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Abstract

FIRE is a program performing reduction of Feynman integrals to master in-
tegrals. The C++ version of FIRE was presented in 2014. There have been
multiple changes and upgrades since then including the possibility to use
multiple computers for one reduction task and to perform reduction with
modular arithmetic. The goal of this paper is to present the current version
of FIRE.
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PROGRAM SUMMARY

Manuscript Title: FIRE6 Feynman Integral REduction with Modular Arithmetic
Authors: A.V. Smirnov, F.S. Chukharev
Program title: FIRE, version 6 (FIRE6)
Licensing provisions: GPLv2
Programming language: Wolfram Mathematica 6.0 or higher, C++
Computer(s) for which the program has been designed: starting from a desktop PC
up to a supercomputer
Operating system(s) for which the program has been designed: Linux 64bit, Mac
OS X 10.6 or higher 64bit
RAM required to execute with typical data: depends on the complexity of the prob-
lem
Has the code been vectorized or parallelized?: yes
Number of processors used: depending on the mode and the complexity of the
task, the program can both run single-threaded on a laptop, or use a supercom-
puter (tested with up to 2024 cores)
Supplementary material: The article, install instructions,
https://bitbucket.org/feynmanIntegrals/fire
Keywords: Feynman diagrams, Multiloop Feynman integrals, Dimensional regular-
ization, Computer algebra
CPC Library Classification: 4.4 Feynman diagrams, 4.8 Linear Equations and Ma-
trices, 5 Computer Algebra, 20 Programming and Publication Practice
External routines/libraries used: Wolfram Mathematica [1], Snappy [2], ZStandard
[3], KyotoCabinet [4], Fermat [5], LiteRed [6]
Nature of problem: Reducing Feynman integrals to master integrals can be treated
as a task to solve a huge system of sparse linear equations with polynomial coeffi-
cients.
Solution method: Since the matrix of equations is very specific, none of standard
methods of solving linear equations can be applied efficiently. The program ap-
proaches solving those equations with a special version of Gauss elimination. In
complex cases the direct reduction approach might fail, so the approach with mod-
ular arithmetic is used, where the reduction is performed multiple times with differ-
ent values of variables over large prime number fields, afterwards the coefficients are
reconstructed. The data preparation and result analysis is performed in Wolfram

Mathematica [1], but the main reduction procedure is written in C++; FIRE com-
presses data with the use of the Snappy [2] or ZStandard [3] library, stores it on
disk with the use of the KyotoCabinet [4] database engine, and performs algebraic
simplifications with the Fermat [5] program. The external package LiteRed [6] can
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be used to produce additional rules for reduction.
Restrictions: The complexity of the problem is mostly restricted by CPU time re-
quired to perform the reduction of integrals and the available RAM. The program
has the following limits: maximal number of indices = 22, maximal number of pos-
itive indices = 15, maximal number of non-trivial sectors = 128× 256− 3 = 32765

(global symmetries decrease the number of sectors, indices that cannot be positive
do not double the number of sectors). FIRE6 follows the C++11 standard, so re-
quires gcc 4.8.1 or higher to be compiled, but works with the current gcc 7.3 as
well.
Running time: depends on the complexity of the problem
References:
[1] http://www.wolfram.com/mathematica/, commercial algebraic software;
[2] https://github.com/google/snappy, open source;
[3] https://github.com/facebook/zstd, open source;
[4] http://fallabs.com/kyotocabinet/, open source;
[5] https://home.bway.net/lewis/, free–ware with some restrictions for organi-
zations;
[6] http://www.inp.nsk.su/~lee/programs/LiteRed/, open source.
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1. Introduction

Feynman integrals are fundamental objects arising in modern elementary
particle physics. The problems being considered currently result in millions of
Feynman integrals that have to be evaluated. A classical approach is to apply
integration by parts (IBP) relations [1] (see Chapter 6 of [2] for a review)
and reduce all integrals to a smaller set, the so-called master integrals1. The
first approach to integration by parts relations was based on solving those
equations by hand. This procedure was used in many papers starting from [1]
before the appearance of computer codes to solve IBP relations.

Currently there is a number of programs that can perform Feynman in-
tegral reduction, some of those are public, some are private. Most of the
existing programs are based on the Laporta algorithm [4] (Gauss elimina-
tion after choosing an ordering), in particular, the public codes described
in [5, 6, 7, 8, 9, 10]. However there were also attempts based on constructing
explicit rules when solving IBP relations, both by one of the authors of this
paper [11, 12, 13], as well as by R.Lee in his program LiteRed [14, 15, 16].

A recent approach to the reduction is based on modular arithmetic. While
the direct reduction might be too complex because of the growth of coeffi-
cients, one can fix different values of variables and also perform reduction
over fields of remainders over large prime numbers instead of rationals. Those
numbers fit into machine-size integers, so the reduction can run significantly
faster. However, to recover coefficients afterwards one has to run a rather
large number of reduction jobs. This approach has already been presented
in reduction programs Finred [17] and Kira [9].

One of the authors of this paper created the program FIRE (Feynman in-
tegral reduction) about ten years ago. The initial version of FIRE [18, 19] was
written in Wolfram Mathematica, later a C++ version was also published [20].

The goal of this paper is to present the new version of FIRE that was
developed during recent years. We consider FIRE6 to be a major release
significantly differing from the previous public version. It was already suc-
cessfully applied in [21, 22, 23, 24, 25, 26] — the result obtained in those
papers were most probably unachievable with the previous versions of FIRE.
In particular, the first example of a calculation which was made real by the
use of FIRE with modular arithmetic can be found in [27].

The new version brings a performance upgrade, being about twice as fast

1It has been shown in [3] that the number of master integrals is always finite.
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than the previous public version on small tests. However the main power
comes at problems being “at the edge of science” since the memory economy
and stability features results in a “can be done — cannot be done” difference.

Along with a performance upgrade, the new version contains a number
of new features, including but not limited to the following:

• usage of internal sector symmetries from LiteRed;

• possibility to recover from system crashes without a restart from the
very beginning;

• possibility to use multiples nodes on one reduction task;

• modular arithmetic approach;

• MPI-approach to run multiple modular arithmetic tasks on a super-
computer;

In section 2 we recall basic definitions related to Feynman integrals, in
section 3 we describe how to install FIRE and in section 4 how to use it. Sec-
tion 5 explains the internals of FIRE which might be important for choosing
options efficiently, section 6 is devoted to the usage of modular arithmetic,
and in the appendix we summarizes all options of config files.

This paper can also serve as a user manual for FIRE6. Additional infor-
mation and examples can be found in the FIRE distribution. The new version
of FIRE (starting with 6.1) is also covered with the doxygen documentation
which can be usefull for contributors, bug finding or those who wish to use
some internal functions. Details how to build and read this documentation
are also provided below.

2. Basic definitions

Let us remind the basic definitions that will be used in this paper. Feyn-
man integrals are functions of integer variables which are also called indices,

F (a1, . . . , an) =
∫

· · ·
∫

ddk1 . . .d
dkh

Ea1
1 . . . Ean

n

. (1)

Here the factors Ei in the denominator are linear functions with respect to
scalar products of loop momenta ki and external momenta pi; dimensional
regularization with d = 4− 2ǫ is applied.
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One considers the so-called integration by parts relations [1]

∫

. . .
∫

ddk1d
dk2 . . .

