mt →∞ limit in [10,11].

In Ref. [1] several sources of uncertainties have been identified for the prediction of the
total cross section. Among them is that of the exact top quark mass dependence of the
NNLO corrections which has been estimated to be 1%. In this paper we provide results for
the Higgs-gluon form factor at three-loop order which constitutes the virtual corrections
to the production cross section. Thus the findings of this paper help to eliminate the
aforementioned uncertainty to a large extent. The Higgs-gluon form factor is also an
important ingredient for processes where the relevant energy in the fermion loops reaches
values close to or above the top quark threshold and the infinite top quark mass limit
cannot be applied anymore. This concerns, e.g., Higgs boson pair production via gg →
H? → HH or the measurement of the Higgs boson width from off-shell production of
Z boson pairs in gluon fusion via gg → H? → ZZ [12]. The exact dependence on the
fermion mass in the loop is also important for numerous theories beyond the Standard
Model, which often contain additional heavier Higgs bosons.

At two-loop order exact results for the form factor are known from Refs. [2,13–15]. How-
ever, at three loops only expansions for large top quark mass [16, 17] and non-analytic
terms in the expansion around the top threshold up to O(1− z) [18] are known, where

z =
ŝ

4m2
t

(1)

with
√
ŝ being the partonic center-of-mass energy. For later convenience we also introduce

z̄ = 1 − z. In the next section we describe our method which we use to combine these
expansions in order to obtain results for the form factor valid for all space- and time-like
momentum transfers. In Section 3 we discuss our results and Section 4 contains a brief
summary.
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2 Method

The method we use for the construction of the top quark mass dependence of the Higgs-
gluon form factor is based on the efficient combination of information from the large top
quark mass expansion (LME) (z → 0) and knowledge from the threshold where ŝ ≈ 4m2

t

(z → 1), using conformal mapping and Padé approximation. The procedure was de-
veloped in Ref. [19] (see also [20, 21]) in order to compute a certain class of four-loop
contributions to the muon anomalous magnetic moment. In Refs. [22, 23] the method
was extended to QCD corrections with the aim to compute NNLO correction to the total
cross section σ(e+e− → hadrons). A further refinement of the method has been developed
in Refs. [24, 25] where order α3

s corrections to σ(e+e− → hadrons) have been computed.
In these references additional parameters were introduced which allow one to generate
a larger number of Padé approximations and thus obtain more reliable uncertainty es-
timates. The systematic improvement of the Padé approximations when increasing the
number of input terms has been studied in Ref. [26]. In Ref. [18] the method has been
used to obtain two-loop corrections for the three form factors relevant for Higgs boson
pair production.

In the following we briefly describe the application of this method to the form factor enter-
ing the interaction of a Higgs boson and two gluons. We parameterize the corresponding
amplitude as

Aµνab (gg → H) = δab
yt√
2mt

αs
π
TF (q1 · q2g

µν − qν1q
µ
2 )F4(z) , (2)

where q1 and q2 are the external momenta of the gluons with polarization vectors εµ(q1)
and εν(q2), respectively. yt =

√
2mt/v is the top quark Yukawa coupling, v is the vacuum

expectation value, a and b are adjoint colour indices, TF = 1/2 and ŝ = (q1+q2)2 = 2q1 ·q2.
It is convenient to define the perturbative expansion of F4 as

F4 = F
(0)
4 +

αs
π
F

(1)
4 +

(αs
π

)2

F
(2)
4 + · · · , (3)

where αs ≡ α
(5)
s (µ) is the strong coupling constant with five active flavours evaluated at

the renomalization scale µ. Sample Feynman diagrams contributing to Aµνab (gg → H) up
to three loops can be found in Figure 1.

The one-loop result, F
(0)
4 , is finite. At two-loop order we renormalize the gluon wave

function and the top quark mass in the on-shell scheme and the strong coupling constant
in the MS scheme. Note that the ultra-violet renormalized form factor still contains infra-
red divergences which cancel against contributions from real radiation, in order to form
finite physical quantities. The structure of the infra-red divergences is universal and has
been studied in detail in the literature [27]. In our case finite form factors are obtained
via

F
(1),fin
4 = F

(1)
4 −

1

2
I(1)
g F

(0)
4 ,
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Figure 1: One-, two- and three-loop Feynman diagrams contributing to F4. Solid, curly
and dashed lines represent quarks, gluons and Higgs bosons, respectively.