∂

∂ki

(

pj
1

Ea1
1 . . . Ean

n

)

= 0 (2)

They can be rewritten as:
∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 . (3)

where bi,j ∈ {−1, 0, 1} and αi are linear functions of aj.
It is already standard to use the notion of sectors during reduction. There

are 2n sectors, each of those defined by specifying a subset of indices that
have to be positive (and the remaining have to be non-positive). Each sector
has a unique so-called corner integral, that is the one with indices equal to 0
or 1.

We will define a sector to be lower than another sector if all indices of the
corner integral in the first one are smaller than the corresponding indices of
the corner integral in the second one. Basically integrals in lower sectors are
simpler, so starting from the time of reduction “by hand” one tries to reduce
Feynman integrals to ones in lower sectors.

We will call a sector trivial if all integrals corresponding to sets of indices
in this sector are equal to zero. It is known that the lowest sector, where
all indices are non-positive, is trivial, but in fact a large number of sectors
are trivial. The conditions determining whether a sector is trivial are called
boundary conditions.

3. Installation

FIRE6 is distributed via bitbucket. One can also download a binary pack-
age compiled on Ubuntu 16.04 or openSUSE 15.0 from the download section
of the repository (https://bitbucket.org/feynmanIntegrals/fire/), but
the recommended way is to build FIRE from sources.

To do it one has to
1) clone it with git (this should be done in a folder that has no space

symbols in its full path)

git clone https://bitbucket.org/feynmanIntegrals/fire.git

6

https://bitbucket.org/feynmanIntegrals/fire/


As a result a fire/FIRE6 folder will appear. The fire folder name can
be later changed if needed, however it is not recommended to change the
name of the internal folder FIRE6 to be able to receive updates with git

pull. So now one can move to the internal folder with cd fire/FIRE6.
To receive updated one can pull them from the repository

git pull

For details please refer to git manuals since this paper cannot cover all
those.

2) configure FIRE. There is a configure file in the folder that can be run
with

./configure

This file is not a part of the autoconf system, but a simple script that
sets some preprocessor variables and makefiles corresponding to the settings
provided to ./configure There are the following options:

• −−enable_zlib: enables the zlib compressor shipped with kyotocabi-
net, requires the zlib/deflate library (zlib1g-dev) to be installed system-
wide;

• −−enable_snappy: tries to build the snappy library shipped with FIRE

to serve as a compressor;

• −−enable_zstd: tries to build the zstandard library shipped with
FIRE to serve as a compressor;

• −−enable_debug: adds -g to compile options for debugging symbols
and also attaches hooks for printing out stack trace in case of crashes;

• −−enable_tcmalloc: compiles google perf tools in order to make FIRE
use tcmalloc instead of the libc malloc;
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• −−enable_lthreads: gives FIRE possibility to use multiple threads
inside a sector".

The first two options are related to compressor settings of the database
engine. By default FIRE6 uses the lz4 compressor which comes shipped
with FIRE and is easiest to build. The −−enable_debug option is self-
explanatory, the −−enable_tcmalloc option might provide significant mem-
ory economy and the lthreads option provides a better parallelization re-
source (details will be explained below).

The options of configure are saved in the previous_options file.
3) build the libraries that are shipped with FIRE

make dep

This command builds kyotocabinet, lz4, snappy (in the case where
−−enable_snappy is set), zstandard (in the case where −−enable_zstd

is set) and google perf tools (if configured with the −−enable_tcmalloc

option). As usual, one can use the -j N option where N is the number of
cores to run compilation faster. As a result, the libraries are “installed” in
the usr subfolder of fire/FIRE6.

4) build FIRE

make

the simlinks to binaries are located in the bin folder. FIRE builds a
number of binaries, with or without p at the end of the name. The p binaries
are the modular arithmetic version of FIRE (comes from “prime”). The objects
and binaries themselves are created in the poly and prime folders. Both of
them contain the FIRE6, FLAME6 and FTool6 binaries. The FIRE6 is the main
binary, FLAME6 is used for sector jobs and FTool6 is an auxiliary binary that
can be used for database analysis.

5) run tests
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make test

The new version of FIRE has a set of tests that are also available at
bitbucket via bitbucket pipelines.

6) To build the mpi version of FIRE (for use on supercomputers) one has
to run

make mpi

This version can also be tested on a personal computer in case the openmpi
libraries are installed system-wide. The mpicxx binary is called for this com-
pilation, this can be changed by editing mpi/Makefile.

7) The development of FIRE now follows the gitflow strategy. The master
branch only receives hotfixes and is moved mostly when a new release is being
prepared. Both the master and the dev branches are changed only with pull
requests, and a bunch of tests is performed via bitbucket pipelines before
such a pull request can be merged. The dev branch however can receive
changes much faster, so if one is willing to receive updates between releases,
the dev branch has to be chosed.

git checkout dev

After that everything should be recompiled.
8) The FLink and KLink binaries are no longer a part of the FIRE distri-

bution, so there are no more instructions on how to build them.
9) The doxygen documentation can be built with

make doc

make pdf
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The first command builds doxygen html and latex documentation. It re-
quires doxygen to be installed. The mein generated index file of the html doc-
umenntation is documentation/html/index.html. The second command
can also build a pdf manual from the latex version and required pdflatex to
be installed. If successful, it created the documentation/refman.pdf file. If
the xdg-open utility is installed, the documentation in its html format can
be also opened with

make showdoc

4. Basic usage of FIRE

FIRE has a part written in Wolfram Mathematica and a much bigger part
written in C++. While FIRE is able to perform reduction by the Mathematica
part, it should be used mainly for tests and for simple tasks. Partially be-
cause of that the support of calls to fermat and the database engine from
Mathematica were removed in the current version. If a problem is complex
enough that Mathematica cannot handle it with ease, one should use the C++
part.

The proper approach to use FIRE for complicated problems is the follow-
ing. First one should create a start file in Mathematica. Then this file is used
by the C++ part to run the reduction, afterwards tables are created which can
be read by Mathematica in order to produce results. Moreover it is strictly
recommended to use LiteRed in order to produce symmetries before running
the reduction.

4.1. Preparing a start file

The Mathematica part of FIRE is loaded simply with

Get["FIRE6.m"];
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provided that the currect directory is set to fire/FIRE6. The recommen-
dation to set the FIREPath variable used in previous versions is no longer
valid.

Like in previous versions one has to prepare a start file to use FIRE. Such
a file contains information on the reduction of one family of Feynman inte-
grals — dimension, sectors, integration-by-parts relations. To have backward
compatibility we keep the syntax at this stage. One has to set the following
variables.

• Internal — the list of internal momenta, for example, {k};

• External — the list of external momenta, for example, {p1, p2, p4};
one should list only linearly independent external momenta after having
used momentum conservation;

• Propagators — the list of propagators, for example, {-k2, -(k + p1)2,
-(k + p1 + p2)2, -(k + p1 + p2 + p4)2}; the propagators should be
quadratic in terms of momenta;

• Replacements (optional) — the list of replacement rules for kinematic
invariants, for example, {p12 -> 0, p22 -> 0, p42 -> 0, p1 p2 -> s/2,
p2 p4 -> t/2};

There are also two more variables that were usually set in previous ver-
sions but can be skipped now.

• RESTRICTIONS (optional) — list of boundary conditions. For example
if this list has an element {-1, -1, -1, 0}, this means that the inte-
grals are equal to zero if the first three indices are non-positive. Since
currently FIRE can detect boundary conditions automatically in most
cases, this option can be skipped. Moreover, the usage of LiteRed can
detect even more boundary conditions at a later stage. Still, if this
variable is set, those restrictions are also used;

• SYMMETRIES (optional) — list of symmetries (permutations of indices
not changing the integrals, each element consists of list positions); in
older versions one had to provide the whole symmetry group, but cur-
rently it is enough to provide the generators; for example, if this list has
an element {3, 2, 1, 4}, this means that F[a,b,c,d]=F[c,b,a,d].
In principle, the use of symmetries can speed up the reduction, however
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in case LiteRed is used, it can also detect equivalent sectors and create
corresponding mapping rules. This will be somewhat slower compared
to the use of global symmetries, but we estimate the difference as rel-
atively small.

If one wishes to set the integration by parts relations manually, there is
a special variable startinglist that should be set (see [20] for details).

Now one has to run the PrepareIBP[] and then Prepare[] commands.
The second one leads also to the autodetection of boundary conditions. This
can be turned off by running

Prepare[AutoDetectRestrictions -> False]

instead. The command also has a parallel option run with

Prepare[Parallel -> True]

Now a start file can be saved with SaveStart["filename"]. It is recom-
mended to quit the kernel afterwards.

p1
1

5

p2

2

p3

7

p4

3

6

4

Figure 1: Massless on-shell doublebox
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For example, for a double box diagram with massless lines, incoming
momenta p1, p2 and p3 and p12 = 0, p22 = 0, p32 = 0, (p1+p2+p3)2 =

0, s = (p1 + p2)2, t = (p1 + p3)2 one has:

Get["FIRE6.m"];

Internal = {k1, k2};

External = {p1, p2, p3};

Propagators = {-k12, -(k1 + p1 + p2)2, -k22, -(k2 + p1 +

p2)2, -(k1 + p1)2, -(k1 - k2)2, -(k2 - p3)2, -(k2 + p1)2,

-(k1 - p3)2};

Replacements = {p12 -> 0, p22 -> 0, p32 -> 0, p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};

PrepareIBP[];

Prepare[];

SaveStart["doublebox"];

Quit[];

As a result one has a file "doublebox.start" containing all the required
information to proceed.

Please note that start files created by old versions of FIRE (public versions
up to 5.2 and some private versions) cannot be used by the current C++ part.
They have to be either recreated or converted by the ConvertStart[oldfile,
newfile] command.

4.2. Reduction in Wolfram Mathematica

The start file can be loaded in Mathematica with the LoadStart com-
mand. For example,

Get["FIRE6.m"];

LoadStart["doublebox", 1];

Burn[]
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The second argument is the number assigned to the current family of
Feynman integrals. It is recommended to have different numbers for different
families, this will allow one to distinguish integrals belonging to different
families and to find equivalents between them later. This should be a positive
number fitting an unsigned short integer (less than 216).

In complicated situations Burn[] might work slowly. Hence one can run
SaveData["filename" after Burn[], then quit the kernel and later load ev-
erything with LoadData["filename"] (without LoadStart and Burn).

Now one can perform the reduction with

F[1, {1, 1, 1, 1, 1, 1, 1, -1, -1}]

Here F is a call to perform the reduction, “1” is the same number as in
LoadStart and {1, 1, 1, 1, 1, 1, 1, -1, -1} is the set of indices. As
a result one has an expression of the form

3/2 s G[1,{1,1,1,1,1,1,1,-1,0}] + 1/2 s t

G[1,{1,1,1,1,1,1,1,0,0}] + ...

where the dots refer to further terms that have been omitted for brevity. In
the resulting expression G follows the same notation as F but is treated as an
irreducible (master) integral and does not lead to new reduction.

As it has been mentioned earlier, running complicated reductions in
Mathematica is not recommended. But in case this reduction is performed
it is strictly recommended to avoid the F command which reduced inte-
grals one by one and to use the more similar to the C++ mode command
EvaluateAndSave. It has two arguments: the list of integrals that has to
be reduced and the file where to save tables. For example, to reduce two
integrals by this command one should run

EvaluateAndSave[{{1, {1, 1, 1, 1, 1, 1, 1, -1, -1}},

{1, {1, 1, 1, 1, 1, 1, 1, 0, -2}}},"doublebox.tables"]

14



This command creates the tables file which can be loaded, and then the
F command can be used to produce results.

4.3. Loading the tables

The tables created with the EvaluateAndSave or with the C++ version can
be loaded with the LoadTables command. In case multiple tables are to be
loaded one should pass all file names in a list to a single call to LoadTables.

LoadTables[{file1,file2,. . .,fileN}]

Now a call to F will take the result from tables. Sometimes this can be
slow because FIRE tries to factorize coefficients in order to present a nice-
looking result. This behavior can be switched off by FactorCoefficients

= False.
In case one prefers to use the tables without loading start file and the F

syntax, they can be converted into Mathematica rules. The command for
this is

Tables2Rules[filename, Func: Identity, JoinTerms: True]

It is not required to load start files to use this command and get a list
of Mathematica rules as a result. The first argument is the file name with
tables. The second (optional) argument is the function that is applied to
all coefficients, where default value is Identity meaning no function and a
reasonable choice can be Factor or Together. The third (optional) argument
is the indication whether the right-hand side is transformed into a sum of
integrals with coefficients. Setting it to False provides a list of pairs (an
integral and a coefficient) which can be usefull in case of further automatic
processing of results.
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4.4. C++ reduction

As it has been mentioned a few times above, the reduction should be run
with the C++ part of the program. As a result it created tables that can be
loaded into Mathematica afterwards.

To run the C++ version, one has to create a configuration file (with the
config extension). All options of config files will be discussed below, but let
us first illustrate the syntax with this example:

#variables d, s, t

#start

#folder examples/

#problem 1 doublebox.start

#integrals doublebox.m

#output doublebox.tables

The spaces are insignificant, each line should start from # (nowadays
called the hash symbol). #variables should list all variables that can ap-
pear. If variables are set incorrectly, the reduction will freeze due to fermat.

The #folder command is optional and provides a path to a folder where
files listed by the following commands reside (unless specfied with an ab-
solute path). If the folder instruction is missing, the paths are considered
absolute or from the “current” directory. #problem followed by the number
corresponding to the current family of Feynman integrals and the path to a
start file. #integrals points to a file containing a list of integrals that have
to be reduced and #output points to a file where the resulting tables are to
be saved. The input is a Mathematica list of pairs, for example, {{1, {1,

1, 1, 1, 1, 1, 1, -1, -1}}, {1, {1, 1, 1, 1, 1, 1, 1, 0, -2}}}.
Now the reduction can be launched with
bin/FIRE6 -c examples/doublebox

It should be stated once more that this reduction does not need Mathema-

tica. As a result one gets a file containing reduction results — expressions
of integrals via master integrals.