F
(2),fin
4 = F

(2)
4 −

1

2
I(1)
g F

(1)
4 −

1

4
I(2)
g F

(0)
4 , (4)

where I
(1)
g and I

(2)
g can be found in Refs. [27,28]. In order to fix the notation we provide

an explicit expression only for I
(1)
g which is given by

I(1)
g = −

(
µ2

−ŝ− iδ

)ε
eεγE

Γ(1− ε)
1

ε2

[
CA + 2εβ0

]
, (5)

with β0 = (11CA − 4TFnl)/12 where CA = 3, TF = 1/2 and nl is the number of massless
quarks. We work in d = 4 − 2ε dimensions and assume that δ is an infinitesimal small
parameter. We apply the method described below to F

(1),fin
4 and F

(2),fin
4 .

In the following we briefly discuss the input for the limits z → 0 and z → 1 used for
the construction of the Padé approximants. For the renormalization scale we choose
µ2 = −s since the µ dependence can easily be reconstructed from the one- and two-loop
expressions, which are known exactly, see Ref. [29]. Furthermore, we set all colour factors
to their numerical values and only keep nl as a parameter. The large-mt expansion of the
three-loop form factor up to order z4 has been computed in Ref. [16, 17] and the z5 and
z6 terms are available from Ref. [29]. The analytic expressions read

F
(0)
4 =

4

3
+

14

45
z +

8

63
z2 +

104

1575
z3 +

2048

51975
z4 +

4864

189189
z5 +

512

28665
z6 +O(z7) ,

F
(1),fin
4 =

11

3
+

1237

810
z +

35726

42525
z2 +

157483

297675
z3 +

2546776

7016625
z4 +

194849538824

737482370625
z5

+
385088204192

1917454163625
z6 +O(z7) ,

F
(2),fin
4 = −253ζ(3)

24
+

3941

108
+

19π2

12
+
π4

96
+

19

12
Ls

+ nl

(
− 17ζ(3)

36
− 3239

648
− 47π2

432
+

4

9
Ls

)
+ n2

l

π2

648

+

[
9290881ζ(3)

103680
− 44326367

466560
+

623π2

1080
+

7π4

2880
+

28

405
π2 log(2) +

8261

3240
Ls
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+ nl

(
− 119ζ(3)

1080
− 107087

291600
− 259π2

4320
− 169

1080
Ls

)
+ n2

l

7π2

19440

]
z

+

[
7037623781ζ(3)

69672960
− 82500975779

731566080
+

121π2

378
+

π4

1008
+

32

567
π2 log(2)

+
253549

170100
Ls + nl

(
− 17ζ(3)

378
− 6385481

53581500
− 25π2

648
− 4133

36450
Ls

)

+ n2
l

π2

6804

]
z2 +

[
650760513719ζ(3)

412876800
− 1740869750908152049

921773260800000
+

221π2

1050

+
13π4

25200
+

208π2 log(2)

4725
+

804644

826875
Ls + nl

(
− 221ζ(3)

9450
− 6383750249

112521150000

− 3107π2

113400
− 1147037

14883750
Ls

)
+ n2

l

13π2

170100

]
z3

+

[
193543938976537ζ(3)

37158912000
− 6978205934887756008911

1115345645568000000
+

4736π2

31185
+

16π4

51975

+
16384π2 log(2)

467775
+

33498106

49116375
Ls + nl

(
− 2176ζ(3)

155925
− 2197298833

72937816875

− 3232π2

155925
− 20932

382725
Ls

)
+ n2

l

64π2

1403325

]
z4

+

[
2460310706266276921ζ(3)

81155063808000
− 159929147625953730170902566067

4389031448658778521600000

+
9424π2

81081
+

38π4

189189
+

48640π2 log(2)