4.5. Using LiteRed rules in Mathematica

LiteRed is a program by R. Lee [14, 15, 16] that aims at solving the IBP
relations before the substitution of indices. This is an alternative approach
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to the IBP reduction. However even without reduction rules the LiteRed

program can provide important information that should be used in FIRE.
This information consists of

• Boundary conditions (the knowledge all integrals in some sectors are
equal to zero);

• External symmetries (mappings between different sectors);

• Internal symmetries (mappings inside sectors);

• Reduction rules in some sectors (we normally avoid this, but sometimes
it can help).

Currently FIRE comes shipped with the version 1.8 of LiteRed. It is
recommended not to use LiteRed downloaded elsewhere since there can be
a difference in file formats.

If one wishes to upgrade to the most recent version of LiteRed it can
be downloaded from http://www.inp.nsk.su/~lee/programs/LiteRed/ ,
however we cannot guarantee their compatibility.

Please note that LiteRed is not a part of FIRE but a program having
another author. Therefore, when using LiteRed options one should give
proper credit to LiteRed program by citing [14, 15, 16].

To use LiteRed rules one has to construct them first. There are multiple
examples shipped with the LiteRed package, let us consider one of them, the
two-loop massless onshell vertex.

p

q

Figure 2: Two-loop massless onshell vertex.

In the context of FIRE it is convenient to call LiteRed rules construction
with
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SetDirectory["extra/LiteRed/Setup/"];

Get["LiteRed.m"];

SetDirectory["../../../"];

Get["FIRE6.m"];

Internal = {l, r};

External = {p, q};

Propagators = {-(l - r)2, -l2, -r2, -(-l + p)2, -(q - r)2,

-(-l + p + r)2, -(l + q - r)2};

Replacements = {p2 -> 0, q2 -> 0; p q -> -1/2};

CreateNewBasis[v2, Directory -> "temp/v2.dir"];

GenerateIBP[v2];

AnalyzeSectors[v2, {0, __}];

FindSymmetries[v2,EMs->True];

DiskSave[v2];

Quit[];

Note: CreateNewBasis is a not a command of LiteRed, it is a command
in FIRE that translates FIRE input into LiteRed input.

Here the extra/LiteRed/Setup/ is inside the FIRE6 folder, v2 is a name
fo the diagram used inside LiteRed.

The AnalyzeSectors command finds trivial sectors. The last parameter
in this example assumes the one is considering integrals with non-positive
first index. In other cases one should move the position of the zeros and
underscore wildcards.

The FindSymmetries command finds symmetric sectors meaning those
that can be mapped as sums to other sectors, the EMs->True option stands for
the autodetection of external symmetries. For other syntax variants please
refer to LiteRed examples.

Before DiskSave one can also invoke the SolvejSector command in order
to construct rules for some sectors. However our experience shows that one
is advised to be careful with it because partial rules can degrade performance
of the Laporta approach.

As a result one gets a folder with multiple files containing information on
the chosen family of Feynman integrals. They can be loaded in Mathematica

with
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Get["FIRE6.m"];

LoadStart["examples/v2", 2];

LoadLRules["temp/v2.dir", 2];

Burn[];

Here “2” stands for the problem number that should be the same in both
lines. The LoadLRules command reads the directory with LiteRed rules
and loads everything it can use out of there. Then the reduction can be
performed as before.

4.6. Using LiteRed rules in C++

The C++ version is not capable of parsing the LiteRed folder directly,
they have to be converted first. It can be done with

Get["FIRE6.m"];

LoadStart["examples/v2"];

TransformRules["temp/v2.dir", "examples/v2.lbases", 2];

SaveSBases["examples/v2"];

Here 2 is the problem number. It is important to mention that the result
of the TransformRules command is both a lbases file and a new file with the
sbases extension that should be used instead of the original start file. The
syntax of those files is currently the same (sbases comes from a deprecated
idea to use Groebner bases in order to run the reduction), however we keep
different extensions in order to distingush the original start file and the result
of TransformRules. The new file contains some extra information compared
with the original start file such as sector priorities, orderings, extra boundary
conditions.

Now the config file can be changed and should contain the following lines:
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#problem 2 v2.sbases

#lbases v2.lbases

It is worth to mention that lbases files created by old versions of FIRE (up
to public 5.2 and some private versions) do not contain internal symmetries
and should be re-created.

4.7. Finding equivalents between master integrals

Extra master integrals that are equivalent to each other can degrade per-
formance a lot for final reductions. Normally the usage of Litered should re-
sult in having no equivalent masters. However sometimes they can still exist.
In order to find equivalents one should use the FindRules and WriteRules

commands.
In the doublebox example the MasterIntegrals[] command can be used

to obtain the list of masters:

{{1, {0, 0, 0, 0, 1, 1, 1, 0, 0}}, {1, {0, 0, 1, 1, 1, 1, 0,

0, 0}}, {1, {0, 0, 1, 1, 1, 1, 1, 0, 0}}, {1, {0, 1, 1, 0,

0, 1, 0, 0, 0}}, {1, {0, 1, 1, 0, 1, 1, 1, 0, 0}}, {1, {1,

0, 0, 1, 0, 1, 0, 0, 0}}, {1, {1, 0, 0, 1, 1, 1, 1, 0, 0}},

{1, {1, 1, 0, 0, 0, 1, 1, 0, 0}}, {1, {1, 1, 0, 0, 1, 1, 1,

0, 0}}, {1, {1, 1, 1, 1, 0, 0, 0, 0, 0}}, {1, {1, 1, 1, 1,

1, 1, 1, 0, 0}}, {1, {1, 1, 1, 1, 1, 1, 1, -1, 0}}}

It is easy to see that some of the integrals in lower sectors are equivalent.
This can be found with

Internal = {k1, k2};

External = {p1, p2, p3};
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Propagators = {-k12, -(k1 + p1 + p2)2, -k22, -(k2 + p1 +

p2)2, -(k1 + p1)2, -(k1 - k2)2, -(k2 - p3)2, -(k2 + p1)2,

-(k1 - p3)2};

Replacements = {p12 -> 0, p22 -> 0, p32 -> 0, p1 p2 -> s/2,

p1 p3 -> t/2, p2 p3 -> -1/2 (s + t)};

FindRules[MasterIntegrals[]]

or saved to a file with

WriteRules[MasterIntegrals[], "examples/doublebox"];

The resulting file has a syntax like

G[1, {0, 0, 1, 1, 1, 1, 1, 0, 0}] -> {{1, G[1, {1, 1, 0, 0,

1, 1, 1, 0, 0}]}};

G[1, {1, 0, 0, 1, 1, 1, 1, 0, 0}] -> {{1, G[1, {0, 1, 1, 0,

1, 1, 1, 0, 0}]}};

G[1, {1, 1, 0, 0, 0, 1, 1, 0, 0}] -> {{1, G[1, {0, 0, 1, 1,

1, 1, 0, 0, 0}]}};

G[1, {1, 0, 0, 1, 0, 1, 0, 0, 0}] -> {{1, G[1, {0, 1, 1, 0,

0, 1, 0, 0, 0}]}};

In case one wishes to provide rules mapping an integral to multiple in-
tegrals the right-hand sides should be presented as lists of pairs contain-
ing a coefficient and an integral. All rules in the file should be separated
by two new lines. This format can be also created by FIRE automatically
by the SaveRulesToFile[rules,filename], where rules should be in a
Mathematica rules format.