1702701
+

945911804923

1877227852500
Ls + nl

(
− 5168ζ(3)

567567

− 22552503119716043

1395235522161731250
− 27892π2

1702701
− 48324340168

1191317675625
Ls

)
+ n2

l

152π2

5108103

]
z5

+

[
15128773883548934558969ζ(3)

114266329841664000
+

2656π2

28665
+

4π4

28665
+

2048π2 log(2)

85995

− 13560383230749413568271118392175429

85205730523295753699328000000
+

339242844181

871570074375
Ls

+ nl

(
− 544ζ(3)

85995
− 2085146760850288

259115168401464375
− 3448π2

257985
− 35895528824

1150472498175
Ls

)
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+ n2
l

16π2

773955

]
z6 +O(z7) , (6)

where Ls = log(−4z − i0) and ζ(n) is the Riemann zeta function.

The expansion of the three-loop form factor around threshold can be found in Eq. (50)
of Ref. [18] where it was determined using the Coulomb resummed P -wave Green func-
tion [30]. For convenience we reproduce the analytic expression together with the one-
and two-loop results which are given by

F
(0)
4

z→1� 2π(1− z)3/2 +
13π

3
(1− z)5/2 +O

(
(1− z)7/2

)
,

F
(1),fin
4

z→1� 4π2

3
(1− z) log(1− z)− π

36

(
124 + 15π2

)
(1− z)3/2 +

8π2

9
(1− z)2 log(1− z)

+
π

216

[
2252− 117π2 − 2112 log(2)− 672 log(1− z)

]
(1− z)5/2

− 28π2

45
(1− z)3 log(1− z) +O

(
(1− z)7/2

)
,

F
(2),fin
4

z→1� − 8π3

27

(
3 + π2

)√
1− z

+
π2

54

[ (
458− 15π2 − 44nl

)
log(1− z)− (99− 6nl) log2(1− z)

]
(1− z)

+O
(
(1− z)3/2

)
. (7)

where “�” denotes that analytic terms in (1 − z) have been dropped on the right-hand
side.

The information provided in Eqs. (6) and (7) is used to construct approximations of the
form factor. We first subtract the logarithmic contributions for z ∼ 1 and define

F̃4 = F4 − F sub
4 , (8)

where F sub
4 is constructed in such a way that F̃4 remains an analytic function for |z| <

1, while the threshold expansion of F̃4 is free of logarithms up to (1 − z)3/2. Such a
subtraction function F sub

4 can be obtained using the vacuum polarization as a building

block, see [18] for details of the construction. For explicit examples for F sub
4 we refer to

the sample Padé approximants in the ancillary file [31]. Note that also in the limit z → 0
F4 develops logarithmic divergences which manifest in the linear Ls term in Eq. (6).
Whereas in Ref. [23] these contributions are also subtracted, here we instead construct
separate Padé approximants for the Ls-independent term and for the coefficient of Ls, as
discussed in [18].

Next we apply a conformal mapping

z =
4ω

(1 + ω)2
, (9)
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to transform the z plane into the interior of the unit circle in the ω plane; the time-like
momentum regions z ∈ [0, 1] and z ∈ [1,∞] with Im(z) > 0 are mapped to ω ∈ [0, 1] and
the upper semi-circle, respectively.

At this point we construct Padé approximants in the variable ω. They have the form

[n/m](ω) =

n∑
i=0

aiω
i

1 +
m∑
j=1

bjωj
, (10)

where n+m is fixed by the number of input terms from the large top mass and threshold
expansions. In our case we have seven terms for z → 0 and one for z → 1 which is sufficient
to determine eight coefficients in Eq. (10), i.e. Padé approximants for n + m = 7. More
precisely, we construct Padé approximants for the rescaled form factor

[n/m](ω) ' [1 + aR z(ω)] F̃4(z(ω)), (11)

where aR is a real parameter. This removes the spurious condition F4(z → ∞) = 0
introduced by the definition of the form factor through Agg→H ∝ zF4(z) and provides a
means to test the stability of the solutions through variation of aR. As discussed in [18] we
only use the diagonal and next-to-diagonal Padé approximants which are [5/2], [4/3], [3/4]
and [2/5] in the case that seven large top quark mass expansion terms and one term from
the threshold expansion are taken into account. In Section 3 we also show results which
only incorporate LME terms up to z4, for which we construct the Padé approximants
[4/1], [3/2], [2/3] and [1/4].