Moreover, the FindRules command can find equivalents between inte-
grals of different families of Feynman integrals. To do this one has to set
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the Problems variable to a list of different diagram numbers, then set the
Internal[i], External[i], Propagators[i] and Replacements[i] for
each i from this set and call the FindRules command on a set of integrals
under consideration. In this case FIRE tries to maps integrals to the ones
having higher problem numbers when possible.

The resulting file contains rules and can be loaded in Mathematica with
LoadRules[filename] or in C++ with the #rules line.

5. Internals of FIRE

In order to be able to set options of the C++ FIRE properly, one should
understand to some extent how it works internally. FIRE6 launches several
processes. The first among them is the FIRE6 binary itself. It reads the
config file and the files listed there, enumerates the sectors and starts running
individual sector jobs. Each sector has its own database, and unlike in older
versions, there is no shared database for different sectors, so this leads to a
better parallelization. Since FIRE needs to launch other binaries in its folder,
it needs to know their location. So it should be run with a relative or full
path, but copying the binary to other location or creating simlinks might
lead to crashes.

5.1. Reduction processes

The FIRE6 binary first reads the list of requested integrals and puts them
into corresponding sector databases. Then it launches individual sectors jobs
(FLAME6 processes) starting from highest sectors and going down. Multiple
sector jobs can be launched at the same time in case they share the same
level (number of positive indices in a sector) and sublevel (in case of LiteRed
external symmetries the sectors which are mapped to another sector are con-
sidered to be in a higher sublevel). The maximal number of the simultaneous
sector jobs is controlled by the #threads option.

When FLAME6 works in a sector, it masks all integrals belonging to lower
sectors to prevent growth of substitutions. They will be substituted later.

When a level (or sublevel) is over, the FIRE6 process reads the databases
which were modified by the sector jobs and obtains the lists of integrals
required in lower sectors. In also opens the lower databases and puts the
required lists there, then proceeds with lower levels.

After FIRE finishes with the lowest possible level, it turns back to sub-
stitutions and starts increasing levels launching substitution processes (also
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FLAME6). In case the #sthreads option is missing, the #threads option
controls the maximum number of simultaneous jobs. Between different levels
it copies required results from lower databases to higher databases, which
does not take much computing time.

One should keep in mind that the memory usage of FIRE is almost linearly
proportional to the number of sectors reduced (or substituted) at the same
time, so the options should be set accordingly.

There is also a mode of FIRE that does not perform backward substitu-
tions and creates tables listing irreducible integrals after the forward stage.
This is turned on by using #masters instead of #output.

The numbering of the sectors starts from 2 since 1 is reserved for the
points that are of highest priority during the reduction, meaning the right-
hand of rules or integrals listed by the #rules setting. Whenever an integral
from the right-hand side is read, FIRE creates a relation that maps it to its
virtual analogue in sector 1. Among other things it means that integrals is
right-hands side of rules should not appear in left-hand sides for consistency.

The #preferred setting as well as #rules setting influence the integral
priority inside a sector. All integrals listed as preferred as well as all integrals
appearing in both sides of the rules have a priority in theis sectors — FIRE

tries to express other integrals through them if possible. Note: unlike in
FIRE5 the corner integral in each sector is not automatically considered to
be prefered. This might be usefull in some cases but will require adding it
to prefered list if this behavior was assumed.

The sectors symmetric to lower sectors by the global symmetries do not
have their own numbers, instead the requested integrals are mapped to cor-
responding lowest points in orbits before reduction starts.

5.2. Database usage and multiple computers

FIRE6 has two ways to work with databases, the disk mode (default) and
the memory mode (turned on by the #memory setting). In the default mode
FIRE uses disk databases which are open by sector jobs or the master job for
data transfer. In the other case on-memory databases are used, and their
snapshots are saved to disk when work in the sector is done. In both cases
the databases are stored in the folder specified by the #database setting.
By default it is equal to temp/db, so one should consider whether this path
is suitable for large files. Moreover multiple jobs using the same data path
might conflict with each other.
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In order to be able to recover from system crashes or timeouts, one should
keep the databases. However when FIRE starts working in a sector, the sector
database might end in a non-consistent stage after a crash. Moreover, often
one might use temporary locations for the databases. Therefore we introduce
a concept of a storage folder, another folder where FIRE stores copies of sector
databases and copies the required databases to the database folder when
needed, then copies them back when work is done. If a storage folder is set
(by the #storage setting), one can restart the job after a crash, and it can
recover relatively fast.

The storage folder also gives the possibility to get FIRE running on mul-
tiple nodes for the same reduction. To do this one should start a FLAME6

binary on the slave machine with the same options. The process will parse
the configuration and then start waiting for an IP file to appear in the storage
folder. Then the FIRE6 job starts, it opens a socket, writes its IP address into
the IP file and one of the threads start accepting connections. The FLAME6

process from another machine connects to the open socket, and now FIRE6

is capable of distributing jobs both locally and remote. For this to work the
storage folder should be on a network drive with access from both nodes,
however the access to this folder is infrequent. Also the nodes should be able
to connect to each other via the TCP/IP protocol. The default port is 8080,
but can be set by the #port setting. If the port is set to zero, this possibility
is turned off.

5.3. Parallelization

There is a number of ways to get FIRE to use parallelization. Some of
them have been mentioned above and are related to multiple sector jobs,
both on one or multiple machines. But those are not the only options.

FIRE6 uses fermat for calculations and sends expressions to it to get
them simplified. A number of fermat processes are launched, defined by
the #fthreads setting (by default it is equal to #threads). There are two
different ways how FIRE can handle fermat jobs.

The default mode is a shared pool of fermat workers for all sectors. The
child FLAME6 processes communicate with FIRE6 via pipes and send expres-
sions to be simplified. FIRE6 has a pool of fermat workers and distributes
received expressions to this pool. An alternative way is to have a separate
pool of fermat workers for each sector job. This mode is turned on by adding
the letter s before the number in the fthreads setting. Please note that in
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this case the fthreads is divided by the threads setting in order to deter-
mine the number of fermat workers launched by a sector job. It depends on
the problem which mode works more efficiently.

Another resource for parallelization is the usage of level threads. To use
them one first needs to compile FIRE and dependent libraries with support
of level threads (enable_lthreads). Then the lthreads setting should be
used. Level threads are threads that can run in parallel in a given sector
working almost independently for integration by parts relations of similar
complexity. By complexity of an integral inside a sector we mean a pair of
numbers, the sum of positive indices minus the number of positive indices
(= number of “dots”) and minus the number of non-positive indices (= total
power of irreducible numerators). Integrals with equal sum of numbers in
this pair can be treated almost independently, and here level threads can
be applied. Again, the possibility to gain speedup from this feature greatly
depends on the nature of the problem and on the structure of the computers
in use. The level threads work only when the separate fermat mode is set.

Please note that the lthreads mode (even if configured and not turned
on) is slightly slower due to database locks. This change is negligible in the
polynomial version but can be noticed in the prime version, so there might
be a reason not to configure lthreads support.

6. Modular arithmetic

The approach with the use of modular arithmetic2 for IBP reduction
was first suggested in [17]. Basically there are two ideas here. The first
one follows from the fact that we know that there are too many integration
by parts relations but before solving them we do not know any minimally
required subset. So what if one first runs the reduction with substituted
variables, gets the information of what relations were really needed and then
runs the real reduction? Of course, one has to choose values for d and other
variables such that they do not fall into possible zeros of denominator factors.

The other idea follows from the fact that intermediate coefficients when
solving sets of linear equations can be huge compared to resulting coefficients.
So one would wish to avoid this intermediate stage since it might fail to fit
RAM limits. Hence the approach is to perform reduction with different values

2 Modular arithmetic is in use not only when solving IBP relations but also in other
problems in high-energy particle physics and quantum field theory – see, e.g., [28]
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of variables and then to reconstruct the coefficients. However simply giving
integer or rational values to all variables is normally not enough — instead
of polynomial growth one gets number growth. To avoid this one also sets
a large prime number p and used the so-called modular arithmetic meaning
all integers are replaced with their remainders from division by p. The set of
those remainders is a field meaning every non-zero remainder has a unique
inverse. Hence moving to such a field leads to a limit for all numbers. A
prime has to be chosen big enough so it makes sense to take biggest prime
numbers that fit into machine-sized integers (264) for faster calculations.

To run FIRE with modular arithmetic one has to do the following:

• Use the FIRE6p instead of the FIRE6 binary;

• Set values for all variables with the #variables setting (the syntax is
explained in the Appendix);

• Set a prime number with the #prime setting (it is not the prime number
itself that is provided but its index in the set of hard-coded primes close
to 264).

A single run with the modular arithmetic might be used together with
the #hint option pointing at a folder where the hint files are to be saved.
Those files list the integration by parts relations that were really used during
the reduction. A consequent run with the #hint option will get use of those
files.

Now if one is going to use the modular arithmetic and reconstruction of
the results, a reasonable number of FIRE runs is to be made. To avoid using
multiple config files, one can use the following syntax to run FIRE6p:

bin/FIRE6p d-p examples/doublebox

in the case when d is the only variable and

bin/FIRE6p d-x-p examples/doublebox

26



in the case of one extra variable. Here p is the number of the large prime
number to be used, d is the value of d and x is the value of the other vari-
able. With such a syntax one can avoid editing config files and changing the
#variables and #prime settings.

More variable substitutions can also be used although there is no stable
reconstruction procedure at this point. The usage is the following:

• Variable values should be separated by -;

• No negative values allowed;

• Last number indicates the prime number;

• Variables are replaced in the order they appear in the #variables

section, first N variables are replaced where N is the number of values
provided in the command line minus one;

• Replacements like d->57 in the configuration file get overwritten if they
are among the first N variables;

• Replacements like d->/57 in the configuration file get joined and form
a fraction;

• Extra variables after the first N should have replacement values in the
#variables section.

One might need a huge number of jobs like that, and consequent runs
can take too much time. Therefore this approach is most suitable when a
supercomputer is used. To use massive parallelization one should prepare a
config file and then use the FIRE6_MPI binary. It has the following syntax:

bin/FIRE6_MPI -c config p d_min d_max

in the case when d is the only variable and

bin/FIRE6_MPI -c config p d_min d_max x_min x_max
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in the case of one extra variable. Here p is the number of different primes that
will be used (starting from the biggest possible prime number corresponding
to the setting #prime 1 and going on), d_min is the minimal value of d,
d_max is the maximal value of d, similarly for x_min and x_min. The name
of the other variable in problem files is unimportant.

Currently the MPI version is uncapable of running jobs with more than
two variables to be substituted with different values.

As a result p * (d_max - d_min + 1) * (x_max - x_min + 1) jobs are
to be run one after another. However the FIRE6_MPI should not be called
directly but through the MPI system of the supercomputer. For instructions
one should refer to the instructions of the particular cluster. As a result one
runs a large number of jobs at the same time.

It is safe to use one config file and have multiple jobs running at the same
machine through MPI: FIRE creates subfolders in the database folder with
names containing process id’s and node names for databases. However in
case of crashes (which is normal for supercomputers) those folders might be
remaining, so sometimes one should clean then not to run out of quota.

As a result each FIRE job creates a tables file, but with a changed name:
name-d-p.tables or name-d-p-x.tables. Moreover, each job “reserves”
tables files when starts working by creating empty tables with such names,
so that one can launch multiple MPI jobs at the same time. Again, in case of
supercomputer node crashes one should delete empty tables files. This can
be done by

find FOLDERNAME -size 0 -print0 |xargs -0 rm −−

The jobs should be run until all tables are created. And then one can
move to the coefficient reconstruction.

One can also run multiple tasks without MPI but for example with the
use of GPU parallel, for example,

parallel "bin/FIRE6p -variables {1}-{2} -c config" :::

$(seq 100 110) ::: $(seq 1 3)
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However a direct call to such a command will result in a crash because
the jobs conflict with other (databases and semaphores) and also can provide
too much output. So the command should be changed to

parallel "bin/FIRE6p -variables {1}-{2} -c config -parallel

-silent" ::: $(seq 100 110) ::: $(seq 1 3)

to enable the concurent mode with no conflic between individual jobs (process
id’s are added to the database paths and POSIX named semaphores are also
modified).

The recommended options for running multiple modular jobs are:

• #memory for faster runs;

• #compressor none in case there is enough RAM;

• #bucket N where N is the smallest number that does not result in
“reopening database with bucket... ” messages;

• #wrap if there is a quota on the number of files;

• #small to save some RAM.

Still before running jobs one does not know how many tables will be
required. We will try to give our “algorithm” on how those jobs should be
run, but let us first explain the reconstruction process.