By construction the Padé approximants develop poles in the complex ω plane. In the
following we discuss our criteria which exclude approximants with poles too close to
the physical region. For this discussion we have to distinguish space-like and time-like
momentum regions. For z > 0 we exclude all approximants which contain poles ω0 in the
region

Re(z(ω0)) ≥ −2 & |ω0| ≤ 1.2 , (12)

as they can cause unphysical behaviour in the approximation. We find that poles in
the entire complex plane in z, i.e. in the unit disc |ω| ≤ 1, cannot be excluded as this
leads to the exclusion of all Padé approximants. In those cases where the approximants
show obviously unphysical resonances we moderately increase the exclusion region. This
concerns the coefficient of Ls for F

(2,0),fin
4 (z) (cf. Eq. (16)) where we use

Re(z(ω0)) ≥ −2 & |ω0| ≤ 1.3 . (13)

For each choice of [n/m] we aim to construct 20 Padé approximants by choosing aR in
Eq. (11) randomly in the range [0.1, 10], leading to a maximum of 80 approximants. The
mean and standard deviation of this set are used as the central value and uncertainty
estimate, respectively. For some choices of {n,m} Padé approximants satisfying criteria

7
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F
Δ(1
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n
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LME to z6
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-0.2

-0.1

0.0

0.1

0.2

z

Δ
F
Δ(1
),
fi
n

Re

Im

Figure 2: The upper panel shows our approximations for the real and imaginary parts
of the two-loop triangle form factor in blue and orange, respectively. The bands give the
standard deviation of the Padé approximants which we consider. The exact results are
shown in black. The dashed lines correspond to the real part of the LME approximation
up to order z2, z4 and z6. The lower panel shows the difference between the exact result
and the approximations.

(12) and (13) could not be found, however, we checked that at least 40 approximants re-
main in all cases. For such sets of fewer than 80 approximants we increase our uncertainty
estimate by the ratio of the maximal number of Padé approximants (80) over the actual
number in the set.

For space-like momenta our exclusion region is defined by

Re(z(ω0)) ≤ 2 & |ω0| ≤ 1.2 , (14)

and negative values of aR in the range [−10,−0.1] are chosen.

3 Results

Before discussing the three-loop results we apply the method described in the previous
section to the two-loop form factor, for which we can compare to the exact expressions [2,
13–15].
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Figure 3: Differences between our approximations and the exact result. The input used
is shown in the legend of each panel. The dashed lines correspond to the real part of the
LME approximation up to order z2, z4 and z6. The lower left panel corresponds to the
lower panel of Figure 2.

We show in Figure 2 that the exact result for the two-loop form factor can be reproduced
very well with the same amount of information that is available at three loops. The
shaded region is spanned by the standard deviation w.r.t. to the mean value of a set
of 20 approximants for each considered set {n,m}. These approximants are available
in the ancillary file [31]. Figure 3, where the difference between the exact result and
the approximations is shown, demonstrates that the approximation can be systematically
improved by including more expansion coefficients. We compare the results based on the
input used in Figure 2 (lower left panel) to results where fewer expansion coefficients for
large top quark masses are used (upper left panel). Furthermore, we also show results
where additional information from threshold is incorporated in the construction of the
Padé approximations (panels on the right).