6.1. Reconstruction

The reconstruction of coefficients consists of two stages. First there is the
reconstruction of rational coefficients from modular numbers (while variables
have still fixed values). It searches for the rational number with minimal
absolute values of the numerator and denominator that is mapped to the
obtained remainders over large prime numbers. When increasing the number
of primes no longer changes the result, some more checks are made and the
rational number is reconstructed. FIRE can perform this operation on all
coefficients in tables, this is done by the Mathematica part of FIRE6 with:
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RationalReconstructTables[filename, pnum]

command. Here filename is the name of the target filename (without the p-
part) and pnum is the number of different prime numbers in use, starting from
the first (largest). The result is the requested tables file if successful. FIRE

produces messages which can be turned off with adding the True option:

RationalReconstructTables[filename, pnum, True]

6.2. One-dimensional reconstruction

When the rational reconstruction is done, one can move to the reconstruc-
tion of coefficients. Here we recall classical approaches to the reconstruction
of formulas. Let us start with the case of one variable. One of the approached
is based on the so-called Newton reconstruction which uses the the following
formula:

a[0] + (x - x[0]) (a[1] + (x - x[1]) ( . . . a[n] ). . . ))

There are well-defined algorithms that can perform this reconstruction
for any polynomial (not a rational function). If a reconstruction of a rational
function is needed, then one should use the Thiele formula:

a[0] + (x - x[0]) / (a[1] + (x - x[1]) / ( . . . a[n]) . . . ))

One should keep in mind that this method needs more values. For exam-
ple, reconstructing a polynomial with the Newton formula needs the number
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of points close to its power, but reconstructing the same polynomial with the
Thiele formula needs about twice that many points.

One can perform the reconstruction with the

ThieleReconstructTables[filename, dlist]

Here filename is the reconstruction target filename and dlist is the list
of different values of d that will be used. As a result one obtains the file with
tables in the same format, but containing rational polynomial coefficients.
FIRE produces messages which can be turned off with adding the True option.

Hence the general instructions to perform a one-dimensional reconstruc-
tion are the following

1. Choose a relatively big number of d and run modular arithmetic reduc-
tions until the rational numbers can be reconstructed (for example, in
[27] we required 13 values);

2. Increase the number if primes used a bit to be safe and run massive
reductions at the supercomputer with different values of prime numbers
and d;

3. Run the rational reconstruction for each value of d in use, if it fails,
increase the number of primes and return to step 2;

4. Run the Thiele reconstruction, if it fails, increase the number of values
of d and return to step 2.

6.3. Two-dimensional reconstruction

Now when considering the case of two variables there is nothing known to
work better than a mixture of the two approaches. One builds a Newton or
Thiele formula in one variable and the coefficients are build by the Newton or
Thiele formula in another variable. Now the problem is that a Thiele-Thiele
formula might make the reconstruction too complex, both computationally
and also requiring a large number of tables, but other variants do not cover
the general case of a rational function of two variables. However, we can take
into account that the denominators in IBPs correspond to singularities of
Feynman integrals which correspond to thresholds and poles whose positions
are described in terms of kinematical invariants and masses, so that the
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dependence on d should not mix with the dependence on these variables. In
practice, it can happen however that these variables do mix with d. Then
the natural procedure is to find a basis of master integrals such that the
denominators are split into a product of a function of d and a function of x.
In our experience this is always possible. We will call such a basis factorising.
It can be checked that a basis is factorising on a simpler task that can be
reduced with the classical approach.

So now supposing we have a factorising basis, we can continue in the
following way. First, after the numerical reconstruction of rational functions
is complete, one fixes a value of x and recovers the tables with the one-
dimensional Thiele function. Then the same is done with fixing a value
of d. Now knowing the structure of denominators we understand that we
can take the least common multiple of tables with d and tables with x,
multiply those factors, and afterwards all coefficients multiplied by this factor
become polynomials both in x an d. Then one can run a Newton-Newton
reconstruction.

Now let us proceed to instructions on how one uses this approach provided
a factorising basis has been found.

1. Fix a value of d and a value of x (we will use this name for the vari-
able) and build a number of tables until rational reconstruction can be
performed with

RationalReconstructTables["TASK-" <> ToString[d0] <>

"-" <> ToString[x0] <> ".tables", p0, True]

p0 stands for the number of different big primes in tables, True stands
for silent, giving only a summary for each table reconstruction. If "Ra-
tional reconstruction unstable" is encountered, p0 has to be increased.
After that one knows the number of prime numbers needed for the re-
construction. In the following steps this should be increased by 1 or 2
to be on the safe side;

2. Fix a value of x and create a number of tables with different values of
d and p until Thiele reconstruction over d succeeds with
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For[x = x0, x <= x1, ++x,

RationalReconstructTables[ "TASK-" <> ToString[d0] <>

"-" <> ToString[x] <> ".tables", p0, True]

];

ThieleReconstructTables["TASK-"<>ToString[d0]<>

".tables", Range[x0, x1], True]

Here d0 is the chosen value for d, x0 is the minimal x and x1 is the
maximal x for which there are tables, True again stands for the silent
mode. If the reconstruction is unstable, x1 should be increased. When
the Thiele reconstruction is stable, the required denominator factor can
be recovered from new tables by

DenominatorFactor["TASK-"<>ToString[d0]<>.tables"]

/.d->x

The replacement here is needed because the Thiele reconstruction orig-
inally is intended for the case of one variable and assumes it is d. The
answer returned is the worst denominator and will work as the fac-
tor later. To be safe one can recheck the factor with another d value
reconstruction.
Note that the Thiele reconstruction in x needs more values that the
later appearing Newton reconstruction after multiplying by a coeffi-
cient. So when there is the factor, the reconstruction should be rerun
with

NewtonReconstructTables[TASK <> "-" <> ToString[d0] <>

".tables", Range[x0, x1], factorX, True];

This gives the information on how many values of x for the final table
creation, and it is normally much smaller than the original number
needed for the Thiele reconstruction.

3. A similar procedure should be repeated with a fixed value of x and
running
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For[d = d0, d <= d1, ++d,

RationalReconstructTables["TASK-" <> ToString[d] <> "-"

<> ToString[x0] <> ".tables", p0, True]

];

ThieleReconstructTables[TASK, Range[d0, d1], True, "-"

<> ToString[x0] <> ".tables"];

Note that there is a change in the ThieleReconstructTables syntax.
There is an extra argument, that is appended to the tables name after
the running index.
After the reconstruction goes through, the worst factor in d is obtained
with DenominatorFactor["TASK.tables"]. The factor and the num-
ber of different x values can be checked and obtained with

NewtonReconstructTables[TASK <> ".tables", Range[d0,

d1], factorD, True, "-" <> ToString[x0] <> ".tables"];

4. Now one knows the worst possible denominator which is a product
of the factor in d and the factor in x, one also knows the number of
different values of d and the number of different valuer of x required
for the reconstruction. This number of tables must now be created.
The final reconstruction is run with

For[d = d0, d <= d1, ++d,

For[x = x0, x <= x1, ++x,

RationalReconstructTables[

"TASK-"<>ToString[d]<>"-"<>ToString[x]<>".tables",

p0,True] ] ];

NewtonNewtonReconstructTables["TASK.tables", Range[d0,

d1], Range[x0, x1], x, denominator, False];

As a result the tables with reconstructed coefficients are created.
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Appendix: config files for C++

Most of FIRE options are provided via the config files. But a few can
come via the command line:

• -c filename — the path to the config file with no extension

• -variables vars (only prime mode) — lists the substitution values
for variables separated by “-”, the last one is the index of the prime
number to be used;

• -parallel — makes FIRE use modified paths and named semaphores,
so that multiple jobs do not conflict with each other;

• -silent — turns off most of the output;

• -database path – same with the #database option in the config file;
usefull if a dynamic path is to be specified; this option overrided the
#database entry in the config file if both are present;

• -sector s (option of FLAME) — a direct way to make the FLAME6 work
in a particular sector; positive values mean forward pass, negative val-
ues mean backward pass;

Let us now summarize all options of config files. The order of some of the
options is important, so it is recommended to keep the order as described
here or in supplementary examples (especially the order of the options that
are listed after the #start command). A line starting with ## is considered
as a comment and is ignored by FIRE.

• #fermat (optional) — the path to the fermat binary. By default the
binary shipped with FIRE is used, but one might wish to change it;

• #compressor (optional) — compressor choice for the database engine.
The possible compressors depend on compilation options. The full
set of values is lz4, lz4fast, lz4hc, zlib, snappy, zstd, none.
The first three are from the lz4 family with lz4hc being the slowest
and compressing most and lz4fast being the fastest among all com-
pressors shipped with FIRE. lz4fast is the suggested option for the
prime version, probably together with the #small option. For a long
time we used snappy as the best choice for the polynomial version as

35



being able to compress well enough but reasonably fast. However there
is a recent addition to FIRE, the zstd option standing for the ZStan-
dard compressor that claims to compress better than snappy at the
same speed. The none setting means no compressor and can provide a
noticable speedup for the prime version in case there is enough RAM;

• #threads — the number of threads launched for parallel reduction of
sectors of same level;

• #fthreads (optional) — the number of fermat processes launched. By
default it is equal to the number of threads, but it might make sense to
increase it; an s before the number turns on the separate fermat mode;

• #sthreads (optional) — the number of threads used during the sub-
stitution stage. By default it is equal to the number of threads, but it
might make sense to decrease it in case of problems with RAM;

• #lthreads (optional) — the number of level threads (FIRE should be
compiled with support of level threads for this option);

• #port (optional) — the port for the main job to listen to accept child
connections. 0 is the default value meaning the setting if off, value 8080
is recommended to enable;

• #variables — comma-separated list of variables used during the re-
duction; also this setting can provide variable replacements like d->57,
the right-hand sides of rules should be numbers;

• #pos_pref (optional) — a setting that allows to tweak the choice
of master integrals. By default FIRE chooses such an ordering that
having one positive shift has a higher priority that having a negative
shift, meaning that obtains master integrals with one 2 instead of one
−1. The integrals with positive indices are easier in a sense because
the equivalents between them can be found. But in cases where there
are many masses sometimes this priority is not enough, and one gets
integrals with two or more −1. To set a priority for integrals with two
(or more) “dots”, one has to increase the pos_pref setting (by default
1). This also leads to internal symmetries being applied to a larger
subset of integrals;
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• #database (optional) — path to the place where FIRE stores the data;
by default it points to the temp/db directory relative to the current
folder, but this can be changed; it is especially important to be sure
that this setting does not point to a network drive in case one does not
use the memory setting;

• #storage (optional) — sets a folder for the storage of database files;
by default, the storage is used only at the forward pass, to use it also
during substitutions preceede the path with an exclamation mark (“!”,
no quotes); please note that this option is incompatible with different
#threads and #sthreads – FIRE cannot distnguish properly local and
remote threads when some are to be stopped;

• #bucket (database tuning) — an integer number equal to 20 by de-
fault and related to the database engine; small values make FIRE auto-
increase the bucket during the reduction, and this can slow things down,
large values can make FIRE use too much RAM; for complicated tasks
consider a bucket value equal to 27–30; the old values are remaining
here for backward compatibility, but currently FIRE uses the shifted
(by −4) value and prints it in the log;

• #wrap (database tuning) — results in sector databases being stored in
a general database, only the active databases remain being files; this
greatly reduces the number of files used which can be important in case
of file limits when running multiple jobs on a cluster;

• #prime (prime version) — is used and should be used only in the
“prime” version of FIRE. It sets the prime number to be used in evalua-
tions. If the option is set to zero, the prime number 2017 is used which
is useful for tests (to see small numbers in results). Any other value
uses one of the maximal prime numbers fitting into a 64-but unsigned
integer (currently there are 128 hard-coded primes in FIRE);

• #memory (optional) — if this line exists, FIRE uses the “RAM mode”
instead of the “disk mode” — it stores active databases in RAM; this
setting makes FIRE use more RAM, but it becomes less vulnerably to
freezing because of network drives;

• #clean (optional) — cleans the POSIX named semaphores opened by
older runs of FIRE that crashed; safe unless one user launches multiple
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FIRE jobs at the same machine simultaneously; this might be required
when FIRE starts crashing at random places at a particular machine
that there is no way to reboot;

• #keepall (debugging) — keeps all entries in all databases, no removal;

• #small (database tuning) — decreases the key size for database en-
tries, which is especially efficient in case of the number of indices about
10. This might make sense to decrease database size in the “prime”
mode;

• #allIBP (for non-standard IBPs) — by default FIRE does not use some
of the integration by parts relations that are guaranteed consequences
of others; this logic is valid in case those are real IBPs in the classical
case but might result in missing some relations in special cases. If this
is the situation, then this line has to be a part of the config file;

• #nolock (database tuning) — if this line exists, FIRE does not lock
databases in “disk mode”; this might be required to get FIRE work on
some file systems;

• #start — just a command following the previous lines;

• #folder (optional) — if this path is given, all following paths will be
considered relative to this folder unless they are absolute paths (starting
with /);

• #problem — the instruction to load a start or sbases file; the syn-
tax is #problem pn filename or #problem pn |maxpos|filename

or #problem pn |minpos,maxpos|filename; pn here is the diagram
number; if maxpos is provided, then indices bigger than maxpos cannot
be positive; if minpos is provided, then indices smaller than minpos

cannot be positive;

• #hint (optional) — points to a folder with hint files which list the
relations that should be used (or created if missing); might be useful if
one first makes a “prime” version run, then uses the obtained hint files;

• #lbases (optional) — a command to load with LiteRed rules obtained
by TransformRules;
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• #output or #masters — the path where FIRE will store the resulting
tables; if one chooses the #masters syntax, then FIRE only aims at
finding master integrals, and this can be much faster than the whole
reduction; this might be needed to find master integrals, then one can
use WriteRules to find equivalents between them, so that afterwards
the full reduction can be run with the use of those rules;

• #preferred (optional) — this file can list integrals that are preferred
as master integrals; this might be needed if one does not like the au-
tomatic choice; however, one should keep in mind that it is just a hint
for FIRE; the syntax of the file is the same with the input list;

• #rules (optional) — a command to load a file with rules for some
integrals; the syntax is explained in section 4.7;

• #integrals — the file with integrals to be reduced.

Conclusion

We presented a new version of the FIRE program performing Feynman
integral reduction. The new version has been developed in private for a
few years and was successfully used in multiple projects. Currently it is
made public of the bitbucket. The new version offers a lot of functionality
requested by the users and by the needs of reduction problems — the possi-
bility to recover from crashes, usage of multiple machines for one reduction,
parallelization inside sectors, modular arithmetic, support of supercomputers
and other features. We hope that the new public version will be widely used
in modern research in elementary particle physics. We have more plans on
how FIRE can be improved and we are ready to accept improvement ideas
and error reports.
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