Our approximation of the three-loop form factor is shown in Figure 4 and represents the
main result of this paper. At three loops the LME and threshold coefficients develop
terms linear in Ls = log(−4z − i0). We construct separate Padé approximants for the
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Figure 4: Our approximations for the real and imaginary parts of the three-loop triangle
form factor are shown in blue and orange, respectively. The bands give the standard
deviation of the considered set of Padé approximants. The dashed lines correspond to the
real part up to order z2, z4 and z6. The lower panel shows the differences to the central
values; see text for details.

coefficient such that we obtain an approximation of the form

F
(2),fin
4 (z(ω)) '

[n/m]0(ω) + F
(2),sub
4

1 + aR,0z(ω)
+

[k/l]1(ω)Ls
1 + aR,1z(ω)

, (15)

where the subscripts indicate the power of Ls. Note that the Padé approximants of the Ls-
independent and linear-Ls term are averaged independently using separate values of aR.
The threshold subtraction (cf. Eq. (8)) is only needed for the first term in Eq. (15). The
lower panel in Figure 4 shows the differences from the central values (obtained using seven
expansion terms for small z) both with seven and five input terms from the large top quark
mass expansion as solid and dashed boundaries of the uncertainty bands, respectively. One
observes over the whole range in z (except for a small region for z ≈ 10) that the solid
bands lie within the dashed band. Below threshold (z = 1) our method results in tiny
uncertainties for both the real and imaginary parts of the form factor. For 1 ≤ z ≤ 2
the form factor is numerically large and we thus observe small relative uncertainties.
Although the absolute uncertainty becomes larger for higher values of z we can provide a
good approximation with an uncertainty which is sufficiently small for phenomenological
applications.
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Figure 5: Our approximations for the three-loop form factor separated according to the
light-fermion contributions.

In order to facilitate the comparison with a future exact calculation we split our three-loop
result according to the number of light fermions and write

F
(2),fin
4 (z) = F

(2,0),fin
4 (z) + nlF

(2,1),fin
4 (z) + n2

lF
(2,2),fin
4 (z) , (16)

where nl = 5 is the number of light flavors. Note that F
(2,0),fin
4 (z) contains contributions

with closed massive loops, which are numerically less important than the nl terms. There
are no three-loop vertex diagrams which contain two closed fermion loops; F

(2,2),fin
4 (z) is

completely determined by the infra-red subtraction terms. In fact, it is proportional to
F

(0)
4 and we will not discuss it further.

The results for F
(2,0),fin
4 (z) and F

(2,1),fin
4 (z) are shown in Figure 5, adopting the notation

from Figure 4. Both coefficients show a convergence which is very similar to F
(2),fin
4 .

Summing up the coefficients leads to good agreement with the result (15) but with a
larger uncertainty which is why (15) should be used for numerical applications. Note that

F
(2,0),fin
4 (z) is the only result where the exclusion criterion (13) has been used whereas for

all other results (12) is applied.

Finally, we present in Figure 6 results for the three-loop form factor for z < 0. One ob-
serves small uncertainties for |z| < 5 which become larger when z becomes more negative.
For |z| > 20 the Padé approximation procedure does not lead to stable results which is
also seen by the fact that the uncertainty becomes larger after incorporating more ex-
pansion terms (see lower panel). Note that the large top quark mass expansion shows an
alternating behaviour.

Together with this paper we provide representative Padé approximants for all plots shown
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Figure 6: The three-loop result for the form factor F
(2),fin
4 for space-like momenta. The

dashed lines correspond to the real part of the LME approximation up to order z2, z3,
z4, z5 and z6. The same notation as in Figure 5 is adopted.

in this section in an ancillary file [31].

4 Conclusion

We compute three-loop corrections to the Higgs-gluon form factor including finite top
quark mass effects. Our approach is based on the combination of analytic results from two
kinematic regions: the expansion for large top quark mass and the top quark threshold. In
addition, we incorporate the information that the form factors vanish at high energies by a
rescaling (cf. Eq. (11)). For the rescaled form factors, we apply a conformal mapping and
a subsequent Padé approximation. We first apply our method at two loops and show that
we can reproduce the known results. The two-loop expression is also used to demonstrate
that our estimate for the uncertainty works reliably. Our main result is shown in Figure 4
where we plot the three-loop form factor in the time-like momentum region. This plot
can be reproduced using the approximation functions which are provided in the ancillary
file [31]. We have shown that our results can be systematically improved by incorporating
more expansion terms into the analysis.
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